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Abstract: With the dramatic increase in the number of mobile users and wireless devices accessing
the network, the performance of fifth generation (5G) wireless communication systems has been
severely challenged. Reconfigurable intelligent surface (RIS) has received much attention as one of
the promising technologies for the sixth generation (6G) due to its ease of deployment, low power
consumption, and low price. RIS is an electromagnetic metamaterial that serves to reconfigure the
wireless environment by adjusting the phase, amplitude, and frequency of the wireless signal. To
maximize channel transmission efficiency and improve the reliability of communication systems, the
acquisition of channel state information (CSI) is essential. Therefore, an effective channel estimation
method guarantees the achievement of excellent RIS performance. This survey presents a compre-
hensive study of existing channel estimation methods for RIS. Firstly, channel estimation methods
in high and low frequency bands are overviewed and compared. We focus on channel estimation
in the high frequency band and analyze the system model. Then, the comprehensive description of
the different channel estimation methods is given, with a focus on the application of deep learning.
Finally, we conclude the paper and provide an outlook on the future development of RIS channel
estimation.

Keywords: wireless communication system; sixth generation (6G); reconfigurable intelligent surface
(RIS); channel estimation

MSC: 94A40

1. Introduction

With the explosion of mobile data and the demand for better quality of service (QoS),
effective, and reliable communications are becoming increasingly important. The advent
of the internet of things (IoT) marks the interconnection of everything, while providing
great convenience. This is a great challenge for information transmission. In the past few
decades, researchers have worked to improve the QoS of wireless channels. Now, it is
important to find a technology with low energy consumption while ensuring the QoS. The
fifth generation (5G) may face problems such as inability to meet larger connection capacity
and more energy loss. To solve these problems, the development of the sixth generation
(6G) has become a hot topic of increasing interest [1].

The development of 5G has become increasingly saturated, and in the upcoming
era of IoT, communication systems need greater spectral efficiency and higher effective-
ness. Massive multiple input multiple output (MIMO) technology has become the core
technology of 5G, in which a large number of radio frequency (RF) antennas lead to high
hardware costs and maintenance costs. The short propagation distance of electromagnetic
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waves in the high frequency bands and the limited coverage of electromagnetic waves
require an increase in the number of base stations (BS), which will further increase the
hardware and maintenance costs of 5G. At the same time, the dense distribution of BS
and antennas reinforces the signal interference of 5G, deteriorates the performance of the
network, increases the computational complexity of network coordination, and creates a
serious dilemma in the development of 5G. We need an effective solution to realize the
future of 6G [2,3].

To meet the requirements of superior performance and sustainability 6G, many options
have been proposed. Reconfigurable intelligent surface (RIS) has received much attention
from academia and industry as a potential technology for 6G. RIS, which is also called
intelligent reflecting surface (IRS), is a new paradigm of electromagnetic metamaterials,
which is composed of many passive reflective elements. It can reconfigure the wireless
communication environment by intelligently modulating electromagnetic waves through
digital coding to modulate the amplitude, phase, and frequency of the signal, which can
improve the performance of wireless communication systems [4,5]. In 5G, millimeter wave
(mmWave) as one of the main methods can increase the communication capacity to help
solve the spectrum shortage problem. However, its small wavelength drawback can lead to
transmission difficulties [6].

The coverage capacity of the signal can be increased by arranging RIS. Prior to the
proposal of RIS, techniques such as active frequency selective surfaces were proposed [7],
followed by theories such as space-time modulated digital coding metasurfaces, which
laid the foundation for the emergence of RIS [8]. RIS can increase the network capacity by
changing the phase shift to complete passive beam assignment [9]. RIS has been developed
continuously and currently there is not only reflective RIS but also transmissive RIS with
the advantages of higher aperture efficiency and operating bandwidth [10]. Furthermore,
RIS has the advantages of low power consumption and low cost compared with amplify
and forward relay system due to its passive characteristics [11]. The above advantages of
RIS make it useful in high frequency bands, orthogonal frequency division multiplexing
(OFDM) [12], non-orthogonal multiple access (NOMA) [13], and multi-antenna systems.
However, to perform the role of RIS and accomplish effective and reliable wireless com-
munication, it is required to obtain accurate channel state information (CSI) using channel
estimation techniques, which is a great challenge. There have been many studies in channel
estimation, and this paper provides a basic overview of RIS channel estimation.

