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Abstract: As one of the most widely used applications in domain adaption (DA), Cross-domain
sentiment analysis (CDSA) aims to tackle the barrier of lacking in sentiment labeled data. Applying
an adversarial network to DA to reduce the distribution discrepancy between source and target
domains is a significant advance in CDSA. This adversarial DA paradigm utilizes a single global
domain discriminator or a series of local domain discriminators to reduce marginal or conditional
probability distribution discrepancies. In general, each discrepancy has a different effect on domain
adaption. However, the existing CDSA algorithms ignore this point. Therefore, in this paper, we
propose an effective, novel and unsupervised adversarial DA paradigm, Global-Local Dynamic
Adversarial Learning (GLDAL). This paradigm is able to quantitively evaluate the weights of global
distribution and every local distribution. We also study how to apply GLDAL to CDSA. As GLDAL
can effectively reduce the distribution discrepancy between domains, it performs well in a series
of CDSA experiments and achieves improvements in classification accuracy compared to similar
methods. The effectiveness of each component is demonstrated through ablation experiments on
different parts and a quantitative analysis of the dynamic factor. Overall, this approach achieves the
desired DA effect with domain shifts.

Keywords: adversarial domain adaption; cross-domain sentiment analysis; global-local dynamic
adversarial learning

MSC: 68T01

1. Introduction

Deep neural networks have led to impressive improvements in data mining. However,
it is always time-consuming and expensive to acquire sufficient data, and especially to
label them. The emergence of domain adaption [1] has significantly reduced the difficulty
of labeling data and transferring knowledge between different domains. One of the most
challenging problems in domain adaption is how to reduce or even eliminate the differences
between the source domain and target domain [2]. In CDSA, these differences are reflected
as domain discrepancies owing to the distinct expression of the reviewers’ emotions from
various domains [3]. In recent years, adversarial domain adaption [4] has been widely
used to reduce different domains’ distribution discrepancies. Most of them depend on
either global domain discriminator to reduce marginal probability distribution discrep-
ancy, or several local domain discriminators to reduce conditional probability distribution
discrepancy. For example, DANN [4] only implements global adversarial adaption to
align global distributions from different domains. Analogously, MADA [5] only utilizes a
series of local domain discriminators to align subdomains. In true application scenarios,
the global alignment and every single local alignment always contribute differently to
the entire domain adaption. When two domains’ marginal probability distributions are
more dissimilar, it is obvious that global alignment plays a bigger role. Otherwise, local
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alignment is more important. Similarly, each local alignment makes different contributions
to the total local alignment.

Due to the issues of domain transfer and concept drift, a sentiment classification
model trained in one domain may not effectively generalize to other domains. The ex-
pressions of sentiment, viewpoints, and emotionally charged words evolve over time,
making it challenging to maintain effective sentiment classification models across different
domains. Therefore, employing domain adaptation methods can help reduce the drift
of sentiment expression [6]. The main purpose of this study is to reduce the data distri-
bution gap between the two emotion domains to enhance the generalization ability of
cross-domain emotion classification data models. We want to achieve this goal by uti-
lizing the global-domain discriminator and local-domain discriminator commonly used
in traditional natural-language-processing text classifiers to minimize the difference be-
tween data margins and global distribution, thereby improving the generalization ability
of cross-domain sentiment classification.

In this paper, we propose a novel domain adaption method GLOBAL–LOCAL DYNAMIC

ADVERSARIAL LEARNING (GLDAL) for unsupervised adaption. GLDAL captures the
multi-mode structure of data dynamically through adversarial learning. In CDSA, GLDAL
is able to amplify the influence of the pivot words to learn domain-invariant features.
The core components of GLDAL are the Global Dynamic Adversarial Factor (GDAF)
and Local Dynamic Adversarial Factors (LDAF). The former has the ability to evaluate
the relative significance of the marginal and conditional distributions both dynamically
and quantitatively. Similarly, the latter plays the same role in the relationship between
each conditional distribution. Therefore, GLDAL is able to improve the generalization of
adversarial domain adaption.

In the following text, we detail the use of our proposed approach in deep neural
network architectures, and experiment on popular sentiment classification datasets (SST,
IMDB), where our proposed approach shows improvements compared to the previous
state-of-the-art accuracy.

