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Abstract: Currently, discovering subsequence anomalies in time series remains one of the most
topical research problems. A subsequence anomaly refers to successive points in time that are
collectively abnormal, although each point is not necessarily an outlier. Among numerous approaches
to discovering subsequence anomalies, the discord concept is considered one of the best. A time
series discord is intuitively defined as a subsequence of a given length that is maximally far away
from its non-overlapping nearest neighbor. Recently introduced, the MERLIN algorithm discovers
time series discords of every possible length in a specified range, thereby eliminating the need to set
even that sole parameter to discover discords in a time series. However, MERLIN is serial, and its
parallelization could increase the performance of discord discovery. In this article, we introduce a
novel parallelization scheme for GPUs called PALMAD, parallel arbitrary length MERLIN-based
anomaly discovery. As opposed to its serial predecessor, PALMAD employs recurrent formulas
we have derived to avoid redundant calculations, and advanced data structures for the efficient
implementation of parallel processing. Experimental evaluation over real-world and synthetic time
series shows that our algorithm outperforms parallel analogs. We also apply PALMAD to discover
anomalies in a real-world time series, employing our proposed discord heatmap technique to illustrate
the results.

Keywords: time series; anomaly detection; discord; MERLIN; DRAG; parallel algorithm; GPU; CUDA

MSC: 68T09; 68W10

1. Introduction

Over the past decades, time series data have become ubiquitous in diverse spheres
of human activity: industry, healthcare, science, social, and so on. Currently, discovering
anomalies (or outliers as a synonym) in time series remains one of the most topical research
problems. In a time series, point and subsequence anomalies can serve as the aims to be
detected [1]. The former defines a datum that deviates in a specific time instant when
compared either to the other values in the time series or to its neighboring points. The
latter refers to successive points in time whose collective behavior is unusual, although
each observation individually is not necessarily a point anomaly. Subsequence anomaly
detection is more challenging due to the need to take into account the subsequence length
among other aspects [1].

Among a wide spectrum of analytical and neural-network-based approaches to time
series subsequence anomaly detection [1–3], the discord concept [4] is considered one
of the best [5,6]. A time series discord is intuitively defined as a subsequence that is
maximally far away from its non-overlapping nearest neighbor. Discords look attractive
to an end-user since they require only one parameter to be specified, the subsequence
length. However, the application of discords is reduced by sensitivity to this single user
choice. A straightforward solution to this problem, namely, discovering discords of all the
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possible lengths and then selecting the best discords with respect to some measure, looks
computationally prohibitive.

Nevertheless, the recently introduced MERLIN algorithm [7] can efficiently and exactly
discover discords of every possible length in a specified range, being ahead of competitors
in terms of accuracy and performance. Thus, MERLIN removes the need for an end-user to
set even the above-mentioned sole parameter to discover discords in a time series. MERLIN
employs repeated calls of the DRAG algorithm [8] that discovers discords of a given length
with a distance of at least r to their nearest neighbors, and adaptive selection of the param-
eter r. However, multiple calls of the above sub-algorithm result in calculations that are
partially repeated, and being executed at once would increase the performance of MERLIN.
Furthermore, the MERLIN algorithm is serial and looks attractive for parallelization to
increase the performance of discord discovery.

In this study, we address the problem of parallelization of the MERLIN algorithm for
the discovery of arbitrary length discords on a GPU, continuing our research on accelerating
various time series mining tasks with parallel architectures and in-database time series
analysis [9–16]. The article’s contribution can be summarized as follows:

• We perform a thorough review of works related to discord-based approaches to discov-
ering time series anomalies and their parallelization for diverse hardware platforms.

• Based on MERLIN [7], we introduce the parallel algorithm PALMAD (parallel arbi-
trary length MERLIN-based anomaly discovery) for the discovery of arbitrary length
discords on a graphics processor. As per the review above, PALMAD is the sole
parallel algorithm capable of discovering all discords with lengths within a specified
range, rather than discords of a specific length. In our algorithm, we employ our
derived recurrent formulas on mean values and standard deviations of subsequences
to avoid redundant calculations and utilize array-based data structures to provide
efficient parallel processing.

• We carry out extensive experiments to evaluate our algorithm over five real-world and
two synthetic time series against two state-of-the-art parallel analogs that discover
discords of a specific length. To provide a fair comparison, we limit the range of
discord lengths by one discord and measure the average running time to discover one
discord. In the experiments, PALMAD significantly outran its closest rival in terms
of the average running time to discover one discord: by at least two times and three
orders of magnitude in the case of the real and synthetic time series, respectively.

• We apply PALMAD to anomaly discovery in a real-world time series from a smart heat-
ing control system, employing our proposed discord heatmap technique to illustrate
the results. In addition, we establish a repository [17] that contains the algorithm’s
source code, data, etc., to facilitate the reproducibility of our study.

The remainder of the article is organized as follows. In Section 2, we discuss related
works. Section 3 contains notation and formal definitions, along with a short description
of the original serial algorithm. Section 4 introduces the proposed parallel algorithm to
discover time series discords on a GPU. In Section 5, we give the results and discussion of
the experimental evaluation of our algorithm. Section 6 describes a case study on discord
discovery in a real-world time series. Finally, in Section 7, we summarize the results
obtained and suggest directions for further research.

2. Related Work

The time series discord concept was introduced by Keogh et al. [4] and is currently con-
sidered one of the best analytical approaches to discovering anomalies in time series [5,6].
A time series discord is intuitively defined as the subsequence of a time series that is the
most distant from its non-overlapping nearest neighbor. Discords look attractive to an
end-user since they require only one parameter to be specified, the subsequence length.
Below, we consider discord-based research on discovering anomalies, including studies
that address the parallelization of the approaches above.
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The serial approaches to discord discovery are summarized in Table 1. In [4], Keogh
et al. proposed the HOTSAX (heuristically ordered time series using symbolic aggregate
approximation) algorithm for discord discovery in a time series that can be entirely placed
in RAM. HOTSAX employs time series encoding through the SAX technique [18] and the
Euclidean distance. HOTSAX iterates through all the pairs of subsequences, calculating the
distance between them, and finds the maximum among the distances to the nearest neigh-
bor. The algorithm employs the prefix trie [19] data structure to index the subsequences.
When iterating, unpromising subsequences are discarded without calculating distances. A
subsequence with a neighbor closer than the best-so-far maximum of distances to all the
nearest neighbors is unpromising. HOTSAX exploits a certain heuristic that allows one to
discard more unpromising candidates. Improvements to HOTSAX include iSAX [20] and
HOT-iSAX [21] (indexable SAX), WAT [22,23] (application of the Haar wavelets instead of
SAX and augmented trie), HashDD [24] (employing a hash table instead of the prefix trie),
HDD-MBR [25] (application of R-trees), BitClusterDiscord [26] (employing clustering of
the bit representation of subsequences), and HST (HOTSAX time) [27] (reduction in the
size of the discord search space through the warm-up process and the similarity between
subsequences close in time).

In [28], Senin et al. proposed the HOTSAX-based RRA (rare rule anomaly) algorithm
to discover variable-length discords. RRA deals with a time series discretized with SAX, ap-
plying grammar-induction procedures. Since symbols infrequently used in grammar rules
are non-repetitive and, thus, potentially unusual, the discords correspond to infrequent
grammar rules that vary in length. Taking into account that the lengths of the subsequences
vary, the distance between them is calculated by shrinking the longest subsequence with
the piecewise aggregate approximation (PAA) [29] to obtain subsequences of the same
length. Although the RRA algorithm is a step forward from HOTSAX to parameter-free
discord discovery, like its predecessor it is limited to RAM-stored time series.

