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Abstract: We develop an approach for two-player constraint zero-sum and nonzero-sum stochastic
differential games, which are modeled by Markov regime-switching jump-diffusion processes. We
provide the relations between a usual stochastic optimal control setting and a Lagrangian method. In
this context, we prove corresponding theorems for two different types of constraints, which lead us to
find real-valued and stochastic Lagrange multipliers, respectively. Then, we illustrate our results for a
nonzero-sum game problem with the stochastic maximum principle technique. Our application is an
example of cooperation between a bank and an insurance company, which is a popular, well-known
business agreement type called Bancassurance.
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1. Introduction

A regime-switching model is one of the most powerful tools for efficiently capturing
abrupt changes in a wide range of random phenomena. The discrete shifts from one state to
another may easily be described mathematically as financial, natural, or mechanical events;
hence, they enjoy a substantial application area. In this work, specifically, we focus on the
fields of finance and actuarial science.

The states of a Markov chain can be seen as proxies of macroeconomic instruments
such as gross domestic product or sovereign credit ratings. Furthermore, when we observe
how regulation policies issued by governments or financial institutions cause deep modifi-
cations in microstructure of financial markets (see [1]), the importance of regime-switching
models becomes clear. Moreover, periods that emerged after more catastrophic events
like a financial crisis, e.g., the bankruptcy of Lehman Brothers in 2008, can be efficiently
described by such systems. Additionally, we can combine regime switches with stochastic
optimal control, which is another fundamental method of managing random events (for
complete treatments of control theory, see [2,3]). Hence, these models have attracted many
researchers so far, such as [4–13].

Furthermore, our work utilizes the foundations of stochastic differential games and
combines them with stochastic optimal control and regime switches in a clear way. Such
effective mathematical approaches attracted several authors; see [5,12,14–19] and refer-
ences therein. Particularly, we focus on providing a financial application of a nonzero-sum
stochastic differential game, for which the stochastic maximum principle has been preferred
as a solution technique. In this sense, we want to mention some of the specific attempts
in the literature to tackle such problems [7,17,18], which applied the stochastic maximum
principle as well.

In [7], the authors develop necessary and sufficient maximum principles for a Markov
regime-switching forward–backward zero-sum and a nonzero-sum stochastic differential
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games. Then, they provide an application for a zero-sumgame, which describes a robust
utility maximization under a relative entropy penalty. But they do not give an application to
describe the solution techniques for a nonzero-sum game formulation. In [17], the authors
investigate optimal dividend strategies for two insurance companies and model their work
with a stopping time problem via a regime-switching process. In this work, the authors just
focus on a diffusion process with regimes. On the other hand, in [18], the authors study
the optimal control problem of a nonzero-sum mean-field game with a delayed Markov
regime-switching forward–backward stochastic system with Lévy processes. In this context,
they provide necessary and sufficient maximum principles for these types of problems.
Also, they define a single state process for both players and try to maximize each investor’s
profits over the specified objective functional.

In our work, we approach stochastic differential game problems from a different tech-
nical point of view. We propose to provide the mathematical formulations for constrained
stochastic control problems in a regime-switching environment. We formulate correspond-
ing theorems to describe both stochastic and constant Lagrange multipliers. In this context,
we extend Theorem 11.3.1 in [20], which has been proven for stochastic optimal control
problems but without regime switches and game theoretical structures. Hence, our main
contributions are developing the required theorems for zero-sum and nonzero-sum stochas-
tic differential games with constraints and generalizing the state processes of the system
to a Markov regime-switching jump-diffusion environment. We would like to emphasize
the flexibility of our theorems, which can be applied with both dynamic programming
principle and stochastic maximum principle techniques. Also, unlike the above works, we
define different state processes for each player in a matrix representation, and our control
problems appear with diversified constraints.

This paper is organized as follows: In Section 2, we provide the details of the model dy-
namics. Then, we introduce our Markov regime-switching jump-diffusion process, which
is going to correspond to the state process of the system in our game theoretical application.
In Section 3, we extend Theorem 11.3.1 in [20] to develop techniques in order to find the
saddle point of a zero-sum game. In Section 4, we generalize Theorem 11.3.1 in [20] for
the Nash equilibrium concept, which presents the stochastic optimal control processes of a
nonzero-sum game formulation. In Section 5, we investigate cooperation between a bank
and an insurance company via a nonzero-sum stochastic differential game method. While
the company makes a decision for the optimal dividend payment against the best decision
of the bank, the bank tries to determine the optimal appreciation rate for its cash flow
corresponding to the best action of the company, and vice versa. In Section 6, we provide
an insight into our results. Finally, a version of the sufficient maximum principle theorem
with all the required technical conditions can be found in the appendix.

2. Preliminaries

Throughout this work, we assume that the maturity time T > 0 is finite. Let
(Ω,F, (Ft)t≥0,P) be a complete probability space, where (Ft)t≥0 is a right-continuous,
P-completed filtration and F = (Ft : t ∈ [0, T]) is generated by an M-dimensional Brown-
ian motion W(·), an L-dimensional Poisson random measure N(·, ·) and a D-state Markov
chain α(·). It is assumed that these processes are independent of each other and adapted
to F.

Let (α(t) : t ∈ [0, T]) be a continuous-time, finite-state Markov chain. We can choose a
time-homogenous or a time-inhomogenous Markov chain, depending on the application
that we intend to formulate. Moreover, based on the specific problem, the chain may
be reducible or irreducible. In this work, we utilize a set of Markov jump martingales
associated with the chain α as developed in [6]. Hence, we represent the canonical state
space of the finite-state Markov chain α(t) by S = {e1, e2, . . ., eD}, where D ∈ N, ei ∈ RD

and the jth component of ei is the Kronecker delta δij for each pair of i, j = 1, 2, . . ., D.
The generator of the chain under P is defined by Λ := [µij(t)]i,j=1,2,...,D, t ∈ [0, T] and for
each i, j = 1, 2, . . ., D, µij(t) denotes the transition intensity of the chain from each state
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ei to state ej at time t. Note that for i 6= j, µij(t) ≥ 0 and ∑D
j=1 µij(t) = 0; then, µii(t) ≤ 0.

By Appendix B in [21], we know that there is a semimartingale representation for a Markov
chain α as follows:

α(t) = α(0) +
∫ t

0
ΛTα(u)du + M(t),

where (M(t) : t ∈ [0, T]) is an RD-valued, (F,P)-martingale and ΛT describes the transpose
of the matrix. Let Jij(t) represent the number of jumps from state i to state j up to and
including time t for each i, j = 1, 2, . . ., D, with i 6= j and t ∈ [0, T]. Then,

Jij(t) := ∑
0<s≤t

〈α(s−), ei〉
〈
α(s), ej

〉
= ∑

0<s≤t
〈α(s−), ei〉

〈
α(s)− α(s−), ej

〉
=
∫ t

0
〈α(s−), ei〉

〈
dα(s), ej

〉
=
∫ t

0
〈α(s−), ei〉

〈
ΛTα(s), ei

〉
ds +

∫ t

0
〈α(s−), ei〉

〈
dM(s), ej

〉
=
∫ t

0
µij(s)〈α(s−), ei〉ds + mij(t),

where the processes mijs are (F,P)-martingales and called the basic martingales associated
with the chain α. For each fixed j = 1, 2, . . ., D, let Φj be the number of jumps into state ej
up to time t. Hence, we obtain:

Φj(t) :=
D

∑
i=1,i 6=j

Jij(t)

=
D

∑
i=1,i 6=j

∫ t

0
µij(s)〈α(s−), ei〉ds + Φ̃j(t).

