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Abstract: In this work, we consider a polymer flooding process in heterogeneous media. A system
of equations for pressure, water saturation, and polymer concentration describes a mathematical
model. For the construction of the fine grid approximation, we use a finite volume method with an
explicit time approximation for the transports and implicit time approximation for the flow processes.
We employ a loose coupling approach where we first perform an implicit pressure solve using a
coarser time step. Subsequently, we execute the transport solution with a minor time step, taking into
consideration the constraints imposed by the stability of the explicit approximation. We propose a
coupled and splitted multiscale method with an online local correction step to construct a coarse grid
approximation of the flow equation. We construct multiscale basis functions on the offline stage for a
given heterogeneous field; then, we use it to define the projection/prolongation matrix and construct
a coarse grid approximation. For an accurate approximation of the nonlinear pressure equation, we
propose an online step with calculations of the local corrections based on the current residual. The
splitted multiscale approach is presented to decoupled equations into two parts related to the first
basis and all other basis functions. The presented technique provides an accurate solution for the
nonlinear velocity field, leading to accurate, explicit calculations of the saturation and concentration
equations. Numerical results are presented for two-dimensional model problems with different
polymer injection regimes for two heterogeneity fields.

Keywords: polymer flooding; heterogeneous medium; finite volume method; multiscale method;
GMsFEM; online correction

MSC: 65M22

1. Introduction

Polymer flooding is an advanced technique used in the field of Enhanced Oil Recovery
(EOR) to improve the recovery of viscous oil from reservoirs. It involves injecting a
mixture of chemicals, including polymers and surfactants, to reduce the viscosity of the
injected fluids during the flooding process. The flow behavior of polymeric solutions in
porous media is recognized as a complex phenomenon, where the viscosity of a polymer
solution plays a pivotal role in governing its flow characteristics [1–3]. The viscosity of a
polymer solution is influenced by factors such as concentration, polymer structure, velocity,
heterogeneity, and temperature [4–6]. The Flory–Huggins equation describes the viscosity
of a polymeric solution at zero shear rates, which relates the viscosity to the concentration
of the polymer [1,7–9]. The shear-thinning viscosity model accounts for the non-Newtonian
behavior of polymer solutions, indicating that the viscosity decreases with increasing shear
rate or flow velocity [10]. Polymer flooding has been the subject of extensive research over
numerous years. However, its successful implementation remains a challenge primarily
due to the highly heterogeneous nature of reservoir properties. These heterogeneities
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significantly impact the flow and transport processes, necessitating a specialized approach
to constructing mathematical models and developing computational algorithms [8,11–13].

The reservoir properties and fluid behavior exhibit significant spatial and temporal
variations at multiple scales. The heterogeneities can range from pore-scale variations to
field-scale geological features. Capturing these fine-scale details in numerical simulations
can be computationally prohibitive. Upscaling and multiscale methods are essential ap-
proaches that aim to bridge the gap between the fine-scale details of the reservoir and the
practical computational requirements for reservoir-scale simulations. Various multiscale
and homogenization methods have been extensively studied and developed in the field
of reservoir simulations. Multiscale methods involve decomposing a system into multiple
scales or levels of detail, each representing different physical phenomena or spatial resolutions.
These methods consider the interactions and interdependencies between scales and provide a
framework for capturing the effects of heterogeneity, nonlinearity, and other complex behaviors.
Some commonly used multiscale methods include the Multiscale Finite Element Method [14,15],
Mixed Multiscale Finite Element Method [16–18], Multiscale Finite Volume Method [19,20],
Generalized Multiscale Finite Element Method [21–24], Constrain Energy Minimization
method [25], and Non-Local Multi-Continua upscaling [26,27,27–29]. In [30], the authors
considered the upscaling of parameters related to polymer flooding. The procedure in-
volves three stages: (1) single-phase upscaling of the absolute permeability, (2) two-phase
upscaling of relative permeabilities, and (3) upscaling of the parameters involved in poly-
mer flooding. The upscaling–downscaling method of EOR simulation (polymer, surfactant,
and thermal) was presented in [31]. In this algorithm, the pressure distribution is solved on
the upscaled coarse grid, but the fine-scale heterogeneities are included in the computation
of the saturations using a downscaled velocity. In [10], the extension of the multiscale
restricted-smoothed basis method was presented for polymer flooding, including shear-
thinning effects. Multiscale methods effectively reduce the computational complexity
while preserving the system’s key characteristics that enable efficient computation by
reducing the degrees of freedom in the simulation models.

This paper considers a polymer flooding process in heterogeneous porous media.
A mathematical model is described by equations for the flow and transport (water saturation
and polymer concentration). The convenient way to solve such problems includes the con-
struction of a sufficiently fine grid that resolves heterogeneity on the grid level (fine grid).
To approximate space variables, we use a finite volume approximation with explicit time
approximation for the transports and implicit time approximation for the flow processes.
Approximations on the fine grid lead to a large system of equations that are computationally
expensive to solve. The main challenge is related to the pressure equation, which requires
the solution of the large system of equations associated with the fine grid [10,31]. To reduce
the cost associated with the pressure solution, we first apply a loose coupling approach.
Loose coupling is closely related to the operator-splitting techniques and mutilate time
stepping [32]. We apply a loose coupling algorithm to run a transport solve with a minor
time step, which is restricted by the stability of the explicit approximation, and call an
implicit pressure to solve with a coarser time step. The loosely coupled scheme is typical
for multiphysics problems, where different time scales can characterize each sub-problems.
In [33], the loose coupling algorithm is used for coupled fluid flow and geomechanical
deformation simulation. In [34], the study of the partitioned solution procedure for thermo-
mechanical coupling was presented, where a separate time integration scheme solves each
sub-problem. The multirate iterative schemes for the poroelasticity problem are presented
in [35], where the multirate iterative coupling scheme exploits the different time scales for
the mechanics and flow problems by taking multiple finer time steps for flow within one
coarse mechanics time step. In [32], the physics-based two-level operator splitting is used
for two-phase flow problems with a multiscale solver for pressure solving. The two-level
operator splitting is based on the split into the three sub-systems (elliptic in the pressure
equation, hyperbolic, and parabolic in the saturation equation). The multiscale finite
volume element method is applied for the elliptic and parabolic sub-systems.
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In this work, we combine operator-splitting techniques with a multiscale approach
for polymer flooding processes in heterogeneous porous media. Motivated by a loose
coupling approach presented for a two-phase flow problem in [32], we extend it and
investigate for the polymer flooding process, where for the pressure equation upscaling,
we use a multiscale method with an online local correction process. The construction
of reduced order model is based on the Generalized Multiscale Finite Element Method
(GMsFEM). In GMsFEM, we construct multiscale basis functions on the offline stage for
a given heterogeneous field; then, we use them to define the projection/prolongation
matrix and construct a coarse grid approximation. However, for accurate solutions to
nonlinear problems, the multiscale basis function should incorporate information about
the current solution (saturation, concentration, and pressure). Such basis reconstruction is
computationally expensive and leads to the regeneration of the projection matrix [36–38].
In this work, we propose a local online correction technique for the nonlinear pressure
equation that arises in the simulation of the polymer flooding process. In local online
correction, we use local residual information to correct the current multiscale solution in a
set of non-overlapping local domains. Next, we construct the splitted multiscale approach
based on the additive representation of the pressure matrix. We propose decoupling related
to the multicontinuum types of problems for separating the primary continuum from
others [39]. Furthermore, we can associate such splitting with separating the part related
to the regular coarse grid approximation and the remaining part for the local spectral
enrichment. The presented technique provides an accurate solution for the nonlinear
velocity field, leading to accurate, explicit calculations of the saturation and concentration
equations. We present numerical results for two-dimensional model problems with different
polymer injection regimes for two hetergeneity fields. To test the presented coupled and
splitted multiscale method, we investigate the influence of coarse grid size, the number
of multiscale basis functions, the effect of the correction step, and loose coupling on the
method’s accuracy.

The paper is organized as follows. In Section 2, we present a problem formulation with
a basic mathematical model of the polymer flooding process and consider the construction
of the discrete problem on the fine grid using a finite volume method, an explicit transport
scheme and loose coupling with an implicit pressure solve. In Section 3, we construct a
coupled and splitted multiscale method for the solution of the flow equation on the coarse
grid, where we introduce offline and online stages with a local residual-based correction for
nonlinear pressure problems. A numerical investigation is presented in Section 4 for two-
dimensional model problems with different polymer injection regimes for two hetergeneity
fields. Finally, the conclusion is presented.

2. Problem Formulation

This section starts with the mathematical model formulation for polymer flooding
processes in porous media. Then, we define a fine grid approximation based on the finite
volume method and discuss the construction of the time approximation with an explicit
approximation for saturation and concentration equations.

2.1. Mathematical Model

The polymer flooding process in porous media can be mathematically represented by
incorporating Darcy’s law and conservation laws for the water saturation and polymer
concentration. In the case where the fluid and rock are incompressible and there are no
gravitational or capillary forces, we have

φ
∂s
∂t
−∇ · (λw(s, c)k(x)∇p) = fw, x ∈ Ω, t > 0,

φ
∂(sc)

∂t
−∇ · (cλw(s, c)k(x)∇p) = c fw, x ∈ Ω, t > 0,

−∇ · q = fw + fn, q = qw + qn, x ∈ Ω,

qα = −λα(s, c)k(x)∇p, x ∈ Ω,

(1)



Mathematics 2023, 11, 3104 4 of 27

where s = sw is the saturation of the wetting phase, c is the polymer concentration in the
wetting phase, p is the pressure, qw and qn are the wetting and non-wetting phase fluxes, fα

is the source term of the α-phase, φ is the porosity, k is the heterogeneous permeability and

λw(s, c) = krw(s)/µw(c), λn(s) = krn(s)/µn, λ = λw + λn, (2)

here, µα and krα are the viscosity and relative permeability for α-phase (α = n, w).
For the polymer flooding process, we use a linear law for wetting phase viscosity

µw(c) = µwa(1 + γc), (3)

where µwa is the pure water viscosity and the coefficient γ characterizes the particular
polymer [4,7–9]. This model simplifies the zero shear rate Flory model with the neglected
effect of the salinity [1,7–9]. We note that, in general, different types of relationships can be
employed to characterize the viscosity of the wetting phase, and these variations do not
significantly impact the overall algorithm proposed in this paper.

