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Abstract: Digital images have become an important carrier for people to access information in the
information age. However, with the development of this technology, digital images have become
vulnerable to illegal access and tampering, to the extent that they pose a serious threat to personal
privacy, social order, and national security. Therefore, image forensic techniques have become an
important research topic in the field of multimedia information security. In recent years, deep learning
technology has been widely applied in the field of image forensics and the performance achieved has
significantly exceeded the conventional forensic algorithms. This survey compares the state-of-the-art
image forensic techniques based on deep learning in recent years. The image forensic techniques
are divided into passive and active forensics. In passive forensics, forgery detection techniques are
reviewed, and the basic framework, evaluation metrics, and commonly used datasets for forgery
detection are presented. The performance, advantages, and disadvantages of existing methods are
also compared and analyzed according to the different types of detection. In active forensics, robust
image watermarking techniques are overviewed, and the evaluation metrics and basic framework
of robust watermarking techniques are presented. The technical characteristics and performance
of existing methods are analyzed based on the different types of attacks on images. Finally, future
research directions and conclusions are presented to provide useful suggestions for people in image
forensics and related research fields.

Keywords: image forensics; image forgery detection; robust image watermarking; deep learning

MSC: 94A08; 68U10

1. Introduction

Digital images are important information carriers, and with the rapid development of
this technology, digital images have gradually been included in all aspects of life. However,
data stored or transmitted in digital form is vulnerable to external attacks, and digital
images are particularly susceptible to unauthorized access and illegal tampering. As a
result, the credibility and security of digital images are under serious threat. If these
illegally accessed and tampered images appear in the news media, academic research, and
judicial forensics, which require high originality of images, social stability and political
security will be seriously threatened. To solve the above problems, digital image forensics
has become a hot issue for research and is the main method used to identify whether the
images are illegally acquired or tampered with. Digital image forensic technology is a
novel technique to determine the authenticity, integrity, and originality of image content by
analyzing the statistical characteristics of images, which is of great significance for securing
cyberspace and maintaining social order.

Digital image forensics technology is mainly used to detect the authenticity of digital
images and realize image copyright protection, which can be divided into active forensics
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techniques and passive forensic techniques according to different detection methods, as
shown in Figure 1.

The active forensic techniques are used to embed prior information, and then extract
the embedded information, such as image watermarking and image signatures, and com-
pare it with the original information to identify whether the image was illegally obtained.
Image watermarking is a technique that embeds hidden information into digital images
with the aim of protecting the copyright and integrity of the images. Watermarks are usually
invisible or difficult to perceive and are used to identify the owner or provide authorization
information for the image. They can be used to trace and prevent unauthorized copying,
modification, or tampering of the image. Image watermarking techniques typically utilize
image processing algorithms and encryption techniques to ensure the robustness and
security of the watermark. On the other hand, image signature is a technique used to
verify the integrity and authenticity of an image. Image signatures are typically based on
digital signatures using encryption and hash functions to ensure that the image has not
been tampered with during transmission or storage. With the rapid development of the
digital information era, there has been an alarming rise in copyright infringement facilitated
by image tampering techniques. Among the aforementioned active forensic techniques,
image watermarking, especially robust image watermarking that can recover watermark
information intact against intentional or unintentional attacks, is more effective compared
to image signatures in authenticating and protecting copyright information when images
are subjected to malicious tampering. Therefore, our focus in active forensics is on image
watermarking, which aligns with our research interests as well.

Passive forensic techniques, which do not require prior information about the image,
determine whether the image has been illegally tampered with by analyzing the structure
and statistical characteristics of the image. In passive forensic techniques, even if an image
has been forged beyond recognition by the human eyes, the statistical characteristics of the
image will change, causing various inconsistencies in the image, and these inconsistencies
are used to detect and locate tampered images. With the development of deep learning
technology, deep learning technology has been widely used in many fields, such as speech
processing, computer vision, natural language processing, and medical applications [1].
Deep learning technology has been widely applied in the field of image forensics, which
has promoted the development of image forensics technology. In this survey, we focus
on passive image forgery detection technology based on deep learning and robust image
watermarking technology based on deep learning.

Image forensic techniques

Passive forensics Active forensics

Dependent Independent

Conventional algorithm Deep learning

Copy-move Splicing Removal

Digital signatureDigital watermarking

DifferentiableNon-differentiable

Conventional algorithm Deep learning

Figure 1. Classification of image forensic techniques.

There have been many reviews of passive forgery detection techniques over the last few
years. Kuar et al. [2] created a detailed overview of the process of image tampering and the
current problems of tampering detection, and sorted out the conventional algorithms in tam-
pering detection from different aspects, without reviewing the techniques of deep learning.
Zhang et al. [3] sorted out and compared the conventional copy-move tampering detection
algorithms, giving the advantages and disadvantages of each conventional algorithm in
detail, without reviewing the techniques related to deep learning. Zanardelli et al. [4]
reviewed deep learning-based tampering algorithms and compared copy-move, splicing,
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and deep fake techniques. However, generic tampering detection algorithms were not pro-
vided in detail. Nabi et al. [5] reviewed image and video tampering detection algorithms,
giving a detailed comparison of tampering detection datasets and algorithms, but did not
summarize the evaluation metrics of tampering detection algorithms. Surbhi et al. [6] fo-
cused on the universal type-independent techniques for image tampering detection. Some
generic methods based on resampling, inconsistency-based detection, and compression are
compared and analyzed in terms of three aspects: the methodology used, the dataset and
classifier used, and performance. A generic framework for image tampering detection is
given, including dataset selection, data preparation, feature selection and extraction, classi-
fier selection, and performance evaluation. The top journals and tampering public datasets
in the field of tampering detection are organized. Finally, a reinforcement learning-based
model is proposed to provide an outlook on future works. However, in-depth analysis and
summary of image tampering detection-based deep learning are not presented. This survey
provides an overview of deep learning techniques and reviews the latest generic tamper
detection algorithms. In this survey the evaluation metrics commonly used for tampering
detection are summarized.

For active forensics, Rakhmawati et al. [7] analyzed a fragile watermarking model
for tampering detection. Kumar et al. [8] summarized the existing work on watermarking
from the perspective of blind and non-blind watermarking, robust and fragile watermark-
ing, but it did not focus on the methods to improve the robustness. Menendez et al. [9]
summarized the reversible watermarking model and analyzed its robustness. Agarwal
et al. [10] reviewed the robustness and imperceptibility of the watermarking model from
the spatial domain and transform domain perspectives. Amrit and Singh [11] analyzed
the watermarking models based on deep watermarking in recent years, but they did not
discuss the methods to improve the robustness of the models for different attacks. Wan
et al. [12] analyzed robustness enhancement methods for geometric attacks in deep ren-
dering images, motion images, and screen content images. Evsutin and Dzhanashia [13]
analyzed the characteristics of removal, geometric and statistical attacks and summarized
the corresponding attack robustness enhancement methods, but there was less analysis of
watermarking models based on deep learning. Compared to the existing active forensic
reviews, we start from one of the fundamentals of model robustness enhancement (i.e.,
generating attack-specific adversarial samples). According to their compatibility with deep
learning-based end-to-end watermarking models, the attacks are initially classified into
differentiable attacks and non-differentiable attacks. According to their impact on the wa-
termarking model, the network structure and training methods to improve the robustness
of different attacks are further subdivided.

The rest of this survey is organized as follows: Section 2 gives the basic framework for
tampering detection and robust watermarking based on deep learning, evaluation metrics,
attack types, and tampering datasets. Section 3 presents the state-of-the-art techniques
of image forgery detection based on deep learning. Section 4 describes the state-of-the-
art techniques of robust image watermarks based on deep learning. Section 5 gives the
conclusion and future work.

2. Image Forensic Techniques
2.1. Passive Forensics

Passive image forgery detection techniques can be classified as conventional manual
feature-based and deep learning-based. The conventional detection algorithms for copy-
move forgery detection (CMFD) are: discrete cosine transform (DCT) [14], discrete wavelet
transform (DWT) [15], polar complex exponential transform (PCET) [16], scale-invariant
feature transform (SIFT) [17], speeded up robust feature (SURF) [18], etc. The conventional
detection algorithms for splicing tamper detection are: inconsistency detection by color
filter array (CFA) interpolation [19], and inconsistency detection by noise features [20].
However, these conventional detection methods have the drawbacks of low generalization,
poor robustness, and low detection accuracy. Deep learning-based detection algorithms,
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which take advantage of autonomous learning features, solve the above problems of
conventional algorithms. In this survey, we mainly review forgery detection algorithms
based on deep learning.

2.1.1. Basic Framework of Image Forgery Detection

With the development of deep learning techniques, certain advantages have been
achieved in areas such as image classification and segmentation. Deep learning is also
increasingly being applied to image forgery detection. A basic framework of image forgery
detection based on deep learning is shown in Figure 2. First, the tamper detection network
is built, and feature extraction, feature classification, and localization are performed by the
network model. The weights of the network are saved by learning the parameters within
the network through big data training to obtain the weights when optimal. The image to
be detected is input to the network and tampering detection is performed using the saved
network model.

Feature 
extraction

Classification 
and localization

Feature 
extraction

Train phase

Training 
image set

Test phase

Weights of 
the network

Classification 
and localization

Tampered 

image
Tampered 

region

Figure 2. A basic framework of image forgery detection based on deep learning.

2.1.2. Performance Evalution Metrics

The forgery detection task can be considered to be a binary classification task of pixels,
i.e., whether a pixel is tampered with or not. Therefore, the evaluation metrics of the forgery
detection algorithm need to use the amount of categorization of the samples, including true
positive, false positive, true negative, and false negative. The commonly used evaluation
metrics for forgery detection are precision p, recall r, and F1 score [3], which are expressed
as Equations (1)–(3), respectively:

p =
TP

TP + FP
(1)

r =
TP

TP + FN
(2)

F1 =
2pr

p + r
(3)

where TP denotes the number of tampered pixels detected as tampered; FP denotes the
number of authentic pixels detected as tampered; FN denotes the number of tampered
pixels detected as authentic. The values of p, r, and F1 are in the range [0, 1]. The larger p, r,
and F1 are, the higher the accuracy of detection results is.

Another important metric is the area under curve (AUC), which is defined as the area
under the receiver operating characteristic (ROC) curve and can reflect the classification
performance of a binary classifier. Like the F1 score, AUC can evaluate the precision and
recall together. Its value is generally between 0.5 and 1. The closer the value of AUC is to 1,
the higher the performance of the algorithm. When it is equal to 0.5, the true value is the
lowest and has no application value.