We first analyze the full range of transmitted frequency wireless signals briefly
and then focus on the 6G band. Channel estimation plays a critical role in the perfor-
mance of wireless communication systems; this paper overviews RIS channel estimation
schemes in various scenarios. In Section 2, we organised reviews about RIS channel es-
timation, which are based on the main directions and main contributions. In Section 3,
channel estimation schemes in different frequency bands are introduced. In Section 4,
different channel estimation signal processing algorithms are introduced, and this paper is
concluded in Section 5. The notations used in the paper and their meanings are summarized
in Table 1.

Table 1. Notation description.

Notation Meaning

bold font lower case Column vector
bold font upper case Matrix
(·)H Conjugate transposition operation
(·)T Transposition operation
IM M × M identity matrix
Diag(·) Diagonal matrix
⊗ Kronecker product
‖·‖F Frobenius norm

CN (µ, σ2)
Complex Gaussian distribution with mean µ
and variance σ2
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2. Objectives and Contributions

With RIS gradually gaining attention, a number of reviews on RIS channel estimation
have appeared in recent years. Wu et al. [4] provided an overview of RIS-assisted wireless
communication systems, describing the principles, hardware architecture, and applications
relating to RIS. Zheng et al. [14] focused on promising research directions and emerging
RIS architectures. Pan et al. [15] and Jian et al. [16] outlined channel estimation schemes
for RIS-assisted communication systems and channel modeling. Liang et al. [17] presented
RIS-aided wireless communications and RIS-based information transmission when the RIS
acts as transmitter and reflector, respectively. Noh et al. [6] and Chen et al. [18] reviewed
the relevant knowledge about RIS in the high frequency band. Swindlehurst et al. [19]
mainly summarized the structured and unstructured system models of RIS. The authors
analyze and balance the two systems through several metrics. Finally, the authors briefly
add the study of algorithms such as deep learning.

Table 2 describes the ten public overviews for RIS-assisted wireless communication
systems, presenting the main direction and major contribution for each overview.

Table 2. Representative overview/survey papers on RIS.

Ref. Year Main Direction Major Contribution

Wu et al. [4] 2021 Reflection optimization and channel
estimation

Reflection channel models, practical
constraint, and hardware architecture

Noh et al. [6] 2022
Channel estimation for RIS-assisted
mmWave/sub-terahertz (THz)
communication

Technical challenges, channel estimation
frameworks, and training signal design

Zheng et al. [14] 2022 Channel estimation and passive
beamforming design

Discussed emerging RIS architectures,
applications, and practical design problems

Pan et al. [15] 2022 Channel estimation, transmission design,
and radio localization

Channel estimation, transmission design,
radio localization, etc.

Jian et al. [16] 2022 Channel estimation
Wireless communication standards,
the current and future
standardization activities

Liang et al. [17] 2021 Channel estimation and system design Reflection principle, channel estimation,
system designs, etc.

Chen et al. [18] 2021 Hardware design, channel estimation, etc. Channel modeling, new material
exploration, etc.

Swindlehurst et al. [19] 2022 Channel estimation Summarize the structured and
unstructured system models in RIS systems

Basharat et al. [20] 2022 CSI acquisition, passive beamforming
optimization, etc.

Phase-shift optimization and
resource allocation

Babiker et al. [21] 2022 Channel estimation Main recent techniques and
various strategies

In this paper, we provide an overview of channel estimation methods for RIS-assisted
communication systems in terms of both different frequency bands and different algorithms.
Specifically, we focus on the RIS-assisted channel estimation models in different frequency
bands. We have focused on comparing the differences in channel estimation methods in
different frequency bands. We found representative works and performed a quantitative
analysis. In the following classification of the different algorithms, we focus on techniques
related to deep learning RIS channel estimation algorithms, such as building end-to-end
networks, introducing image processing algorithms and fusing conventional schemes with
deep learning. This paper focuses on summarizing the different RIS channel estimation
schemes and signal processing algorithms in different frequency bands, considering a
comprehensive overview of the existing literature on channel estimation schemes.
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3. Channel Estimation in Different Frequency Bands