We supplement the mathematical model (1) with given initial conditions

s = s0, c = c0, p = p0, t = 0, (4)

and zero flux boundary conditions.

2.2. Approximation Space on the Fine Grid

The conventional approach for constructing approximations is typically based on
creating a grid that resolves heterogeneity at the grid level. This grid, which effectively
resolves fine-scale details, will be referred to as the “fine grid” in this study. In this work,
we consider a two-dimensional domain Ω.

Let Th = ∪N f
i=1Ki be the fine grid of the domain Ω, where N f is the number of cells.

To construct a space approximation, we employ a finite volume method with a two-point
flux approximation

qα,ij ≈ −λα(sij, cij)Wij(pj − pi), Wij = kij
|Eij|
dij

, (5)

where kij is the harmonic average between ki and k j (kij = 2/(1/ki + 1/k j)), |Eij| is the
length of face between cells Ki and Kj, dij is the distance between midpoints of cells Ki and
Kj for i = 1, . . . , N f , N f is the number of cells of the fine grid (Figure 1).

Figure 1. Heterogeneous permeability and fine grid (Th).
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For approximation of the λw(sij, cij), we use an upwind scheme

λw(sij, cij) =

{
λw(si, ci), if Tij(pi − pj) > 0
λw(sj, cj), otherwise,

.

Then, the system of Equation (1) can be written in the following semi-discrete way for
each cell Ki

φi
∂si
∂t
|Ki|+∑

j
Tw,ij(pi − pj) = fw,i|Ki|,

φi
∂(sici)

∂t
|Ki|+∑

j
cijTw,ij(pi − pj) = ci fw,i|Ki|,

∑
j

Tij(pi − pj) = fi|Ki|,

(6)

where
Tij = λ(sij, cij)Wij, Tw,ij = λw(sij, cij)Wij,

and λ(sij, cij) is the average between λ(si, ci) and λ(sj, cj).

2.3. Approximation by Time and Loose Coupling

In this work, we use an explicit time approximation for the saturation and concen-
tration problems, which leads to the standard IMPES scheme (implicit pressure, explicit
saturation and concentration)

φi
sn+1

i − sn
i

τ
|Ki|+∑

j
Tn

w,ij(pn
i − pn

j ) = f n
w,i|Ki|,

φi
sn+1

i cn+1
i − sn

i cn
i

τ
|Ki|+∑

j
cn

ijT
n
w,ij(pn

i − pn
j ) = cn

i f n
w,i|Ki|,

∑
j

Tn
ij (pn

i − pn
j ) = f n

i |Ki|,

(7)

where n is the number of time steps and τ is the given time step size. We note that the time
step size is chosen to satisfy a stability condition of the explicit scheme.

The pressure equation can be written in the following matrix form for p = (p1, . . . , pN f )
T

An pn = Fn, (8)

with

An = {an
ij}, aij =

{
∑j Tn

ij i = j,
−Tn

ij i 6= j
,

where Fn = ( f n
1 , . . . ., f n

N f
)T and i = 1, . . . , N f .

We have the following algorithm for the fine grid problem:

• Initialize, saturation, concentration and pressure fields, using given initial conditions

p0 = p0, s0 = s0, c0 = c0.

• For each time iteration (n = 1, 2, . . . , Nt):

– Implicit pressure solve.
Generate the fine scale matrix and right-hand side vector (An and Fn) and solve
the system of linear Equation (8) to find pn.

– Explicit transport solve.
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Update saturation and concentration using explicit formulas on the fine grid:

sn+1
i = sn

i +
τ

φi
f n
w,i −

τ

φi|Ki|∑j
Tn

w,ij(pn
i − pn

j ),

cn+1
i =

1
sn+1

i

(
sn

i cn+1
i +

τ

φi
cn

i f n
w,i −

τ

φi|Ki|∑j
cn

ijT
n
w,ij(pn

i − pn
j )

)
.

(9)

The main challenge in this problem is related to the pressure equation, which re-
quires the solution of the large system of linear equations associated with the fine grid.
To reduce the cost associated with the pressure solve, we first use a loose coupling
approach to run an explicit transport solve for a set of time steps with fixed pressure
(see Figure 2 for illustration).

Figure 2. Illustration of the loosely coupled time stepping.

Finally, we have the following loose coupled algorithm for the fine grid problem:

• Initialize, saturation, concentration and pressure fields, using given initial conditions,
p0 = p0, s0 = s0, c0 = c0.

• For each time iteration (n = 1, 2, . . . , Nt):

– If the remainder of dividing n by np is equal to zero (np is the given number).
Then Implicit pressure solve.
Generate the fine-scale matrix and right-hand side vector (An and Fn) and solve
the system of linear Equation (8) to find pn.

– Explicit transport solve.
Update saturation and concentration using explicit formulas on the fine
grid using (9).

A similar technique was considered in [32] with a multiscale approximation for a
pressure field for a two-phase flow problem. In this work, we use a different multiscale
method and investigate the influence of loose coupling on polymer flooding processes.

Next, we discuss constructing the reduced order model for pressure using the multi-
scale method.

3. Multiscale Model Reduction

We construct a coarse scale approximation for the pressure equation using the
Generalized Multiscale Finite Element Method (GMsFEM). In GMsFEM, we construct
a multiscale basis function to capture the behavior of the solution at a fine scale. The
GMsFEM approach involves two stages: offline and online. In the offline stage, we define
local domains (subdomains), construct multiscale basis functions by solving the local eigen-
value problems, and generate a projection matrix. In the online stage, we project fine-scale
problems onto the multiscale space using a projection matrix and solve a reduced-order
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problem on the coarse grid. The solution obtained using GMsFEM provides an accurate
representation of the multiscale behavior on the coarse scale grid and can be downscaled
to the fine-scale resolution using a projection matrix. Finally, after calculating the pressure
equation using the multiscale method, we calculate a saturation and concentration on the
fine grid using explicit formulas.

The accuracy of the transport problem solution highly depends on the accuracy of
the nonlinear velocity field that is calculated based on the current pressure distribution.
To address this issue, we propose an additional online correction step that can significantly
reduce the error of the multiscale method. The correction step is based on the local
calculations in the subdomains using information about the current residuals.

3.1. Offline Stage

Let TH be the coarse grid with cells Kj, and ωi is the local domain related to the coarse
grid node that is constructed as a combination of the several coarse cells that contains the
corresponding coarse grid node (see Figure 3).

In order to construct multiscale basis functions on the offline stage for the nonlinear
problem, we use a linear part of the pressure equation. In each local domain ωi, we solve
the following eigenvalue problem

Aωi ψ
ωi
l = λ

ωi
l Sωi ψ

ωi
l , (10)

with

Aωi = {aij}, aij =

{
∑j Wij i = j,
−Wij i 6= j

, Sωi = {sij}, sij =

{
ki|Ki| i = j,

0 i 6= j
, i, j = 1, . . . , Nωi

f ,

where Wij = kij
|Eij |
dij

and Nωi
f is the number of coarse grid cells in the local domain ωi.

Figure 3. Coarse grid (blue lines, TH), fine grid (black lines), local domain (ωi) and first eight
eigenvalues (ψωi

l , l = 1, . . . , 8.).
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Next, we choose eigenvectors that correspond to the smallest Mi eigenvalue
(0 = λ

ωi
1 < λ

ωi
2 < . . . < λ

ωi
Mi

) and create a projection matrix

R =
[
χ1ψω1

1 , . . . , χ1ψω1
M1

. . . χNc ψ
ωNc
1 , . . . , χNc ψ

ωNc
MNc

]T
. (11)

where χi is the linear partition of unity functions, and Nc is the number of the local domains
(number of coarse grid nodes).

3.2. Online Stage

Once the projection matrix is constructed, the GMsFEM can be used to solve the
problem on the coarse scale, taking advantage of the reduced dimension.

We use constructed multiscale basis functions to solve the pressure equation on the
coarse grid. We use the projection matrix R to project the fine grid system to the coarse grid

An
H pn

H = Fn
H , (12)

with
An

H = RAnRT , Fn
H = RFn. (13)

After the solution of the reduced system, we reconstruct a fine grid solution

pn
ms = RT pn

H . (14)

Note that the size of the system is Nc = ∑Nv
i=1 Mi, Mi is the number of local multiscale

basis functions in ωi and Nv is the number of coarse grid vertices. For the numerical
investigation, we set to take the same number of basis functions in each local domain
(Mi = M), and therefore, we have Nc = M · Nv. The convergence of the presented method
depends on a number of local basis functions and coarse grid size.

Then, on the online stage, we have the following algorithm for the transport and flow
problem with loose coupling:

• Initialize saturation, concentration and pressure fields using initial conditions p0
h = p0,

s0
h = s0, c0

h = c0 and project pressure onto the coarse grid p0
H = Rp0

h.
• For each time iteration (n = 1, 2, . . . , Nt):

– If the remainder of dividing n by np is equal to zero (np is the given number).
Then, Implicit pressure solve.
Generate a fine scale matrix and right-hand side vector (An and Fn), project
the system onto coarse grid (An

H = RAnRT and Fn
H = RFn), solve the system

of the linear Equation (12) to find pn
H and downscale the solution to fine grid

pn
ms = RT pn

H .
– Explicit transport solve.