2.1.3. Datasets for Image Forgery Detection

Diverse datasets for forgery detection are described in this section. These datasets
contain original images, tampered images, binary labels, and partially post-processed
images. Different datasets are used depending on the problem being solved. In order



Mathematics 2023, 11, 3134 5 of 33

to validate the results of tamper detection algorithms, different public tampered image
datasets are used to test the performance of these algorithms. Table 1 describes the 14 public
datasets for image forgery detection, presenting the type of forgery, number of forged
images and authentic images, image format, and image resolution.

Table 1. Datasets for image forgery detection.

Dataset Year Type of Forgery
Number of Forged
Images/Authentic

Images
Image Format Image Resolution

Columbia color [21] 2006 Splicing 183/180 BMP, TIF 757 × 568–1152 × 768
MICC-F220 [22] 2011 Copy-move 110/1100 JPG 480 × 722–1070 × 800
MICC-F600 [22] 2011 Copy-move 160/440 JPG, PNG 722 × 480–800 × 600

MICC-F2000 [22] 2011 Copy-move 700/1300 JPG 2048 × 1536
CASIA V1 [23] 2013 Copy-move, Splicing 921/800 JPG 284 × 256
CASIA V2 [23] 2013 Copy-move, Splicing 5123/7200 JPG, BMP, TIF 320 × 240–800 × 600
Carvalho [24] 2013 Splicing 100/100 PNG 2048 × 1536

CoMoFoD [25] 2013 Copy-move 4800/4800 PNG, JPG 512 × 512–3000 × 2500
COVERAGE [26] 2016 Copy-move 100/100 TIF 2048 × 1536

Korus [27] 2017 Copy-move, Splicing 220/220 TIF 1920 × 1080
USCISI [28] 2018 Copy-move 100,000/- PNG 320 × 240–640 × 575

MFC 18 [29] 2019 Multiple manipulation 3265/14,156 RAW, PNG, BMP, JPG,
TIF 128 × 104–7952 × 5304

DEFACTO [30] 2019 Multiple manipulation 229,000/- TIF 240 × 320–640 × 6405
IMD 2020 [31] 2020 Multiple manipulation 37,010/37,010 PNG, JPG 193 × 260–4437 × 2958

2.2. Active Forensics

Digital watermarking is one of the most effective active forensics methods to realize
piracy tracking and copyright protection. It can be classified into conventional methods
based on manually designed features and deep learning-based methods. Early digital
watermarking was mostly embedded in the spatial domain, such as least significant bits
(LSB) [32], but it lacked robustness and was easily detected by sample pair analysis [33]. To
improve robustness, a series of transform domain-based methods were proposed, such as
DWT [34], DCT [35], contourlet transform [36], and Hadamard transform [37]. In recent
years, with the continuous update and progress of deep learning technology, deep learning
has been widely used in image watermarking and achieved remarkable achievements. In
this survey, we will focus on the analysis of deep learning-based robust watermarking.

2.2.1. Basic Framework of Robust Image Watermarking Algorithm

The main basic framework of deep learning-based end-to-end robust watermarking
is shown in Figure 3. It consists of three components: embedding layer (including image
feature extraction network and watermark feature enhancement network), attack layer,
and extraction layer. The model includes two stages of forward propagation and reverse
gradient updating when iteratively updating parameters. During forward propagation, the
original image and the watermarked image pass through the image feature extraction net-
work and the watermark feature enhancement network, respectively, to extract high-order
image features and high-order watermark features. The output results are then fed into the
watermark embedding network to obtain the watermarked image. The attack simulation
layer includes various types of attacks such as noise and filtering, geometric attacks, and
JPEG compression. When the watermarked image passes through the attack simulation
layer, different adversarial samples after attacks are generated. The extraction layer per-
forms watermark extraction on the adversarial samples or the watermarked images to
obtain the watermark authentication information. Above is the model forward propagation
training. In backpropagation, the PSNR loss and SSIM, which measures the similarity of two
images from three aspects: grayscale, contrast, and structure loss of the original image and
the watermarked image are usually set to improve the similarity between the watermarked
image and the original image, which are expressed as Equations (4) and (5), respectively.
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At the same time, the MSE loss of extracted watermark and original watermark, which are
expressed as Equation (6), is set to improve the accuracy of watermark recovery.

LMSE−I =
P−1

∑
i=0

Q−1

∑
j=0

[I(i, j)− IW(i, j)]2 (4)

LSSIM =
(2µIµIW + C1)(σI,IW + C2)

(µ2
I + µ2

IW
+ C1)(σ

2
I + σ2

IW
+ C2)

(5)

LMSE−W =
L−1

∑
i=0

[W(i, j)−We(i, j)]2 (6)

where P denotes the width of the original image; Q denotes the length of the original
image; µI and µIW denote the mean value of the gray value of the original image and the
watermarked image, respectively; σ2

I and σ2
IW

denote the variance of the gray value of the
original image and the watermarked image, respectively; I(i, j) and IW(i, j) denote the
(i, j) original image and watermarked image; σI,IW denotes the covariance of the original
image and the watermark image; C1 and C2 are constant in range [10−4, 9 × 10−4]. Then
the model calculated the corresponding loss point by point by a gradient from the output
end of the model according to the above loss, and the optimizer (usually Adam optimizer,
SGD optimizer) was used to update the model parameters, so as to optimize the task of
the model (improving the imperceptibility of the watermarked image and the accuracy of
watermark extraction after the watermarked image was attacked).

Image feature 
extraction network

Watermark feature 
enhancement network

Embedding network
Attack 

simulation layer

Extracting layer

Original image

Watermark 

Extracted 
watermark

Embedding layer

Watermarked image Attacked image

Figure 3. A basic framework of end-to-end robust watermarking based on deep learning.

2.2.2. Performance Evaluation Metrics

In a digital image watermarking algorithm, the most important three evaluation
indicators are robustness, imperceptibility, and capacity.

Robustness: Robustness is used to measure the ability of a watermark model to
recover the original watermark after an image has been subjected to a series of intentional
or unintentional image processing during electronic or non-electronic channel transmission.
Bit error rate (BER) and normalized cross-correlation (NCC) are usually used as the objective
evaluation metrics, which are expressed as Equations (7) and (8), respectively:

EBER(w, w
′
) =

1
L

L

∑
i=1
|wi − w

′
i | (7)

ENCC =

L
∑

i=1
(wi − w̄)(wi

′ − w̄′)√
L
∑

i=1
(wi − w̄)2 L

∑
i=1

(wi
′ − w̄′)2

(8)

where wi and w̄ represent the ith bit of the original watermark and the mean value of
the original watermark, respectively; wi

′ and w̄′ represent the i th bit of the extracted
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watermark and the mean value of the extracted watermark; L represents the length of the
watermark.

Imperceptibility: Imperceptibility is used to measure the sensory impact of the em-
bedding point on the whole image after the model has completed watermark embedding
(i.e., the watermarked image is guaranteed to be indistinguishable from the original image).
Peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) are usually used as the
objective evaluation metrics, which are expressed as Equations (9) and (10), respectively:

EPSNR(I, IW) = 10log10
W × H × G2

MAX
W−1

∑
i=0

H−1
∑

j=0
[I(i, j)− IW(i, j)]2

(9)

ESSIM(I, IW) =
(2µIµIW + C1)(2σI,IW + C1)

(µ2
I + µ2

IW
+ C1)(σ

2
I + σ2

IW
+ C2)

(10)

where W denotes the width of the original image; H denotes the length of the original image;
GMAX denotes the maximum gray level of the original image; µI and µIW denote the mean
value of the gray value of the original image and the watermarked image, respectively; σ2

I
and σ2

IW
denote the variance of the gray value of the original image and the watermarked

image, respectively; I(i, j) and IW(i, j) denote the (i, j) original image and watermarked
image; σI,IW denotes the covariance of the original image and the watermark image; C1 and
C2 are constant in range [10−4, 9 × 10−4].

Capacity: The capacity represents the maximum watermark embedding bits of the
model while maintaining the established required imperceptibility and robustness metrics.
It is mutually constrained with imperceptibility and robustness. Increasing the watermark
embedding capacity, imperceptibility and robustness decrease, and vice versa. The number
of embedded watermark bits per pixel (bpp) is usually used to measure the capacity metric
of the model, which is expressed as Equation (11):

Ebpp =
Wnum

Inum
(11)

where Wnum denotes the number of watermark bits, and Inum denotes the total number of
original image pixels.

2.2.3. Attacks of Robust Watermarking

In the end-to-end watermarking framework, the attack simulation layer plays a deci-
sive role in improving the robustness of the framework. However, when implementing
backpropagation updates in parameters, it is necessary to ensure that each node is dif-
ferentiable. For non-differentiable attacks, the model cannot perform parameter updates
during backpropagation. Therefore, here comes a subdivision of whether the attack is
differentiable or not.

Differentiable Attacks:
Noise and Filtering Attacks: Noise and filtering attacks refer to some intentional or

unintentional attacks on the watermarked image in the electronic channel transmission,
such as Gaussian noise, salt and pepper noise, Gaussian filtering, and median filtering. Its
robustness can usually be improved by generating adversarial samples in the ASL layer.

Geometric Attacks: Applying geometric attacks to an image can break the synchro-
nization between the watermark decoder and the watermarked image. Geometric attacks
can be subdivided into rotation, scaling, translation, cropping, etc.

Non-differentiable Attacks:
Joint Photographic Experts Group (JPEG) Attacks: The JPEG standard has two basic

compression methods: the DCT-based method and the lossless compression prediction
method. In this survey, we focus on the DCT-based JPEG compression, which can consist
of DCT, inverse DCT, quantization, inverse quantization, entropy coding, and entropy
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decoding (i.e., color conversion and sampling), as shown in Figure 4. Quantization and
dequantization are non-differentiable processes, leading to the incompatibility of the model
with simulated attacks.

DCT

IDCT

Quantization

Dequantization
Entropy 

decoding

Entropy 
coding

JPEG compression

JPEG decompression

Original 
image

Reconstructed 
image

JPEG 
bitstream

Figure 4. A flowchart of JPEG compression.