In the 5G wireless communications, as the low frequency band is utilized fully, the tar-
get is shifted to the higher frequency bands with higher bandwidth. MmWave technology
is considered to be an effective solution to the problem of spectrum resource shortage,
and THz with higher spectrum will also become an important direction for the future be-
yond 5G (B5G) and 6G wireless communication systems. Although the communication in
high frequency bands can solve the problem of spectrum resource shortage, due to its small
wavelength characteristics, it will produce serious path loss, resulting in small coverage of
mmWave. RIS can improve the coverage of its communication at a lower cost. As shown in
Figure 1, the mmWave frequency bands is 30–300 GHz, and its wavelength is only 1–10 mm.
The THz has the frequency of 300 GHz–10 THz and it has a much shorter wavelength.
The higher frequency band reaches the visible light band, which is 395–750 THz. RIS not
only extends wireless coverage, but also plays a role in improving communication quality
and expanding communication capacity. However, the optimization of both beamforming
and reflection coefficient matrix of RIS transceivers cannot be achieved without accurate
CSI; it is crucial to use efficient, low-overhead, and low-complexity channel estimation
methods. Due to the difference in frequency bands and hardware architecture, the chosen
estimation method will be different. The method chosen will also vary in different system
settings such as single input single output (SISO), multiple input single output (MISO), sin-
gle input multiple output (SIMO), and MIMO. In the following, we outline the advantages
and disadvantages of different channel estimation methods in the high and low frequency
bands, discuss representative work and present the basic principles.

Visible Light

3 kHz       30 kHz   300 kHz   3 MHz    30 MHz   300 MHz   3 GHz   30 GHz   300 GHz   395 THz     750 THz

Frequency 100 km     10 km      1 km       100 m        10 m          1 m        100 mm   10 mm     1 mm       0.76 μm      0.40 μm

Wavelength
mmWave 

30 GHz   300 GHz
THz

300 GHz   10 THz

Figure 1. Frequency bandwidth and wavelength of wireless radio waves.

In this discussion, since the channel estimation for BS-user equipment (UE) can often
be obtained using common channel estimation methods to obtain CSI or directly propagate
blocked, only the channel reflected through the RIS is discussed. As shown in Figure 2,
we considered an uplink MIMO system model. Assume that the BS is equipped with
M = Mh × Mv antennas uniform planar array (UPA), where Mh is the number of antennas
in the horizontal direction and Mv is the number of antennas in the vertical direction.
The RIS is equipped with N = Nh × Nv reflecting elements UPA, where Nh and Nv are the
number of reflecting elements in the horizontal and vertical directions, respectively. In this
communication system, there are K single antenna users. The channel from the RIS to the
BS can be denoted by H ∈ CM×N , and the channel from the kth (k ∈ K) user to the RIS
can be denoted by hk ∈ CN×1. The reflection matrix of the RIS element can be denoted
by φ = [β1ejα1 ,β2ejα2 , · · · , βNejαN ]T ∈ CN×1, where βn and αn(n = 1, 2, · · · , N) denote the
reflection amplitude and phase of the nth RIS reflector, respectively [22–24].

As shown in Figure 2, assuming that user k sends the pilot symbol xk,t at time slot
t(t ∈ T), the received signal yk,t at BS can be expressed as:

yk,t = hd,kxk,t + Hdiag(φ)hkxk,t + nk,t (1)

where nk,t represents additive white Gaussian noise (AWGN), assuming nk,t ∼ CN (0, σ2 IM),
and σ2 is the noise power. hd,k is the direct channel between the BS and user k. This paper
assumes that the direct channel is blocked; therefore, hd,k = 0. The cascade channel G can
be expressed as:

G = Hdiag(hk) (2)
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BS K users

RIS
H ,  

k
k KÎh

d,
,  
k
k KÎh

(a)

BS K users

RIS
H ,  

k
k KÎh

d,
,  
k
k KÎh

(b)

Figure 2. A RIS-aided multi-user MIMO system consisting of a BS with M antennas, a RIS with N
reflective elements, and K single-antenna users, green elements in RIS are passive, yellow elements in
RIS are active: (a) Cascade channel estimation and (b) separate channel estimation.