Let us define Φ̃j(t) :=
D
∑

i=1,i 6=j
mij(t) and µj(t) :=

D
∑

i=1,i 6=j

∫ t
0 µij(s)〈α(s−), ei〉ds, then, for

each j = 1, 2, . . ., D,
Φ̃j(t) = Φj(t)− µj(t)

is an (F,P)-martingale. By Φ̃(t) = (Φ̃1(t), Φ̃2(t), . . ., Φ̃D(t))T , we represent a compen-

sated random measure on ([0, T] × S,B([0, T]) ⊗ BS), where BS is a σ-field of S. Note
that another description of such a martingale representation for a random measure gen-
erated by a Markov chain can be found in Appendix A.3 in [22] within the framework of
actuarial science.

Furthermore, let B0 be the Borel σ-field generated by an open subset of R0 := R \ {0},
whose closure does not contain the point 0. We define the compensated Poisson random
measures as follows:

Ñi(dt, dz) := Ni(dt, dz)− νi(dz)dt, i = 1, 2, . . . , L,

where (Ni(dt, dz) : t ∈ [0, T], z ∈ R0)s are independent Poisson random measures on
([0, T]×R0,B([0, T])⊗B0) and νi(dz) = (νi

e1
(dz), νi

e2
(dz), . . . , νi

eD
(dz))T’s are Lévy densi-

ties of jump sizes of the random measure Ni(dt, dz) for i = 1, 2, . . . , L.
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Now, let us describe the state process of the system as a Markov regime-switching
jump-diffusion process:

Y(t) = b(t, Y(t), α(t), u1(t), u2(t))dt

+ σ(t, Y(t), α(t), u1(t), u2(t))dW(t)

+
∫
R0

η(t, Y(t−), α(t−), u1(t−), u2(t−), z)Ñα(dt, dz)

+ γ(t, Y(t−), α(t−), u1(t−), u2(t−))dΦ̃(t), t ∈ [0, T], (1)

Y(0) = y0 ∈ RN , (2)

where U1 and U2 are nonempty subsets of RN and u1 ∈ U1 and u2 ∈ U2 are Ft-predictable,
cádlág (right continuous with left limits) control processes, such that

E
[∫ T

0
|uk(t)|2dt

]
< ∞, k = 1, 2.

Moreover,

b : [0, T]×RN × S×U1 ×U2 → RN , σ : [0, T]×RN × S×U1 ×U2 → RN×M,

η : [0, T]×RN × S×U1 ×U2 ×R0 → RN×L, γ : [0, T]×RN × S×U1 ×U2 → RN×D

are given measurable functions with respect to F, such that

∫ T

0

{
|b(t, Y(t), α(t), u1(t), u2(t))|+ |σ(t, Y(t), α(t), u1(t), u2(t))|2

+
∫
R0

|η(t, Y(t−), α(t−), u1(t−), u2(t−), z)|2ν(dz)

+
D

∑
j=1
|γ(t, Y(t−), α(t−), u1(t−), u2(t−))|2µj(t)

}
dt < ∞.

Let f : [0, T]×RN × S× U1 × U2 → R, called profit rate, and g : RN × S→ R, called
terminal gain or bequest function, be C1 functions with respect to y. Then, we can define the
performance (objective) functional as follows:

J(y, ei, u1, u2) = Ey,ei

[∫ T

0
f (s, Y(s), α(s), u1(s), u2(s))ds + g(Yu1,u2(T), α(T))

]
,

for each i = 1, 2, . . . , D and (u1, u2) are the control processes of the targeted problem. We
call the control processes admissible and assume that Θ1 and Θ2 are given families of ad-
missible control processes of u1 ∈ U1 and u2 ∈ U2, respectively, if the following conditions
are satisfied:

1. There exists a unique strong solution of the state process Y(t) introduced in
Equations (1) and (2) (see Proposition 7.1 in [23] for an existence–uniqueness theorem
of such a system).

2. E
[∫ T

0 | f (t, Y(t), α(t), u1(t), u2(t))|dt + |g(Yu1,u2(T), α(T))|
]
< ∞.

In the following section, we develop our first constrained control problem in a zero-
sum game theoretic framework.
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3. A Zero-Sum Stochastic Differential Game Approach

Firstly, let us remember the mathematical definition of a saddle point, i.e., the optimal
control processes (u∗1 , u∗2) ∈ Θ1 ×Θ2 of a zero-sum stochastic differential game problem
(if they exist). As we described in [12], assume that

J(y, ei, u∗1 , u∗2) ≥ J(y, ei, u1, u∗2) for all u1 ∈ Θ1, ei ∈ S, i = 1, 2, . . . , D,

where we define:
J(y, ei, u∗1 , u∗2) = sup

u1∈Θ1

J(y, ei, u1, u∗2).

Furthermore, suppose that

J(y, ei, u∗1 , u∗2) ≤ J(y, ei, u∗1 , u2) for all u2 ∈ Θ2 ei ∈ S, i = 1, 2, . . . , D,

where we specify:
J(y, ei, u∗1 , u∗2) = inf

u2∈Θ2
J(y, ei, u∗1 , u2).

Then, (u∗1 , u∗2) is a saddle point of a zero-sum stochastic differential game and

φ(y, ei) = J(y, ei, u∗1 , u∗2) = sup
u1∈Θ1

(
inf

u2∈Θ2
J(y, ei, u1, u2)

)
= inf

u2∈Θ2

(
sup

u1∈Θ1

J(y, ei, u1, u2)

)
for each ei ∈ S, i = 1, 2, . . . , D.

Now, we can express our constrained and unconstrained zero-sum stochastic differen-
tial game formulations and their relations.

Our constrained zero-sum problem is to find (u∗1 , u∗2) for the following system:

φ(y, ei) = sup
u1∈Θ1

(
inf

u2∈Θ2
J(y, ei, u1, u2)

)
= inf

u2∈Θ2

(
sup

u1∈Θ1

J(y, ei, u1, u2)

)
= sup

u1∈Θ1

(
inf

u2∈Θ2
Ey,ei

[∫ T

0
f (s, Y(s), α(s), u1(s), u2(s))ds + g(Yu1,u2(T), α(T))

])
, (3)

for i = 1, 2, . . . , D, subject to the System (1) and (2) and the constraints,

(i) Ey,ei [M(Yu1,u2(T), α(T))] = 0 (4)

or
(ii) M(Yu1,u2(T), α(T)) = 0 a.s., (5)

where M : RN → R is a C1 function with respect to y. Here, we introduce two types of
constraints. For Constraint (4), it is enough to determine a real-valued Lagrange multiplier,
while we have to find a stochastic one for the stochastic Constraint (5). Therefore, we clarify
the set of stochastic Lagrange multipliers by:

∆ = {λ : Ω→ R|λ is FT −measurable and E[λ] < ∞}.