2. Related Work
2.1. Unsupervised Domain Adaption in Transfer Learning

Unsupervised domain adaptation (UDA) is an important branch of transfer learning.
There are two main forms of UDA: traditional machine learning and deep learning. UDA
based on traditional machine learning can be divided into two categories: (1) Subspace
Alignment (SA) [7] and CORAL [8] use the subspace statistical characteristics to elimi-
nate domain differences. (2) Distribution alignments TCA [9], JDA [10], BDA [11] and
MEDA [12] are proposed to align the marginal probability distributions or conditional
probability distributions between domains.

In the last few years, deep neural networks have been widely used in domain adap-
tion [13–15]. Domain adversarial learning, as a branch of deep domain adaption, has been
popular in recent years. The idea of adversarial learning comes from Generative Adver-
sarial Networks (GAN) [16,17]. DANN [4] aligns the source and target distributions with
only a single global domain discriminator. MADA [5] is able to execute the fine-grained
alignment of different data distributions using multi-mode discriminators. DAAN [18]
dynamically evaluates the relationship between the marginal and conditional distribu-
tions. Our GLDAL is also based on adversarial learning and global attention mechanism.
By evaluating the relationship between every local subdomain and the relative impor-
tance of the marginal and conditional distributions, GLDAL significantly outperforms
existing methods.

2.2. Cross-Domain Sentiment Analysis.

Sentiment analysis is also called opinion mining or tendency analysis. It is the process
of analyzing and reasoning about subjective texts with emotions. Text representation is an
important step in sentiment analysis. In recent years, the most representative work has been
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the BERT pre-trained model [19], Transformer-XL [20]. However, thegeneral sentiment
analysis studies mentioned above only consider the performanc e in a single domain,
ignoring the generalization ability, so cross-domain sentiment analysis has quickly become
a research hotspot. BERT-DAAT [21] is a pre-trained model based on adversarial training
methods that aims to provide the trained BERT with domain awareness. ADS-SAL [22]
can dynamically learn an alignment weight for each word, so more important words will
obtain higher alignment weights to achieve fine-grained adaptation.

3. Method
3.1. Problem Definition

In CDSA tasks about domain adaption, there are a source domain Ds =
{

xi
s, yi

s
}Ns

i=1

and a target domain Dt =
{

xi
t
}Nt

i=1 , where xs and xt is the set of sentences and ys are the
corresponding sentiment polarity labels. The goal of CDSA is to predict the target label
ŷt = arg max Gy( f (xt)) and minimize the target risk εt

(
Gy
)
= E(xt ,yt)∼Dt

[
Gy( f (xt)) 6= yt

]
,

where Gy(·) represents the Softmax output and f (·) refers to the feature representation.

3.2. Backbones for Cross-Domain Sentiment Analysis
3.2.1. Bidirectional Gate Recurrent Units with Attention

A Gate Recurrent Unit (GRU) with the attention mechanism [23] is an effective recur-
rent neural network for sentiment analysis. For a given n-dimensional input (x1, x2, . . . , xn),
the hidden layer of Bi-GRU outputs ht at time t. The calculation process is as follows:

h ft = σ
(

Wxh f
xt + Wh f h f

h ft−1 + bh f

)
, hbt = σ

(
Wxhb

xt + Whbhb
hbt−1 + bhb

)
, (1)

ht = h ft ⊕ hbt , W is the weight matrix and b is the bias vector; σ is the activation function;
h ft and hbt are the outputs of positive and negative GRU, respectively. ⊕ represents the
element-wise summation. The simplification method is to construct a single vector c from
the whole sequence, as follows:

et = Attention(ht), αt =
exp(et)

∑T
k=1 exp(ek)

, c =
T

∑
t=1

αtht. (2)

3.2.2. Capsule Neural Network Based on BERT

The BERT [19] model is a language model based on two-way Transformer. We directly
use the feature representation of BERT as the word-embedding feature of the task and
regard BERT as the upstream network. The Capsule Network [24] is composed of a group of
neurons, which are used to represent the parameters of a specific type of object. We regard
this network as a downstream network. The unique activation function (“squashing”) is
formulated as:

vj =

∥∥sj
∥∥2

1 +
∥∥sj
∥∥2

sj∥∥sj
∥∥ , (3)

sj is its total input and vj is the output of capsule j . For capsule sj, the input is determined
by multiplying the output uiof a capsule in the former layer by a weight matrix Wij , cij,
which are coefficients for coupling determined by the dynamic routing:

sj = ∑
i

cijûj|i, ûj|i = Wijui. (4)