Update saturation and concentration using explicit formulas on the fine grid:

sn+1
ms,i = sn

ms,i +
τ

φi
f̃ n
w,i −

τ

φi|Ki|∑j
T̃n

w,ij(pn
ms,i − pn

ms,j),

cn+1
ms,i =

1
sn+1

ms,i

(
sn

ms,ic
n+1
ms,i +

τ

φi
cn

ms,i f̃ n
w,i −

τ

φi|Ki|∑j
cn

ms,ijT̃
n
w,ij(pn

ms,i − pn
ms,j)

)
,

(15)

where f̃w,i and T̃n
w,ij are calculated using a multiscale solution sn

ms,ij, cn
ms,ij

and pn
ms,ij.

The accuracy of the transport problem solution highly depends on the accuracy of
the nonlinear velocity field that is calculated based on the current pressure distribution.
To address this issue, we propose an additional online correction step that can significantly
reduce the error of the multiscale method.
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3.3. Online Residual-Based Local Correction

The correction step is based on the local calculations in the subdomains using informa-
tion about the current residuals. After the solution of the pressure Equation (12), in each
local domain, we find a local residual and solve the following local problem in ωi

Aωi φωi = rωi , (16)

with

Aωi = {aij}, aij =

{
∑j Tn

ij i = j,
−Tn

ij i 6= j
, (17)

rωi = {rωi
i }, rωi

i = f n
ms,i −∑

j
Tn

ms,ij(pn
ms,i − pn

ms,j), (18)

with zero Dirichlet boundary conditions except for the global boundary, where we set a
zero Newman boundary condition.

We construct a local correction φωi
in a non-overlapping set of local domains ωi ∈ Bk,

where for the quadratic coarse cells, we have for sets of local domains (see the first row
in Figure 4). The correction function in the kth set of subdomains is used to update the
solution

pn,k
ms = pn,k−1

ms + ∑
ωi∈Bk

φωi ,k, (19)

where pn,0
ms is the solution of Problem (12) and

Aωi φωi ,k = rωi ,k−1, (20)

with
rωi ,k−1 = {ri}, ri = f n,k

ms,i −∑
j

Tn
ms,ij(pn,k−1

ms,i − pn,k−1
ms,j ). (21)

We have the following algorithm:

• Initialize saturation, concentration, and pressure fields using initial conditions p0
h = p0,

s0
h = s0, c0

h = c0 and project pressure onto the coarse grid p0
H = Rp0

h.
• For each time iteration (n = 1, 2, . . . , Nt):

– If the remainder of dividing n by np is equal to zero (np is the given number).
Then, Implicit pressure solve.

* Generate fine scale matrix and right-hand side vector (An and Fn), project
system onto coarse grid (An

H = RAnRT and Fn
H = RFn), solve system of linear

Equation (12) to find pn
H and downscale the solution to fine grid pn

ms = RT pn
H .

* For each set of non-oversampling local domains Bk, k = 1, 2, 3, 4 iteratively
calculate local corrections in ωi ∈ Bk and update current solution using (19)
and (20).

– Explicit transport solve.
Update saturation and concentration using explicit Formula (15) with pn

ms = pn,4
ms .

The proposed online correction, similar to the multiscale basis functions calculations,
is based on the local calculations in a non-overlapping set of local domains ωi. For the
case of quadratic cells, we have four sets of non-overlapping subdomains. Moreover, this
additional step does not affect the size of the coarse scale system.
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(a) Non-overlapping local domains ωi ∈ Bk.

(b) Residual rωi in non-overlapping local domains ωi ∈ Bk.

(c) Correction φωi in non-overlapping local domains ωi ∈ Bk.

Figure 4. Illustration of online residual-based local correction using non-overlapping subdomains
ωi ∈ Bk (k = 1, 2, 3, 4 from left to right) for 8× 8 coarse grid.

3.4. Multiscale Splitting Approach

A regular multiscale method (GMsFEM), considered above, leads to the solution of the
coupled system of equations related to a number of basis functions with size Nc = ∑i Mi.
Next, instead of the solution of the coupled system of linear equations on each time step,
we use an additive representation of the matrix to construct an uncoupled scheme for the
pressure equation. In this work, we propose a decoupling related to the multicontinuum
types of problems to separate the primary continuum from others [39]. Furthermore, we
know that the first eigenvalue is the constant, and therefore, the resulting first basis is the
regular bi-linear partition of the unity function. Therefore, we can associate such a type of
splitting with the separation of the part related to the regular coarse grid approximation
and remain a part with the local spectral enrichment. This approach is highly connected
with our recent work [39], where we proposed a novel splitting algorithm for the flow in
fractured porous media.

Let R = [R1, R2]
T , where R1 is constructed based on the first basis function for each

local domain, and R2 contains the remaining basis functions, i.e.,

R1 =
[
χ1ψω1

1 , . . . χNc ψ
ωNc
1

]T
,

R2 =
[
χ1ψω1

2 , . . . , χNc ψω1
M1

. . . χNc ψ
ωNc
2 , . . . , χNc ψ

ωNc
MNc

]T
.

(22)

Then, instead of (12), we can use the following form of the coarse-scale system
of pressure

An
H,11 pn,1

H + An
H,12 pn,2

H = Fn,1
H ,

An
H,21 pn,1

H + An
H,22 pn,2

H = Fn,2
H ,

(23)
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where

An
H =

(
An

H,11 An
H,12

An
H,21 An

H,22

)
=

(
R1 AnRT

1 R1 AnRT
2

R2 AnRT
1 R2 AnRT

2

)
, (24)

Fn
H =

(
Fn

H,1
Fn

H,2

)
=

(
R1Fn

R2Fn

)
, pn

H =

(
pn

H,1
pn

H,2

)
=

(
R1 pn

h
R2 pn

h

)
. (25)

The construction of the multiscale splitting approach is based on an additive represen-
tation of the pressure operator

An
H = An,1

H + An,2
H , (26)

with

An,1
H =

(
An

H,11 0
An

H,21 An
H,22

)
, An,2

H = An
H − An,1

H , (27)

Here, we approximate the coupling term in the first equation using the previous time
layer and obtain the following multiscale splitting scheme

An,1
H pn

H + An,2
H pn−1

H = Fn
H . (28)

where pn−1
H is the known solution from the previous time layer.

Such a representation leads to the independent calculations of the problems related to
the first basis, and all remain basis functions

An
H,11 pn,1

H + An
H,12 pn−1,2

H = Fn,1
H ,

An
H,21 pn,1

H + An
H,22 pn,2

H = Fn,2
H ,

(29)

This system is decoupled, and allows us to first calculate solution pn,1
H and then find

pn,2
H using pn,1

H .
Finally, we have the following algorithm:

• Initialize saturation, concentration, and pressure fields using initial conditions p0
h = p0,

s0
h = s0, c0

h = c0 and project pressure onto the coarse grid p0
H = Rp0

h.
• For each time iteration (n = 1, 2, . . . , Nt):

– If the remainder of dividing n by np is equal to zero (np is the given number).
Then, Implicit pressure solve.

* Generate fine scale matrix and right-hand side vector (An and Fn), and project
system onto coarse grid

An
H =

(
An

H,11 An
H,12

An
H,21 An

H,22

)
=

(
R1 AnRT

1 R1 AnRT
2

R2 AnRT
1 R2 AnRT

2

)
, Fn

H =

(
Fn

H,1
Fn

H,2

)
=

(
R1Fn

R2Fn

)
.

Solve system of linear equations to find pn,1
H

An
H,11 pn,1

H = Fn,1
H − An

H,12 pn−1,2
H ,

Solve system of linear equations to find pn,2
H

An
H,22 pn,2

H = Fn,2
H − An

H,21 pn,1
H ,

Downscale the solution to fine grid pn
ms = RT pn

H with pn
H = [pn,1

H , pn,2
H ]T .

* For each set of non-oversampling local domains Bk, k = 1, 2, 3, 4 iteratively
calculate local corrections in ωi ∈ Bk and update current solution using (19)
and (20).

– Explicit transport solve.
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Update saturation and concentration using explicit Formula (15) with pn
ms = pn,4

ms .

4. Numerical Results

We consider the solution of the flow and transport in heterogeneous porous media
(Ω = [0, 1]× [0, 1]). We set source terms f± = ±q, q = 103 on left and right boundaries.
For the nonlinear coefficient, we use kw = s2 and kn = (1− s)2, φ = 1, muw = 1, µwa = 5
and γ = 4 [4,7,9]. We consider two permeability fields for the numerical investigation. Both
permeabilities are generated using the Karhunen–Loéve expansion [40,41]. The Gaussian
covariance matrix is used with with correlation lengths lx = 0.2, ly = 0.2 for Heterogeneity-
1 and lx = 0.4, ly = 0.1 for Heterogeneity-2. Figure 5 shows a permeability k(x) for
Heterogeneity-1 and Heterogeneity-2. The fine grid is 80× 80, and the coarse grid is 4× 4,
8× 8 and 16× 16 (see Figure 5).

Figure 5. Heterogeneous permeability (Heterogeneity-1 and Heterogeneity-2) and coarse grids
(4× 4, 8× 8, and 16× 16 (green color) with fine grid (blue color)).

We consider four test problems with different polymer injection options:

• Test 1. Pure water injection: cinj(tm) = 0 and sinj(tm) = 1 for m = 0, 1, 2 . . ..
• Test 2. Injection of polymer in first 100 time steps: cinj(tm) = 1, sinj(tm) = 1 for

m < 100 and cinj(tm) = 0, sinj(tm) = 1 for m ≥ 100.
• Test 3. Injection of polymer in first 200 time steps: cinj(tm) = 1, sinj(tm) = 1 for

m < 200 and cinj(tm) = 0, sinj(tm) = 1 for m ≥ 200.
• Test 4. Injection of polymer: cinj(tm) = 1, sinj(tm) = 1 for m = 0, 1, 2 . . ..

We set initial conditions s0 = 0.2, c0 = 0 and simulate 500 time steps with τ =
0.8× 10−4 for Heterogeneity-1 and τ = 0.4× 10−4 for Heterogeneity-2.