Moreover, in this case, we assume that E[M(Yu1,u2(T), α(T))] < ∞.
Now, we can define our unconstrained zero-sum stochastic differential game as follows:

φλ(y, ei) = sup
u1∈Θ1

(
inf

u2∈Θ2
J(y, ei, uλ

1 , uλ
2 )

)
= inf

u2∈Θ2

(
sup

u1∈Θ1

J(y, ei, uλ
1 , uλ

2 )

)
= sup

u1∈Θ1

(
inf

u2∈Θ2
Ey,ei

[∫ T

0
f (t, Y(t), α(t), u1(t), u2(t))dt + g(Yu1,u2(T), α(T)) (6)

+ λM(Yu1,u2(T), α(T))
])

.
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for i = 1, 2, . . . , D, subject to the System (1) and (2).
Let us provide the following theorem for the constraint type (5):

Theorem 1. Suppose that for all λ ∈ ∆1 ⊂ ∆, we can find φλ(y, ei), i = 1, 2, . . . , D, and a saddle
point (u∗,λ1 , u∗,λ2 ) solving the unconstrained stochastic control Problem (6) subject to (1) and (2).
Moreover, suppose that there exists λ0 ∈ ∆1, such that

M(Y
u
∗,λ0
1 ,u

∗,λ0
2

T , ei) = 0, a.s. (7)

for all ei ∈ S, i = 1, 2, . . . , D. Then, φ(y, ei) = φλ0(y, ei), i = 1, 2, . . . , D and (u∗1 , u∗2) =

(u∗,λ0
1 , u∗,λ0

2 ) solves the constrained stochastic control Problem (3) subject to (1)–(2) and (5).

Proof. By definition of the saddle point, we have:

φλ(y, ei) = J(y, ei, u∗,λ1 , u∗,λ2 ) = Ey,ei

[∫ T

0
f (t, Y

u∗,λ1 ,u∗,λ2
t , ei, u∗,λ1 , u∗,λ2 )dt + g(Y

u∗,λ1 ,u∗,λ2
T , αT)

+ λM(Y
u∗,λ1 ,u∗,λ2
T , αT)

]
≥ J(y, ei, uλ

1 , u∗,λ2 ) = Ey,ei

[∫ T

0
f (t, Yuλ

1 ,u∗,λ2
t , ei, uλ

1 , u∗,λ2 )dt + g(Yuλ
1 ,u∗,λ2

T , αT)

+ λM(Yuλ
1 ,u∗,λ2

T , αT)

]
. (8)

For the optimal strategy of Player 2, u∗,λ2 ∈ Θ2, λ ∈ ∆1, in particular if λ = λ0 and
since u1 ∈ Θ1 is feasible in the constrained control problem, then based on (7):

M(Y
u
∗,λ0
1 ,u

∗,λ0
2

T , ei) = 0 = M(Yu1,u∗2
T , ei), for i = 1, 2, . . . , D.

By (8):
φλ0(y, ei) = J(y, ei, u∗,λ0

1 , u∗,λ0
2 ) ≥ J(y, ei, u1, u∗2), (9)

for all u1 ∈ Θ1 and ei ∈ S, i = 1, 2, . . . , D. Moreover, we know that

φλ(y, ei) = J(y, ei, u∗,λ1 , u∗,λ2 ) = Ey,ei

[∫ T

0
f (t, Y

u∗,λ1 ,u∗,λ2
t , ei, u∗,λ1 , u∗,λ2 )dt + g(Y

u∗,λ1 ,u∗,λ2
T , αT)

+ λM(Y
u∗,λ1 ,u∗,λ2
T , αT)

]
≤ J(y, ei, u∗,λ1 , uλ

2 ) = Ey,ei

[∫ T

0
f (t, Y

u∗,λ1 ,uλ
2

t , ei, u∗,λ1 , uλ
2 )dt + g(Y

u∗,λ1 ,uλ
2

T , αT)

+ λM(Y
u∗,λ1 ,uλ

2
T , αT)

]
. (10)

for all u2 ∈ Θ2 and ei ∈ S, i = 1, 2, . . . , D. For the optimal strategy of Player 1, u∗,λ1 ∈ Θ1,
λ ∈ ∆1, in particular if λ = λ0 and since u2 ∈ Θ2 is feasible in the constrained control
problem, then based on (7):

M(Y
u
∗,λ0
1 ,u

∗,λ0
2

T , ei) = 0 = M(Yu∗1 ,u2
T , ei), a.s. for i = 1, 2, . . . , D.

Therefore, based on (10):

φλ0(y, ei) = J(y, ei, u∗,λ0
1 , u∗,λ0

2 ) ≤ J(y, ei, u∗1 , u2), (11)
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for all u2 ∈ Θ2 and ei ∈ S, i = 1, 2, . . . , D. Consequently, using (9)–(11), we obtain:

J(y, ei, u1, u∗2) ≤ J(y, ei, u∗,λ0
1 , u∗,λ0

2 ) = φλ0(y, ei) ≤ J(y, ei, u∗1 , u2)

for any feasible (u1, u2) ∈ Θ1 ×Θ2 and for all ei ∈ S, i = 1, 2, . . . , D.

Then,

J(y, ei, u∗,λ0
1 , u∗,λ0

2 ) ≤ inf
u2∈Θ2

J(y, ei, u∗1 , u2) ≤ sup
u1∈Θ1

(
inf

u2∈Θ2
J(y, ei, u1, u2)

)
.

Moreover,

J(y, ei, u∗,λ0
1 , u∗,λ0

2 ) ≥ sup
u1∈Θ1

J(y, ei, u1, u∗2) ≥ inf
u2∈Θ2

(
sup

u1∈Θ1

J(y, ei, u1, u2)

)
Hence, we obtain:

sup
u1∈Θ1

(
inf

u2∈Θ2
J(y, ei, u1, u2)

)
≥ inf

u2∈Θ2

(
sup

u1∈Θ1

J(y, ei, u1, u2)

)
.

Since we always have

sup
u1∈Θ1

(
inf

u2∈Θ2
J(y, ei, u1, u2)

)
≤ inf

u2∈Θ2

(
sup

u1∈Θ1

J(y, ei, u1, u2)

)
,

finally, we prove

φ(y, ei) = sup
u1∈Θ1

(
inf

u2∈Θ2
J(y, ei, u1, u2)

)
= inf

u2∈Θ2

(
sup

u1∈Θ1

J(y, ei, u1, u2)

)
= φλ0(y, ei),

for i = 1, 2, . . . , D.
This completes the proof.

We can prove the following theorem similarly for the constraint type (4).

Theorem 2. Suppose that for all λ ∈ K ⊂ R, we can find φλ(y, ei), i = 1, 2, . . . , D, and a saddle
point (u∗,λ1 , u∗,λ2 ) solving the unconstrained stochastic control problem (6) subject to (1) and (2).
Moreover, suppose that there exists λ0 ∈ K, such that

E[M(Y
u
∗,λ0
1 ,u

∗,λ0
2

T , ei)] = 0,

for all ei ∈ S, i = 1, 2, . . . , D. Then, φ(y, ei) = φλ0(y, ei), i = 1, 2, . . . , D and (u∗1 , u∗2) =

(u∗,λ0
1 , u∗,λ0

2 ) solves the constrained stochastic control problem (3) subject to (1) and (2) and (4).

In this section, we extended Theorem 11.3.1 in [20] to a zero-sum stochastic differential
game formulation within the framework of regime switches.