3.3. Domain Adaption with Adversarial Learning

This adversarial training is like a game with two parts: feature extractor G f and
domain discriminator Gd. Through maximizing the loss of Gd, the parameters θ f of G f are
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trained while the parameters θd of Gd are trained by minimizing the loss of the domain
discriminator. The total loss can be formalized as:

L
(

θ f , θy, θd

)
=

1
ns

∑
xi∈Ds

Ly

(
Gy

(
G f (xi)

)
, yi

)
− λ

ns + nt
∑

xi∈(Ds∪Dt)

Ld

(
Gd

(
G f (xi)

)
, di

)
,

(5)

Update the parameters of each part as the following equations:(
θ̂ f , θ̂y

)
= arg min

θ f ,θy
L
(

θ f , θy, θd

)
,
(
θ̂d
)
= arg max

θd
L
(

θ f , θy, θd

)
(6)

Due to the adversarial relationship with parameter updating, the parameters θ f , θy, θd
will deliver a saddle point of Equation (6) after the training converges.

3.4. Global-Local Dynamic Adversarial Adaption Network

At present, the mainstream adversarial adaption methods reduce marginal or con-
ditional probability distribution discrepancies. However, it is quite difficult to evaluate
the importance of each contribution. Therefore, we should find a novel method that
can quantitatively evaluate their importance and dynamically adjust the parameters of the
neural network.

In this paper, we propose the GLOBAL–LOCAL DYNAMIC ADVERSARIAL LEARNING

(GLDAL) shown in Figure 1 to make key improvements. GLDAL can effectively evaluate
every single distribution’s importance, aiming to better learn the domain-invariant features
through adversarial learning. In GLDAL, the Global domain discriminator Gd and a series
of Local domain discriminators Gu

d play a role in the domain adaption of marginal and
conditional distributions, respectively. The most important innovation point is that we
propose a novel, global-local dynamic training strategy using the Global Dynamic Factor ω

and Local Dynamic Factors {αu}U
u=1.

3.4.1. Label Classifier

The label classifier Gy (The blue part in Figure 1) in trained by samples from the source
domain to implement label classification. The loss of Gy is formulated as:

Ly =
1
ns

∑
xi∈Ds

CrossEntropy
(

Gy

(
G f (xi)

)
, yi

)
, (7)

where xi, yirepresents samples and their labels from the source domain; G f is the feature
extractor.

3.4.2. Global Domain Discriminator

Global domain discriminator Gd (The pink part in Figure 1) is wisely implemented
to align the marginal probability distributions between two domains (source domain and
target domain) in the feature space. We define the loss of global domain discriminator
Gd as:

Lglobal =
1

ns + nt
∑

xi∈Ds∪Dt

Ld

(
Gd

(
G f (xi)

)
, di

)
. (8)

In this formula, Ld represents the loss of domain discriminator. di is the domain label
of the sample xi and G f is the feature extractor.
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Figure 1. The architecture of the proposed GLOBAL–LOCAL DYNAMIC ADVERSARIAL LEARNING

(GLDAL). First, input the Text Sequences into the Feature Extractor to obtain the feature vector
distributed in the feature space. Next, there are two main loss functions, namely Ly and Ld. Ly is the
classification loss. Ld is the loss combination of the global domain discriminator and local domain
discriminators.

3.4.3. Local Domain Discriminator

The local domain discriminator Gu
d (The purple part in Figure 1) is composed of a

series of U class-wise discriminators Gu
d ; each is used to match the source domain and

target domain data associated with class u. The output of the label classifier ŷi = Gy(xi) to
each data point xi is a probability distribution of the U classes. Therefore, we utilize the
probability distribution ŷi to measure how many data points xi should be attended to the
U domain Gu

d . The loss function of the local domain discriminator is defined as:

Llocal =
1

ns + nt

U

∑
u=1

∑
xi∈Ds∪Dt

Lu
d

(
Gu

d

(
ŷu

i G f (xi)
)

, di

)
, (9)

3.5. Global and Local Adversarial Factors

In this part, we introduce how to quantitively evaluate the global distributions and
each local distribution. Due to the adversarial characteristic, it is tricky to determine a
concrete scheme. Generally, there are two straightforward ideas: Random Setting and
Average Step Searching. The former randomly sets the value of dynamic factors and the
latter picks the value of these factors with the same step size. For instance, if the scope of
factor ω is [0, 1], the latter strategy will pick the value of ω = 0, 0.1, . . . , 0.9, 1.0 to perform
training. However, both strategies are computation-consuming and time-consuming.