Stacking T time slots of Equation (1) and combining Equation (2), by assuming xk,t = 1
the received signal Yk = [yk,1, yk,2, · · · , yk,T ] ∈ CM×T can be expressed as:

Yk = Gφ + Nk (3)

where φ = [φ1, φ2, · · · , φT ] ∈ CN×T and Nk = [nk,1, nk,2, · · · , nk,T ] ∈ CM×T . With the
finite scattering properties of mmWave, it can be represented using the Saleh-Valenzuela
(SV) model [22–25]. There is a one-to-one relationship between spatial frequency and
physical angle on the UPA side. Therefore, for simplicity of illustration, we will refer to
the independent variable of the array steering vector as the angle or spatial frequency.
The channel matrix H between the RIS and the BS can be written as:

H =
L
∑
l=1

αlaN(ψl , υl)aH
M(ωl , µl) (4)

where L represents the propagation scattering path between the BS and the RIS; αl , (ψl , υl),
and (ωl , µl) are the complex gain, angle of arrival (AoA), and angle of departure (AoD)
of the lth path, respectively. The channel matrix hk between user k and the RIS can be
written as:

hk =
Jk

∑
j=1

βk,jaN(ϕk,j, θk,j), ∀k ∈ K (5)

where Jk represents the propagation scattering path between the k users and the RIS; βk,j
and (ϕk,j, θk,j) are the complex gain and AoD of the jth path to the kth user, respectively.
A steering vector of the P = P1 × P2 UPA is aP(z, x) ∈ CP×1, which can be expressed
as [22–24]:

aP(z, x) = aP1(z)⊗ aP2(x) (6)

where aP1(z) and aP2(z) can be expressed as Equations (7) and (8), respectively:

aP1(z) = [1, e−j2πz, · · · , e−j2π(P1−1)z]T (7)

aP2(x) = [1, e−j2πx, · · · , e−j2π(P2−1)x]T (8)

where the variables z and x can be considered as the corresponding equivalent spatial
frequencies with respect to the z axis and x axis of the UPA, respectively. The aP1(z) and
aP2(x) are the two uniform linear arrays (ULAs) on the vertical (z-axis) and horizontal
(x-axis) directions, respectively. The UPA is obtained by performing a Kronecker product
calculation from two ULAs. The ρ ∈ [−90◦, 90◦] and ξ ∈ [−180◦, 180◦] are expressed as
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the signal elevation and azimuth angles of the UPA, respectively. The relationship between
the spatial frequency pair (z, x) and the physical angle pair (ρ, ξ) can be expressed as [23]:

z =
d
λ

cos(ρ), x =
d
λ

sin(ρ) cos(ξ) (9)

where λ is the carrier wavelength, and d is the component spacing. We assume a one-to-one
correspondence between physical angle and spatial frequency on the UPA side; then, it is
necessary to satisfy d ≤ λ/2.

The following evaluation metrics are commonly used in RIS channel estimation. Mean
squared error (MSE) and normalised MSE (NMSE) are commonly used to express the
accuracy of channel estimation. The MSE and NMSE can be expressed as Equations (10)
and (11), respectively:

eMSE = E
[∥∥Ĝ−G

∥∥2
F

]
(10)

eNMSE = E

∥∥Ĝ−G
∥∥2

F

‖G‖2
F

 (11)

where Ĝ is the estimated value. The signal-to-noise ratio (SNR) represents the ratio of
signal power to noise power. It can be expressed as:

rSNR =
PS

PN
(12)

where PS is the signal power and PN is the power of the noise. The pilot overhead is also
one of the important metrics for evaluating channel estimation methods. The bit error rate
(BER) and achievable rate can indicate the efficiency of the message delivery after channel
estimation and beamforming.