4. A Nonzero-Sum Stochastic Differential Game Approach

By solving a nonzero-sum stochastic differential game, we aim to find a pair of optimal
control processes that correspond to the Nash equilibrium of the two-player game, if it exists.
Remember that Nash equilibrium is a self-enforcing strategy, i.e., each player knows that
unilateral profitable deviation is not possible. This also means that each player’s strategy is
optimal, or the best response against the other players. Then, a mathematical definition of
the Nash equilibrium can be introduced, as we described in [12]:
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Let u1 ∈ Θ1 and u2 ∈ Θ2 be two admissible control processes for Player 1 and Player
2, respectively. We define the performance criteria for each player as follows:

Jk(y, ei, u1, u2) = Ey,ei

[∫ T

0
fk(s, Y(s), α(s), u1(s), u2(s))ds + gk(Yu1,u2(T), α(T))

]
for each ei ∈ S, i = 1, 2, . . . , D, and both propose to maximize their payoffs with respect to
other player’s best action as follows:

J1(y, ei, u∗1 , u∗2) = sup
u1∈Θ1

J1(y, ei, u1, u∗2), (12)

J2(y, ei, u∗1 , u∗2) = sup
u2∈Θ2

J2(y, ei, u∗1 , u2), (13)

for each ei ∈ S and for all y ∈ G, where G is an open subset of RN and corresponds to a
solvency region for the state processes.

Definition 1 ([12]). Let us assume that for the optimal strategy of Player 2, u∗2 ∈ Θ2, the best
response of Player 1 satisfies

J1(y, ei, u1, u∗2) ≤ J1(y, ei, u∗1 , u∗2) for all u1 ∈ Θ1, ei ∈ S, y ∈ G,

and for the optimal strategy of Player 1, u∗1 ∈ Θ1, the best response of Player 2 satisfies

J2(y, ei, u∗1 , u2) ≤ J2(y, ei, u∗1 , u∗2) for all u2 ∈ Θ2, ei ∈ S, y ∈ G.

Then, the pair of optimal control processes (u∗1 , u∗2) ∈ Θ1 ×Θ2 is called a Nash equilibrium
for the stochastic differential game of the System (1)–(2) and (12)–(13).

Our constrained nonzero-sum stochastic differential game is to find (u∗1 , u∗2) for the
Problems (12) and (13) subject to the System (1) and (2) and

(i) Ey,ei [Mk(Yu1,u2(T), α(T))] = 0 (14)

or
(ii) Mk(Yu1,u2(T), α(T)) = 0 a.s., (15)

where Mk : RN → R, are C1 functions with respect to y and we assume that
E[Mk(Yu1,u2(T), α(T))] < ∞, k = 1, 2.

Finally, our unconstrained nonzero-sum stochastic differential game problem is de-
scribed as follows:

φ
λk
k (y, ei) = Jk(y, ei, u∗,λ1

1 , u∗,λ2
2 ) = sup

uk∈Θk

Ey,ei

[∫ T

0
fk(t, Y(t), α(t), u1(t), u2(t))dt

+ gk(Yu1,u2(T), α(T)) + λk Mk(Yu1,u2(T), α(T))
]

(16)

for k = 1, 2 and ei ∈ S, i = 1, 2, . . . , D, subject to the system (1)-(2).

Theorem 3. Suppose that for all λk ∈ ∆k ⊆ ∆, we can find φ
λk
k (y, ei), i = 1, 2, . . . , D and

k = 1, 2, and a Nash equilibrium (u∗,λ1
1 , u∗,λ2

2 ) solving the unconstrained stochastic control
problems (16) for each player. Moreover, suppose that there exist λ0

k ∈ ∆k ⊆ ∆, k = 1, 2, such that

M1(Y
u
∗,λ0

1
1 ,u∗,λ2

2
T , ei) = 0 and M2(Y

u
∗,λ1
1 ,u

∗,λ0
2

2
T , ei) = 0 a.s., (17)
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for all ei ∈ S, i = 1, 2, . . . , D. Then, φk(y, ei) = φ
λ0

k
k (y, ei), k = 1, 2, i = 1, 2, . . . , D and

(u∗1 , u∗2) = (u∗,λ
0
1

1 , u∗,λ
0
2

2 ) solves the constrained stochastic control problem.

Proof. By the definition of Nash equilibrium, we have

J1(y, ei, u∗,λ1
1 , u∗,λ2

2 ) = Ey,ei

[∫ T

0
f1(t, Y

u
∗,λ1
1 ,u∗,λ2

2
t , ei, u∗,λ1

1 , u∗,λ2
2 )dt + g1(Y

u
∗,λ1
1 ,u∗,λ2

2
T , αT)

+ λ1 M1(Y
u
∗,λ1
1 ,u∗,λ2

2
T , αT)

]
≥ J1(y, ei, uλ1

1 , u∗,λ2
2 ) = Ey,ei

[∫ T

0
f1(t, Y

u
λ1
1 ,u∗,λ2

2
t , ei, uλ1

1 , u∗,λ2
2 )dt + g1(Y

u
λ1
1 ,u∗,λ2

2
T , αT)

+ λ1 M1(Y
u

λ1
1 ,u∗,λ2

2
T , αT)

]
. (18)

For the optimal strategy of Player 2, u∗,λ2
2 ∈ Θ2, λ2 ∈ ∆2, since u1 ∈ Θ1 is feasible in

the constrained control problem, if λ1 = λ0
1 is satisfied, then based on (15) and (17):

M1(Y
u
∗,λ0

1
1 ,u∗,λ2

2
T , ei) = 0 = M1(Y

u1,u∗2
T , ei), a.s. for i = 1, 2, . . . , D.

Based on (18):

J1(y, ei, u∗,λ
0
1

1 , u∗,λ2
2 ) ≥ J1(y, ei, u1, u∗2), (19)

for all u1 ∈ Θ1 and ei ∈ S, i = 1, 2, . . . , D.
Similarly, we can obtain

J2(y, ei, u∗,λ1
1 , u∗,λ

0
2

2 ) ≥ J2(y, ei, u∗1 , u2), (20)

for all u2 ∈ Θ2 and ei ∈ S, i = 1, 2, . . . , D. Therefore, by the definition of Nash equilibrium,
the inequalities (19) and (20) complete the proof.

We can easily develop a similar theorem for the constraint type (14) as well:

Theorem 4. Suppose that for all λk ∈ Ak ⊆ R, we can find φ
λk
k (y, ei), i = 1, 2, . . . , D and

k = 1, 2, and a Nash equilibrium (u∗,λ1
1 , u∗,λ2

2 ) solving the unconstrained stochastic control
problems (16) for each player. Moreover, suppose that there exists λ0

k ∈ Ak ⊆ R, k = 1, 2, such
that

E[M1(Y
u
∗,λ0

1
1 ,u∗,λ2

2
T , ei)] = 0 and E[M2(Y

u
∗,λ1
1 ,u

∗,λ0
2

2
T , ei)] = 0, (21)

for all ei ∈ S, i = 1, 2, . . . , D. Then, φk(y, ei) = φ
λ0

k
k (y, ei), k = 1, 2, i = 1, 2, . . . , D and

(u∗1 , u∗2) = (u∗,λ
0
1

1 , u∗,λ
0
2

2 ) solves the constrained stochastic control problem described above.

In this section, we extended Theorem 11.3.1 in [20] to a nonzero-sum stochastic differ-
ential game formulation within the framework of regime switches.

Remark 1. Firstly, we should indicate that Theorems 1–4 can be applied to both the dynamic
programming principle and the stochastic maximum principle under specific technical conditions
that arise as a consequence of the nature of the corresponding technique.

In this work, we provide an application of the nonzero-sum game formulation with the stochastic
maximum principle. The technical conditions and problem formulation within the framework of the
stochastic maximum principle for a Markov regime-switching jump diffusion system of such a game
have already been developed in [7] without a Lagrangian setting. Hence, here, we just remind you of
an appropriate version of the sufficient maximum principle in the appendix.
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On the other side, while applying Theorem A1 to a Lagrangian problem, one should be
careful that gλk

k (y, ei) = gk(y, ei) + λk(Mk(y, ei))’s are concave, C1-functions with respect to y
for i = 1, 2, . . . , D and k = 1, 2.