In Figures 6 and 7, we depict the reference (fine grid) solution for Heterogeneity-1 and
Heterogeneity-2, respectively. The simulation results are presented for Test 1, 2, 3 and
4 (from top to bottom). The pressure , saturation and concentration, p500, s100, s300, s500,
c100, c300 and c500 are depicted from left to right. We observe a significant influence of the
heterogeneity field on the solution, where both probabilities are highly heterogeneous,
and Heterogeneity-2 exhibits channelized features. Moreover, in Figures 6 and 7, we
observe a comparison between different polymer injection options in Test 1, 2, 3 and 4.

To compare the accuracy of the presented multiscale method and splitting techniques,
we use the relative L2 error in percentage for the saturation, concentration and pressure
fields. Additionally, we calculate errors for the total and wetting phase velocity fields. We
use the corresponding fine-grid solution for each test problem as a reference solution. The
errors are calculated using the following formulas on the fine grid:

en
p =
||pn − pn

ms||L2

||pn||L2

× 100%, en
s =
||sn − sn

ms||L2

||sn||L2

× 100%, en
c =
||cn − cn

ms||L2

||cn||L2

× 100%,

using the L2 norm

||v||2L2
=

N f

∑
i=1

v2
i .

Here, n is the time layer; pn, sn and cn are the reference (fine grid) solution; pn
ms, sn

ms
and cn

ms are the solution using the multiscale method.
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(a) Test 1. p500, s100, s300 and s500 (from left to right)

(b) Test 2. p500, s100, s300, s500, c100, c300 and c500 (from left to right)

(c) Test 3. p500, s100, s300, s500, c100, c300 and c500 (from left to right)

(d) Test 4. p500, s100, s300, s500, c100, c300 and c500 (from left to right)

Figure 6. Heterogeneity-1. Fine grid solution for Test 1, 2, 3 and 4.

(a) Test 1. p500, s100, s300 and s500 (from left to right)

(b) Test 2. p500, s100, s300, s500, c100, c300 and c500 (from left to right)

(c) Test 3. p500, s100, s300, s500, c100, c300 and c500 (from left to right)

(d) Test 4. p500, s100, s300, s500, c100, c300 and c500 (from left to right)

Figure 7. Heterogeneity-2. Fine grid solution for Test 1, 2, 3 and 4.

Additionally, we calculate errors for the wetting phase velocity and total velocity

en
uw =

||un
w − un

w,ms||L2

||un
w||L2

× 100%, en
u =
||un − un

ms||L2

||un||L2

× 100%,
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where un
w and un are the wetting and total velocities calculated based on the fine grid

solution (reference solution); un
w,ms and un

ms are the multiscale solutions based on wetting
and total velocities. The accuracy of the velocity field directly affects the explicitly calculated
saturation and concentration field errors.

Next, we present the numerical study results for the splitted multiscale approach.
We start with the traditional coupled multiscale approach, where pressure is solved using
the generalized multiscale finite element method with and without an online correction.
We vary a number of multiscale basis functions to investigate the influence on the method’s
accuracy. Then, we present results for the splitted multiscale approach, where we decou-
ple part of the equation related to the first basis function or primary continuum [39,42].
Finally, we combine the multiscale splitting approach with the loose coupling approach for
transport and pressure equations.

4.1. Multiscale Method with Online Correction

We consider the traditional coupled multiscale approach, where pressure is solved
using a generalized multiscale finite element method with and without online correction.
We vary a number of multiscale basis functions to investigate the influence on the method’s
accuracy. We start with Heterogeneity-1.

In Tables 1–3, we present relative errors for three coarse grids 4× 4, 8× 8 and 16× 16
for Heterogeneity-1. We start by discussing the multiscale approximation results without a
local correction step. We observe good results for all test cases with a sufficient number of
multiscale basis functions for the pressure that can provide a good approximations of fluxes.
For example, when we take 16 multiscale basis functions, we have less than one percent
of error for the pressure field on the 4× 4 coarse grid in all tests (see Table 1). However,
the wetting phase velocity error is significant (6.7%, 8.4%, 9.3%, and 6.4% for Test 1, 2, 3
and 4 , which directly affects the saturation and concentration. For example, we have 5.4%
and 6.5% of errors for saturation and concentration in Test 2.In Test 4, we observe more
minor errors with 3.7% and 1.5% for saturation and concentration. On the 8× 8 coarse
grid compared with the 4× 4 grid, we observe better results for the wetting phase velocity.
For 16 multiscale basis functions, we obtain nearly one percent of the velocity error, which
directly affects the saturation and concentration errors. We provide results with 0.9–1.3%
for saturation and 0.2–1.5% for concentration (Table 2). For the 16× 16 coarse grid, we
obtain less than one percent of errors for velocity, saturation, and concentration for all test
cases using 12 and 16 basis functions (Table 3). Furthermore, we obtain a more significant
error in Test 2and the slightest error in Test 4in all coarse grids.

Next, we consider results with the local online correction and discuss the effect of
the correction on the errors of the velocity field and the corresponding saturation and
concentration errors. From the presented results in Tables 1–3, we observe a considerable
error reduction after the application of the presented local correction step using residual
information. In Table 1, we reduce the saturation error from 16% to 1.9% using the online
correction step for the case with four multiscale basis functions in Test 1. In Test 4, we have
27%, 19%, and 14% of errors for the wetting phase velocity, saturation, and concentration
using four basis functions. For the algorithm with a local online correction, we reduce
errors to 2.4%, 1.3%, and 0.6% for wetting phase velocity, saturation, and concentration.
In Test 2 and 3, we obtain excellent results for the online correction for the multiscale
solution with eight basis functions, where we have 0.8 and 1.3% of error for saturation and
concentration in Test 2, and 0.6 and 1.1% of error for saturation and concentration in Test 2.
However, we obtain an excellent error reduction only when we use a sufficient number
of preconstructed basis functions. On the finer coarse grid (8× 8 in Table 2 and 16× 16 in
Table 3), we observe good results for all test cases using four multiscale basis functions and
two multiscale basis functions for 8× 8 and 16× 16 grids, respectively.
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Table 1. Heterogeneity-1. Relative errors at final time. Coarse mesh 4× 4.

ep (%) euw (%) eu (%) es (%) ec (%) ep (%) euw (%) eu (%) es (%) ec (%)

Test 1

1 13.109 53.602 40.242 38.159 - 4.656 16.506 12.423 9.203 -
2 8.527 47.568 36.327 29.041 - 3.236 9.389 7.454 5.594 -
4 4.272 28.271 22.364 16.899 - 1.162 3.612 2.796 1.924 -
8 2.008 19.640 15.190 12.081 - 0.247 0.984 0.744 0.519 -

12 1.382 20.212 15.221 10.216 - 0.050 0.245 0.185 0.118 -
16 0.431 6.731 5.123 3.668 - 0.062 0.240 0.183 0.124 -

Test 2

1 28.402 66.114 46.950 46.377 98.920 4.673 19.168 13.967 10.987 25.881
2 29.824 57.313 42.518 37.557 75.903 1.693 9.518 7.830 4.779 11.946
4 15.097 33.321 24.445 26.593 54.558 0.928 3.798 3.204 2.593 4.506
8 10.098 24.065 19.532 15.986 34.170 0.300 1.265 1.046 0.880 1.396

12 1.900 21.651 17.337 11.193 16.740 0.081 0.312 0.265 0.194 0.374
16 0.706 8.438 6.806 5.479 6.599 0.075 0.278 0.233 0.170 0.291

Test 3

1 20.887 67.125 48.138 47.346 81.318 2.854 19.145 13.709 11.665 26.816
2 24.285 60.581 43.811 39.228 64.401 1.231 9.699 7.854 4.320 10.816
4 14.952 34.354 25.698 26.539 39.849 0.474 4.242 3.510 2.006 4.006
8 9.012 23.394 17.943 16.043 19.783 0.142 1.201 0.970 0.644 1.132

12 2.710 19.450 15.358 9.628 9.472 0.037 0.282 0.224 0.148 0.253
16 1.215 9.367 7.623 5.350 4.905 0.030 0.233 0.186 0.125 0.200

Test 4

1 14.478 52.969 35.938 38.358 42.691 5.280 9.978 5.971 5.835 6.114
2 8.852 46.533 29.130 31.767 30.398 2.848 5.558 3.746 3.151 2.076
4 5.848 27.592 17.430 19.771 14.384 1.051 2.427 1.606 1.360 0.694
8 2.123 16.723 11.072 10.801 5.551 0.229 0.676 0.419 0.390 0.213

12 0.913 14.237 8.748 7.652 2.962 0.036 0.234 0.129 0.130 0.085
16 0.567 6.450 4.189 3.781 1.561 0.052 0.207 0.124 0.114 0.060

Table 2. Heterogeneity-1. Relative errors at final time. Coarse mesh 8× 8.

ep (%) euw (%) eu (%) es (%) ec (%) ep (%) euw (%) eu (%) es (%) ec (%)

Test 1

1 8.159 49.825 38.005 30.380 - 6.140 9.177 7.575 8.756 -
2 4.001 34.635 26.820 20.491 - 1.381 2.106 1.680 2.075 -
4 1.627 15.875 12.414 10.666 - 0.707 1.024 0.826 0.922 -
8 0.614 9.661 7.461 6.000 - 0.184 0.353 0.275 0.298 -
12 0.099 1.903 1.674 1.300 - 0.010 0.047 0.035 0.029 -
16 0.068 1.631 1.240 1.009 - 0.004 0.020 0.015 0.013 -

Test 2

1 30.648 57.487 39.132 39.987 80.954 3.218 16.619 13.803 9.749 27.697
2 13.984 41.214 32.014 25.225 47.403 1.398 3.426 2.822 3.318 7.066
4 3.581 18.364 15.131 12.398 21.862 0.588 1.334 1.097 1.233 2.584
8 0.756 11.339 9.565 6.336 7.943 0.147 0.378 0.317 0.344 0.722
12 0.172 2.434 2.168 1.834 2.259 0.014 0.082 0.069 0.046 0.083
16 0.100 1.728 1.411 1.252 1.516 0.006 0.036 0.030 0.019 0.035