Screen-shooting Attacks: In the process of watermarked images through the cam-
era photo processing, it will undergo a series of analog-digital (A/D) conversion and
digital-analog (D/A) conversion inevitably, both of which affect the extraction of the
watermark seriously.

Agnostic Attacks: Agnostic attacks refer to attacks in which the model parameters are
unknown to the attack’s prior information. For neural network models, it is difficult for the
encoder and decoder to adapt to agnostic attacks without generating attack prior samples.

3. Image Forgery Detection Based on Deep Learning

Image passive forgery detection methods can be divided into a single type of forgery
detection and generic forgery detection depending on the detection types. Single forgery
detection methods can only detect specific types of tampered images, including image copy-
move forgery detection and image splicing forgery detection. Generic forgery detection
methods can be applied to different types of tampered images, including copy-move,
splicing, and removal. Diverse passive forgery detection methods are described in this
section. A table is given to compare the performance of passive forgery detection methods
from different aspects at the end of this section. An overview of image forgery detection
based on deep learning, as shown in Figure 5.

Image forgery 
detection 

Single forgery 
detection

Generic forgery 
detection
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Li 2022

HR-Net

Ganapathi 2022

Liu 2022

ResNet

Transformer VGG

Zhang 2022

Wang 2022
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Shi 2022

Xu 2022

Zhou 2022

Dong 2023

Chen 2023
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Yin 2022
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Chen 2020
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Wei 2020

Using low-level features

Zeng 2022

Encoder-decoder 
architecture

Figure 5. An overview of image forgery detection based on deep learning.

3.1. Image Copy-Move Forgery Detection

The CMFD methods detect tampered images by extracting features associated with
tampering. For an image, it is possible to globally capture the features either for the entire
image or locally for regions. The choice of feature extraction methods affects the perfor-
mance of CMFD methods greatly. The CMFD methods are divided into two categories,
conventional manual feature-based methods and deep learning-based methods.

The conventional manual feature methods can be divided into block-based and
keypoint-based CMFD methods. The block-based CMFD methods can locate tampered
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regions accurately, but there are main problems, such as high computational complex-
ity and difficulty in resisting large-scale rotation and scaling. To solve these problems,
keypoint-based CMFD methods are proposed. The keypoint-based CMFD methods use the
keypoint extraction techniques to extract keypoints of the images and find similar features
using feature-matching algorithms. The keypoint-based CMFD methods can accurately
locate tampered regions of common tampered images, but it mainly suffers from problems,
such as the small number of keypoints in smooth regions leading to undetectable and poor
algorithm generalization ability. To solve the problems of conventional manual feature
methods, deep learning-based CMFD methods are proposed.

With the rapid development of deep learning techniques, deep learning-based meth-
ods have been applied to the field of tampering detection. Deep learning-based CMFD
methods have shown great performance improvements. A well-trained model can learn the
latent features of images. The difference between the two types of images is found to dis-
criminate the tampered image. Compared with conventional methods, deep learning-based
CMFD can provide more accurate and comprehensive feature descriptors.

To detect whether an image was tampered, Rao and Ni [38] proposed a deep convo-
lutional neural network (DCNN)-based model that used the spatial rich models (SRM)
with 30 basic high-pass filters to initialize the weights of the first layer, which helped
suppress the effects of image semantics and accelerated the network convergence. The
image features were extracted by the convolutional layer and classified using a support
vector machine (SVM) to discern whether the image was tampered with or not. Kumar and
Gupta [39] proposed a convolutional neural network (CNN)-based model to automatically
extract image features for image tampering classification with robust to image compression,
scaling, rotation, and blurring, but the method also required analysis at the pixel level
to locate tampered with regions. In [38,39], the authors only perform the detection of
whether tampering has been performed, and cannot localize tampered regions, which has
a limited application.

To further improve the application space of the algorithm and achieve the localization
of copy and move regions, Li et al. [40] proposed a method combining image segmentation
and DCNN, using Super-BPD [41] to segment the image to obtain the edge information
of the image. VGG 16 and atrous spatial pyramid pooling (ASPP) [42] networks obtained
the multi-scale features of the image to improve the accuracy of the algorithm. The feature
matching module was introduced to achieve the localization of tampered regions. But the
segmentation module leads to high computational complexity. Liu et al. [43] designed a
two-stage detection framework. The first stage introduced atrous convolution with autocor-
relation matching based on spatial attention to improve similarity detection. In the second
stage, the superglue method was proposed to eliminate false warning regions and repair
incomplete regions, thus improving the detection accuracy of the algorithm. Zhong and
Pun [44] created an end-to-end deep neural network, referring to the Inception architecture
fusing multi-scale convolution to extract multi-scale features. Kafali et al. [45] proposed a
nonlinear inception module based on a second-order Volterra kernel by considering the
linear and nonlinear interactions among pixels. Nazir et al. [46] created an improved mask
region-based convolution network. The network used the DenseNet 41 model to extract
deep features, which were classified using the Mask-RCNN [47] to locate tampered regions.
Zhong et al. [48] proposed a coarse-fine spatial channel boundary attention network and
designed the attention module for boundary refinement to obtain finer forgery details and
improve the performance of detection. In a few papers [38–40,43–45], the authors improved
the detection performance and robustness of the algorithm but did not distinguish between
source and target areas.

To correctly distinguish between source and target regions, some methods have been
proposed. Wu et al. [28] proposed the first parallel network for distinguishing between
source and target. The manipulation detection branch located potential manipulation
regions by visual artifacts, and the similarity detection branch located source and target
regions by visual similarity. Chen et al. [49] used a serial structure and added the atrous
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convolutional attention module in the similarity detection phase to improve the detection
accuracy. The network structure is shown in Figure 6. Aria et al. [50] proposed a quality-
independent detection method, which used a generative adversarial network to enhance
image quality and a two-branch convolutional network for tampering detection. The
network could detect multiple tampered regions simultaneously and distinguish the source
and target of tampering. It was resistant to various post-processing attacks and had good
detection results in low-quality tampered images. Barni et al. [51] proposed a multi-branch
CNN network, which exploited the irreversibility caused by interpolation traces and the
inconsistency of target region boundaries to distinguish source and target regions.
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Figure 6. A serial network for CMFD: (a) the architecture of the proposed scheme and (b) the
architecture of copy-move similarity detection network. Adapted from [49].

3.2. Image Splicing Forgery Detection

Image splicing forgery is also one of the most popular ways to manipulate the content
of an image. The manipulation operation of splicing is copying an area from one image
and pasting it to another image. The tampered images are a serious threat to the security of
image information. It is crucial to develop suitable methods to detect image splicing forgery.
Image splicing detection techniques are divided into manual feature-based methods and
deep learning-based methods.

The current manual feature-based methods can be divided into three categories: textu-
ral feature-based techniques, noise-based techniques, and other techniques. The textural
feature-based techniques use the difference between the local frequency distribution in
tampered images and the local frequency of the real image to detect image splicing. The
commonly used textural feature descriptors are local binary pattern (LBP) [52], gray level
co-occurrence matrixes (GLCM) [53], local directional pattern (LDP) [54], etc. Since the
splicing images come from two different images, the noise distribution of the tampered
image is changed. Therefore, the noise-based techniques detect tamper by estimating the
noise of the tampered image. The detection of splicing images can also be performed by
fusing multiple features. Manual feature-based methods use different descriptors to obtain
specific features, and the detection effect is various for different datasets. The generalization
of manual feature-based techniques is poor. The deep learning-based methods can auto-
matically learn a large number of features, which improves the accuracy and generalization
ability performance of image splicing detection.

Deep learning-based methods can learn and optimize the feature representations for
forgery forensics directly. This has inspired researchers to develop different techniques to
detect image splicing. In recent years, the U-Net structure has been more widely used in
splicing forgery detection. Wei et al. [55] proposed a tamper detection and localization
network based on U-Net with multi-scale control. The network used a rotated residual
structure to enhance the learning ability of features. Zeng et al. [56] proposed a multitask
model for locating splicing tampering in an image, which fused an attention mechanism,
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densely connected network, ASPP, and U-Net. The model can capture more multi-scale
features while expanding the receptive field and improving the detection accuracy of image
splicing tampering. Zhang et al. [57] created a multi-task squeeze and extraction network
for splicing localization. The network consisted of a label mask stream and edge-guided
stream, which used U-Net architecture. Squeeze and excitation attention modules (SEAMs)
were incorporated into the multi-task network to recalibrate the fused features and enhance
the feature representation.

Many researchers have also used fully convolutional networks (FCN) commonly
used in semantic segmentation for image splicing forgery detection. Chen et al. [58]
proposed a residual-based fully convolutional network for image splicing localization.
The residual blocks were added to FCN to make the network easier to optimize. Zhuang
et al. [59] created a dense fully convolutional network for image tampering localization.
This structure comprised dense connections and dilated convolutions to capture subtle
tampering traces and obtain finer feature maps for prediction. Liu et al. [60] proposed an
FCN with a noise feature. The network enhanced the generalization ability by extracting
noise maps in the pre-processing stage to expose the subtle changes in the tampered images
and improved the robustness by adding the region proposal network. The technique
could accurately locate the tampered regions of images and improve generalization ability
and robustness.

In recent years, attention mechanisms have been deeply developed and have gained
a great advantage in the field of natural language processing. Many researchers have
started to incorporate the attention mechanism in tampering detection. Ren et al. [61]
proposed a multi-scale attention context-aware network and designed a multi-scale multi-
level attention module, which not only effectively solved the inconsistency of features
at different scales, but also automatically adjusted the coefficients of features to obtain a
finer feature representation. To address the problem of poor accuracy of splicing boundary,
Sun et al. [62] proposed an edge-enhanced transformer network. A two-branch edge-
aware transformer was used to generate forgery features and edge features to improve the
accuracy of tampering localization.