5. An Application: Bancassurance

In this section, we provide an application of Theorem 4 within the framework of a
collaboration between a bank and an insurance company, which illustrates an example of a
well-known concept: Bancassurance.

The core of the joint venture between the bank and insurers is to strengthen their
business objectives through sharing a client database, the development of products, and
coordination. Insurance companies and banks benefit from this long-term cooperation in
many ways. For example, insurance companies may create new and more efficient financial
instruments with the help of the experience of banks. Furthermore, they can reach the
wide customer portfolio of the banks without investing in more offices and manpower.
Hence, the insurance companies may reduce costs while increasing sales. On the other side,
banks can also increase their income, diversify their offerings of financial products, and, by
providing different services under one roof, gain more customer loyalty and satisfaction.
Some financial and actuarial aspects for this legal and independent organizational entity,
Bancassurance, can be found in [24–26] and references therein.

Basically, in our formulation, the insurance company gives a certain amount of its
surplus to the bank as a commission, which becomes the initial value of the bank’s wealth
process. Moreover, in this application, we can approach our regime switching model from
two different sides:

1. The states of the Markov chain may represent the switches in different states of the
economy, such as a shift from recession to growth periods, macroeconomic indicators,
regulation changes, or a radical change like a financial crisis. All these impulses affect
the cash flows of both the insurance company and the bank within the framework of
decision making, dividend management, commissions, the number of clients, etc. In
this case, we may also assume to use a time-homogenous, irreducible Markov chain.

2. We can see the shifts as the states of a life insurance policy, i.e., the states of the
Markov chain may represent injured, dead, or alive cases. We may assume that
the bank makes an investment whose cash flow is affected by the abrupt changes
experienced by the insured, such as investing in the stocks of an insurance company.
In this case, time-inhomogenous and reducible Markov chains may be utilized.

First, let us introduce the dynamics of the wealth process of the insurance company.
p̃(t) represents the deterministic premium rate at time t ∈ [0, T] for each claim. An
insurance premium is the amount of money that has to be paid by an insured for an
insurance policy covering such as healthcare, auto, home, and life insurance. The premium
is an income for an insurance company, which is used for coverage of the claims against
the policy. Additionally, the companies may utilize premiums to make some investments
and increase their own wealth. In our application, we focus on a life insurance policy.

Now, we can show the dynamics of the surplus process via R(t) as follows:

dR(t) = a(t, α(t−))dt + σ1(t, α(t−))dW1(t) +
N

∑
i=1, i 6=j

γij(t)(dJij(t)− µij(t))

= a(t, α(t−))dt + σ1(t, α(t−))dW1(t) + γ(t, α(t−))dΦ̃(t)

Here, for t ∈ [0, T], σ1(t, α(t−)) denotes the instantaneous volatility of the aggregate
insurance claims at time t and a(t, α(t−)) specifies the payments of the insurer due during
sojourns in state i. Finally, γij(·) determines the claims of the insurance company to the
insured due upon transition from state i to j. In this context, α(·) is a time-inhomogenous
Markov chain, and µij(·) indicates the intensity of the chain, which corresponds to the
mortality rate for a life insurance contract. Furthermore, Jij(t) denotes the number of
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transitions into state j up to and including time t ∈ [0, T] for the associated cádlág counting
process, for which we use a martingale form. By the way, we describe a risk exchange
between insurer and insured. While the company pays out the amount of the insurance
claim γij(t) upon a transition to state j, the policyholder has to pay an amount of γij(t)µij(t)
if she is in state i, for t ∈ [0, T].

In our application, we suppose that the insurance company pays an amount of its
surplus to its shareholders, which is called dividend distribution, and it is the only control
process of the company defined as follows:

dD̃(t) = δ(t)dt.

Hence, we represent the wealth (cash) process of the insurance company X1(t),
t ∈ [0, T] by:

dX1(t) = p̃(t)dt− dR(t)− dD(t),

X1(0) =u− c, (22)

where u and c are nonnegative constant values that correspond to the initial surplus of the
insurance company and the commission of the bank paid at time t = 0, respectively.

We focus on the cash flow of the bank, which is generated just through an investment of
the gathered commissions via the bancassurance agreement, rather than other investments
of the bank.

Let us introduce the wealth (cash) process of the bank:

dX2(t) = X2(t−)
{

u(t)dt + σ2(t, α(t−))dW2(t) +
∫
R0

η(t, α(t−), z)Ñ(dt, dz)
}

X2(0) = c, t ∈ [0, T]

where the appreciation rate is not given a prior. Specifically, u(·) is a control process
depending on the interaction between the bank and the insurer.

Now, we can present the state process of the system as follows:

dY(t) =
[

dX1(t)
dX2(t)

]
=

[
p̃(t)− a(t, α(t−))− δ(t)

X2(t−)u(t)

]
dt +

[
−σ1(t, α(t−)) 0

0 X2(t−)σ2(t, α(t−))

][
dW1(t)
dW2(t)

]
+

[
0

X2(t−)
∫
R0

η(t, α(t−), z)

]
Ñ(dt, dz) +

[
−γ(t, α(t−))

0

]
dΦ̃(t), (23)

with initial values,

Y(0) =
[

X1(0)
X2(0)

]
=

[
u− c

c

]
> 0.

Here, we assume that W1 and W2 are independent Brownian motions; moreover,
a, σ1, σ2, η, and γ are square integrable and measurable functions.

Let us describe the performance functional of the insurer and the bank by J1(δ, u∗)
and J2(δ

∗, u) correspondingly:

J1(δ, u∗) = Ex,ei

[∫ T

0

1
1− κ1

h1(t, α(t−))δ(t)1−κ1 dt− X2
2(T)

]
,

and

J2(δ
∗, u) = Ex,ei

[∫ T

0
h2(t, α(t−)) ln(u(t))dt + κ2X1(T)

]
,
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where κ1 ≥ 0, κ1 6= 1, κ2 ∈ R, h1, h2 are square integrable, measurable functions.
Furthermore, r̃(t, ei) = (r̃1, r̃2, . . . , r̃D), i = 1, 2, . . . , D, are constants at each state on [0, T]
and can be seen as interest rates in different states of the economy.

Then, our problem is to find (δ∗, u∗) by solving:

J1(δ
∗, u∗) = sup

δ∈Θ1

J1(δ, u∗)

subject to the System (23) and
E[X1(T)] = K1,

and
J2(δ

∗, u∗) = sup
u∈Θ2

J2(δ
∗, u)

subject to the System (23) and

E[e−r̃(T,α(T)) ln(X2(T))] = K2.

Here, in this context, Player 1 wants to maximize h1(·, ei) times power utility of her
dividend process while she punishes the deviation of the terminal value of Player 2 from
0. Furthermore, Player 1 sets a goal to reach a level of K1 for the terminal value of her
expected wealth process. On the other side, Player 2 proposes to maximize h2(·, ei) times
the logarithmic utility of her appreciation rate with κ1 times the terminal value of the
insurer’s wealth process. Moreover, Player 2 sets a target to catch the K2 level for the
discounted logarithm of her terminal value in the sense of expected values.