Test 3

1 23.910 59.049 39.265 40.345 59.317 1.940 15.230 12.078 8.658 20.310
2 14.129 37.456 27.962 24.329 31.922 0.615 3.700 3.000 2.423 4.779
4 5.460 21.880 17.404 13.326 14.260 0.310 1.704 1.386 1.057 2.088
8 1.866 10.453 8.675 6.325 6.814 0.088 0.420 0.327 0.319 0.600
12 0.218 3.380 2.820 1.890 1.860 0.008 0.047 0.035 0.032 0.057
16 0.069 2.478 1.995 1.327 1.281 0.004 0.025 0.019 0.014 0.023

Test 4

1 7.747 45.956 24.910 30.230 26.341 6.316 7.457 5.004 5.337 5.465
2 4.445 27.459 16.847 18.224 11.225 1.754 2.167 1.471 1.890 1.274
4 1.963 16.082 10.149 11.325 6.178 0.884 1.144 0.770 0.893 0.547
8 0.905 8.847 5.937 5.964 2.223 0.248 0.377 0.248 0.295 0.161
12 0.098 1.897 1.470 1.323 0.320 0.016 0.040 0.026 0.027 0.013
16 0.051 1.577 0.986 0.951 0.228 0.007 0.016 0.010 0.011 0.006
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Table 3. Heterogeneity-1. Relative errors at final time. Coarse mesh 16× 16.

ep (%) euw (%) eu (%) es (%) ec (%) ep (%) euw (%) eu (%) es (%) ec (%)

Test 1

1 3.195 33.424 25.467 19.233 - 2.085 2.680 2.142 2.277 -
2 1.096 21.183 16.400 12.278 - 0.512 0.853 0.653 0.704 -
4 0.523 10.060 7.948 5.913 - 0.235 0.500 0.384 0.346 -
8 0.222 5.523 4.293 3.205 - 0.060 0.149 0.116 0.090 -

12 0.024 1.100 0.868 0.595 - 0.004 0.022 0.016 0.012 -
16 0.012 0.843 0.610 0.355 - 0.001 0.007 0.006 0.004 -

Test 2

1 14.993 35.648 26.577 25.360 44.449 1.848 3.941 3.196 3.499 9.187
2 5.526 23.660 19.016 13.679 22.629 0.531 1.086 0.868 1.041 2.333
4 0.625 11.491 9.582 6.639 8.416 0.248 0.609 0.494 0.470 0.987
8 0.272 6.611 5.538 3.424 4.546 0.070 0.180 0.147 0.125 0.289

12 0.038 1.196 0.997 0.636 0.562 0.005 0.021 0.018 0.014 0.023
16 0.016 0.978 0.752 0.406 0.267 0.001 0.009 0.007 0.005 0.006

Test 3

1 14.025 35.884 25.831 26.058 33.289 0.903 4.806 3.908 2.965 5.788
2 6.630 22.824 17.767 14.249 19.666 0.262 1.324 1.066 0.934 1.631
4 1.248 11.978 9.837 6.352 7.223 0.149 0.702 0.574 0.421 0.691
8 0.301 7.141 5.852 3.361 3.516 0.041 0.173 0.143 0.100 0.176

12 0.033 1.241 1.038 0.648 0.480 0.003 0.022 0.019 0.012 0.015
16 0.015 0.646 0.498 0.372 0.239 0.001 0.007 0.005 0.004 0.004

Test 4

1 4.207 29.678 16.486 19.193 11.964 2.504 2.360 1.600 1.929 1.602
2 1.539 18.572 11.605 10.935 5.152 0.657 0.782 0.510 0.634 0.445
4 0.804 9.710 6.374 6.250 2.547 0.324 0.423 0.264 0.326 0.216
8 0.399 6.013 3.835 3.530 1.188 0.078 0.132 0.087 0.085 0.054

12 0.019 1.143 0.717 0.631 0.123 0.006 0.019 0.012 0.011 0.005
16 0.008 0.787 0.448 0.350 0.075 0.001 0.006 0.004 0.004 0.002

In Figures 8–11, we depict results of numerical simulations at a final time for Tests 1, 2,
3 and 4 for Heterogeneity-1. In the first column, we depict a fine grid solution. The results
using the presented multiscale method using four multiscale basis functions without and
with online correction are depicted in the second and third columns. In the last fourth
column, we demonstrate the results of the multiscale method using 16 multiscale basis
functions without online correction. From the presented results of fine grid simulations,
we observe a strong influence of the polymer concentration on the final saturation (see
Figures 8 and 11 for Tests 1 and 4). The effect of the polymer injection duration is represented
in Figures 9 and 10 for Tests 2 and 3.

In Figure 8, the results illustrate the accuracy of the presented multiscale solver for the
solution of the two-phase flow problem (Test 1, no polymer injection). From the second and
fourth columns, we observe the slight influence of a number of multiscale basis functions on
the pressure field. However, the explicitly calculated fine grid saturation has a considerable
difference. Moreover, the presented approach with local residual-based correction provides
excellent results for the case with four multiscale basis functions.

In Figures 9 and 10, we consider Tests 2 and 3, where polymer injection is given at the
first 100 and 200 time steps, respectively (total number of time steps is 500). The concentra-
tion and pressure fields look accurate for the case with 4 and 16 multiscale basis functions
without correction. However, the saturation field is susceptible to the number of bases,
and the four functions are insufficient for obtaining good results. However, the proposed
local online correction provides great results.
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(a) p500 and s500 (b) p500
ms,4 and s500

ms,4

(c) p500
ms,16 and s500

ms,16 (d) p500
ms,4+on and s500

ms,4+on

Figure 8. Heterogeneity-1. Results of numerical simulations at final time for Test 1.

(a) p500 and s500 (b) p500
ms,4 and s500

ms,4

(c) p500
ms,16 and s500

ms,16 (d) p500
ms,4+on and s500

ms,4+on

Figure 9. Heterogeneity-1. Results of numerical simulations at final time for Test 2.

(a) p500 and s500 (b) p500
ms,4 and s500

ms,4

(c) p500
ms,16 and s500

ms,16 (d) p500
ms,4+on and s500

ms,4+on

Figure 10. Heterogeneity-1. Results of numerical simulations at final time for Test 3.
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(a) p500 and s500 (b) p500
ms,4 and s500

ms,4

(c) p500
ms,16 and s500

ms,16 (d) p500
ms,4+on and s500

ms,4+on

Figure 11. Heterogeneity-1. Results of numerical simulations at final time for Test 4.

Numerical results for the Test 4 are presented in Figure 11. Similarly to the previous test
problems, we observe a considerable influence of the number of basis functions on the final
saturation solution.

Next, we consider test cases for Heterogeneity-2. In Table 4, we present relative errors
for an 8× 8 coarse grid. We observe good results for all test cases with a sufficient number
of multiscale basis functions for the pressure that can provide good approximations of
fluxes. Moreover, we observe the effect of the online correction step that works great with a
sufficient number of multiscale basis functions for all test cases of the polymer injection for
Heterogeneity-2. In the channelized permeability field, we observe significant errors for the
multiscale method without a correction step compared. However, online correction leads to
very accurate results with fewer basis functions. For example, using the online correction
step, we have 2.5% of error for concentration using four multiscale basis functions and
0.7% using eight multiscale basis functions in the Test 2 for Heterogeneity-1. For
Heterogeneity-2, we have 1.4% of error for concentration using four multiscale basis
functions and 0.2% using eight multiscale basis functions in the Test 2.

For the multiscale solution of the pressure equation, we observe that the online local
residual-based correction provides an excellent error reduction for the velocity field, leading
to accurate calculations of the saturation and concentration problems. From the presented
results in Tables 1–3, we also observe the effect of the coarse grid size and a number of local
multiscale basis functions on the method accuracy, where a finer coarse grid leads to the
minor error with a smaller number of basis functions. The effect of the heterogeneity field
on the method accuracy is investigated.

4.2. Splitted Multiscale Approach

We present results for the splitted multiscale approach, where we decouple part of the
equation related to the first basis function or primary continuum.

In Tables 5 and 6, we present the errors at the final time for a splitted multiscale
approach. The calculation is performed on the 8× 8 coarse grid. By system splitting, we
separate the equations for the first and all other continua. The resulting errors are minor for
the pressure field but lead to more significant errors for concentrations in the case without
online correction. For example, we have ep = 1.8%, euw = 10.4%, es = 6.3 and ec = 6.8 for
the regular coupled multiscale method, and ep = 2.2%, euw = 12.6%, es = 6.6 and ec = 7.1
for the splitted multiscale method in Test 3 with Heterogeneity-1 (see Tables 2 and 5). In Test
3 for Heterogeneity-2, we have ep = 1.3%, euw = 19.5%, es = 10.5 and ec = 11.5 for the
regular coupled multiscale method, and ep = 1.6%, euw = 19.2%, es = 10.6 and ec = 12.2
for the splitted multiscale method in Test 3 (see Tables 4 and 6) However, we observe
accurate results for the case with online correction. In this case, correction reduces the
error of multiscale offline basis functions and is remarkable for the splitting approach.
Therefore, we can use a splitting approach for the polymer flooding processes with an
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online correction step to reduce errors. Note that the error behavior is similar for two types
of heterogeneity.