Therefore, in this paper, we propose two kinds of factors: global dynamic adversarial
factorω and local dynamic adversarial factors {αu}U

u=1 in order to dynamically and quan-
titively evaluate the importance of each distribution. This strategy has two significant
advantages. Firstly, we utilize deep adversarial representations instead of shallow rep-
resentations to learn these two kinds of factors, making GLDAL more robust. Secondly,
every single dynamic factor is determined by the SA−distance (not hinge loss) of the
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discriminators, which is more efficient and convenient. In order to calculate the dynamic
factors, we denote the global SA−distance of the global domain discriminator as:

dSA,g(Ds,Dt) = 2
(

1− 2
(

Lglobal

))
. (10)

We also denote the local subdomain SA−distance as:

dSA,l(Du
s ,Du

t ) = 2(1− 2(Lu
local)). (11)

These two kinds of distances can measure the distribution similarity of the source and
target domain to some extent. Du

s and Du
t denote samples from class u, and Lu

local is the
local subdomain discriminator loss over the class u.

3.5.1. The Global Dynamic Adversarial Factor ω

The global dynamic adversarial factor ω is used to calculate the weighted sum of
global domain loss and local domain loss. ω is initialized as 1 in the first training epoch.
After each training epoch, this factor ω can be estimated through global and local domain
discriminators as:

ω̂ =
dSA,g(Ds,Dt)

dSA,g(Ds,Dt) +
1
U

U
∑

u=1
dSA,l(Du

s ,Du
t )

(12)

3.5.2. The Local Dynamic Adversarial Factors {αu}U
u=1

The local domain loss Llocal is composed of a series of local subdomain loss Lu
local by

weighted summation. The local dynamic adversarial factors {αu}U
u=1 act as coefficients

in the weighted sum. The importance of the alignment of each subdomain is different,
so we assign different weights to every subdomain. In general, if the difference between
the source subdomain and the target subdomain regarding class u is larger, we should
pay more attention to this subdomain, which is manifested by the fact that the weight of
the alignment of this subdomain should be increased. Since SA−distance is an important
parameter used to measure the similarity of the probability distributions of two subdomains
Du

s and Du
t , the parameter αu can be estimated as:

α̂u =

1
U

U
∑

u=1
dSA,l(Du

s ,Du
t )

dSA,l(Du
s ,Du

t )
. (13)

Each subdomain dynamic adversarial factor is initialized as 1 in the first training
epoch. This factor-updating strategy follows the principle: If the SA−distance (Generally
less than 0) between the subdomains about class u is larger, the weight for the alignment
of subdomains about u will be greater. In this case, the domain discriminator Gu

d of the
subdomain u can more easily discriminate the domain label information of the sample in
the subdomain, which indicates that the difference between domains about class u is large.
Therefore, we need to increase the proportion of Lu

local in the total local loss to ensure a
better alignment effect about class u.

4. Experiments

In this section, we implement experiments to evaluate the proposed GLDAL against
several previous state-of-the-art domain adaption methods. Our method GLDAL is val-
idated on several popular standard datasets regarding cross-domain sentiment analysis.
The training process is shown in Algorithm 1.
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Algorithm 1 GLDAL
Input:

—samples S =
{

xi
s, yi

s
}Ns

i=1 and T =
{

xi
t
}Nt

i=1, λ, µ, ω, {αu}U
u=1

Output: Neural Network
{

Gy, G f , Gd

}
while stopping criterion is not meet do

calculate the global domain loss Lglobali
: Equation (8)

calculate the global SA−distance: Equation (10)
acquire classification probability vector ŷi from Gy: ŷi ←− Gy

(
G f (si)

)
calculate the sum of all local loss of sample si: Equation (9)
calculate each local SA−distance : Equation (11)
if si ∈ S then

calculate the classification loss of: Equation (7)

Backpropagation: ∆Θ ←
∆Lyi
∆Θ − λ

∆((1−ω)Lglobal+ωLlocal)
∆Θ

Update dynamic factor ω, {αu}U
u=1:

ω̂: Equation (12), α̂u: Equation (13)
return Output

4.1. Datasets

The Amazon Product Review dataset includes product reviews and metadata from
Amazon; due to the uneven distribution of the samples, we set rating 0–1 as negative
sentiment, 2–3 as medium and 5 as positive. We chose the following two datasets: Amazon
reviews for clothing ( C ) and Amazon reviews for instant video (I).