Finally, if we consider this nonzero-sum game problem in terms of the Lagrangian
formulation described in Theorem 4, our problem becomes to find (δ∗, u∗) for:

J1(δ
∗, u∗) = sup

δ∈Θ1

Ex,ei

[∫ T

0

1
1− κ1

h1(t, α(t−))δ(t)1−κ1 dt− X2
2(T) + λ1(X1(T)− K1)

]
,

and

J2(δ
∗, u∗) = sup

u∈Θ2

Ex,ei

[∫ T

0
h2(t, α(t−)) ln u(t)dt + κ2X1(T) + λ2(e−r̃(T,α(T)) ln X2(T)− K2)

]
.

Now, we can provide the corresponding Hamiltonian functions for each player and
solve them using Theorem A1 (see Appendix A):

H1(t, y, δ, u, p2, q2, r2(·), w2, ei) =
1

1− κ1
δ1−κ1 h1(t, α(t−)) + ( p̃− a(t, ei))− δ)p1

1 + x2up1
2

− σ1(t, ei)q1
11 + x2σ2(t, ei)q1

22 + x2

∫
R0

η(t−, ei, z)r1
2(t−, z)ν(dz)−

N

∑
j=1

γij(t)w1,j
1 µij(t).

and

H2(t, y, δ, u, p2, q2, r2(·), w2, ei) = h2(t, ei) ln(u) + ( p̃− a(t, ei))− δ)p2
1 + x2up2

2

− σ1(t, ei)q2
11 + x2σ2(t, ei)q2

22 + x2

∫
R0

η(t−, ei, z)r2
2(t−, z)ν(dz)−

D

∑
j=1

γij(t)w2,j
1 µij(t).
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We propose to solve the corresponding BSDEs with jumps and regimes and find the
following:

pk(t) =
[

pk
1(t)

pk
2(t)

]
qk(t) =

[
qk

11(t) qk
12(t)

qk
21(t) qk

22(t)

]
rk(t−, z) =

[
rk

1(t−, z)
rk

2(t−, z)

]

w(t) =
[

wk
1(t)

wk
2(t)

]
=

[
wk,j

1 (t)
wk,j

2 (t)

]
t ∈ [0, T], k = 1, 2 and j = 1, 2, . . . , D.

Firstly, let us solve the adjoint equations corresponding to H1:

dp1
1(t) = q1

11(t)dW1(t) + q1
12(t)dW2(t) +

∫
R0

r1
1(t−, z)Ñ(dt, dz) + w1

1(t)dΦ̃(t), (24)

p1
1(T) = λ1,

and

dp1
2(t) = −

(
u(t)p1

2(t) + σ2(t, α(t−))q1
22(t) +

∫
R0

η(t−, ei, z)r1
2(t−, z)ν(dz)

)
dt

+ q1
21(t)dW1(t) + q1

22(t)dW2(t) +
∫
R0

r1
2(t−, z)Ñ(dt, dz) + w1

2(t)dΦ̃(t),

p1
2(T) = − 2X2(T), (25)

where w1
k(t)dΦ̃(t) = ∑N

j=1 w1,j
k (t)dΦ̃j(t) for k = 1, 2 and j = 1, 2, . . . , D.

To find a solution for p1
2(t), t ∈ [0; T] we try:

p1
2(t) = φ(t, α(t))X2(t)

φ(T, α(T)) = φ(T, ei) = −2,

where φ(·, ei) is a C1 deterministic function for all ei ∈ S, i = 1, 2, . . . , D with the given
terminal value. We apply Itô’s formula as described in [6]:

dp1
2(t) =

(
φ
′
(t, α(t−))X2(t−) + φ(t, α(t−))X2(t−)u(t)

+
N

∑
j=1

X2(t−)(φ(t, ej)− φ(t, α(t−)))µj(t)
)

dt

+ φ(t, α(t−))X2(t−)σ2(t, α(t−))dW2(t)

+
∫
R0

φ(t, α(t−))X2(t−)η(t−, α(t−), z)Ñ(dt, dz)

+
D

∑
j=1

X2(t−)(φ(t, ej)− φ(t, α(t−)))dΦ̃j(t) (26)

Now, we compare Equations (25) and (26) and obtain the following solutions for p1
2(t),

q1
21(t), q1

22(t), r1
2(t−, z) and w1

2(t) for t ∈ [0, T]:

q1
21(t) = 0,

q1
22(t) = φ(t, ei)X2(t−)σ2(t, ei),

r1
2(t−, z) = φ(t, ei)X2(t−)η(t−, α(t−), z),

w1,j
2 (t) = (φ(t, ej)− φ(t, ei))X2(t−),
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and

− φ(t, ei)X2(t−)
(

u(t) + σ2
2 (t, ei) +

∫
R0

η2(t−, ei, z)ν(dz)
)

= X2(t−)
(

φ
′
(t, ei) + φ(t, ei)u(t) +

N

∑
j=1

X2(t−)(φ(t, ej)− φ(t, ei))µij(t)
)

.

Hence,

X2(t−)
[

φ
′
(t, ei) + φ(t, ei)

(
2u∗(t) + σ2

2 (t, ei) +
∫
R0

η2(t−, ei, z)ν(dz)
)

+
D

∑
j=1

(φ(t, ej)− φ(t, ei))µij(t)
]
= 0.

Let us call

B(t, ei) = 2u∗(t) + σ2
2 (t, ei) +

∫
R0

η2(t−, ei, z)ν(dz).

Then, obviously, we obtain the following N-coupled differential equation with its
terminal value as follows:

φ
′
(t, ei) + φ(t, ei)B(t, ei) +

D

∑
j=1

(φ(t, ej)− φ(t, ei))µij(t) = 0,

Φ(T, ei) = −2, for i = 1, 2, . . . , D.

Finally, by applying the Feyman–Kac procedure:

φ(t, ei) = −2E
[

exp
{∫ T

t
−B(t, ei)ds

}
|α(t−) = ei

]
, i = 1, 2, . . . , D.

Moreover, we can find out p1
1(t), t ∈ [0, T] by trying p1

1(t) = g1(t), where g(·) is a
deterministic function with terminal value g(T) = λ1.

Then, according to Equation (24):

p1
1(t) = λ1, q1

11(t) = q1
12(t) = r1

1(t−, z) = w1
1(t) = 0.

Now, let us differentiate H1 with respect to δ to define the optimal control process for
the insurance company:

δ−κ1(t)h1(t, α(t−))− p1
1 = 0

Then,

δ(t) =
(

λ1

h1(t, α(t−))

)−1
κ1

.

Finally, by applying the expectation to both sides of the Equation (22) and based on
the constraint for Player 1, let us determine λ1:

λ1 =

{
u− c− K1 + E

[ ∫ T

0
( p̃(t)− a(t, α(t−)))dt

]}−κ1

E
[∫ T

0
h

1
κ1
1 (t, α(t−))dt

]κ1

Now, let us represent the adjoint equations for the Hamiltonian of the second player:

dp2
1(t) = q2

11(t)dW1(t) + q2
12(t)dW2(t) +

∫
R0

r2
1(t−, z)Ñ(dt, dz) + w2

1(t)dΦ̃(t),

p2
1(T) = κ2, (27)
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and

dp2
2(t) = −

(
u(t)p2

2(t) + σ2(t, α(t−))q2
22(t) +

∫
R0

η(t−, ei, z)r2
2(t−, z)ν(dz)

)
dt

+ q2
21(t)dW1(t) + q2

22(t)dW2(t) +
∫
R0

r2
2(t−, z)Ñ(dt, dz) + w2

2(t)dΦ̃(t),

p2
2(T) =

λ2e−r̃(T,α(T)

X2(T)
, (28)

where w2
k(t)dΦ̃(t) = ∑D

j=1 w2,j
k (t)dΦ̃j(t) for k = 1, 2 and j = 1, 2, . . . , D.