3.3. Image Generic Forgery Detection

To enable multiple types of tampering detection, the algorithm has been made more
generalizable. Zhang et al. [63] proposed a two-branch noise and boundary network that
used an improved constrained convolution to extract the noise map. It can effectively
solve the problem of training instability. The edge prediction module was added to extract
the tampered edge information to improve the accuracy of localization. But the detection
performance was poor when the tampered image contained less tampered information.
Dong et al. [64] designed a multi-view, multi-scale supervised image forgery detection
model. The model combined the boundary and noise features of the tampered regions
to learn semantic-independent features with stronger generalization, which improved
detection accuracy and generalization. But the detection effect was poor when the tampered
region was the background region. Chen et al. [65] proposed a network based on signal
noise separation to improve the robustness. The signal noise separation module separated
the tampered regions from the complex background regions with post-processing noise,
reducing the negative impact of post-processing operations on the image and improving
the robustness of the algorithm. Liu et al. [66] proposed a network for learning and
enhancing multiple tamper traces, fusing multiple features of global noise, local noise, and
detailed artifact features for forgery detection, which enabled the algorithm to have high
generalization and detection accuracy. However, when the tampering artifacts are reduced,
the lack of effective tampering traces results in tampered regions being undetectable.
Wang et al. [67] proposed a multimodal transformer framework, which consisted of
three main modules: high-frequency feature extraction, an object encoder, and an image
decoder, to address the difficulty of capturing invisible subtle tampering in the RGB domain.
The frequency features of the image were first extracted, and the tampered regions were
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identified by combining RGB features and frequency features. The effectiveness of the
method was shown on different datasets.

To achieve a more refined prediction of tampering masks, a progressive mask-decoding
approach is used. Liu et al. [68] proposed a progressive spatio-channel correlation network.
The network used two paths, the top-down path acquired local and global features of the
image, and the bottom-up path was used to predict the tampered mask. The spatio-channel
correlation module was introduced to capture the spatial and channel correlation of features
and extract features with global clues to enable the network to cope with various attacks
and improve the robustness of the network. To solve the problem of irrelevant semantic
information, Shi et al. [69] proposed a progressively-refined neural network. Tampered
regions were localized progressively under a coarse-to-fine workflow and rotated residual
structure was used to suppress the image content during the generation process. Finally,
the refined mask was obtained.

To solve the existing problems of low detection accuracy and poor boundary local-
ization, Gao et al. [70] proposed an end-to-end two-stream boundary-aware network for
generic image forgery detection and localization. The network introduced an adaptive fre-
quency selection module to adaptively select appropriate frequencies to mine inconsistent
statistical information and eliminate the interference of redundant information. Meanwhile,
a boundary artifact localization module was used to improve the boundary localization
effect. To address the problem of poor generalization ability to invisible manipulation,
Ganapathi et al. [71] proposed a channel attention-based image forgery detection frame-
work. The network introduced a channel attention module to detect and localize forged
regions using inter-channel interactions to focus more on tampered regions and achieve
accurate localization. To identify forged regions by capturing the connection between
foreground and background features, Xu et al. [72] proposed a mutually complementary
forgery detection network, which consisted of two encoders for extracting foreground
and background features, respectively. A mutual attention module was used to extract
complementary information from the features, which consisted of self-feature attention
and cross-feature attention. The network significantly improved the localization of forged
regions using the complementary information between foreground and background.

To improve the generalization ability of the network model, Rao et al. [73] proposed a
multi-semantic conditional random field model to distinguish the tampered boundary from
the original boundary for the localization of the forged regions. The attention blocks were
used to guide the network to capture more intrinsic features of the boundary transition
artifacts. The attention maps with multiple semantics were used to make full use of local and
global information, thus improving the generalization ability of the algorithm. Li et al. [74]
proposed an end-to-end attentional cross-domain network. The network consisted of three
streams that extracted three types of features, including visual perception, resampling, and
local inconsistency. The fusion of multiple features improved the generalization ability
and localization accuracy of the algorithm effectively. Yin et al. [75] proposed a multi-task
network based on contrast learning for the localization of multiple manipulation detection.
Contrast learning was used to measure the consistency of statistical properties of different
regions to enhance the feature representation and improved the performance of detection
and localization.

To solve the problems of low accuracy and insufficient training data, Zhou et al. [76]
designed a coarse-to-fine tampering detection network based on a self-adversarial training
strategy. A self-adversarial training strategy was used to dynamically extend the training
data to achieve higher accuracy. Meanwhile, to solve the problem of the insufficient dataset,
Ren et al. [77] designed a novel dataset, called the multi-realistic scene manipulation
dataset, which consisted of three kinds of tampering, including copy-move, splicing, and
removal, and covered 32 different tampering scenarios in life. A general and efficient
search and recognition network was proposed to reduce the computational complexity of
forgery detection.
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The state-of-the-art deep learning-based CMFD algorithms and performance compar-
ison are described in Table 2. Table 2 describes the methods from four aspects: type of
detection, backbone, robustness performance, and dataset.

Table 2. A comparison of deep learning-based passive forgery detection methods.

Ref. Year Type of Detection Backbone Robustness
Performance Dataset

Li et al. [40] 2022 Copy-move forgery VGG 16, Atrous
convolution

Brightness change,
Image blurring, JPEG
compression, Color
reduction, Contrast
adjustments, Noise

adding

USCISI, CoMoFoD,
CASIA V2

Liu et al. [43] 2022 Copy-move forgery VGG 16, SuperGlue
Rotation, Scaling,

Noise adding, JPEG
compression

Self-datasets

Zhong et al. [44] 2020 Copy-move forgery DenseNet
Rotation, Scaling,

Noise adding, JPEG
compression

FAU, CoMoFoD,
CASIA V2

Kafali et al. [45] 2021 Copy-move forgery VGG 16, Volterra
convolution

Brightness change,
Image blurring, JPEG
compression, Color
reduction, Contrast
adjustments, Noise

adding

USCISI, CoMoFoD,
CASIA

Nazir et al. [46] 2022 Copy-move forgery DenseNet, RCNN

Brightness change,
Image blurring, JPEG
compression, Color
reduction, Contrast
adjustments, Noise

adding

CoMoFoD,
MICC-F2000, CASIA

V2

Zhong et al. [48] 2022 Copy-move forgery DenseNet

Brightness change,
Image blurring, JPEG
compression, Color
reduction, Contrast
adjustments, Noise

adding

IMD, CoMoFoD,
CMHD [78]

Wu et al. [28] 2018 Copy-move forgery VGG 16

Brightness change,
Image blurring, JPEG
compression, Color
reduction, Contrast
adjustments, Noise

adding

USCISI, CoMoFoD,
CASIA V2

Chen et al. [49] 2021 Copy-move forgery VGG 16, Attention
module

Brightness change,
Image blurring, JPEG
compression, Color
reduction, Contrast
adjustments, Noise

adding

USCISI, CoMoFoD,
CASIA V2,

COVERAGE

Aria et al. [50] 2022 Copy-move forgery VGG 16

Brightness change,
Image blurring, JPEG
compression, Color
reduction, Contrast
adjustments, Noise

adding

USCISI, CoMoFoD,
CASIA V2

Barni et al. [51] 2021 Copy-move forgery ResNet 50 JPEG compression,
Noise, Scaling

SYN-Ts, USCISI,
CASIA, Grip [79]

Wei et al. [55] 2021 Splicing forgery U-Net, Ringed
residual structure

JPEG compression,
Gaussian noise,

Combined attack,
Scaling, Rotation

CASIA, Columbia

Zeng et al. [56] 2022 Splicing forgery U-Net, ASPP JPEG compression,
Gaussian blurring CASIA

Zhang et al. [57] 2021 Splicing forgery U-Net, SEAM

JPEG compression,
Scaling, Gaussian
filtering, Image

sharpening

Columbia, CASIA,
Carvalho
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Table 2. Cont.

Ref. Year Type of Detection Backbone Robustness
Performance Dataset

Chen et al. [58] 2020 Splicing forgery FCN
JPEG compression,

Gaussian blur,
Gaussian noise

DVMM [80], CASIA,
NC17, MFC18

Zhuang et al. [59] 2021 Splicing forgery FCN JPEG compression,
Scaling

PS-scripted dataset,
NIST16 [29]

Liu et al. [60] 2022 Splicing forgery FCN, SRM
Gaussian noise, JPEG

compression,
Gaussian blurring

CASIA, Columbia

Ren et al. [61] 2022 Splicing forgery ResNet 50
JPEG compression,

Gaussian noise,
Scaling

CASIA, IMD2020,
DEFACTO, SMI20K

Sun et al. [62] 2022 Splicing forgery Transformer JPEG compression,
Media blur, Scaling CASIA, NC2016 [81]

Zhang et al. [63] 2022 Multiple types of
tampering detection

ResNet 34, Non-local
module

JPEG compression,
Gaussian blur

CASIA, COVERAGE,
Columbia, NIST16

Dong et al. [64] 2023 Multiple types of
tampering detection ResNet 50 JPEG compression,

Gaussian blur

CASIA
V2,COVERAGE,

Columbia, NIST16

Chen et al. [65] 2023 Multiple types of
tampering detection ResNet 101

JPEG compression,
Gaussian blur,
Median blur

Self-datasets, NIST16,
Columbia, CASIA

Lin et al. [66] 2023 Multiple types of
tampering detection

ResNet 50, Swin
transformer

JPEG compression,
Gaussian blur,
Gaussian noise

CASIA, NIST16,
Columbia,

COVERAGE,
CoMoFoD

Wang et al. [67] 2022 Multiple types of
tampering detection

Multimodal
transformer

JPEG compression,
Gaussian blur,

Gaussian noise,
Scaling

CASIA, Columbia,
Carvalho, NIST16,

IMD2020

Liu et al. [68] 2022 Multiple types of
tampering detection HR-Net

JPEG compression,
Scaling, Gaussian

blur, Gaussian noise

Columbia,
COVERAGE, CASIA,

NIST16, IMD2020

Shi et al. [69] 2022 Multiple types of
tampering detection

VGG 19, Rotated
residual

JPEG compression,
Gaussian blur,
Gaussian noise

NIST16, COVERAGE,
CASIA, In-The-Wild

Gao et al. [70] 2022 Multiple types of
tampering detection ResNet 101 JPEG compression,

Scaling

CASIA, Carvalho,
COVERAGE, NIST16,

IMD2020

Ganapathi et al. [71] 2022 Multiple types of
tampering detection HR-Net

Flipped horizontally
and vertically,

Saturation,
Brightness

CASIA V2, NIST16,
Carvalho, Columbia

Xu et al. [72] 2022 Multiple types of
tampering detection VGG 16

JPEG compression,
Scaling, Gaussian

blur, Gaussian noise

NIST16, COVERAGE,
CASIA, IMD2020

Rao et al. [73] 2022 Multiple types of
tampering detection

Residual unit,
CRF-based attention,

ASPP

JPEG compression,
Scaling

COVERAGE, CASIA,
Carvalho, IFC

Li et al. [74] 2022 Multiple types of
tampering detection

ResNet101, Faster
R-CNN

Median filtering,
Gaussian noise,
Gaussian blur,
Resampling

CASIA, Columbia,
COVERAGE, NIST16

Yin et al. [75] 2022 Multiple types of
tampering detection

Convolution and
Residual block

JPEG compression,
Gaussian blur,

Gaussian noise,
Scaling

NIST16, CASIA,
COVERAGE,

Columbia

Zhou et al. [76] 2022 Multiple types of
tampering detection VGG-style block

JPEG compression,
Gaussian noise,
Gaussian blur,

Scaling

DEFACTO,
Columbia, CASIA,

COVERAGE, NIST16

Ren et al. [77] 2022 Multiple types of
tampering detection ResNet 50

JPEG compression,
Gaussian noise,

Scaling

NIST16, CASIA,
MSM30K
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4. Robust Image Watermarking Based on Deep Learning

According to the gradient updating feature of the attack, robust watermarking can be
classified into two categories: robust differentiable attack watermarking and robust non-
differentiable attack watermarking. For differentiable attacks, the adversarial simulation
layer (ASL) can be introduced into the model to generate attack counterexamples directly,
while non-differentiable attacks require other means to improve their robustness, such as
differentiable approximation, two-stage training, and network structure improvement, etc.