SST-5 ( S5), SST-2 ( S2) are two versions of The Stanford Sentiment Treebank (SST);
the former is ( S5), with five categories (Very Positive, Positive, Neural, Negative), and the
latter is ( S2) with two categories (Positive, Negative).

IMDB ( IM) is a review rating dataset for movie sentiment analysis, containing the
same number of positive and negative sentiment samples. The COVID-19 Review dataset (
COR) contains a sample of comments about COVID-19 and the corresponding sentiment
scores (Very Positive, Positive, Neural, Negative). Tweet Review dataset TR contains
daily comments and sentiment ratings scraped from tweets, with three categories (Positive,
Neural, Negative).

We used these domain combinations and built six transfer learning tasks: (C→ TR),
( TR → I), ( COR→ S5), (S5→ COR), ( IM→ S2), (S2→ IM).

4.2. Baselines

Based on two previously mentioned backbones: Bi-GRU-A (Section 3.2.1)
and CapsuleNet (Section 3.2.2),We compare our proposed GLOBAL–LOCAL DYNAMIC

ADVERSARIAL LEARNING (GLDAL) with several state-of-the-art unsupervised deep do-
main adaption methods: DDC [25], DaNN [26], DANN [4], D-CORAL [15], JAN [27]
MADA [5] and DAAN [18].

4.3. Implementation

We implement all methods on the PyTorch framework. For feature extractor backbones
CapsuleNet and Bi-GRU-A, we fine-tune all word vectors and all attention layers and
train the feature extraction layers with a learning rate of 10−5 and 10−4, respectively. We
use approximately 2–5 times the learning rate of the feature extractor to train the label
classifier, and use 2–10 times the learning rate to train the local discriminator and global
discriminator. The update of the important trade-off factor λ follows the Warm Start
principles: λ = 2(hi−lo)

1+exp(− i
N )
− (hi − lo) + lo. We set lo as 0, hi as 1, N as 100. Other

hyperparameters are tuned via transfer cross-validation. The source code is available at
https://github.com/killer2-1/GLDAL-for-CDSA (accessed on 20 May 2023).

https://github.com/killer2-1/GLDAL-for-CDSA
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4.4. Results

The classification accuracy (%) is shown in Tables 1 and 2. GLDAL outperforms all
comparison methods on most CDSA tasks. It is also remarkable that our GLDAL has better
effects than similar approaches such as DANN, MADA and DAAN. From the results, we
can obtain some conclusions: (1) Generally, the methods based on adversarial learning
(DANN, DAAN) perform better than non-adversarial learning methods (DaNN, DDC),
which means that adversarial adaption is more effective. (2) Adversarial methods with
an attention mechanism such as GLDAL achieves a better performance than DANN and
MADA(no attention). (3) Compared with other methods, GLDAL outperforms almost
all traditional comparison methods (DDC, DaNN, DANN) on most transfer tasks, which
proves the proposed method is effective. For some of the more advanced methods, such as
DAAN, GLDAL slightly outperforms these methods, which verifies our method’s benefits.

Table 1. Accuracy (%) for unsupervised domain adaptation based on Bi-GRU-A(The bold stands for
the best performance)

Method C→ TR TR→ I COR→
S5

S5→
COR IM→ S2 S2→ IM AVG

Bi-GRU-A (No Transfer) 40.96 62.04 31.70 29.53 76.64 74.18 52.51
DDC 49.85 61.88 30.95 32.60 76.99 77.72 55.00

DaNN 45.35 63.65 31.31 32.00 78.46 78.40 54.86
DANN 49.01 65.98 32.84 33.53 80.81 78.82 56.83

D-CORAL 50.43 65.06 33.78 33.70 79.13 77.63 56.62
MADA 50.18 66.39 33.12 33.96 81.16 78.98 57.30
DAAN 50.69 66.05 33.09 34.08 80.99 79.02 57.32

GLDAL (Proposed Approach) 51.25 66.53 33.34 34.12 81.34 79.16 57.62

Table 2. Accuracy (%) of unsupervised domain adaptation based on CapsuleNet.