Now, let us solve these adjoint equations. Firstly, we try:

p2
2(t) =

A(t, α(t))
X2(t)

, for t ∈ [0, T],

A(T, α(T)) = A(T, ek) = λ2e−r̃(T,ek),

where A(·, ek) is a deterministic C1 function for all k = 1, 2, . . . , D with the given terminal
value. Then, we apply Itô’s formula as described in [6]:

dp2
2(t) =

[
A
′
(t, α(t−))X−1

2 (t) + A(t, α(t−))X−1
2 (t)

(
−u(t) + σ2

2 (t, α(t−))

+
∫
R0

{
(1 + η(t−, α(t−), z))−1 − 1 + η(t−, α(t−), z)

}
ν(dz)

)
+

N

∑
j=1

X−1
2 (t)

{
A(t, ej)− A(t, α(t−))

}
µj(t)

]
dt

+ A(t, α(t−))X−1
2 (t)

[
−σ2(t, α(t−))dW2(t)

+
∫
R0

{
(1 + η(t−, α(t−), z))−1 − 1

}
Ñ(dt, dz)

]
+

D

∑
j=1

X−1
2 (t)

{
A(t, ej)− A(t, α(t−))

}
dΦ̃j(t) (29)

Let us compare Equations (28) and (29) and obtain:

−
(

u(t)p2
2(t) + σ2(t, α(t−))q2

22(t) +
∫
R0

η(t−, α(t−), z))r2
2(t−, z)ν(dz)

)
= A

′
(t, α(t−))X−1

2 (t) + A(t, α(t−))X−1
2 (t)

(
−u(t) + σ2

2 (t, α(t−))

+
∫
R0

{
(1 + η(t−, α(t−), z))−1 − 1 + η(t−, α(t−), z)

}
ν(dz)

)
+

D

∑
j=1

X−1
2 (t)

{
A(t, ej)− A(t, α(t−))

}
µj(t) (30)

and

q2
21(t) = 0,

q2
22(t) = −A(t, ei)X−1

2 σ2(t, ei),

r2
2(t) = A(t, ei)X−1

2 (t)
(
(1 + η(t−, ei, z))−1 − 1

)
,

w2,j
2 (t) = X−1

2
{

A(t, ej)− A(t, ei)
}

, for i = 1, 2, . . . , D.
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If we replace the values of p2
2, q2

21, and r2
2 in Equation (30), then we get:

A
′
(t, ei)X−1

2 (t) +
∫
R0

A(t, ei)X−1
2 (t)

(
η(t−, ei, z)

η(t−, ei, z) + 1
+

1
η(t−, ei, z) + 1

− 1
)

ν(dz)

+
D

∑
j=1

X−1
2 (t)

{
A(t, ej)− A(t, ei)

}
µij(t) = 0

Finally, we get:

X−1
2

[
A
′
(t, ei) +

D

∑
j=1

{
A(t, ej)− A(t, ei)

}
µij(t)

]
= 0.

Then,

A
′
(t, ei) +

D

∑
j=1

{
A(t, ej)− A(t, ei)

}
µij(t) = 0,

A(T, α(T)) = A(T, ek) = λ2e−r̃(T,ek)

for any ek ∈ S, k = 1, 2, . . . , D. By applying the classical Feyman–Kac procedure, we can
solve these N-coupled equations:

A(t, α(t)) = λ2E
[

e−r̃(T,ek)|α(t−) = ei

]
=λ2e−r̃(T,α(T)), for any t ∈ [0, T].

Now, let us find p2
1(t), t ∈ [0, T] by trying p2

1(t) = h(t), where h(t) is a deterministic
function with terminal value h(T) = κ2. Then, based on Equation (27):

p2
1(t) = κ2, q2

11(t) = q2
12(t) = r2

1(t−, z) = w2
1(t) = 0.

We differentiate H2 with respect to u to define the optimal control process for the bank:

h2(t, α(t−))
u(t)

+ X2(t)p2
2(t) = 0

Then,

u(t) =
−1
λ2

er̃(T,α(T))h2(t, α(t−)), t ∈ [0, T].

In order to determine λ2, let us apply Itô’s formula to Y(t) = ln(X2(t)):

dY(t) =
{
−1
λ2

er̃(T,α(T))h2(t, α(t−))− 1
2

σ2
2 (t, α(t−))

+
∫
R0

(
ln(η(t−, α(t−), z) + 1)− η(t−, α(t−), z)

)
ν(dz)

}
dt

+ σ2(t, α(t−))dW2(t) +
∫
R0

ln(η(t−, α(t−), z) + 1)Ñ(dt, dz).

If we multiply both sides of the equation by e−r̃(T,α(T)) and apply expectation, we get:

E[e−r̃(T,α(T)) ln(X2(T))] = E
[

e−r̃(T,α(T)) ln(c) +
∫ T

0

{
−1
λ2

h2(t, α(t−))− 1
2

e−r̃(T,α(T))

× σ2
2 (t, α(t−)) +

∫
R0

e−r̃(T,α(T))
(

ln(η(t−, α(t−), z) + 1)− η(t−, α(t−), z)
)

ν(dz)
}

dt
]

.
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Finally, let us call:

D1 = e−r̃(T,α(T)) ln(c),

D2 = E
[∫ T

0
h2(t, α(t−))dt

]
,

D3 = E
[∫ T

0
e−r̃(T,α(T))

(
−1

2
σ2

2 (t, α(t−))

+
∫
R0

{
ln(η(t−, α(t−), z) + 1)− η(t−, α(t−), z)

}
ν(dz)

)
dt
]

.

Therefore, based on the constraint for Player 2, we select λ2, such that:

λ2 =
D2

D1 + D3 − K2
> 0.

Finally, based on the measurability and square-integrability conditions for σk, η, γ, hk

and selection of gλk
k (y, ei) = gk(y, ei) + λk(Mk(y, ei)), for i = 1, 2, . . . , D and k = 1, 2, one

can easily verify the integrability and concavity conditions of Theorem A1.

6. Conclusions

In this work, we developed techniques to solve stochastic optimal control problems in
a Lagrangian game-theoretic environment. Both the zero-sum and nonzero-sum stochastic
differential game problems with two specific types of constraints can be approached based
on the dynamic programming principle and the stochastic maximum principle within
the construction of our theorems. Moreover, we demonstrated these theorems for a quite
extended model of stochastic processes, named Markov regime switching jump diffusions.
As we explained in Section 1, such models have a wide range of application areas. In our
work, we focused on a business agreement, called Bancassurance, between a bank and an
insurance company using the stochastic maximum principle for a nonzero-sum stochastic
differential game. We investigated the optimal dividend strategy for the company as the
best response according to the optimal mean rate of return choice of a bank for its own cash
flow and vice versa. We found a Nash equilibrium for this game and solved the adjoint
equations explicitly for each state.

It is well known that the timing and amount of dividend payments are strategic
decisions for companies. The announcement of a dividend payment may reduce or increase
the stock price of a company. A high dividend payment may send a message to shareholders
and potential investors about the substantial profits achieved by the company. On the other
hand, this may create the impression that the company does not have a good future project
to invest in rather than paying investors. Moreover, dividend payments may aim to honor
the shareholders’ feelings of obtaining a reward for their trust in the company.