In [8], Yankov, Keogh et al. presented the DRAG (discord range aware gathering)
algorithm for discovering discords in a time series stored on a disk rather than in RAM.
DRAG introduces the range discord concept, where such a discord has a distance of at least
r to its non-overlapping nearest neighbor, and r is a user-defined threshold. The DRAG
algorithm performs in two phases, namely, candidate selection (collecting potential range
discords) and discord refinement (discarding false positives), with each phase requiring
one linear scan through the time series on the disk. In [30], Son slightly improved DRAG
by employing a hash bucket data structure to speed up the candidate selection phase. The
authors of DRAG proposed the following procedure to choose the parameter r. Through
uniform sampling, one can obtain a maximum length fragment of the original time series
that fits in RAM. Next, the HOTSAX algorithm discovers discords in the above-obtained
fragment. Finally, the r threshold is assumed to be equal to the distance from the discord
found to its nearest neighbor.

However, in the DRAG algorithm, the above-described heuristic does not define a
formal way to choose the parameter r to guarantee the efficiency of discord discovery [31].
Ideally, r should be set in such a way that it is a little less than the distance between the
discord eventually found and its nearest neighbor [7]. Then, the time and space complexity
of DRAG is O(mn), where n is the length of the time series and m is the discord length. If
the value of r is significantly less than the above-mentioned distance, then the algorithm
will find the discord, but the time and spatial complexity will be higher, O(n2). Finally, if r
is greater than the above distance, then no discords will be found. In addition, DRAG (like
HOTSAX, its predecessor) is not able to discover all the discords in the following sense:
the algorithm finds discords of a single specified length but not discords of every possible
length in a specified range. In the latter case, a brute-force approach involving cyclic runs
of the DRAG algorithm for a specified range of the discord length does not work, since at
each iteration of such a loop we should choose the parameter r from scratch.
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Table 1. Serial discord discovery algorithms.

Algorithm Year Ancestor (If Any) and Approach

HOTSAX [4] 2005

• Discord concept is introduced
• Discovering discords in RAM
• Encoding of subsequences through SAX [18]
• Indexing subsequences through the prefix trie
• Pruning unpromising candidates through a heuristic

WAT [22,23] 2006
2007

• Based on HOTSAX [4]
• Encoding of subsequences through Haar wavelets
• Indexing subsequences through the augmented trie

DRAG [8] 2007

• Range discord concept is introduced
• Discovering discords on a disk rather than in RAM
• Two phases, one linear scan through the time series each:

candidate selection and discord refinement

iSAX [20]
HOT-iSAX [21]

2008
2011

• Based on HOTSAX [4]
• Indexing subsequences through indexable SAX

BitClusterDiscord [26] 2013 • Based on HOTSAX [4]
• Clustering of the bit representation of subsequences

RRA [28] 2015
• Encoding of subsequences through SAX [18]
• Calculation of distances between subsequences

by shrinking the longest subsequence through PAA [29]

HashDD [24] 2016 • Based on HOTSAX [4]
• Indexing subsequences through the hash table

HDD-MBR [25] 2018 • Based on HOTSAX [4]
• Indexing subsequences through R-trees

Matrix profile (MP) [32] 2018 Discords are discovered as a by-product of MP

Son [30] 2020

• Based on DRAG [8]
• Encoding and indexing of sequences through SAX [18]

and hash tables in the candidate selection and discord
refinement phases, respectively

MERLIN [7] 2020
• Discovering discords of arbitrary length
• Adaptive selection of the range threshold through

repeated calls of DRAG [8]

HST [27] 2022
• Based on HOTSAX [4]
• Reducing the search space through the warm-up process

and the similarity between subsequences close in time

MERLIN++ [33] 2023
• Based on MERLIN [7]
• Acceleration of the discord refinement phase through

Orchard’s clustering algorithm [34,35]

Recently introduced by Keogh et al., the MERLIN algorithm [7] overcomes the above-
described limitations of DRAG. MERLIN calls DRAG repeatedly and adaptively selects
the parameter r. In the experiments, MERLIN efficiently and exactly discovers discords of
every possible length, being ahead of competitors both in accuracy and performance [7].
The authors also empirically showed that MERLIN is able to discover point, contextual,
and collective anomalies according to the taxonomy in [5]. The authors also mentioned
that despite the recent explosion of deep learning anomaly detection methods [2,3], it is not
obvious that they outperform discord-based approaches since the former, by their nature,
require many critical parameters to be set, whereas the latter are domain-independent
and require one intuitive parameter to be set that can even be removed by MERLIN.
Moreover, in [33], the authors introduced MERLIN++, a descendant of the algorithm
above, where the discord refinement phase is accelerated through Orchard’s clustering
algorithm [34,35] which helps to prune non-nearest neighbors of candidates based on
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the triangular inequality. In the experiments [33], MERLIN++ is 10 times ahead of its
predecessor on a time series of length 216 generated through the random walk model [36].
However, the MERLIN/MERLIN++ algorithm is still serial, and its parallelization (for
various hardware platforms) could increase the performance of discord discovery. In
addition, multiple calls of DRAG result in calculations that are partially repeated (e.g.,
normalization of the subsequences in a specified range of length), and being executed
simultaneously would also increase the performance.

Research that addresses the problem of discord discovery parallelization includes the
following (see Table 2 for the summary). In [10,13], Zymbler et al. proposed a parallelization
schema for HOTSAX to discover discords with Intel many-core processors or GPUs through
the OpenMP [37] or OpenACC [38] technologies, respectively. The algorithm employs a
matrix data layout to organize calculations with as many vectorizable loops as possible.
Similarly to its predecessor, the algorithm distinguishes the following sets of subsequences:
ones with the least frequent SAX words and the rest; and for any subsequence, ones whose
SAX words match the given subsequence’s SAX word and the rest. When iterating all
the subsequences through two nested loops, the algorithm parallelizes separately and
differently for the outer and inner loops, depending on the number of running threads and
the cardinality of the above-mentioned sets.

Table 2. Parallel discord discovery algorithms.

Algorithm Year
Platform Serial Ancestor

(If Any) or ApproachHardware Software

DRAG [39] 2008 Simulation of MapReduce

DRAG [8]DDD [40] 2015 HPC cluster Spark

PDD [41] 2016 HPC cluster Spark

GPU-STAMP [32] 2018 GPU CUDA

Matrix profile [32]SCAMP [42] 2019 GPU CUDA

MP-HPC [43] 2019 HPC cluster MPI

Zymbler et al. [10,13] 2019 Many-core CPU
GPU

OpenMP
OpenACC HOTSAX [4]

Zymbler et al. [12] 2021 HPC cluster
of many-core CPU

MPI
OpenMP DRAG [8]

KBF_GPU [44] 2021 GPU CUDA
Brute-force search
for K-distance
discord [44]

Zhu et al. [45] 2021 GPU CUDA Computational
patterns

In [39] (an expanded version of [8]), Yankov, Keogh et al. discussed the parallel version
of DRAG that is based on the MapReduce paradigm [46], and the key idea is as follows.
Let the input time series be partitioned evenly across P high-performance cluster nodes.
Each node selects candidates in its own partition with the same parameter r, resulting in
the local candidate set Ci. Then, the global candidate set C is constructed as C = ∪P

i=1Ci and
sent to each cluster node. Next, a node refines candidates in its own partition, taking the
global candidate set C as an input, and produces the local refined candidate set C̃i. Finally,
the global discord set D is computed as D = ∩P

i=1C̃i. In the experimental evaluation, the
authors, however, just simulated the above-mentioned scheme on up to eight computers,
resulting in a close-to-linear speedup.