Table 4. Heterogeneity-2. Relative errors at final time. Coarse mesh 8× 8.

ep (%) euw (%) eu (%) es (%) ec (%) ep (%) euw (%) eu (%) es (%) ec (%)

Test 1

1 19.029 77.975 50.023 48.188 - 4.378 6.139 4.846 6.985 -
2 4.652 40.318 27.244 28.537 - 1.124 1.540 1.337 1.755 -
4 2.309 33.021 22.513 19.120 - 0.543 0.639 0.597 0.647 -
8 1.126 17.683 11.942 9.007 - 0.095 0.126 0.106 0.115 -

12 0.496 6.938 4.762 3.427 - 0.032 0.078 0.056 0.053 -
16 0.234 3.872 2.626 2.074 - 0.007 0.034 0.023 0.024 -

Test 2

1 20.006 78.323 44.569 48.963 87.056 4.782 5.970 4.975 6.521 14.625
2 8.717 45.755 27.707 29.160 59.480 1.116 1.962 1.636 2.565 4.144
4 5.800 36.804 23.224 21.672 40.370 0.576 0.812 0.714 0.866 1.430
8 0.966 20.272 14.158 10.964 16.776 0.113 0.157 0.133 0.159 0.254

12 0.542 7.785 5.545 4.989 8.148 0.037 0.072 0.053 0.062 0.096
16 0.271 4.869 3.418 3.535 5.810 0.008 0.031 0.022 0.031 0.048

Test 3

1 19.009 80.733 45.054 48.508 65.171 4.633 5.665 4.624 5.224 11.639
2 7.550 39.566 23.701 29.321 46.726 1.102 2.064 1.640 1.955 3.187
4 6.218 36.561 22.308 20.294 29.820 0.549 0.768 0.653 0.705 1.093
8 1.370 19.596 13.304 10.503 11.522 0.120 0.167 0.139 0.136 0.184

12 0.399 7.697 5.317 5.161 5.750 0.038 0.082 0.061 0.052 0.075
16 0.261 5.780 3.949 3.658 4.081 0.013 0.041 0.029 0.028 0.040

Test 4

1 20.039 86.238 43.783 43.754 33.495 4.253 4.123 3.643 3.992 3.986
2 4.767 39.402 16.693 28.987 21.471 1.046 1.111 1.078 1.039 0.733
4 2.530 30.716 13.495 17.775 10.269 0.446 0.427 0.502 0.416 0.280
8 0.838 16.162 8.371 8.503 4.112 0.082 0.125 0.096 0.096 0.055

12 0.431 8.588 4.391 4.385 2.291 0.029 0.070 0.043 0.046 0.031
16 0.210 4.687 2.339 2.614 1.438 0.009 0.031 0.018 0.021 0.015

4.3. Loose Coupling

Finally, we combine a multiscale splitting approach with a loose coupling technique
for transport and pressure equations. We consider the traditional and splitted multiscale
approaches with two values of the loose coupling parameter np = 2 and 5.

In Tables 7 and 8, we present results for the loose coupling approach for Heterogeneity-
1 and Heterogeneity-2. In the loose coupling approach, we calculate pressure if the remain-
der of dividing n by 2 is equal to zero. For np = 2, we observe good results with almost
the same errors except Test 2, where the minimum error for concentration was 0.03% using
16 multiscale basis functions with online correction compared with 1.9% for the case for
loose coupling. We obtain a slightly bigger error by comparing traditional coupled and
splitted multiscale approaches. Overall, we can state that the results with online correction
work great for the splitted multiscale method with loose coupling. Moreover, we observe
that the loose coupling works better for Heterogeneity-2 with more minor errors.

In Tables 9 and 10, we present results for the loose coupling approach, where we
calculate pressure if dividing n by 5 equals zero. Therefore, with the total number of
iterations of 500, we calculate pressure only 100 times. From the results, we observe that
the errors highly vary for different test cases; in the Tests 2 and 3, the errors increase
significantly for both coupled and splitted multiscale approaches.
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Table 5. Heterogeneity-1. Splitted multiscale approach on 8× 8 coarse grid.

ep (%) euw (%) eu (%) es (%) ec (%) ep (%) euw (%) eu (%) es (%) ec (%)

Test 1

2 3.848 34.659 26.806 20.415 - 1.187 2.050 1.616 1.915 -
4 1.597 15.840 12.389 10.629 - 0.665 1.009 0.811 0.913 -
8 0.527 9.556 7.400 5.784 - 0.162 0.372 0.286 0.295 -

12 0.171 2.450 1.999 1.621 - 0.062 0.120 0.086 0.109 -
16 0.104 2.797 2.107 1.983 - 0.023 0.055 0.039 0.057 -

Test 2

2 14.116 41.532 32.263 25.288 47.367 1.177 3.180 2.642 2.869 6.238
4 3.613 18.329 15.111 12.358 21.561 0.538 1.232 1.021 1.146 2.345
8 1.070 12.200 10.249 6.378 8.086 0.151 0.432 0.362 0.362 0.583

12 0.295 3.991 3.424 2.433 3.391 0.089 0.276 0.220 0.240 0.496
16 0.205 3.348 2.808 2.024 2.667 0.041 0.147 0.118 0.140 0.335

Test 3

2 14.190 37.264 27.823 24.349 31.712 0.559 3.017 2.464 2.001 3.849
4 5.506 21.872 17.424 13.359 14.210 0.294 1.492 1.213 0.970 1.857
8 2.282 12.681 10.432 6.682 7.106 0.117 0.428 0.342 0.311 0.454

12 0.378 5.974 4.931 2.685 2.791 0.075 0.339 0.275 0.244 0.354
16 0.182 4.541 3.691 2.197 2.340 0.047 0.182 0.151 0.153 0.220

Test 4

2 4.428 27.450 16.845 18.224 11.254 1.783 2.182 1.480 1.922 1.310
4 1.980 16.087 10.147 11.338 6.198 0.909 1.153 0.777 0.922 0.568
8 0.942 8.668 5.833 5.830 2.204 0.275 0.392 0.256 0.309 0.191

12 0.128 1.915 1.471 1.363 0.517 0.026 0.051 0.029 0.038 0.027
16 0.060 1.711 1.079 1.073 0.325 0.010 0.020 0.011 0.016 0.012

Table 6. Heterogeneity-2. Splitted multiscale approach on 8× 8 coarse grid.

ep (%) euw (%) eu (%) es (%) ec (%) ep (%) euw (%) eu (%) es (%) ec (%)

Test 1

2 4.652 40.327 27.251 28.539 - 1.122 1.540 1.336 1.752 -
4 2.321 33.004 22.495 19.156 - 0.541 0.637 0.595 0.642 -
8 1.097 16.976 11.409 9.153 - 0.093 0.127 0.106 0.113 -

12 0.517 6.843 4.701 3.421 - 0.032 0.082 0.058 0.055 -
16 0.343 4.588 3.109 2.355 - 0.006 0.037 0.025 0.024 -

Test 2

2 8.701 45.677 27.666 29.163 59.508 1.114 1.960 1.635 2.559 4.133
4 5.704 36.405 22.958 21.634 40.434 0.576 0.805 0.709 0.855 1.426
8 0.975 19.807 13.812 11.287 18.225 0.107 0.152 0.127 0.156 0.264

12 0.605 7.930 5.653 5.111 8.427 0.036 0.078 0.058 0.064 0.090
16 0.369 5.929 4.180 3.998 6.795 0.010 0.035 0.024 0.028 0.044

Test 3

2 7.584 39.525 23.658 29.316 46.754 1.102 2.056 1.635 1.949 3.180
4 6.285 36.931 22.513 20.342 29.911 0.548 0.765 0.650 0.694 1.091
8 1.642 19.240 12.967 10.697 12.277 0.121 0.186 0.148 0.138 0.191

12 0.408 8.578 5.962 5.454 6.159 0.036 0.081 0.060 0.048 0.068
16 0.325 7.507 5.113 4.447 5.182 0.013 0.049 0.034 0.029 0.040

Test 4

2 4.769 39.406 16.692 28.986 21.467 1.047 1.113 1.079 1.040 0.734
4 2.532 30.683 13.490 17.766 10.347 0.448 0.428 0.502 0.418 0.282
8 0.824 16.337 8.396 8.704 4.060 0.084 0.127 0.099 0.101 0.055

12 0.484 8.169 4.182 4.341 2.328 0.031 0.069 0.044 0.046 0.031
16 0.287 5.865 2.847 3.101 1.807 0.012 0.032 0.019 0.023 0.017
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Table 7. Heterogeneity-1. Loose coupling with np = 2 on 8× 8 coarse grid.

ep (%) euw (%) eu (%) es (%) ec (%) ep (%) euw (%) eu (%) es (%) ec (%)

Test 1 (ms-coupled)

2 3.956 34.595 26.782 20.446 - 1.260 2.165 1.724 2.023 -
4 1.553 15.873 12.403 10.650 - 0.590 1.108 0.879 0.902 -
8 0.511 9.652 7.448 5.986 - 0.104 0.438 0.321 0.286 -

12 0.136 1.918 1.679 1.315 - 0.138 0.226 0.141 0.190 -
16 0.130 1.648 1.247 1.030 - 0.141 0.215 0.133 0.189 -

Test 2 (ms-coupled)

2 14.047 41.152 31.959 25.288 47.270 1.276 3.025 2.558 2.945 5.836
4 3.742 18.225 15.024 12.400 21.506 0.480 1.293 1.098 1.030 2.033
8 0.820 11.283 9.511 6.353 7.680 0.180 1.026 0.812 0.596 1.664

12 0.257 2.545 2.241 1.939 2.653 0.213 1.031 0.789 0.691 1.966
16 0.231 1.970 1.593 1.407 2.403 0.215 1.021 0.777 0.697 1.987

Test 3 (ms-coupled)

2 14.088 37.548 28.035 24.425 32.077 0.660 3.326 2.737 2.127 4.246
4 5.589 21.641 17.183 13.405 14.167 0.432 1.500 1.259 0.851 1.737
8 1.865 10.186 8.440 6.387 6.752 0.238 0.852 0.701 0.424 0.777

12 0.313 3.411 2.835 2.010 2.140 0.244 0.985 0.790 0.540 0.965
16 0.260 2.562 2.065 1.449 1.569 0.245 0.996 0.797 0.551 0.985