From the side of the bank, it is clear that creating a cash flow with high returns would
be the main goal. It is obviously seen that depending on the values of h2(·, ei), ei ∈ S,
i = 1, 2, . . . , D, the appreciation rate of the bank’s investment may drop below zero.

Hence, in our formulation, we provide insight to both the bank and the insurance
company about their best moves in a bancassurance commitment under specified technical
conditions.

Funding: This project is supported by SCROLLER:A Stochastic ContROL approach to Machine
Learning with applications to Environmental Risk models, Project 299897 from the Norwegian
Research Council.

Data Availability Statement: Not applicable.

Conflicts of Interest: The author declares no conflict of interest.
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Appendix A

Let us clarify the general formulation of the technique that we apply here for the solution
of a nonzero-sum stochastic differential game within this context of Equations (1) and (2) and
the Problems (12) and (13) based on the stochastic maximum principle for a Markov regime-
switching jump-diffusion model:

The Hamiltonian functions associated with Player k, namely Hk, for k = 1, 2, are
defined from [0, T]×RN ×U1 ×U2 ×RN ×RN×M ×R×RN×D × S× to R as follows:

Hk(t, y, u1, u2, pk, qk, rk(·), wk, ei) = fk(t, y, u1, u2, ei) + bT(t, y, u1, u2, ei)pk

+ tr(σT(t, y, u1, u2, ei)qk) +
∫
RN

L

∑
l=1

N

∑
n=1

ηnl(t, y, u1, u2, ei, z)rk
nl(t, z)νl(dz)

+
D

∑
j=1

N

∑
n=1

γnj(t, y, u1, u2, ei, z)wk
nj(t)µij, k = 1, 2,

and each Hk, k = 1, 2, is continuously differentiable with respect to y; i.e., each is a C1-
function with respect to y, and differentiable with respect to corresponding Player’s control
processes.

Corresponding adjoint equations for Player k, for k = 1, 2, in the unknown adapted
processes pk(t) ∈ RN , qk(t) ∈ RN×M, rk(t−, z) ∈ R, where R is the set of functions
r : [0, T]×R0 → RN×L, and wk(t) ∈ RN×D are given by the following equations:

dpk(t) = −∇yHk(t, Y(t), u1(t), u2(t), pk(t), qk(t), rk(t, ·), wk(t), α(t))dt

+ qk(t)dW(t) +
∫
R0

rk(t−, z)Ñ(dt, dz), t < T, (A1)

pk(T) = ∇gk(Y(T), α(T)), k = 1, 2, (A2)

where ∇yφ(·) = ( ∂φ
∂y1

, . . . , ∂φ
∂yN

)T is the gradient of φ : RN → R with respect to
y = (y1, . . . , yN). For the existence–uniqueness results of the BSDEs with jumps and
regimes (A1) and (A2), see Propositions 5.1 and 5.2 by Crépey and Matoussi [27]. In this
context, here, we assume that pk(t), qk(t), rk(t−, z), and wk(t), k = 1, 2 are square inte-
grable.

Now, we can present a sufficient maximum principle for such a game:

Theorem A1. Let (u∗1 , u∗2) ∈ Θ1 ×Θ2 with a corresponding solution Ŷ(t) := Yu∗1 ,u∗2 (t) and sup-
pose there exists an adapted solution (pk(t), qk(t), rk(t−, z), wk(t)), k = 1, 2, of the corresponding
adjoint Equations (A1) and (A2) such that for all (u1, u2) ∈ Θ1 ×Θ2, we have:

E
[∫ T

0
(Ŷ(t)−Yu1(t))T

{
q̂1(t)q̂1(t)T +

∫
R0

r̂1(t−, z)r̂1(t−, z)Tν(dz)

+ ŵ1(t)Diag(µ(t))ŵ1(t)T
}
(Ŷ(t)−Yu1(t))Tdt

]
< ∞,

and

E
[∫ T

0
(Ŷ(t)−Yu2(t))T

{
q̂2(t)q̂2(t)T +

∫
R0

r̂2(t−, z)r̂2(t−, z)Tν(dz)

+ ŵ2(t)Diag(µ(t))ŵ2(t)T
}
(Ŷ(t)−Yu2(t))Tdt

]
< ∞,

where Yu1(t) := Yu1,u∗2 (t) and Yu2(t) := Yu∗1 ,u2(t).
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Furthermore,

E
[∫ T

0
p̂1(t)T

(
(σ(t, Yu1(t), α(t), u1(t), u∗2(t))− σ̂(t, Ŷ(t), α(t), u∗1(t), u∗2(t)))

2

+
∫
R0

(η(t, Yu1(t), α(t), u1(t), u∗2(t), z)− η̂(t, Ŷ(t), α(t), u∗1(t), u∗2(t), z))2ν(dz)

+
D

∑
j=1

(γj(t, Yu1(t), α(t), u1(t), u∗2(t))− γ̂j(t, Ŷ(t), α(t), u∗1(t), u∗2(t)))
2λj(t)

)
p̂1(t)dt

]
< ∞

and

E
[∫ T

0
p̂2(t)T

(
(σ(t, Yu2(t), α(t), u∗1(t), u2(t))− σ̂(t, Ŷ(t), α(t), u∗1(t), u∗2(t)))

2

+
∫
R0

(η(t, Yu2(t), α(t), u∗1(t), u2(t), z)− η̂(t, Ŷ(t), α(t), u∗1(t), u∗2(t), z))2ν(dz)

+
D

∑
j=1

(γj(t, Yu2(t), α(t), u∗1(t), u2(t))− γ̂j(t, Ŷ(t), α(t), u∗1(t), u∗2(t)))
2λj(t)

)
p̂2(t)dt

]
< ∞.

Moreover, assume that the following conditions hold:

1. For almost all t ∈ [0, T],

H1(t, Ŷ(t−), u∗1(t), u∗2(t), p̂1(t), q̂1(t), r̂1(t, ·), ŵ1(t), α(t−))
= sup

u1∈U1

H1(t, Ŷ(t−), u1(t), u∗2(t), p̂1(t), q̂1(t), r̂1(t, ·), ŵ1(t), α(t−)),

and

H2(t, Ŷ(t−), u∗1(t), u∗2(t), p̂2(t), q̂2(t), r̂2(t, ·), ŵ2(t), α(t−))
= sup

u2∈U2

H2(t, Ŷ(t−), u∗1(t), u2(t), p̂2(t), q̂2(t), r̂2(t, ·), ŵ2(t), α(t−)).

2. For each fixed pair of (t, ei) ∈ [0, T]× S,

Ĥ1(y) = sup
u1∈U1

H1(t, y, u1, u∗2(t), p̂1(t), q̂1(t), r̂1(t, ·), ŵ1(t), ei),

and
Ĥ2(y) = sup

u2∈U2

H2(t, y, u∗1(t), u2, p̂2(t), q̂2(t), r̂2(t, ·), ŵ2(t), ei)

exist and are concave functions of y.
3. gk(y, ei), k = 1, 2, are concave functions of y for each ei ∈ S.

Then, (u∗1 , u∗2) ∈ Θ1 × Θ2 is a Nash equilibrium of the System (1) and (2) and the
Problems (12) and (13).

Proof. For the proof of this theorem, it is enough to follow the steps of Theorem 3.1 in [6]
in our game theoretical formulation for each player. Moreover, the proof may be seen as a
special version of Thoerem 3.1 in [7].
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