In [12], Zymbler et al. introduced a parallelization scheme for DRAG on a high-
performance cluster with Intel many-core processors. For the cluster node, the authors
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define matrix data structures and employ thread-level parallelism through the OpenMP
technology [37], whereas communication among the cluster nodes is implemented through
MPI (message passing interface) [47]. As as opposed to the DRAG parallelization scheme.
At each cluster node, the authors first refine the local candidate set Ci with respect to
the same parameter r, resulting in the C̃i set, and then construct the global candidate
set as C = ∪P

i=1C̃i, relying on the fact that a candidate is not a true discord if it was
pruned by at least one cluster node during the selection phase. In the experiments [12],
the authors showed that such a technique allows for a significant reduction in the global
candidate set while increasing the overall algorithm’s performance. The algorithm also
significantly outperforms the following DRAG-based parallel discord discovery algorithms
for high-performance clusters: DDD (distributed discord discovery) [40] and PDD (parallel
discord discovery) [41]. The above-mentioned competitors are far behind due to the fact
that they involve intensive data exchanges across cluster nodes. However, the above-
described parallelization still cannot efficiently discover discords of every possible length
in a specified range.

In the review, we should also mention the matrix profile (hereinafter MP) concept
proposed by Keogh et al. [32]. For a given time series, MP can informally be defined as a
time series, where the i-th element is the distance from the i-th subsequence of the original
time series to its non-overlapping nearest neighbor. MP plays the role of a building block
on which the solutions of various time series motif-discovery-related problems are based
(semantic motifs [48], snippets [49], chains [50], etc.). According to the above definition,
top-k discords can be discovered as a by-product of the MP calculation, since they are the
subsequences on which the top-k maximum values in MP are achieved. However, the
time complexity of MP computation is high, namely, O(n2) (where n is the time series
length) [32,51], so straightforward employment of MP in the discord discovery results in
low performance, as has been evaluated in the following experiments. The serial SCRIMP
algorithm [32] is inferior to MERLIN [7]. Parallel MP algorithms for a graphics processor
and a high-performance cluster, GPU-STAMP [32] and MP-HPC [43], respectively, are
inferior to the parallel discord discovery algorithm for a high-performance cluster with
Intel many-core processors proposed in [12].

In [44], Thuy et al. introduced the notion of the K-distance discord, namely, a sub-
sequence with the largest sum of distances to its non-overlapping K nearest neighbors.
Such an approach aims at solving the so-called “twin freak” problem [52], where a discord
fails to discover an anomalous (rare) subsequence if it occurs more than once in the time
series and is a modification of the J-distance discord [53] concept, where the distance
between a subsequence and its k-th non-overlapping nearest neighbor is employed. The
authors also presented the KBF_GPU (brute-force for K-distance discord) algorithm that
accelerates K-distance discord discovery on a graphics processor. KBF_GPU iterates all
the subsequences of a given time series through two nested loops, where the inner loop is
parallelized and adapted to calculate the sum of distances. In the experiments, the authors,
however, compare their algorithm only with serial HOTSAX [4], and the latter, as expected,
is significantly inferior to KBF_GPU.

In [45], Zhu et al. presented a parallel algorithm to accelerate discord discovery with
GPU. The authors exploit the normalized Euclidean distance and its efficient calculation
through the Pearson correlation using the technique proposed in [31]. To provide high
performance of discord discovery, the algorithm employs two computational patterns.
The first one prescribes the following two-step procedure. First, calculate the minimum
distance between the discord candidate subsequence and all other subsequences of the time
series that do not overlap the candidate. Then, find a candidate for whom the maximum
distance among all the candidates is achieved. The second pattern assumes an early stop of
calculations in the pattern above when the distance between the candidate and a certain
subsequence is less than the best-so-far distance. In such a case, both the candidate and
the subsequence are obviously not discords, and we do not need to calculate distances
from the candidate to other non-overlapping subsequences. In the experiments [45], the
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proposed algorithm outran SCAMP [42], which is currently the fastest parallel algorithm
for calculating the matrix profile. However, the proposed computational patterns limit
the result to a single (albeit the most important) discord of the time series, whereas the
above-described algorithms are based on the range discord concept and are able to discover
the top-k discords, where the parameter k is prespecified by an expert in the subject domain.

Concluding our overview of related work, it can be seen that, currently, MERLIN/MER-
LIN++ [7,33], based on the range discord concept [8], is one of the most promising ap-
proaches to discover anomalies in time series. Moreover, being analytical and agnostic, this
algorithm is at least competitive with deep learning methods. However, parallelization of
MERLIN/MERLIN++ could increase the performance of discord discovery. Such paral-
lelization is a topical issue since, to the best of our knowledge, no research has addressed
the accelerating discovery of discords of every possible length with a GPU or any other
parallel hardware architecture.

3. Preliminaries

Prior to detailing the proposed parallel algorithm for discord discovery in
Sections 3.1 and 3.2, we introduce basic notation and formal definitions according to [7,8]
and give an overview of the original serial algorithms MERLIN and DRAG, on which our
development is based.

3.1. Notation and Definitions

A time series is a chronologically ordered sequence of real-valued numbers:

T = {ti}n
i=1, ti ∈ R. (1)

The length of a time series, n, is denoted by |T|. Hereinafter, we assume that the time
series T fit into the main memory.

A subsequence Ti, m of a time series T is its subset of m successive elements that starts at
the i-th position:

Ti, m = {tk}i+m−1
k=i , 1 ≤ i ≤ n−m + 1, 3 ≤ m� n. (2)

We denote the set of all m-length subsequences in T by Sm
T . Let N denote the number

of subsequences in Sm
T , i.e., N = |Sm

T | = n−m + 1.
A distance function for any two m-length subsequences is a non-negative and symmetric

function Dist: Rm ×Rm → R.
Given a time series T and its two subsequences Ti, m and Tj, m, we say that they are

non-self match to each other at distance Dist(Ti, m, Tj, m) if |i − j| ≥ m. Let us denote a
non-self match of a subsequence C ∈ Sm

T by MC.
Given a time series T, its subsequence D ∈ Sm

T is said to be the discord if D has the
largest distance to its nearest non-self match. Formally speaking, the discord D meets
the following:

∀C ∈ Sm
T min

(
Dist(D, MD)

)
> min

(
Dist(C, MC)

)
. (3)

The definition above can be generalized from top-1 to top-k discord as follows: D ∈ Sm
T

is said to be the k-th discord if the distance to its k-th nearest non-self match is the largest.
Given the positive real number r, the discord at a distance of at least r from its nearest

non-self match is called the range discord. That is, the range discord D with respect to the
parameter r meets the following: min

(
Dist(D, MD)

)
≥ r.