4.1. Robust Image Watermark against Differentiable Attack

As shown in Figure 7, differential attacks can be further categorized into noise and
filtering attacks, as well as geometric attacks.

Robust watermark for 
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Noise and filtering
Embedding parameter 
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Liu 2022 Zhao 2022

Improve overfitting

Geometric

Zero
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Figure 7. An overview of robustness enhancement methods for differential attacks.

4.1.1. Robust Image Watermark against Noise and Filtering Attack

Noise and filtering attacks apply corresponding noise or filtering to the pixel from the
spatial domain and transform domain directly, affecting the amplitude coefficient synchro-
nization of the codec. There are three methods for recovering amplitude synchronization:
zero-watermarking, generative adversarial network (GAN) [82]-based, and embedding
coefficient optimization.

Gaussian attacks primarily blur the details of an image by adding Gaussian noise,
thereby reducing the robustness of the watermark. This attack affects the position and inten-
sity of the embedded watermark, which may result in incorrect extraction or a decrease in
the quality of the extracted watermark information. To counter Gaussian attacks, traditional
methods typically employ anti-noise and filtering techniques to enhance the robustness
of the watermark. For example, adaptive filters [83] and noise estimation [84] techniques
can be used to reduce the impact of Gaussian noise. In deep learning approaches, methods
such as adversarial training, zero-watermarking, and embedding parameter optimization
are utilized to enhance the robustness against Gaussian attacks. For example, Wen and
Aydore [85] introduced adversarial training into the watermarking algorithm where the
distortion type and the distortion strength were adaptively selected thus minimizing the
decoding error.

Zero-watermarking: The conventional zero-watermarking algorithm consists of three
steps: original image robust feature extraction, zero-watermark generation, and zero-
watermark verification. To extract noise-invariant features, Fan et al. [86] used a pre-trained
Inception V3 [87] network to extract the image feature tensor initially, and extracted its low-
frequency subbands by DCT transform to generate a robust feature tensor. They dissociated
the binary sequence generated by chaos mapping with the watermark information to obtain
a noise-invariant zero-watermark.
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GAN-based: In the watermarking model, GAN can generate high-quality images
more efficiently by competing between the discriminator (i.e., watermarked image discrim-
inator) and the generator (i.e., encoder) under adversarial loss supervision to continuously
update each other’s parameters and improve the decoding accuracy by supervising the
decoder through total loss function indirectly. Since the human visual system focuses more
on the central region of the image, Wen and Aydore [85] introduced adversarial training
into the watermarking algorithm where the distortion type and the distortion strength
were adaptively selected thus minimizing the decoding error. Hao et al. [88] added a
high-pass filter before the discriminator so that the watermark tended to be embedded
in the mid-frequency region of the image, giving a higher weight to the middle region
pixels in the computed loss function. However, it could not resist geometric attacks effec-
tively. Zhang et al. [89] proposed an embedding-guided end-to-end framework for robust
watermarking. It uses a prior knowledge extractor to obtain the chrominance and edge
saliency of cover images for guiding the watermark embedding. However, it could not be
applied to practical scenarios such as printing, camera photography, and geometric attacks.
Li et al. [90] designed a single-frame exposure optical image watermarking framework
using conditional generative adversarial network (CGAN) [91]. Yu [92] introduced an
attention mechanism to generate attention masks to guide the encoder to generate better
target images without disturbing the spotlight, and improved the reliability of the model
by combining GAN with a circular discriminant model and inconsistency loss. However,
refs. [85,88–90,92] did not effectively address the GAN network training instability prob-
lem, resulting in none of them being able to further improve the balance of robustness and
imperceptibility.

Embedding Parameter Optimization: The position and strength of the embedding
parameters determine the algorithm performance directly. Mun et al. [93] performed
an iterative simulation of the attack on the watermarking system. But it can only obtain
one bit of watermark information from a sub-block. Kang et al. [94] first subjected the
host image to DCT transformation to extract the human eye-insensitive LH sub-band
and HL sub-band. Particle swarm optimization (PSO) was used to find the best DCT
coefficients and the best embedding strength to improve the imperceptibility and robustness
of the watermarking algorithm. However, due to the training overfitting of PSO [95],
its model generalized and achieved good robust performance only on the experimental
dataset. Rai and Goyal [96] combined fuzzy, backpropagation neural networks and shark
optimization algorithms. However, refs. [94,96] had the problem of training overfitting.
To improve the training overfitting problem, Liu et al. [97] introduced a two-dimensional
image information entropy loss to enhance the ability of the model to generate different
watermarks, ensuring that the model was always able to assign enough information to a
single host image for different watermark inputs and the extractor can extract the watermark
information completely, therefore enhancing the dynamic randomness of the watermark
embedding. Zhao et al. [98] specifically adopted an end-to-end robust image watermarking
algorithm framework, known as the embed-attack-extract paradigm. In the embedding
layer of the network, it incorporated the channel spatial attention mechanism. As a result,
during training, after forward and backward propagation for parameter updates, the
embedding layer’s parameters were able to focus on more effective channel and spatial
information, which also made the model focus on the optimization of increasing the
accuracy of the extracted watermark. To sum up, this optimization of the watermark
embedding parameters contributed to enhancing the model’s resistance to noise and
filtering attacks.

Deep learning-based image watermarking against noise and filtering attack algorithms
and performance comparison are described in Table 3. Table 3 describes the methods from
five aspects: watermark size (container size), category, method (effect), robustness, and
dataset, where σb, σf, and σn represents the variance of Gaussian blur, Gaussian filtering,
and Gaussian noise, respectively.
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Table 3. The comparison of deep learning-based image watermarking against noise and filtering.

Ref. Watermark Size
(Container Size) Category Method (Effect)

Robustness (Attack, Parameter)
Dataset

BER (%) NC

Hao et al. [88] 30
(64 × 64)

GAN-based GAN (Improving visual
quaility)

0.5 (Gaussian
blur, 3 × 3,
σb = 2.0)

– COCO [99]

Mun et al. [93] 24
(512 × 512)

Embedding
parameter

optimization
CNN (Feature extraction) –

0.9625
(Gaussian blur,

3 × 3, σb = 1)

MPEG-7 CE
Shape-1 [100]

Kang et al. [94] 1024
(1024 × 1024)

Embedding
parameter

optimization

PSO (Selecting best DCT
coefficient)

0 (Gaussian
filtering, 3 × 3,

σf = 0.5)

0.990
(Gaussian

filtering, 3 × 3,
σf = 0.5)

USC-SIPI [101]

Rai et al. [96] 32
(96 × 96)

Embedding
parameter

optimization

SSO (Gaining ideal embedding
parameter) –

0.8259
(Gaussian

noise,
σn = 0.01)

Self-datasets

Zhao et al. [98] 32 × 32
(512 × 512)

Embedding
parameter

optimization

Spatial and channel attention
mechanism (Improving

robustness)

0.09 (Gaussian
noise,

σn = 0.05)

0.9988
(Gaussian

noise,
σn = 0.05)

BOSS Base
[102], CIFAR

10 [103]

Fragile Watermark with Content Tampering Detection: The above is based on robust
watermarking to achieve the active forensics of noise and filtering attacks, the following is
based on fragile watermarking to achieve the copyright protection of noise and filtering
attacks and content tampering proof.

Sahu [104] proposed a fragile watermarking scheme based on logical mapping to
effectively detect and locate the tampered region of watermarked images. It took advantage
of the sensitivity of logical mapping to generate watermark bits by performing a logical XOR
operation between the first intermediate significant bit (ISB) and the watermark bit, and
embedding the result in the rightmost least significant bits (LSBs). The watermarked image
obtained by this method is of high quality and good imperceptibility with an average peak
signal-to-noise ratio (PSNR) of 51.14 dB. It can effectively detect and locate the tampering
area from the image, and can resist both intentional and unintentional attacks to a certain
extent. However, it cannot recover the tampered region.

Sahu et al. [105] studies content tampering in multimedia watermarking. It intro-
duces a feature association model based on a multi-task learning framework that can
relatively detect multiple modifications based on location and time. Multi-task learning
frameworks leverage the interrelationships between multiple related problems or tasks and
can effectively learn from shared representations to provide better models. It also utilizes
convolutional neural networks (CNNs) for climate factor prediction tasks, which can be
trained and evaluated on large-scale datasets to learn different convolutional models using
regression models and distance-based loss functions. The results show that the method
using deep learning can achieve high precision and extremely high accuracy. It ensures
that image data are collected from reliable sources and manually verifies the authenticity of
the data, including images collected from AMOS (archive of many outdoor scenes) and
Internet webcams with time stamps, camera ids, and location annotations. This ensures
that the information collected is true.