3.1. Channel Estimation for RIS Systems in High Frequency Bands

In this section, we focus on the channel estimation for RIS systems in high frequency
bands. As one of the key technologies of 5G, the larger bandwidth of mmWave brings
greater channel capacity and higher communication rates. Higher band THz communica-
tion is also considered one of the key technologies for future 6G development. However,
the path propagation process generates severe path loss and the path is easily blocked by
obstacles; the hardware complexity and huge power consumption associated with the high
frequency bands are the main problems it currently faces. The RIS, with its low cost, low
power consumption, and the advantage of reducing the path loss by reflecting the signal,
can make up for the shortage in the high frequency bands. Accurate CSI can design the
optimal phase dependence of RIS and thus improve the performance, while the accuracy of
channel estimation determines the acquisition of CSI. A suitable method with high accuracy,
low training overhead, and complexity is difficult to achieve at the same time slot when
selecting a method for channel estimation.

In the high frequency bands, multipath scattering is sparse and can be modeled by
the angular domain. This modeling approach uses only a small number of parameters,
which reduces the pilot overhead. RIS cannot transmit or receive signals due to its passive
characteristic; therefore, the channel estimation is accomplished by designing from the
hardware and transmission protocol aspects. In terms of hardware design, there are fully-
passive RIS and semi-passive RIS. The difference is that fully-passive RIS is a passive
reflective element that can only reflect signals, while semi-passive RIS can receive signals by
installing a small number of active elements. Due to the difference in hardware, the existing
channel estimation methods can be divided into cascaded channel estimation and separate
channel estimation.

In the mmWave band, due to its channel sparsity, only the angle, gain, and time
delay need to be estimated for channel estimation, and the required pilot overhead is
reduced greatly. In the RIS-assisted wireless communication system, cascaded channel
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estimation methods and separated channel estimation methods have their own advantages
and disadvantages. The channel estimation methods in high frequency bands are described
in Figure 3. Methods are based on fully passive RIS and semi-passive RIS in different
scenarios, which are divided into five main aspects: single-user, multi-user, practical
application, assistance, and wideband systems.

High Frequency
Bands

Fully-passive RIS

Semi-passive RIS

Estimation 
accuracy

Pilot 
overhead

Single-user

Multi-user

Practical 
application

Assistance

He 2022 Chung 2022

Wang 2023

Xu 2022

Zhou 2022

Lin 2022

Albataineh 2022 Chung 2023 Dai 2022

Peng 2022

Shtaiwi 2021Noh 2022

Jin 2022

Chen 2023

Chen 2022

Ye 2022

Li 2021

Wideband 
system

Zheng 2022

Wang 2021

Ruan 2022

Hu 2021

Taha 2021 Liu 2020

Jin 2021

Du 2023

Wang 2020

Liu 2021

Wan 2020

Lin 2021

Zhou 2022

Figure 3. Channel estimation for RIS systems in high frequency bands.

3.1.1. Channel Estimation for Fully-Passive RIS

Single-user: With passive characteristics of fully-passive RIS, it cannot complete the
reception and transmission of the signal. Therefore, the existing channel estimation method
is to complete the estimation of the cascaded channel, as shown in Figure 2a. To achieve
good reflection characteristics, the channels of BS-RIS and RIS-UE are considered as the
overall channel, and the CSI obtained through the cascaded channel is sufficient to complete
the phase shift setting of the RIS. The sparsity of mmWave can be exploited to convert the
channel estimation problem into a sparse channel recovery problem, which can be solved
using a compressive sensing (CS) algorithm.

Wang et al. [26] converted the channel estimation problem into a sparse recovery
representation of the cascaded channel using the property of Khatri-Rao and Kronecker
products. The problem was solved using the orthogonal matching pursuit (OMP) and
generalized approximate message passing (GAMP) algorithms. Compared with the least
square (LS) method, which requires at least 1024 overheads, the GAMP algorithm in
this paper requires only 100 overheads and has an NMSE of 0.04. In channel estimation,
excessive training overhead can lead to a reduction in signal efficiency. Therefore, different
approaches are proposed in the following literatures.