The MERLIN [7] and DRAG [8] algorithms deal with subsequences of the time series
that have been previously z-normalized to have a mean of zero and a standard deviation
of one. Here, the z-normalization of a subsequence X = {x}m

i=1 ∈ Sm
T is defined as a

subsequence X̂ = {x̂}m
i=1, where
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x̂i =
xi − µX

σX
, µX =

1
m

m

∑
i=1

xi, σ2
X =

1
m

m

∑
i=1

x2
i − µ2. (4)

Both the MERLIN and DRAG algorithms employ the Euclidean metric as the Dist(· , · )
function to measure the distance between subsequences. It is defined as follows. Let
us have X, Y ∈ Sm

T , then, the Euclidean distance between the subsequences is calculated
as below:

ED(X, Y) =

√
m

∑
i=1

(xi − yi)2. (5)

In our study, motivated by the highest possible performance of discord discovery,
we employ the square of the Euclidean metric as a distance function. For the sake of
simplicity, we denote by EDnorm the Euclidean distance between two z-normalized subse-
quences: EDnorm(X, Y) = ED(X̂, Ŷ). To compute ED2

norm, we further employ the following
technique proposed in [31] that allows for faster calculation than in Equation (5):

ED2
norm(X, Y) = 2m

(
1− X·Y−m· µX · µY

m· σX · σY

)
, (6)

where X·Y denotes the scalar product of vectors X, Y ∈ Rm.

3.2. MERLIN and DRAG Algorithms

Algorithm 1 depicts a pseudocode of MERLIN [7] (up to discovering the top-k discords
of each length, instead of all discords in the specified length range). Hereinafter, let us have
an n-length time series T, and we are to find a set D of its discords that have a length in the
range from minL to maxL (where minL ≤ maxL� n), so that D = ∪maxL

m=minLDm, where Dm
denotes a subset of m-length discords. The distance to the d ∈ D discord’s nearest neighbor
is denoted by d.nnDist.

Algorithm 1 MERLIN (IN T, minL, maxL, topK; OUT D)

1: D ← ∅; r ← 2
√

minL; nnDistminL ← −∞
2: while nnDistminL < 0 and |DminL| < topK do
3: DminL ← DRAG(T, minL, r); D ← D ∪ DminL; nnDistminL ← min

d∈DminL
d.nnDist

4: r ← 0.5 · r
5: for i← minL + 1 to minL + 4 do
6: nnDisti ← −∞
7: while nnDisti < 0 and |Di| < topK do
8: r ← 0.99 · nnDisti−1
9: Di ← DRAG(T, i, r); D ← D ∪ Di; nnDisti ← min

d∈Di
d.nnDist

10: r ← 0.99 · r
11: for i← minL + 5 to maxL do
12: µ← Mean({nnDistk}i−5

k=i−1); σ← Std({nnDistk}i−5
k=i−1); r ← µ− 2σ

13: Di ← DRAG(T, i, r); D ← D ∪ Di; nnDisti ← min
d∈Di

d.nnDist

14: while nnDisti < 0 and |Di| < topK do
15: Di ← DRAG(T, i, r); D ← D ∪ Di; nnDisti ← min

d∈Di
d.nnDist

16: r ← r− σ

17: return D

The algorithm prescribes the following procedure to select the parameter r. Discords
are discovered sequentially, starting from the minimum length of the specified discord
range to the maximum one. At each step, MERLIN calculates the arithmetic mean µ and
the standard deviation σ of the last five distances from the discords found to their nearest
neighbors and then calls the DRAG algorithm, passing it the parameter r = µ− 2σ. If
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DRAG has not found a discord, then σ is subtracted from r until DRAG stops successfully
(i.e., a discord will be found). For the first five discord lengths, the parameter r is set as
follows. For discords of minimum length minL, the parameter is set as r = 2

√
minL since it

is the maximum possible distance between any pair of minL-length subsequences, and then
r is reduced by half until DRAG, with such a parameter, results in success. To obtain the
next four discord lengths, the algorithm takes the distance from the discord to its nearest
neighbor obtained in the previous step, minus a small value equal to 1%. The subtraction
of an additional 1% proceeds until the discord discovery with such a parameter results in
success. For a detailed explanation of the above-described procedure, we refer the reader
to the original work [7].

The DRAG algorithm [8] (see Algorithm 2) performs in two phases, namely, the
candidate selection and discord refinement, where it collects potential range discords and
discards false positives, respectively. In the first phase, DRAG scans through the time
series T, and for each subsequence s ∈ Sm

T it validates the possibility for each candidate
c already in the candidate set C to be a discord. If a candidate c fails the validation, then
it is removed from this set. In the end, the new s is either added to the candidate set, if
it is likely to be a discord, or it is pruned. In the second phase, the algorithm initially
sets the distances of all candidates to their nearest neighbors to positive infinity. Then,
DRAG scans through the time series T, calculating the distance between each subsequence
s ∈ Sm

T and each candidate c. When calculating ED(s, c), the EarlyAbandonED procedure
stops the summation of ∑m

k=1(sk − ck)
2 if it reaches k = `, such that 1 ≤ ` ≤ m for

which ∑`
k=1(sk − ck)

2 ≥ c.nnDist2. If the distance is less than r, then the candidate is a
false positive and permanently removed from C. If the above-mentioned distance is less
than the current value of c.nnDist (and still greater than r, otherwise it would have been
removed), then the current distance to the nearest neighbor is updated. The correctness of
the above-described procedure is proved in the original work [8].

Algorithm 2 DRAG (IN T, m, r; OUT D)
PHASE 1. SELECT CANDIDATES

1: C ← {T1, m}
2: for all s ∈ Sm

T r T1, m do
3: isCand← TRUE
4: for all c ∈ C and c ∈ Ms do
5: if ED(s, c) < r then
6: C ← C r c
7: isCand← FALSE
8: if isCand then
9: C ← C ∪ s

10: return C

PHASE 2. REFINE DISCORDS

1: D ← ∅; ∀c ∈ C c.nnDist← +∞
2: for all s ∈ Sm

T do
3: for all c ∈ C and c ∈ Ms where s 6= c do
4: dist← Early Abandon ED(s, c)
5: if dist < r then
6: C ← C r c
7: else
8: D ← D ∪ c
9: c.nnDist← min(c.nnDist, dist)

10: return D

4. Arbitrary Length Discord Discovery with GPU

Currently, a GPU (graphics processing unit) [54] is one of the most popular many-
core hardware platforms. GPUs fit well for SIMD (single instructions multiple data)
computations since they are composed of symmetric streaming multiprocessors, each of
which, in turn, consists of symmetric CUDA (compute unified device architecture) cores.
The CUDA API (application programming interface) makes it possible to assign multiple
threads to execute the same set of instructions over multiple data. In CUDA, all threads
form a grid consisting of blocks. In a block, threads are divided into warps, logical groups of
32 threads. The block’s threads run in parallel and communicate with each other through
shared memory. A CUDA function is called a kernel. When running a kernel on a GPU, an
application programmer specifies both the number of blocks in the grid and the number of
threads in each block.

Below, in Sections 4.1 and 4.2, respectively, we introduce the general architecture
and data structures of PALMAD, the parallel algorithm to discover discords of every
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possible length in a specified range on a GPU that is based on the original serial MERLIN
algorithm [7]. PALMAD employs PD3 (parallel DRAG-based discord discovery) [55], our
parallel version of the original serial DRAG algorithm [8]. Similarly to the original serial
algorithm, PD3 performs in two phases, where each phase is parallelized separately from
the other. In Sections 4.3 and 4.4, we discuss the parallelization of the candidate selection
and discord refinement phases, respectively.