Test 4 (ms-coupled)

2 4.447 27.446 16.848 18.220 11.252 1.746 2.146 1.484 1.861 1.281
4 1.977 16.084 10.152 11.326 6.185 0.879 1.123 0.779 0.873 0.555
8 0.890 8.841 5.935 5.955 2.224 0.224 0.365 0.252 0.258 0.163

12 0.091 1.901 1.470 1.324 0.324 0.025 0.106 0.042 0.074 0.050
16 0.054 1.582 0.987 0.953 0.230 0.030 0.104 0.035 0.079 0.052

ep (%) euw (%) eu (%) es (%) ec (%) ep (%) euw (%) eu (%) es (%) ec (%)

Test 1 (ms-splitted)

2 3.688 34.591 26.711 20.284 - 0.884 2.073 1.603 1.680 -
4 1.507 15.808 12.356 10.583 - 0.505 1.079 0.840 0.829 -
8 0.494 9.933 7.711 5.804 - 0.249 0.550 0.396 0.399 -

12 0.553 7.720 5.562 5.083 - 0.236 0.348 0.225 0.319 -
16 0.229 4.620 3.588 3.153 - 0.175 0.266 0.163 0.250 -

Test 2 (ms-splitted)

2 14.486 41.518 32.163 25.462 47.022 0.842 2.791 2.374 2.207 4.515
4 3.853 18.190 15.014 12.354 21.289 0.402 1.274 1.067 0.935 1.871
8 2.020 13.398 11.054 6.974 8.473 0.354 1.388 1.080 0.934 2.303

12 0.951 8.940 7.208 4.823 8.461 0.334 1.350 1.031 0.983 2.649
16 0.566 5.761 4.780 3.425 5.085 0.268 1.191 0.906 0.859 2.428

Test 3 (ms-splitted)

2 14.412 37.491 27.963 24.590 31.746 0.659 2.447 2.048 1.432 2.684
4 5.698 21.643 17.236 13.486 14.113 0.414 1.305 1.087 0.742 1.376
8 3.034 14.970 11.859 7.599 8.008 0.279 1.285 1.024 0.699 1.098

12 1.053 12.763 10.282 5.429 9.891 0.306 1.409 1.121 0.835 1.444
16 0.613 8.750 7.112 4.097 5.838 0.297 1.223 0.979 0.722 1.286

Test 4 (ms-splitted)

2 4.414 27.431 16.844 18.221 11.312 1.782 2.147 1.483 1.884 1.336
4 2.013 16.099 10.150 11.352 6.224 0.899 1.130 0.783 0.883 0.580
8 0.992 8.572 5.763 5.857 2.323 0.293 0.386 0.273 0.294 0.229

12 0.151 2.399 1.775 1.524 0.641 0.047 0.102 0.050 0.076 0.072
16 0.080 1.903 1.178 1.245 0.478 0.030 0.103 0.036 0.078 0.056
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Table 8. Heterogeneity-2. Loose coupling with np = 2 on 8× 8 coarse grid.

ep (%) euw (%) eu (%) es (%) ec (%) ep (%) euw (%) eu (%) es (%) ec (%)

Test 1 (ms-coupled)

2 4.658 40.333 27.251 28.552 - 1.107 1.547 1.343 1.710 -
4 2.321 33.025 22.507 19.113 - 0.528 0.660 0.607 0.626 -
8 1.141 17.698 11.947 9.013 - 0.085 0.168 0.123 0.160 -

12 0.501 6.942 4.761 3.430 - 0.037 0.111 0.064 0.116 -
16 0.239 3.874 2.624 2.082 - 0.033 0.100 0.047 0.114 -

Test 2 (ms-coupled)

2 8.671 45.658 27.689 29.150 59.333 1.139 1.808 1.582 2.360 3.489
4 5.755 36.838 23.264 21.698 40.192 0.597 0.608 0.625 0.734 0.970
8 0.981 20.448 14.287 10.960 16.660 0.148 0.455 0.308 0.389 0.757

12 0.574 7.809 5.559 4.992 8.133 0.084 0.494 0.322 0.390 0.826
16 0.313 4.844 3.387 3.564 5.871 0.072 0.509 0.328 0.404 0.856

Test 3 (ms-coupled)

2 7.565 39.563 23.671 29.304 46.644 1.121 1.975 1.644 1.814 2.889
4 6.173 36.609 22.330 20.309 29.767 0.569 0.633 0.623 0.630 0.869
8 1.366 19.758 13.410 10.542 11.466 0.152 0.473 0.306 0.359 0.409

12 0.409 7.763 5.358 5.208 5.721 0.076 0.479 0.295 0.348 0.432
16 0.278 5.769 3.932 3.713 4.052 0.061 0.490 0.295 0.356 0.443

Test 4 (ms-coupled)

2 4.768 39.385 16.692 28.984 21.482 1.049 1.097 1.081 1.022 0.727
4 2.528 30.706 13.496 17.766 10.265 0.450 0.403 0.502 0.404 0.277
8 0.841 16.171 8.374 8.501 4.109 0.087 0.137 0.097 0.116 0.073

12 0.435 8.602 4.395 4.389 2.301 0.034 0.101 0.049 0.067 0.057
16 0.214 4.705 2.345 2.619 1.451 0.014 0.080 0.028 0.057 0.047

ep (%) euw (%) eu (%) es (%) ec (%) ep (%) euw (%) eu (%) es (%) ec (%)

Test 1 (ms-splitted)

2 4.656 40.349 27.265 28.556 - 1.103 1.549 1.343 1.705 -
4 2.343 33.003 22.479 19.191 - 0.524 0.655 0.602 0.618 -
8 1.114 17.274 11.594 9.424 - 0.081 0.172 0.123 0.164 -

12 0.556 6.475 4.461 3.429 - 0.039 0.116 0.065 0.120 -
16 0.397 5.115 3.458 2.514 - 0.036 0.105 0.049 0.120 -

Test 2 (ms-splitted)

2 8.636 45.501 27.606 29.154 59.371 1.135 1.807 1.582 2.349 3.469
4 5.674 36.333 22.930 21.682 40.276 0.596 0.601 0.619 0.717 0.959
8 0.987 19.342 13.488 11.447 18.764 0.140 0.469 0.319 0.388 0.748

12 0.658 7.681 5.472 5.144 8.512 0.084 0.504 0.330 0.395 0.839
16 0.429 6.544 4.620 4.181 7.025 0.072 0.510 0.328 0.409 0.863

Test 3 (ms-splitted)

2 7.629 39.488 23.598 29.294 46.705 1.121 1.959 1.635 1.804 2.877
4 6.243 37.209 22.605 20.428 29.831 0.567 0.611 0.608 0.612 0.868
8 1.748 19.603 13.245 10.943 12.742 0.152 0.468 0.298 0.364 0.411

12 0.433 8.333 5.777 5.517 6.177 0.069 0.480 0.291 0.352 0.447
16 0.367 8.206 5.603 4.664 5.261 0.057 0.475 0.279 0.359 0.451

Test 4 (ms-splitted)

2 4.773 39.393 16.690 28.983 21.476 1.051 1.100 1.082 1.023 0.728
4 2.535 30.619 13.485 17.751 10.464 0.453 0.405 0.503 0.407 0.281
8 0.831 16.593 8.524 8.889 4.139 0.092 0.140 0.102 0.121 0.073

12 0.523 7.936 4.070 4.344 2.344 0.038 0.098 0.051 0.066 0.056
16 0.306 6.291 3.069 3.206 1.820 0.019 0.080 0.030 0.058 0.048
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Table 9. Heterogeneity-1. Loose coupling with np = 5 on 8× 8 coarse grid.

ep (%) euw (%) eu (%) es (%) ec (%) ep (%) euw (%) eu (%) es (%) ec (%)

Test 1 (ms-coupled)

2 3.839 34.483 26.671 20.324 - 0.903 2.352 1.834 1.845 -
4 1.397 15.878 12.375 10.616 - 0.317 1.461 1.071 0.947 -
8 0.405 9.650 7.422 5.982 - 0.422 0.929 0.603 0.684 -

12 0.526 2.080 1.745 1.497 - 0.555 0.820 0.507 0.733 -
16 0.536 1.829 1.335 1.257 - 0.559 0.811 0.501 0.733 -

Test 2 (ms-coupled)

2 14.271 41.170 31.941 25.544 47.273 1.015 3.563 2.959 2.675 5.637
4 4.327 18.135 14.916 12.642 21.173 0.600 3.454 2.693 2.235 6.128
8 1.276 11.648 9.717 6.847 9.553 0.743 3.791 2.904 2.534 7.050

12 0.831 4.302 3.457 3.212 7.286 0.820 3.837 2.918 2.682 7.391
16 0.828 4.087 3.161 2.926 7.428 0.823 3.828 2.909 2.689 7.412

Test 3 (ms-coupled)

2 14.018 37.921 28.337 24.727 32.613 1.101 3.926 3.300 2.007 3.979
4 6.077 21.024 16.565 13.807 14.473 1.034 3.436 2.827 1.771 3.266
8 2.058 9.884 8.105 6.864 7.275 0.912 3.572 2.871 2.010 3.561

12 0.939 4.766 3.859 3.009 4.274 0.934 3.755 2.997 2.176 3.850
16 0.936 4.266 3.415 2.584 3.967 0.936 3.767 3.005 2.186 3.870

Test 4 (ms-coupled)

2 4.454 27.414 16.854 18.209 11.342 1.711 2.068 1.496 1.739 1.311
4 2.027 16.094 10.163 11.330 6.219 0.848 1.103 0.799 0.792 0.604
8 0.875 8.825 5.931 5.935 2.239 0.210 0.483 0.289 0.302 0.266

12 0.143 1.945 1.477 1.355 0.384 0.123 0.409 0.135 0.308 0.206
16 0.136 1.637 0.998 1.000 0.300 0.128 0.412 0.133 0.315 0.209

ep (%) euw (%) eu (%) es (%) ec (%) ep (%) euw (%) eu (%) es (%) ec (%)