There are still difficulties in the detection of tampered image metadata: the literature
points out that the open-source ExifTool is applied to access and modify image metadata
between digital workflows, but this method is easy to be tampered with, so additional
evidence is needed to prove the authenticity of image content, such as the analysis of other
climate factor images. This indicates that there are still challenges in tampering detection
of metadata. To sum up, the advantages of this literature are a reliable data acquisition
process, multi-task learning framework, and prediction accuracy based on deep learning.
However, it is difficult to detect the tampered image metadata and the data set is not evenly
distributed. It can also be a baseline in future works to propose a CNN-based content
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retrieval and tampering strategy. Sahu et al. [106] proposed an efficient reversible fragile
watermarking scheme based on two images (DI-RFWS), which can accurately detect and
locate the tamper region in the image. The scheme used a pixel adjustment strategy to
embed two secret bits in each host image (HI) pixel to obtain a double-watermarked image
(WI). According to the watermark information, the non-boundary pixels of the image are
modified to the maximum of ±1. Due to the potency of reversibility, the proposed scheme
can be adapted to a wide range of contemporary applications.

4.1.2. Robust Image Watermark against Geometric Attacks

Geometric attacks mainly include rotation, cropping, and translation that change
the spatial position relationship of pixels and affect the spatial synchronization of codecs.
According to the method of recovering spatial synchronization, it can be divided into
transform domain-based, zero-watermarking, and robust feature-based.

For cropping attacks, when the cropping involves the watermark embedding region,
the watermark extraction algorithm may not match the watermark features correctly,
resulting in the quality of the extracted watermark information being reduced. Multi-
location embedding, multi-watermark embedding, and multi-watermark embedding are
three main methods to improve the robustness of cropping attacks. Hsu and Tu [107]
used the sinusoidal function and the wavelength of the sinusoidal function to design the
embedding rule, which gives each watermark bit multiple copies spread across different
blocks. Therefore, even under cropping attacks, other watermarks can be saved to achieve
copyright authentication.

Transform Domain-based: The transform domain-based watermarking algorithm
embeds the watermark into the transform domain coefficients, avoiding geometric attacks
from corrupting the synchronization of the codec effectively. Ahmadi [108] implemented
watermark embedding and extraction in the transform domain (such as DCT, DWT, Haar,
etc.), and introduced circular convolution in the convolution layer used for feature extrac-
tion to make the watermark information diffuse in the transform domain, which effectively
improved the robustness against cropping. Mei et al. [109] embedded a watermark in the
DCT domain and introduced the attention mechanism to calculate the confidence of each
image block. In addition, joint source-channel coding was introduced to make the algo-
rithm maintain good robustness and imperceptibility under the gray image watermarking
with the background.

Zero-watermarking: The idea of the zero-watermarking is to obtain geometrically
invariant features from robust features in images and generate zero-watermark through
zero-watermark generation by sequence synthesis operation such as dissimilar operation.
Han et al. [110] used pre-trained VGG19 [111] network to extract original image features
and selected DFT-transformed low-frequency sub-bands to construct a medical image
feature matrix. Liu et al. [112] used neural style transfer (NST) [113] technique combined
with a pre-trained VGG19 network to extract the original image style features, fused the
original image style with the original watermark content to obtain the style fusion image,
and Arnold dislocation [114] to obtain the zero-watermark. Gong et al. [115] used the
low-frequency features of the DCT of the original image as labels. Skip connection and
loss functions were applied to enhance and extract high-level semantic features. How-
ever, none of the authors [110,112,115] could resist the robustness of multiple types of
attacks effectively.

Robust Feature-based: Unlike zero-watermarking, the idea of this method is to search
for embedded feature coefficients or tensors in the image and embed the watermark in
it robustly. Hu et al. [116] embedded the watermark in low-order Zernike moments
with rotation and interpolation invariance. Mellimi et al. [117] proposed a robust image
watermarking scheme based on lifting wavelet transform (LWT) and deep neural network
(DNN). The DNN was trained to identify the changes caused by attacks in different
frequency bands and select the best subbands for embedding. However, it was not robust
to speckle noise. Fan et al. [118] combined the multiscale features in GAN and used
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pyramid filters and multiscale maximum pooling techniques to learn the watermark feature
distribution and improve the geometric robustness of watermarking fully.

The state-of-the-art deep learning-based image watermarking against geometric at-
tacks algorithms and performance comparison are described in Table 4. Table 4 describes
the methods from five aspects: watermark size (container size), category, method (effect),
robustness, and dataset, where sf represents the scaling factor for the scaling attack; pc
represents the cropping ratio for cropping; QR represents the clockwise rotation of the
rotation attack.

Table 4. A comparison of deep learning-based image watermarking against geometric attacks.

Ref. Watermark Size
(Container Size) Category Method (Effect)

Robustness (Attack, Parameter)
Dataset

BER (%) NC

Ahmadi et al.
[108]

1024
(512 × 512)

Transform
domain-based

Circular convolution
(Diffusing watermark
information), Residual

connection (Fusing
low-level character)

5.9
(Scaling, sf = 0.5)

–
CIAFAR

10 [103], Pascal
VOC [119]

Mei et al. [109] 1024
(512 × 512)

Transform
domain-based

DCT, Attention, Joint
source-channel coding

(Improving
robustness)

0.96
(Cropping, pc = 0.75),

0.34
(Cropping, pc = 0.5)

– COCO [99]

Han et al. [110] – Zero-watermark VGG19, DFT (Feature
extraction) – 0.87509 (QR = 50) Self-datasets

Liu et al. [112] – Zero-watermark VGG19 (Feature
extraction) – 0.95 (QR = 40),

0.96
(Scaling, sf = 0.5)

Waterloo
Exploration

Database [120]

Gong et al. [115] – Zero-watermark Residual-DenseNet
(Feature extraction) – 0.89

(Rotation, QR = 45)
Self-datasets

Hu and Xiang
[116]

128
(512 × 512)

Robust
feature-based

CNN (Feature
extraction), GAN

(Visual improvement)
0.6

(Scaling, sf = 2)
– USC-SIPI [101]

Mellimi et al.
[117]

1024
(512 × 512)

Robust
feature-based

DNN (Optimal
embbeding subband

selection)

1.78
(Scaling, sf = 0.65),

0.2
(Scaling, sf = 0.75)

0.9353
(Scaling, sf = 0.65),

0.9930
(Scaling, sf = 0.75)

USC-SIPI [101]

4.2. Robust Image Watermark against Non-Differentiable Attack

As shown in Figure 8, non-differential attacks can be further categorized into JPEG
attacks, screen-shooting attacks, and agnostic attacks.
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4.2.1. Robust Image Watermark against JPEG Attack

In recent years, end-to-end watermarking algorithms based on deep learning have
been emerging, and thanks to the powerful feature extraction capabilities of CNN, water-
marks can be covertly embedded in low-perception pixel regions of the human eye (such
as diagonal line, textured complex regions, high-brightness slow-change regions, etc.) to
obtain watermarked images that are very similar to the original images. In the end-to-end
training, to improve the robustness of the watermarking algorithm, the watermarked image
is added to the differentiable attack by introducing an attack simulation layer to generate
the attacked counterexamples, and the decoder parameters are updated by decoding losses
such as mean square error (MSE), binary cross entropy (BCE) of the original watermark
and decoded watermark, etc. However, due to the introduction of the non-differentiable
nature of real JPEG compression, it cannot be introduced into the end-to-end network
to implement back-propagation updates of model parameters directly. To address this
problem, relevant studies have recently been proposed, which can be subdivided into
three directions according to the differences in the methods used to generate the JPEG
counterexamples: differentiable approximation, specific decoder training, and network
structure improvement.

Differentiable Approximation: Zhu et al. [121] proposed the JPEG-MASK approx-
imation method first, which mainly set the high-frequency DCT coefficients to 0 and
retained the 5 × 5 low-frequency coefficients of the Y channel and the 3 × 3 low-frequency
coefficients in the U and V channels, which had some simulation effect on JPEG. Based
on [121], Ahmadi et al. [108] added a residual network with adjustable weight factors to
the watermark embedding network to achieve autonomous adjustment of imperceptibility
and robustness. Meanwhile, unlike conventional convolution operation, circular convolu-
tion was introduced to achieve watermark information diffusion and redundancy. SSIM
was used as the loss function of the encoder network to make the watermarked image
more closely resemble the original image in terms of contrast, brightness, and structure.
Although differentiable approximation methods effectively solve the back-propagation
update problem for training parameters, the two papers [108,121] both suffered from bad
simulation approximation, which led to a decoder that cannot perform robust parameter
updates more efficiently against real JPEG in turn.

Specific Decoder Training: To avoid the introduction of non-differentiable compo-
nents in the overall training process of the model. Liu et al. [122] proposed a two-stage
separable training watermarking algorithm consisting of noise-free end-to-end adversarial
training (FEAT) and a decoder only trained (ADOT) with an attack simulation layer. In
FEAT, the encoder and decoder were jointly trained to obtain a redundant encoder, and
in ADOT, the encoder parameters were fixed and spectral regularization was used to
effectively mitigate the training instability problem of GAN networks. At the same time,
corresponding attacks were applied to the watermarked images to obtain the corresponding
attack samples, which were then used as the training set to train the dedicated decoder.
The disadvantages of the non-gradient nature of JPEG were solved, but the phased training
suffered from the problem of training local optima.

Network Structure Improvement: Chen et al. [123] proposed a JPEG simulation
network JSNet which could simulate JPEG lossy compression with any quality factors.
The three processes of sampling, DCT, and quantization in JPEG were simulated by a
maximum pooling layer, a convolution layer, and a 3D noise mask. However, it was
found experimentally that the model was still less robust to JPEG compression after the
introduction of JSNet (i.e., BER is greater than 30% under both ImageNet [124] and Boss
Base [102] dataset tests). This was related to its use of random initialization of parameters
in the maximum pooling, convolutional layer, and 3D noise layer during the simulation,
which resulted in a poor simulation effect for JPEG compression.

Due to the introduction of the non-differentiable nature of real JPEG compression, it
cannot be introduced into the end-to-end network to implement back-propagation updates
of model parameters directly. To address this problem, Jia et al. [125] used a mini-batch
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of real and simulated (MBRS) JPEG compression to improve the JPEG compression attack
robustness. In the attack layer, one of several small mini-batches attacks was selected
randomly from the real, simulated, and equivalent sound layers as the noise layer. Please
note that the attacks polled by the model in the first iteration are simulated to facilitate
cumulative updates based on the differentiable gradient of the first iteration. This was
performed thanks to the Adam momentum optimizer with its historical gradient update,
which is expressed as Equations (12)–(16).

mt = β1 ·mt−1 + (1− β1) · gt (12)

vt = β2 · vt−1 + (1− β2) · g2
t (13)

m̂t =
mt

1− βt
1

(14)

v̂t =
vt

1− βt
2

(15)

θt = θt−1 −
η√

v̂t + ε
· m̂t (16)

where mt and vt denote the first and second moment estimates at the time step t , i.e., the
exponential moving average of the gradient and the gradient squared. Where β1 and β2
denote the average coefficient, usually set to a value close to 1. gt denotes the gradient in
time step. θt denotes the model parameter in time step t. η denotes the learning rate. ε
denotes a small constant added for numerical stability to prevent the denominator from
being zero. m̂t and v̂t denote unbiased estimation modified to the first and second moment
estimation, respectively.