Method C→ TR TR→ I COR→
S5

S5→
COR IM→ S2 S2→ IM AVG

CapsuleNet (No Transfer) 47.94 63.93 33.25 30.24 83.51 80.22 56.52
DDC 51.77 64.34 35.09 30.98 85.97 86.07 59.20

DaNN 50.16 66.56 34.15 31.49 85.45 86.14 58.99
DANN 53.55 67.72 35.21 34.45 86.11 85.60 60.44

D-CORAL 56.82 67.08 34.08 34.38 86.05 85.72 60.68
JAN 52.97 68.24 34.99 33.82 86.33 86.58 60.48

MADA 54.31 67.65 35.79 34.64 86.96 86.32 60.95
DAAN 54.76 68.78 34.96 34.24 87.21 86.50 61.08

GLDAL (Proposed Approach) 56.97 68.92 34.91 35.07 87.18 86.83 61.64

4.5. Effectiveness Analysis and Ablation Study
4.5.1. Analysis of the Importance of the Global Dynamic Adversarial Factor (GDAF) ω
in GLDAL

In this section, the importance of GDAF ω in GLDAL is evaluated. The evaluation
involves two key points: (1) Whether we should pay attention to the different effects of
marginal and conditional probability in adverarial domain adaption. (2) The effectiveness
of our evaluation for ω.

To illustrate the first point, we chose several transfer tasks and analyzed the results
of GLDAL under different values of ω, as shown in in Figure 2. It is obvious that paying
attention to the different effects of marginal and conditional distribution is important. The
value of optimal ω varies on different tasks. This is because different feature representations
are obtained under different ω.
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Figure 2. Performance of several tasks when searching ω ∈ [0, 1].

To illustrate the second point, we compared the accuracy of transfer tasks under
different calculation methods for ω: Random Guessing, Average Searching (10 times) and
our GLDAL. We also executed an ablation study with DANN (ω = 1) and MADA (ω = 0).
Combining the results from Table 3, we can conclude that our method outperforms other
four methods.

Table 3. Accuracy (%) for the effective analysis and ablation study of ω based on CapsuleNet.

Transfer Tasks Average Search Random Guessing GLDAL DANN (ω = 1) MADA (ω = 0)

S2→ IM 86.15 86.52 86.83 85.60 86.32
S5→ COR 34.98 34.86 35.07 34.45 34.64

TR→ I 67.73 68.25 68.92 67.72 67.65
AVG 62.95 63.21 63.61 62.60 62.87

4.5.2. Analysis of the Importance of the Local Dynamic Adversarial Factor (LDAF)
{αu}U

u=1 in GLDAL

In this section, based on the point oof whether we should pay attention to the different
effect of each local subdomain, we analyze the importance of the local dynamic adversarial
factor {αu}U

u=1 in GLDAL. Like the analysis of ω, we also chose a series of tasks, and
adopted the three methods shown below to conduct verification experiments: (1) A series
of random number that are greater than 0, and the sum is fixed to U (RNSF); (2) DAAN
(all LDAFs are fixed to 1); (3) Our GLDAL. We used A−distance [28] as a measure of
cross-domain discrepancy. In general, the smaller the A−distance, the better the domain
adaption effect. The average results in each dataset are shown in Table 4.

Table 4. A−distance for all unsupervised domain adaptation tasks based on backbone CapsuleNet
and Bi-GRU-A.

BackBone RNSF DAAN GLDAL

CapsuleNet 0.988 0.952 0.925
Bi-GRU-A 1.053 1.007 0.978
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5. Conclusions

In this paper, we proposed a novel GLOBAL–LOCAL DYNAMIC ADVERSARIAL LEARN-
ING (GLDAL) for cross-domain sentiment analysis. Through quantitatively evaluating
the relative importance of global distribution and all local distributions, GLDAL is able to
dynamically adjust the learning weights of the global discriminator and local discriminators
during training. This domain adaption strategy is based on the attention mechanism and
has excellent effects on experimental tasks. As a general transfer learning strategy, GLDAL
can also be applied to tasks in computer vision and the recommended system. In the future,
we plan to extend GLDAL to more challenging transfer learning problems.
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