Test 1 (ms-splitted)

2 3.743 35.053 26.953 20.291 - 0.647 2.581 1.863 1.561 -
4 1.403 15.745 12.279 10.513 - 0.432 1.518 1.066 0.976 -
8 1.041 10.491 8.104 6.446 - 0.856 1.290 0.870 1.063 -

12 1.635 14.223 10.691 9.278 - 0.759 1.068 0.670 0.985 -
16 0.763 7.826 5.924 4.953 - 0.638 0.920 0.564 0.862 -

Test 2 (ms-splitted)

2 15.991 41.648 32.038 26.145 47.332 0.994 4.927 3.888 3.483 8.260
4 4.716 18.225 15.036 12.690 21.466 0.767 3.966 3.048 2.694 7.370
8 3.275 15.592 12.575 8.620 13.167 1.166 4.595 3.501 3.251 8.450

12 2.292 16.484 12.906 9.608 22.781 1.077 4.495 3.415 3.261 8.777
16 2.512 18.359 14.631 9.285 20.856 0.949 4.200 3.190 3.035 8.350

Test 3 (ms-splitted)

2 15.718 38.461 28.607 25.535 32.504 1.560 5.430 4.331 3.100 5.375
4 6.373 21.196 16.813 14.082 14.378 1.067 3.857 3.095 2.119 3.792
8 3.901 16.874 13.132 9.182 10.723 0.982 4.467 3.520 2.579 4.350

12 2.392 19.297 14.695 10.034 13.531 1.053 4.566 3.615 2.728 4.769
16 2.022 21.048 16.398 9.582 11.754 1.048 4.240 3.378 2.536 4.502

Test 4 (ms-splitted)

2 4.384 27.387 16.846 18.222 11.544 1.823 2.088 1.507 1.818 1.464
4 2.124 16.152 10.175 11.406 6.339 0.907 1.110 0.811 0.816 0.665
8 1.281 8.865 6.007 6.055 2.755 0.422 0.478 0.359 0.373 0.417

12 0.295 5.446 3.603 2.482 1.150 0.168 0.372 0.149 0.296 0.258
16 0.245 3.337 1.994 2.481 1.507 0.129 0.408 0.135 0.311 0.219
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Table 10. Heterogeneity-2. Loose coupling with np = 5 on 8× 8 coarse grid.

ep (%) euw (%) eu (%) es (%) ec (%) ep (%) euw (%) eu (%) es (%) ec (%)

Test 1 (ms-coupled)

2 4.677 40.382 27.277 28.598 - 1.062 1.602 1.370 1.621 -
4 2.357 33.039 22.488 19.092 - 0.494 0.784 0.651 0.685 -
8 1.191 17.760 11.969 9.041 - 0.123 0.410 0.222 0.465 -

12 0.528 6.962 4.759 3.461 - 0.124 0.367 0.173 0.445 -
16 0.276 3.894 2.623 2.144 - 0.131 0.374 0.174 0.451 -

Test 2 (ms-coupled)

2 8.534 45.405 27.646 29.133 58.920 1.235 2.172 1.817 2.160 2.655
4 5.617 36.948 23.384 21.795 39.730 0.704 1.601 1.142 1.382 2.555
8 1.052 21.072 14.729 11.036 16.597 0.330 1.914 1.235 1.565 3.251

12 0.707 8.052 5.696 5.192 8.591 0.287 1.965 1.265 1.584 3.335
16 0.480 5.051 3.461 3.902 6.707 0.278 1.982 1.273 1.600 3.365

Test 3 (ms-coupled)

2 7.605 39.580 23.586 29.264 46.439 1.201 2.370 1.938 1.806 2.376
4 6.040 36.774 22.398 20.375 29.643 0.661 1.624 1.138 1.271 1.383
8 1.359 20.285 13.752 10.718 11.419 0.296 1.894 1.154 1.401 1.712

12 0.484 8.118 5.564 5.474 5.850 0.236 1.915 1.162 1.404 1.754
16 0.382 5.980 4.014 4.055 4.262 0.226 1.929 1.164 1.414 1.767

Test 4 (ms-coupled)

2 4.770 39.331 16.690 28.973 21.516 1.063 1.079 1.090 0.989 0.728
4 2.522 30.675 13.498 17.739 10.258 0.466 0.409 0.507 0.414 0.306
8 0.853 16.197 8.387 8.498 4.104 0.109 0.306 0.123 0.247 0.180

12 0.454 8.645 4.409 4.403 2.337 0.058 0.301 0.098 0.216 0.175
16 0.233 4.764 2.365 2.642 1.495 0.041 0.295 0.087 0.217 0.168

ep (%) euw (%) eu (%) es (%) ec (%) ep (%) euw (%) eu (%) es (%) ec (%)

Test 1 (ms-splitted)

2 4.674 40.423 27.318 28.615 - 1.053 1.605 1.369 1.610 -
4 2.397 33.122 22.522 19.287 - 0.487 0.774 0.640 0.678 -
8 1.172 17.717 11.882 9.787 - 0.125 0.420 0.226 0.474 -

12 0.655 6.201 4.262 3.606 - 0.131 0.372 0.172 0.455 -
16 0.485 5.899 3.965 2.795 - 0.140 0.383 0.176 0.464 -

Test 2 (ms-splitted)

2 8.453 44.973 27.410 29.128 58.946 1.227 2.198 1.834 2.141 2.620
4 5.737 36.715 23.094 21.875 39.823 0.700 1.621 1.157 1.367 2.508
8 1.036 19.588 13.670 11.840 19.315 0.321 1.929 1.251 1.565 3.234

12 0.830 7.739 5.464 5.451 9.029 0.285 1.973 1.270 1.598 3.363
16 0.613 7.468 5.230 4.617 7.875 0.280 1.975 1.267 1.609 3.379

Test 3 (ms-splitted)

2 7.751 39.424 23.451 29.248 46.582 1.201 2.348 1.921 1.794 2.361
4 6.072 37.800 22.690 20.710 29.653 0.649 1.571 1.093 1.255 1.372
8 1.902 20.224 13.629 11.518 13.578 0.292 1.855 1.114 1.402 1.724

12 0.555 8.403 5.787 5.851 6.361 0.225 1.903 1.141 1.416 1.788
16 0.486 9.014 6.133 5.066 5.430 0.211 1.896 1.130 1.416 1.777

Test 4 (ms-splitted)

2 4.786 39.357 16.685 28.977 21.515 1.067 1.087 1.093 0.991 0.730
4 2.562 30.562 13.489 17.757 10.473 0.474 0.412 0.511 0.420 0.314
8 0.868 17.085 8.753 9.177 4.326 0.123 0.302 0.132 0.246 0.176

12 0.603 7.930 4.063 4.494 2.427 0.066 0.296 0.099 0.214 0.172
16 0.342 6.760 3.319 3.324 1.834 0.048 0.293 0.090 0.215 0.168
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For example, in Test 3 for Heterogeneity-1, the concentration errors are 6.8% and
0.6% without and with online correction for eight multiscale functions. For loose coupling
with np = 5, we obtain 7.2% and 3.5%, respectively. In Test 2 for Heterogeneity-1, the con-
centration errors are 7.9% and 0.7% without and with online correction for eight multiscale
functions. For loose coupling with np = 5, we obtain 9.5% and 7.0%, respectively. Overall,
we observe a significant effect of the polymer injection schemes on the error behavior of the
presented loose coupled splitted multiscale method with online correction, where the most
complex case is related to the shorter injection time in Test 2, which leads to the thinner
polymer concentration profiles (see Figures 6 and 7). The multiscale method for Tests 2 and
3 works worse than for Test 4 with continuous injection for all methods (Tables 9 and 10).

5. Conclusions

We considered a polymer flooding process in heterogeneous porous media. A mathe-
matical model is described by equations for the flow and transport processes (saturation and
polymer concentration). For the construction of the fine grid approximation, we use a
finite volume method with explicit time approximation for the transports and implicit
time approximation for the flow processes. The loose coupling was presented to reduce
the number of implicit pressure solutions. We presented the coupled and splitted multi-
scale solver for the nonlinear flow processes in heterogeneous porous media with loose
coupling. We constructed a coarse grid approximation using the Generalized Multiscale
Finite Element Method with local online correction. The numerical results are presented for
two-dimensional model problems with different polymer injection regimes to demonstrate
the influence on the method accuracy. We observe

• We investigated the effect of the coarse grid on the method accuracy, where we
obtained better results for a finer coarse grid with a more significant number of
multiscale basis functions. The polymer injection schemes in test cases significantly
affect the multiscale method accuracy. The thinner concentration profiles in Test 2 lead
to a more complex case for the multiscale method with more significant errors for the
concentration field. However, online correction works well for all coarse grids and
significantly improves accuracy.

• The second heterogeneity field leads to the more complex case due to its channelized
features. The errors are more extensive for the regular multiscale method without
online correction than the Heterogeneity-1, especially for Test 2. However, the online
correction works well for both types of permeability fields in all test cases of polymer
injection.

• The proposed splitted multiscale method with the online correction step works excel-
lent for all types of polymer injection in Heterogeneity-1 and 2. This splitted approach
is promising for future detailed consideration due to the multicontinuum type of
decoupling, which separate the primary continuum from others. Furthermore, it
relates to splitting the part associated with the convenient homogenization technique,
and the other part relates to the local spectral enrichment process.

• We observe that the loose coupling is highly sensitive to the test problems (polymer
injection scheme). It works great for the test problem with continuous polymer injection
(Test 4) but increases the error for more complex test cases (Tests 2 and 3).

Finally,the sufficient number of multiscale basis functions with online correction for
the pressure equation provide reasonable approximations of fluxes for coupled and splitted
multiscale methods, leading to accurate calculation of the explicit transport processes.
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