Thanks to the Adam momentum optimizer with its historical gradient update, even
if the attack layer rotated to the non-differentiable real JPEG compression attack, the
internal parameters of the codec network could still be updated by the accumulation
of historical differentiable gradients, which avoided the problem of non-differentiable
real JPEG compression and achieved a better simulation quality of JPEG compression
effectively. However, the model ignored the feature tensor of the image in the spatial
and channel directions for image feature extraction, which led to poor robustness in
the face of high-intensity salt and pepper noise. Zhang et al. [126] proposed a pseudo-
differentiable JPEG method. JPEG pseudo-noise was the difference between the compressed
processed image and the original image. Since its backpropagation without going through
the pseudo-noise sound path, there was no problem of non-differentiable. However,
its robustness to conventional noise was poor due to the lack of noise prior when back
propagating. Ma et al. [127] proposed a robust watermarking framework by combining
reversible and irreversible mechanisms. In the reversible part, a diffusion extraction
module (DEM) (consisting of a series of fully connected layers and a Haar transform) and
a fusion separation module (FSM) were designed to implement watermark embedding
and extraction in a reversible manner. For the irreversible part, the irreversible attention
model which was composed of a series of convolution layers including full-connected
layer, squeeze and excitation block, and a dedicated noise selection module (NSM) were
introduced to improve the JPEG compression robustness.

The state-of-the-art deep learning-based image watermarking against JPEG attack algo-
rithms and performance comparison are described in Table 5. Table 5 describes the methods
from five aspects: watermark size (container size), method, structure, robustness, imper-
ceptibility, and dataset, where QF represents the quality factor of the JPEG compression.
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Table 5. A comparison of deep learning-based image watermarking against JPEG attack.

Ref. Watermark Size
(Container Size) Category Method (Effect) Robustness

(BER (%))
Imperceptibility

(PSNR (dB)) Dataset

Ahmadi et al. [108] 1024
(512 × 512)

Differentiable
approximation

CNN, Residual
connection, Circular

convolution

1.2 (50),
0 (70),
0 (90)

35.93 CIFAR 10 [103],
Pascal VOC [119]

Liu et al. [122] 30
(128 × 128)

Specific decoder
training CNN, GAN 23.8 (50) 33.5 COCO [99], CIFAR

10 [103]

Chen et al. [123] 1024
(256 × 256)

Network structure
improvement CNN, JSNet 0.097 (90),

32.421(80) – ImageNet [124],
Boss Base [102]

Jia et al. [125] 64
(128 × 128)

Network structure
improvement

CNN, Residual
connection 4.14 (50) 39.32 COCO [99]

Zhang et al. [126] 30
(128 × 128)

One-stage
end-to-end Backward ASL 12.64 – Self-datasets

Ma et al. [127] 30
(128 × 128)

Network structure
improvement

DEM,
Non-invertible

attention module
0.76 (50) 38.51 COCO [99]

4.2.2. Robust Image Watermark against Screen-Shooting Attack

Screen-shooting attacks mainly cause image transmission distortion, brightness distor-
tion, and Moiré distortion [128]. To improve the robustness of the screen-shooting attacks,
relevant studies have recently been proposed, which can be subdivided into template-based,
distortion compensation-based, decoding based on the attention mechanism, keypoint
enhancement, transform domain, and distortion simulation.

Template-based: Template-based watermarking algorithms have a high watermark-
ing capacity. The templates characterizing the watermarking information are embedded
in the image in a form similar to additive noise. To ensure robustness, templates usually
carry special data distribution features, but conventional template-based watermarking
algorithms [117,129–131] were designed with low complexity manually and thus could not
cope with sophisticated attacks. Fang et al. [132] designed a template-based watermarking
algorithm by exploiting the powerful feature learning capability of DNN. In the watermark
embedding phase, the embedding template was designed based on the insensitivity of
human eyes to the specific chromatic components, the proximity principle, and the tilt
effect. In the watermark extraction phase, a two-stage DNN was designed, containing an
auxiliary enhancement sub-network for enhancing the embedded watermark features and
classification of the sub-network for extracting the internal information of the watermark.

Distortion Compensation-based: Fang et al. [133] used the method of swapping DCT
coefficients to achieve watermark embedding and a distortion compensation extraction
algorithm to achieve the robustness of the watermark to photographic processing. Specif-
ically, a line spacing region and a symmetric embedding block were used to reduce the
distortion generated by the text.

Decoding Based on Attention Mechanism: Fang et al. [134] designed a transparency,
efficiency, robustness, and adaptability coding to effectively mitigate the conflict between
transparency, efficiency, robustness, and adaptability. A color decomposition method
was used to improve the visual quality of watermarked images, and a super-resolution
scheme was used to ensure the embedding efficiency. Bose Chaudhuri Hocquenghem
(BCH) coding [135] and an attention decoding network (ADN) were used to further ensure
robustness and adaptivity.

Keypoint Enhancement: The feature enhanced keypoints are used to locate the wa-
termark embedding region, but the existing keypoint enhancement methods [136,137]
ignore the improvement of the overall algorithm by separating the two steps of keypoint
enhancement and watermark embedding. Dong et al. [138] used a convex optimization
framework to unify the two steps to improve the accuracy of watermark extraction and
blind synchronization of embedding regions effectively.

Transform Domain: Bai et al. [139] introduced a separable noise layer over the DCT
domain in the embedding and extraction layers to simulate screen-shooting attacks. SSIM-
based loss functions were introduced to improve imperceptibility. Spatial transformation
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networks were used to correct the values of pixels on the image formed by the geometric
attacks before extracting the watermark. Considering that conventional CNN-based algo-
rithms introduce noise in the convolution operation, Lu et al. [140] used DWT and IDWT
instead of down-sampling and up-sampling operations in CNN to enable the network to
learn a more stable feature representation from the noisy samples and introduced a residual
regularization loss containing the image texture to improve the image quality and water-
mark capacity. The Fourier transform is invariant to rotation and translation; Boujerfaoui
et al. [141] improved the Fourier transform-based watermarking method using a frame-
based transmission correction of the captured image in the distortion correction process.

Distortion Simulation: Jia et al. [142] introduced a 3D rendering distortion network to
improve the robustness of the model to camera photography and introduced a human visual
system-based loss function to supervise the training of the encoder, which mainly contained
the just notice difference (JND) loss and learned perceptual image patch similarity (LPIPS)
loss of the original and watermarked images to improve the quality of the watermarked
images. Fang et al. [143] modeled the three components of distortion with the greatest
impacts: transmission distortion, luminance distortion, and Moiré distortion and further
differentiated the operation so that the network can be trained end-to-end. The network
was trained with end-to-end parameters and the residual noise was simply simulated with
Gaussian noise. For imperceptibility, a mask-based edge loss was proposed to limit the
embedding region which improved the watermarked image quality. This was performed to
address the difficulty of conventional 3D watermarking algorithms to achieve watermark
extraction from 2D meshes. Yoo et al. [144] proposed an end-to-end framework containing
an encoder, a distortion simulator (i.e., a differentiable rendering layer that simulated
the results of a 3D watermarked target after different camera angles), and a decoder to
decode from 2D meshes. Tancik et al. [145] proposed the stegastamp steganography
model to implement the encoding and decoding of hyperlinks. The encoder used a U-Net-
like [146] structure to transform a 400 × 400 tensor with 4 channels (including the input
RGB image and watermark information) into a tensor of residual image features. However,
the algorithm had a small embedding capacity.

The state-of-the-art deep learning-based image watermarking against screen-shooting
attack algorithms and performance comparison are described in Tables 6 and 7. Table 6
describes the methods from four aspects: watermark size (container size), category, ro-
bustness with BER metrics, and dataset. Table 7 describes the methods from four aspects:
watermark size (container size), category, robustness with other metrics, and dataset.

Table 6. A comparison of deep learning-based image watermarking against screen-shooting attack
with BER metrics.

Ref. Watermark Size
(Container Size) Category

Robustness (BER (%))
Dataset

Distance (cm) Angle (°)

Fang et al. [132] 128
(512 × 512)

Templated-based 1.95 (20), 2.73 (40),
11.72 (60)

4.3 (Up40), 1.17 (Up20), 7.03 (Down20), 7.03
(Down40), 5.47 (Left40), 3.91 (Left20), 2.73

(Right20), 3.52 (Right40)

ImageNet [124],
USC-SIPI [101]

Fang et al. [133] 48
(256 × 256)

Decoding based on
attention

mechanism
5.1 (15), 9.9 (35)

9.4 (Up45) 8.1 (Up30), 8.9 (Down30), 9.45
(Down45), 9.7 (Left45), 8.9 (Left30) , 9.8

(Right30), 9.3 (Right45)
Self-datasets

Fang et al. [134] 32
(512 × 512)

Distortion
compensation

2.54 (30), 3.71 (50),
5.27 (70)

6.25 (Up30), 3.13 (Up15), 12.73 (Down15),
14.12 (Down30), 7.05 (Left15), 14.46 (Left40),

5.27 (Right15), 11.52 (Right30)
COCO [99]

Dong et al. [138] 64
(64 × 64)

Keypoint
enhancement

0.43 (45), 0.35 (65) ,
0.67 (75)

2.0 (Left60), 0.66 (Left30), 0.67 (Right30), 2.68
(Right60) Self-datasets

Jia et al. [142] 100
(400 × 400)

Distortion
simulation – 1.0 (Left65), 0.7 (Left30), 0.7 (Right30), 5.3

(Right65)
Pascal VOC [119],

USC-SIPI [101]

Fang et al. [143] 30
(128 × 128)

Tamper detection 2.08 (40), 1.25 (60),
0.62 (20)

2.92/1.25 (Left/Up40), 1.25/0.93 (Left/Up20),
1.05/1.04 (Right/Down20), 0.62/0.83

(Right/Down40)
USC-SIPI [101]
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Table 7. A comparison of deep learning-based image watermarking against screen-shooting attack
with other experiment conditions.