4.1. General Architecture

In Figure 1, we depict the general architecture of PALMAD. Basically, our parallel
algorithm follows the computational scheme of its serial predecessor (cf. Algorithm 1).
PALMAD employs repeated calls of PD3, our designed parallel version of the serial DRAG
algorithm (see Algorithm 2 and lines 3, 9, 13, and 15 in Algorithm 1) for a graphics processor.
As opposed to the original algorithm, PALMAD avoids redundant calculations in iterative
calls of DRAG when the subsequence length is one more than at the previous step. Indeed,
to calculate the distance between any two candidate subsequences, we need to partially
repeat the same calculations regarding subsequences that are one less length self-matches
to the candidates above. More formally, for any i, j (1 < i, j ≤ n− m and 3 ≤ m � n),
when calculating ED2

norm(Ti, m, Tj, m) through Equation (6) from scratch, we partially repeat
calculations of both the mean values and standard deviations of subsequences Ti, m−1 and
Tj, m−1 through Equation (4).

Figure 1. General architecture of PALMAD.

To avoid the overhead above, we employ the vectors µ̄, σ̄ ∈ Rn−minL+1, namely, the
mean values and standard deviations of all the given time series subsequences of the given
length, respectively. In these vectors, the first n−m + 1 elements are processed, where m is
the given subsequence length (minL ≤ m ≤ maxL), and the rest are left unattended.

For the minL-length subsequences, these vectors are calculated according to Equation (4)
once before the very first call of PD3 (see line 3 in Algorithm 1), whereas for the rest of the
values of m, the vectors µ̄ and σ̄ are updated before each further call of PD3 (see lines 9, 13,
and 15 in Algorithm 1) according to the following recurrent formulas:

µTi, m+1 =
1

m + 1
(
mµTi, m + ti+m

)
, (7)

σ2
Ti, m+1

=
m

m + 1

(
σ2

Ti, m
+

1
m + 1

(
µTi, m − ti+m

)2
)

. (8)
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In order not to overload the article’s text with details, we present the lemma with the
proof of Equations (7) and (8) in the Appendix A.

The initial calculation and update of the vectors µ̄ and σ̄ are implemented as CUDA
kernels. We form a grid of N threads, where the number of threads in each block is the
algorithm’s parameter that is set as a multiple of the GPU warp size. Each thread calculates
elements of the vectors µ̄ and σ̄ according to Equations (7) and (8).

4.2. Data Layout

In Figure 2, we depict the algorithm’s data structures we designed. The above-
mentioned vectors µ̄, σ̄ ∈ Rn−minL+1 for each subsequence store its mean value and
standard deviation, µ̄(i) = µTi, m and σ̄(i) = σTi, m , respectively.

Figure 2. Data structures of the algorithm: µ̄ and σ̄ are the vectors of the mean value and standard de-
viation; Cand and Neighbors are the bitmaps, where an element is one if a correspondent subsequence
is a candidate to discord and zero otherwise; nnDist is the vector of distances, where an element is a
distance from a correspondent subsequence to its nearest neighbor if the subsequence is a candidate
discord and +∞ otherwise. Data related to the threshold r, subsequences, and their nearest neighbors
are shown in red, blue, and green, respectively.

Next, based on Formulas (7) and (8), for each subsequence, we calculate the dis-
tance to its non-overlapping nearest neighbor. The real-valued vector nnDist ∈ RN ,
for a subsequence of the input time series, contains the distance to its nearest neighbor:
nnDist(i) = min

(
ED2

norm(Ti, m, MTi, m)
)
.

Two Boolean-valued vectors Cand, Neighbor ∈ BN are the bitmaps for the subse-
quences and their nearest neighbors, respectively: Cand(i) = TRUE (or Neighbor(i) = TRUE,
respectively) if the subsequence Ti, m (or its nearest neighbor, respectively) is a discord,
and FALSE otherwise. These bitmaps are initialized with TRUE values. Further, we employ
element-wise conjunction of the bitmaps above to discard more candidates during pro-
cessing, relying on the obvious fact that a subsequence that is not a discord cannot have a
nearest neighbor that is a discord.

To implement the candidate selection and discord refinement phases, we exploit the
data parallelism concept and segment the data as depicted in Figure 3. The time series
is divided into equal-length segments, where each segment is processed separately by a
block of GPU threads. Performing the phase, the thread block scans the subsequences in a
chunk-wise manner. The number of elements in a chunk is equal to the segment length,
and the first chunk begins with the m-th element in the segment. Such a technique avoids
redundant checks if candidates and subsequences in chunks overlap.

The segment length is the algorithm’s parameter to be set as a multiple of the GPU
warp size. To balance the load of threads in the block, we require that the number of
m-length subsequences in the time series be a multiple of the number of subsequences of
the specified length in the segment. If this is not the case, we pad the time series to the
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right with dummy positive infinity-valued elements. Let us denote the segment length and
the number of m-length subsequences in the segment by seglen and segN, respectively, and
then segN = seglen−m + 1. Let us denote the number of dummy elements in the rightmost
segment by pad, and then it is defined as follows:

pad =

m− 1, N mod segN = 0

d N
segN

e· segN + 2(m− 1)− n, otherwise
. (9)

Figure 3. Data segmentation in the algorithm: T(i) and Chunk(i) are a segment and a portion of the
time series, respectively, processed by a block of GPU threads; pad is the number of +∞ elements
inserted to provide the load balance. Data related to the m-length overlapping for avoiding redundant
checks, subsequences, and their nearest neighbors are shown in red, blue, and green, respectively.

4.3. Parallelization of Candidate Selection

Algorithm 3 depicts a pseudocode of our parallelization of the candidate selection
phase. The respective CUDA kernel forms a grid consisting of d N

segNe blocks of segN threads
in each block. A thread block considers the segment subsequences as local candidates
for discords and performs chunk-wise processing of the subsequences that are located to
the right of the segment and do not overlap with the candidates. The processing of the
subsequences is as follows. If the distance from the candidate to the subsequence is less
than the parameter r, then the candidate and the subsequence are excluded from further
processing as they are obviously not discords (the corresponding flags in the bitmaps are
set to FALSE). If all the local candidates are discarded, the block terminates all its threads
ahead of schedule.

In Figure 4, we show in detail how the block’s threads work. The thread block
loads its segment into the shared memory once before starting calculations, and at each
scanning step, it also loads there the current chunk located to the right of the segment. This
technique allows for increasing the algorithm’s performance by reducing the number of
reads of the time series elements from the global memory. Next, the block threads calculate
scalar products, storing the results in shared memory: firstly, products between the first
subsequence of the segment and all the subsequences of the current chunk, and then those
between the first subsequence of the current chunk and all the subsequences of the segment
(the vectors QTrow, QTcol ∈ RsegN in lines 4–7 and 8 in Algorithm 3, respectively).

Further, based on the obtained vector QTcol and the pre-calculated vectors µ̄, σ̄, we
calculate the distances between the first subsequence of the chunk and all the subsequences
of the segment through Equation (6) (see line 9 in Algorithm 3). Employing the calculated
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distances, we discard unpromising candidates located in the segment and the current chunk
(see lines 10–11 in Algorithm 3). If all the candidates in the segment are discarded, then the
block stops (see lines 14–15 in Algorithm 3).