Ref. Watermark Size
(Container Size) Category Robustness (BER (%)) Dataset

Lu et al. [140] 400
(400 × 400)

Transform domain 11.18 MIR Flickr [147]

Yoo et al. [144] – Distortion simulation 9.72 (QR = 30◦) ModelNet 40-class [148]
Tancik et al. [145] 100

(400 × 400)
Distortion simulation 0.2 ImageNet [124]

4.2.3. Robust Image Watermark against Agnostic Attack

Agnostic attacks refer to attacks where the attack model cannot access prior informa-
tion about the attack (i.e., the model cannot generate corresponding adversarial examples
precisely to guide the decoder to improve its robustness). To address these problems,
relevant studies have recently been proposed, which can be subdivided into two-stage
separable training, no-attack training, and one-stage end-to-end.

Two-stage Separable Training: Zhang et al. [129] proposed a two-stage separable
watermark training model. The first stage jointly trained the codec as well as an attack
classification discriminator which used multivariate cross-entropy loss for convergence to
obtain encoder parameters that generated stable image quality and an attack classification
discriminator that can accurately classify the type of attacks on the image. In the second
stage, a fixed encoder, a multiple classification discriminator, and an attack layer were
set up using the obtained watermarked image and attacked image prior to training a
specific decoder. However, it still did not solve the local optimal solution of the two-stage
separable training.

No Attack Training: Zhong et al. [130] introduced a multiscale fusion convolution
module, avoiding the loss of image detail feature information as the number of layers of the
network deepens, which triggered the inability of the encoder to find an effective hidden
embedding point. The invariance layer was set in the encoder and decoder to reproject
the most important information and to disable the neural connections in the independent
regions of the watermark. Chen et al. [149] proposed a watermark classification network
for implementing copyright authentication of attacked watermarks. In the training phase,
the training set was generated by calculating the NC value of each watermarked image
and classifying its labels into forged and genuine images according to the set threshold.
The training set was fed into the model and supervised by the BCE loss function to obtain
the model parameters which can accurately classify the authenticity of the watermark.
Under high-intensity attacks, the model can still distinguish the real watermark effectively.
However, the classification accuracy was affected by the NC threshold setting of the model
itself. Xu et al. [150] proposed a blockchain-based zero-watermarking approach, which
alleviates the pressure of authenticating zero-watermarks through third parties effectively.

One-stage End-to-end Training: The encoder trained on a fixed attack layer is prone to
model overfitting, which is clearly not applicable to realistic watermarking algorithms that
need to resist many different types of attacks, and Luo et al. [151] proposed the use of CNN-
based adversarial training and channel encoding which can add redundant information to
the encoded watermark to improve the algorithm robustness. Zhang et al. [152] proposed
the reverse ASL end-to-end model (i.e., the gradient propagation update of parameters was
involved in the forward propagation ASL layer, and the gradient does not pass through
the ASL layer in the reverse propagation). Reverse ASL can effectively mitigate model
overfitting and improve the robustness against agnostic attacks. Zheng et al. [153] proposed
a new Byzantine-robust algorithm WMDefence which detected Byzantine malicious clients
by embedding the degree of degradation of the model watermark.

The state-of-the-art deep learning-based image watermarking against agnostic attack
algorithms and performance comparison are described in Table 8. Table 8 describes the
methods from five aspects: watermark size (container size), category, structure, robustness,
and dataset, where ps represents the ratio of salt and pepper in salt and pepper noise.
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Table 8. A comparison of deep learning-based image watermarking against agnostic attack.

Ref. Watermark Size
(Container Size) Category Structure Robustness (Attack, Parameter) Dataset

Zhang et al. [126] 30
(128 × 128)

One-stage
end-to-end Backward ASL BER: 12.64 (JPEG, QF = 50) –

Zhang et al. [129] 64
(224 × 224)

Two-stage
separable training

CNN, GAN, Attack
classification
discriminator,

Residual network

BER: 18.54 (JPEG, QF = 50), 8.47
(Cropping, pc = 0.7), 11.79 (Rotation,

15◦), 1.27 (Salt and pepper noise,
ps = 0.01), 1.9 (Gauss filtering, 3 × 3,

σf = 2)

Pascal VOC [119]

Zhong et al. [130] 32 × 32
(128 × 128)

One-stage
end-to-end training

Multi-scale
convolution blocks,

Invariance layer

BER: 8.16 (JPEG, QF = 10), 6.61
(Cropping, 0.8), 0.97 (Salt and pepper,

ps = 0.05)

ImageNet [124],
CIFAR 10 [103]

Chen et al. [149] 64 × 64
(512 × 512)

No attack training WMNet, CNN Classification accuracy: 0.978 -

Luo et al. [151] 30
(128 × 128)

No attack training Channel coding,
CNN, GAN

BER: 10.5 (Gaussian noise, σn = 0.1),
22.9 (Salt and pepper noise, ps = 0.15) COCO [99]

5. Future Research Directions and Conclusions
5.1. Future Research Directions

On the basis of the existing problems in the current research status, this subsection
gives future research directions for image forensics.

For passive forensics, although tampering detection algorithm techniques have been
developed to some extent, there are still some problems of low generalization ability and
poor robustness. Because the performance of deep learning-based tampering localiza-
tion models depends on the training dataset heavily, the performance usually degrades
significantly for the test samples from different datasets. It requires us to analyze the
intrinsic relationship among images from different sources more deeply and improve the
network architecture to learn more effective features. The network model performance
also degrades when the images are subjected to certain post-processing attacks, such as
scaling, rotation, and JPEG compression. It requires us to perform data augmentation on
the data during training to improve the robustness of the model and push the algorithm
into practical applications. The current problem of insufficient tampering and low quality
of tampering detection datasets seriously affects the development of deep learning-based
tampering detection techniques. It is also very important to construct a dataset that meets
the actual forensic requirement. Deep learning techniques continue to evolve, bringing
many opportunities and challenges to passive image forensics. We should continuously up-
date tampering detection techniques and use more effective network models and learning
strategies to improve the accuracy and robustness of algorithms.

For active forensics, future research on robust image watermarking will use algorithms
based on deep learning. In differentiable attacks, for noise enhancement and filtering at-
tacks, choosing a more stable training framework and training methods is the primary
method to effectively solve the current training instability, imperceptibility, and robustness
tradeoff, such as using the diffusion model [154–156] and training codecs in divided stages.
To enhance geometry attacks, designing the structure and transformation of restoring syn-
chronization between watermark information and the decoder is an effective way to solve
the problem of lack of synchronization between the decoder and watermark destroyed by
geometry attacks. For example, an end-to-end deep learning model combined with the
scale-invariant feature transform (SIFT) algorithm can effectively improve the robustness
of rotation attacks. In the part of a non-differentiable attack, for a JPEG compression attack,
the design of a more effective and realistic simulation of differentiable JPEG compression
structure is the primary method to solve the problem that non-differentiable JPEG com-
pression can not achieve model training and the poor effect of differentiable simulation
JPEG training, for example, the differentiable analog JPEG combined with the attention
mechanism to improve the simulation effect. In digital screen camera attacks, designing
an effective analog distortion degradation structure is the primary method to solve the
problem of poor robustness due to the difficult prediction of screen camera attack distortion.
For example, multiple denoizing and de-denoizing processes in diffusion model [154–156]
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are used to simulate the distortion of screen photography to improve the robustness of
screen photography attacks. In the unknown attack, it is an effective method to improve
the robustness of the unknown attack to design a watermarked image in the attack layer
to generate a wider variety of attack adversarial samples after passing through the attack
layer. For example, in model training, unsupervised sample types are first enriched, and
then supervised watermark recovery accuracy is improved.

5.2. Conclusions

In this review, we synthesize existing research on deep learning-based image forensics
from both passive forensics (i.e., tampering detection) and active forensics (i.e., digital
watermarking), respectively.

For passive forensics, tampered areas of images are detected and located by analyzing
the traces left by image tampering. In this survey, we analyze and review the state-of-the-
art techniques for deep learning-based image copy-move, splicing, and generic forgery
detection. First, we introduce a framework of image forgery detection based on deep
learning, evaluation metrics, and commonly used datasets. According to the different types
of tampering detection, image forgery detection methods are classified into three categories:
image copy-move forgery detection, image splicing forgery detection, and image generic
forgery detection. Then, the state-of-the-art algorithms are compared and analyzed in
terms of four aspects: type of detection, backbone, robustness performance, and dataset.
Finally, future research directions are analyzed in light of the problems of existing tamper
detection algorithms.

For active forensics, we focus on the robustness of digital watermarking. In the
beginning, we introduce a classical end-to-end watermarking model. According to whether
the attack type is a differentiable attack or not, we subdivide it into five attacks: noise and
filtering attacks, geometric attacks, JPEG attacks, screen-shooting attacks, and agnostic
attacks. For noise and filtering attacks, most studies introduce an attack simulation layer in
the codec to generate attack counterexamples to improve its robustness, but the joint codec
training leads to the degradation of the watermarked image generated by the encoder. For
geometric attacks, the construction of geometric invariant features from two perspectives,
frequency domain coefficients and zero-watermark, ensure the spatial synchronization of
the codec to a certain extent, but it does not combine with the robustness of the other attacks.
The robustness of JPEG with low-quality factors still needs to be improved. Distortion
simulation is the most commonly used method to enhance screen-shooting attacks in
existing studies, but it suffers from the complex composition of actual distortion and low
simulation accuracy. For agnostic attacks, reverse ASL effectively improves the accuracy of
watermark recovery.

Recently, generative AI (for example, chatgpt [157] and DALL-E [158]) technologies
are developing rapidly. When it comes to distinguishing between real photos and gen-
erated photos, watermarking technology can provide some assistance. However, with
the continuous advancement of generative artificial intelligence technology, generated
photos are becoming increasingly realistic, making it challenging to rely solely on tradi-
tional watermarking technology for accurate differentiation. Generated photos may inherit
watermark information from the original photos, making them visually similar to real
photos. Additionally, generative AI technology can also generate entirely new photos
without any embedded watermarks. Therefore, relying solely on traditional watermarking
technology may not be sufficient to differentiate between real photos and generated photos.
It may be necessary to combine other image analysis and verification techniques, such as
transmembrane state interaction and visual detection algorithms, to improve the accuracy
and robustness of identification.
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