Algorithm 3 PD3SELECT (IN T, m, r; OUT C)

1: Cand← TRUE; Neighbor← TRUE
2: for all T(i) ∈ T do . PARALLEL (block)
3: for all Chunk(j) ∈ T(i) where i ≤ j do . PARALLEL (thread)
4: if i = j then
5: QTrow← CALCDOTPRODUCTS(T(i)

1, m, Chunk(j))
6: continue
7: QTrow← UPDATEDOTPRODUCTS(QTrow, T(i)

1, m, Chunk(j))

8: QTcol← CALCDOTPRODUCTS(Chunk(j)
1, m, T(i))

9: dist← CALCDIST(Chunk(j)
1, m, T(i), QTcol, µ̄, σ̄)

10: if dist < r then
11: Cand(i· segN + tid)← FALSE; Neighbor(j· segN + 1)← FALSE
12: else
13: nnDist(j · segN + 1)← min

(
dist, nnDist(j · segN + 1)

)
14: if not

∨(i+1)·segN
k=i·segN Cand(k) then

15: break
16: for all Chunk(j)

k, m ∈ Sm
Chunk(j) r Chunk(j)

1, m do . PARALLEL (thread)

17: QTcol← UPDATEDOTPRODUCTS(QTcol, QTrow, Chunk(j)
k, m, T(i))

18: dist← CALCDIST(Chunk(j)
k, m, T(i), QTcol, µ̄, σ̄)

19: if dist < r then
20: Cand(i· segN + tid)← FALSE; Neighbor(j· segN + k)← FALSE
21: else
22: nnDist(j · segN + 1)← min

(
dist, nnDist(j · segN + 1)

)
23: if not

∨(i+1)·segN
k=i·segN Cand(k) then

24: break
25: C ←

{
{Ti, m ∈ Sm

T ; nnDist(i)} | 1 ≤ i ≤ n−m + 1, Cand(i) = TRUE
}

26: return C

Figure 4. Computational kernel for the candidate selection phase.

After that, the block threads perform similar actions over the remaining subsequences
of the current chunk; however, they calculate scalar products more efficiently (see lines 16–24
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in Algorithm 3). We calculate the scalar products between the current subsequence of
the chunk and all the subsequences of the segment (i.e., the vector QTcol) based on the
previously calculated vector QTrow and the vector QTcol obtained at the previous iteration
(see line 16 in Algorithm 3). To calculate the scalar product of the k-th (1 < k ≤ segN)

subsequence in the Chunk(j) and a subsequence in the segment T(i), we employ the follow-
ing formula:

QTcol(tid) =


QTcol(tid− 1) + T(i)

tid, m·Chunk(j)
k, m(m)−

−T(i)
tid−1, m(1)·Chunk(j)

k−1, m(1), 1 < tid ≤ segN
QTrow(k), tid = 1

, (10)

where tid denotes the thread’s number in the block. Since in Equation (10), the first term is
obtained from the previous iteration, we achieve the O(1) complexity of the scalar product
calculation instead of O(m) as in the straightforward case.

4.4. Parallelization of Discord Refinement

Parallelization of the discord refinement phase (see Algorithm 4) is implemented
through two CUDA kernels called one after the other. The first one trivially refines discords
obtained in the previous phase through the element-wise conjunction of the Cand and
Neighbor bitmap vectors, writing the result to the former. This operation allows for pruning
the nearest neighbors of the subsequences discarded at the selection phase.

Algorithm 4 PD3REFINE (IN T, m, r; OUT D)

1: for all Ti, m ∈ Sm
T do . PARALLEL (thread)

2: Cand(i)← Cand(i) ∧Neighbor(i)
3: for all T(i) ∈ T where

∧(i+1)·segN
k=i·segN Cand(k) = TRUE do . PARALLEL (block)

4: for all Chunk(j) ∈ T(i) where i ≥ j do . PARALLEL (thread)
5: if i = j then
6: QTrow← CALCDOTPRODUCTS(T(i)

1, m, Chunk(j))
7: continue
8: QTrow← UPDATEDOTPRODUCTS(QTrow, T(i)

1, m, Chunk(j))

9: QTcol← CALCDOTPRODUCTS(Chunk(j)
1, m, T(i))

10: dist← CALCDIST(Chunk(j)
1, m, T(i), QTcol, µ̄, σ̄)

11: if dist < r then
12: Cand(i· segN + tid)← FALSE
13: else
14: nnDist(j · segN + tid)← min

(
dist, nnDist(j · segN + tid)

)
15: if not

∨(i+1)·segN
k=i·segN Cand(k) then

16: break
17: for all Chunk(j)

k,m ∈ Sm
Chunk(j) r Chunk(j)

1, m do . PARALLEL (thread)

18: QTcol← UPDATEDOTPRODUCTS(QTcol, QTrow, Chunk(j)
k, m, T(i))

19: dist← CALCDIST(Chunk(j)
k, m, T(i), QTcol, µ̄, σ̄)

20: if dist < r then
21: Cand(i· segN + tid)← FALSE
22: else
23: nnDist(j · segN + tid)← min

(
dist, nnDist(j · segN + tid)

)
24: if not

∨(i+1)·segN
k=i·segN Cand(k) then

25: break
26: D ←

{
{Ti, m ∈ Sm

T ; nnDist(i)} | 1 ≤ i ≤ n−m + 1, Cand(i) = TRUE
}

27: return D
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The second kernel performs non-trivial refinement, and it is parallelized similar to
the selection phase, involving only those segments of the time series whose set of local
candidates is not empty (see line 3 in Algorithm 4). The algorithm scans and processes
the subsequences that do not overlap with the candidates and are located to the left of the
segment (see line 4 in Algorithm 4). If the distance from the candidate to the subsequence
is less than the parameter r, then the candidate is discarded as an obvious false positive.

5. Experimental Evaluation

To evaluate the proposed algorithm, we carried out experiments to study the per-
formance of PALMAD over various real-world and synthetic time series in comparison
with analogs and investigate the algorithm’s scalability. We designed the experiments
to be easily reproducible with our repository [17], which contains the algorithm’s source
code and all the datasets used in this work. Below, Section 5.1 describes the hardware and
time series employed in the experiments, and Section 5.2 presents the experimental results
and discussion.

5.1. The Experimental Setup

In our study, we employed the time series listed in Table 3, which have also been
used in the experimental evaluation of HOTSAX [56], KBF_GPU [44], and Zhu et al.’s [45]
algorithm. The space shuttle data [57] are solenoid current measurements on a Marotta
MPV-41 series valve as the valve is cycled on and off under various test conditions in a
laboratory where the valves are used to control fuel flow on the NASA spacecraft. The ECG
and ECG2 [58], and Koski-ECG [59] time series are electrocardiograms of adult patients.
The respiration time series [56] shows a patient’s breathing (measured by thorax extension)
as they wake up. The power demand time series reflects the energy consumption of a
research center in the Netherlands for 1997 [60]. RandomWalk1M and RandomWalk2M
are our generated time series through the random walk model [36]. The detailed statistical
characteristics of the time series above can be found in our repository [17].

Table 3. Time series employed in the experiments.

Time Series Length
(n)

Discord Length
(minL = maxL) Domain

Space shuttle 50,000 150 Measurements of a sensor on the NASA
spacecraft

ECG 45,000 200

Electrocardiogram of an adult patientECG-2 21,600 400

Koski-ECG 100,000 458

Respiration 24,125 250 Human breathing by chest expansion

Power demand 33,220 750 Annual energy consumption of an office

RandomWalk1M 107 512
Synthetic time series

RandomWalk2M 2 × 107 512

Table 4 summarizes the hardware platforms of our experiments, where GPU-SUSU
and GPU-MSU denote graphics processors installed in the HPC centers of the South Ural
State University [61] and Moscow State University [62], respectively.
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Table 4. Hardware platform of the experiments.

Specifications GPU-SUSU GPU-MSU

Brand and Product Line NVIDIA Tesla

Model V100 P100

# cores 5120 3584

Core frequency, GHz 1.3 1.19

Memory, Gb 32 16

Peak performance
(double precision), TFLOPS 7 4

5.2. Results and Discussion
5.2.1. Comparison with Analogs

In the experiments, we compared PALMAD with two algorithms, namely, KBF_GPU [44]
and Zhu et al.’s [45], since our thorough review of related work (see Section 2) did not
reveal other GPU-oriented parallel competitors. Since the authors of the above rivals do not
provide their source codes, for a fair comparison, in the experiments, we utilize time series
and hardware identical to those employed in [44,45], respectively, and compare our results
with those reported in the original papers by the authors. The time series Koski-ECG (see
Table 3) was employed to compare PALMAD with KBF_GPU on the GPU-SUSU system
(see Table 4), and the rest of the time series were involved in comparison with Zhu et al.’s
algorithm on GPU-MSU. We omit the MERLIN performance results since, as expected, the
original serial algorithm is significantly inferior to its parallel descendant, although in the
experiments, we confirmed that PALMAD produces exactly the same results as MERLIN.
For each experiment, we ran PALMAD 10 times and took the average value as the final
running time.

Since the rival algorithms discover only the top-1 discord, whereas our algorithm finds
all the discords of each length in a specified length range, to provide a fair comparison, in
the experiments, we employ the following settings for PALMAD. First, we set minL = maxL
for the range above. Second, we measure both the running time of PALMAD and the
number of discords found to further show the average time spent by our algorithm to
discover one discord.

In Figure 5, we compare the performance of PALMAD and KBF_GPU. It can be seen
that our algorithm significantly outruns the rival in terms of both the overall running
time and the average running time to discover one discord. Obviously, the reason is
that KBF_GPU implements a brute-force approach, whereas PALMAD avoids redundant
calculations and exploits advanced data structures.
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Figure 5. Performance of PALMAD in comparison with KBF_GPU. (a) Overall running time.
(b) Average running time per one discord.
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Figure 6 depicts the experimental results on the PALMAD performance compared
with Zhu et al.’s algorithm. It can be seen that Zhu et al.’s algorithm significantly outruns
PALMAD: being up to 20 times and up to two orders of magnitude faster over the real
and synthetic time series, respectively. However, at the same time, PALMAD discovers
substantially more discords: at least two and seven orders of magnitude greater over the
real and synthetic time series, respectively. Thus, comparing the average running time to
discover one discord, it can be seen that PALMAD significantly outruns the rival starting at
least from the moment when we set topK, the number of discords to be discovered, as a
quarter of the actual number of discords found: by at least two times and three orders of
magnitude over the real and synthetic time series, respectively.
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Figure 6. Performance of PALMAD in comparison with Zhu et al.’s algorithm [45]. (a) Overall
running time. (b) Average running time per one discord.

5.2.2. Scalability of PALMAD

In addition to comparing our algorithm to analogs, we also study the scalability of
PALMAD. First, we investigate the impact of the segment length (the parameter seglen; see
Section 4.3) on the PALMAD performance. Second, we assess our algorithm’s performance
depending on two input parameters that directly affect the amount of calculations, namely,
the time series length and discord range length.

In Figure 7, we show experimental results regarding the impact of the segment length
on the PALMAD performance. It can be seen that the algorithm’s running time is pro-
portional to the segment length for both the real-world and synthetic time series, and a
greater value of the segment length provides higher performance. This can be explained
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by the fact that when the segment length increases, the overhead of reading and writing
segments in the GPU shared memory decreases. Moreover, this was the reason that we
took seglen = 512 in the above-described experiments.

In Figures 8 and 9, we depict the performance of our algorithm depending on the time
series length and on the discord length range, respectively, for the cases of the real-world
and synthetic data. It can be observed that the algorithm’s running time is proportional to
the above-mentioned parameters for both the real-world and synthetic time series.
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Figure 7. Scalability of the PALMAD algorithm with respect to the segment length.
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Figure 8. Scalability of the PALMAD algorithm with respect to the time series length. (a) Real dataset
(Koski-ECG, discord range is 458–916). (b) Synthetic dataset (RandomWalk1M, discord range is
128–256).
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Figure 9. Scalability of the PALMAD algorithm with respect to the discord length range. (a) Real
dataset (Koski-ECG). (b) Synthetic dataset (RandomWalk1M).

6. Case Study

In this section, we apply PALMAD to discover subsequence anomalies in real-world
time series from a smart heating control system. The PolyTER system [63] allows for
intelligent monitoring and control of the operating conditions of utility systems through
the analysis of the data from various IoT sensors installed in university campus buildings.
We took a time series from a temperature sensor installed in a lecture hall and discovered
the anomalies in a specified range. The sensor’s frequency is four times per hour, the
time series corresponds to annual measurements (i.e., time series length n = 35,040), and
we search for anomalies that range from 12 h to 7 days (i.e., minL = 48 and maxL = 672,
respectively).

To visualize the results obtained, we employ the discord heatmap technique [64], that
illustrates the anomaly score through the intensity of a color, and is somewhat like the
motif heatmap [65]. Formally speaking, we plot a one-color heatmap as a matrix of size
(maxL−minL + 1) × (n−minL), where the intensity of a pixel (m, i) shows the anomaly
score of the discord Ti, m ∈ Dm and the pixel’s intensity is calculated as a normalization of
the discord’s distance to its nearest neighbor:

heatmap(m, i) =
Ti, m.nnDist

2m
, (11)

where we employ the normalizing divisor 2m according to Equation (6).
Despite the fact that we have proposed a visual tool to explore and discover multiple

length discords, there is an open question for a practitioner: how can we rank discords of
different lengths and extract the most interesting ones. There are discord attributes that it
can be suggested could be taken into account, e.g., its length and index, the distance to its
nearest neighbor, the number of its self-matches, etc. However, in this study, we employ a
straightforward approach that considers a discord’s interest as a normalized distance to its
nearest neighbor, comparing such distances among discords having the same index. Thus,
the most interesting discord among the ones of different lengths is selected as below:

arg max
1≤i≤N

max
minL≤m≤maxL

heatmap(m, i). (12)
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Clearly, through Equation (12), we can select the top-k interesting discords. In our
repository [17], the reader can find plots of discord heatmaps and top discords for all the
real-world time series listed in Table 3 and those from other subject domains.

Figure 10 summarizes the results of the case study, showing the time series and its
discord heatmap, zooming of the heatmap intervals with the most interesting discords, and
the top-6 discords according to Equation (12) (see Figure 10a, 10b, and 10c, respectively).

(a)

(b)

Top-1 discord, m = 60
(15 h)

Top-2 discord, m = 248
(2 days, 14 h)

Top-3 discord, m = 90
(22 h 30 min)

Top-4 discord, m = 266
(2 days, 18 h 30 min)

Top-5 discord, m = 168
(1 day, 18 h)

Top-6 discord, m = 183
(1 day, 21 h 45 min)

(c)

Figure 10. Case of PolyTER. (a) Time series and its discord heatmap. (b) Zooming on the most
interesting intervals of the discord heatmap. (c) Top-6 discords of different lengths.

In addition, in top discord plots, we indicate both indoor and outdoor temperatures,
where the latter is obtained from the open weather archive [66]. Highly likely, each of the
top three discords illustrates a long-term malfunction in a temperature sensor that outputs
the same measurements during the given time period. Next, the top-4 and top-5 discords
show a short-term failure of the sensor. Finally, the top-6 discord may indicate the fact that
the system (or its operator) chose an inefficient heating mode for the lecture hall in the
given time period.
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7. Conclusions

In this article, we addressed the problem of accelerating time series subsequence
anomaly discovery on a graphics processor. Such an anomaly refers to successive points
in time whose collective behavior is abnormal, although each observation individually
does not necessarily deviate. Currently, discovering subsequence anomalies in time series
remains one of the most topical research problems.

Among numerous approaches to discovering subsequence anomalies, the discord
concept [4] is considered one of the best. A time series discord is intuitively defined
as a subsequence that is maximally far away from its nearest neighbor. However, the
application of discords is reduced by sensitivity to a user’s choice of the subsequence
length. A brute-force discovery of discords of all the possible lengths and then selecting
the best discords with respect to some measure is clearly computationally prohibitive.
Recently introduced, the MERLIN algorithm [7] discovers time series discords of every
possible length in a specified range, being ahead of competitors in terms of accuracy and
performance. MERLIN employs repeated calls of the DRAG algorithm [8], that discovers
discords of a given length with a distance of at least r to their nearest neighbors and
adaptive selection of the parameter r. However, to the best of our knowledge, no research
has addressed accelerating MERLIN with any parallel hardware architecture.

In this article, based on Keogh et al.’s works [7,8] we propose a novel paralleliza-
tion scheme PALMAD (parallel arbitrary length MERLIN-based anomaly discovery) for
a graphics processor. While basically following the original serial algorithm, PALMAD,
however, employs our derived recurrent formulas to calculate the mean values and stan-
dard deviations of subsequences of the time series. Since those data are further involved in
calculations of the normalized Euclidean distances between subsequences, eventually, we
significantly reduce the amount of calculations. Furthermore, PALMAD repeatedly calls
PD3 (parallel DRAG-based discord discovery) [55], our developed parallel version of the
original DRAG algorithm. Similar to its predecessor, PD3 performs in two phases. To im-
plement the candidate selection phase, we exploit the data parallelism by dividing the time
series into equal-length segments, where each segment is processed separately by a block
of GPU threads. The thread block considers the segment subsequences as local candidates
for discords and processes the subsequences that are located to the right of the segment
and do not overlap with the candidates. Next, the thread block scans the subsequences
in chunks, the number of elements of which is equal to the segment length, and the first
chunk begins with the m-th element in the segment, where m is the discord length. Such a
technique allows us to avoid redundant checks if candidates and subsequences in chunks
overlap. In PD3, the candidate refinement phase is parallelized in the same way as the
selection phase. Refinement involves only those segments of the time series whose set of
local candidates is not empty. The algorithm scans and processes the subsequences that do
not overlap with the candidates and are located to the left of the segment.

We carried out an extensive experimental evaluation of PALMAD over real-world
and synthetic time series. In the experiments, we compared our development with two
algorithms, namely, KBF_GPU [44] and Zhu et al.’s [45], since our thorough review of
related work did not reveal other GPU-oriented parallel competitors. Both rivals aim at dis-
covering the top-1 discord, where the former is a parallelization of the brute-force approach
while the latter employs computational patterns to reduce the amount of calculations. As
expected, in the experiments, our algorithm significantly outran KBF_GPU. Next, being
adapted to discover the most important discord of a specified length, Zhu et al.’s algorithm
significantly outruns PALMAD, which discovers discords of every possible length in a
specified range: being up to 20 times and up to two orders of magnitude faster over the
real and synthetic time series, respectively. However, PALMAD discovers substantially
more discords: at least two and seven orders of magnitude greater over the real and syn-
thetic time series, respectively. Thus, PALMAD significantly outruns the rivals in terms
of the average running time to discover one discord. Finally, in the experiments, we also
investigated the scalability of PALMAD and found that the algorithm’s running time is
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proportional to each of the following parameters for both real-world and synthetic time
series: segment length, time series length, and discord range length.

We also apply PALMAD to discover anomalies in a real-world time series from a smart
heating control system employing our proposed discord heatmap technique to illustrate
the results.

Our further studies might elaborate on the following topics: (a) generalizing PALMAD
to handle multi-variate time series, (b) discord discovery in large time series that cannot
be entirely placed in RAM with a high-performance cluster with GPU-based nodes, and
(c) application of PALMAD in deep-learning-based online time series anomaly detection.
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Appendix A

Lemma A1. Let us have the time series T, |T| = n, and two of its m-length subsequences, Ti, m
and Ti, m+1, where 1 ≤ i ≤ n−m and 3 ≤ m� n. Then, the following holds:

µTi, m+1 =
1

m + 1
(
mµTi, m + ti+m

)
,

σ2
Ti, m+1

=
m

m + 1

(
σ2

Ti, m
+

1
m + 1

(
µTi, m − ti+m

)2
)

.

Proof. First, let us prove the equation regarding the mean value. According to the definition

µTi, m =
1
m

m

∑
k=0

ti+k.

Then,
m

∑
k=0

ti+k = mµTi, m .

Next, let us consider µTi, m+1 :

µTi, m+1 =
1

m + 1

m

∑
k=0

ti+k =
1

m + 1
(mµTi, m + ti+m),

so, the first equation is proved. Further, let us prove the equation regarding the standard
deviation. According to the definition

σ2
Ti, m

=
1
m

m−1

∑
k=0

t2
i+k − µ2

Ti, m
.

Then,
m−1

∑
k=0

t2
i+k = m(σ2

Ti, m
+ µ2

Ti, m
).
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Next, let us consider σ2
Ti, m+1

:

σ2
Ti, m+1

=
1

m + 1

m

∑
k=0

t2
i+k − µ2

Ti, m+1
=

1
m + 1

(
m(σ2

Ti, m
+ µ2

Ti, m
) + t2

i+m
)
− µ2

Ti, m
.

Employing the above-proved proposition regarding the mean value, we obtain

σ2
Ti, m+1

=
1

m + 1
(
m(σ2

Ti, m
+ µ2

Ti, m
) + t2

i+m
)
−
( 1

m + 1
(mµTi, m + ti+m)

)2.

By performing the operations in parentheses and further collecting terms, we obtain

σ2
Ti, m+1

=
1

m + 1
(
m(σ2

Ti, m
+ µ2

Ti, m
) + t2

i+m −
1

m + 1
(mµTi, m + ti+m)

2)=
=

1
m + 1

(
mσ2

Ti, m
+

1
m + 1

(
m(m + 1)µ2

Ti, m
−m2µTi, m + (m + 1)t2

i+m − t2
i+m − 2mµTi, m ti+m

))
=

=
1

m + 1

(
mσ2

Ti, m
+

m
m + 1

(
µ2

Ti, m
− 2µTi, m ti+m + t2

i+m
))

=

=
m

m + 1

(
σ2

Ti, m
+

1
m + 1

(
µTi, m − ti+m

)2
)

.

This concludes our proof.
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