Chung et al. [27] proposed a two-stage beam training and channel estimation method
based on fast alternating LS (FALS), which can reduce the complexity. The training over-
head can be reduced by recovering the complete channel matrix using the observed partial
channel matrix. Compared with the OMP and atomic norm minimization (ANM) algo-
rithms, the method used in this paper can reduce the number of training symbols by about
45% and is second only to the OMP algorithm in terms of complexity.

Deep learning methods have attracted much attention in recent years and can be
effectively applied to channel estimation. Xu et al. [28] proposed a channel subsampling
and a two-part deep neural network (DNN) approach to reduce the training overhead in
dynamic time-varying channels. The first part describes the RIS dynamic channel using the
neural ordinary differential equation (ODE), and the latter part uses the ODE to modify
the structure of the neural network to complete the channel extrapolation. He et al. [29]
simulated a conventional gradient descent algorithm using a model-driven depth unfolding
approach. A computationally intensive training process was performed in the offline phase,
and only low-complexity computations are required in the projection phase. The deep
learning approach used in this paper reduces the overhead by 25% compared with the LS
algorithm.



Mathematics 2023, 11, 3235 8 of 30

Multi-user: More pilot overhead and interference among UEs need to be considered
in multi-user scenarios; therefore, a more suitable method for channel estimation needs
to be found. Since the number of paths in the BS-RIS-UE will be few unlike conventional
MIMO mmWave channels where only row sparsity is available, in RIS-assisted mmWave
communication systems with row block sparsity, this feature can be exploited to further
reduce the training overhead [25].

To reduce training overhead and pilot overhead, Chen et al. [22] used row-column
block sparsity on the foundation of [25]. Using this property, a method was proposed to
exploit inter-user correlation to achieve joint channel recovery for multiple users. The pro-
posed method reduces the pilot overhead compared with LS, multiple measurement vector
(MMV), etc. By projecting and exploiting the scaling relationships among different users,
the approach in this paper reduces the overhead by 80% and 60%, respectively, compared
with the LS algorithm and MMV.

Channel estimation efficiency can be improved by setting up a reasonable transmission
protocol. To reduce the pilot overhead, the sparsity, and correlation of mmWave multi-user
were exploited in [23,30]. Partial information of a single user can be estimated in the
first. Further, the channel between BS and RIS is estimated in a large time scale using
the quasi-static property between BS-RIS, and the channel estimation for multi-user is
completed using channel recovery. Additionally, using the case that the physical locations
of BS, RIS and UEs do not vary significantly over multiple consecutive channel coherence
blocks, the remaining channel coherence blocks only need to estimate the rapidly varying
channel gain. Compared with the baseline solution, only 50% of the pilot overhead is used
to achieve better results.

Moreover, a RIS-assisted mmWave channel estimation method based on the Re’nyi
entropy function was proposed in [31]. The Re’nyi entropy function is utilized as a sparse
promoting regularizer for the purpose of reducing the pilot overhead. When utilizing
CS algorithms, the complexity is cube proportional to the number of RIS components.
Lin et al. [24] transform the channel estimation problem into a fixed constraint rank one
parametric regularization optimization problem. The manifold optimisation (MO) and al-
ternating minimisation (AM) methods are used to find the local optimal solution. To further
reduce the complexity, a three-part CS-based channel estimation method was proposed [24].
Optimisation-based algorithms can improve accuracy, but they also introduce a greater
degree of complexity. On the other hand, greedy algorithms can reduce the complexity
relatively well, but also the accuracy.

To improve the estimation performance and robustness, in sparse channel recovery,
a predefined dictionary is used which leads to grid mismatch and performance degradation.
Zhou et al. [32] proposed to optimize the dictionary to adapt to the channel characteristics.
BS and RIS keep the position constant in most cases. Chung et al. [33] estimated the angular
information by using the position information to achieve the purpose of reducing the
pilot overhead. The one-dimensional (1D) and two-dimensional (2D) ANM-based channel
estimation method is further proposed to achieve excellent estimation accuracy.

To improve the ability to apply different scenarios and reduce the pilot overhead,
Shtaiwi et al. [34] first estimated some of the active users and in the second stage es-
timated inactive users based on the spatial-temporal-spectral (STS) framework of deep
convolutional neural networks (CNN). Deep learning networks can sometimes have a low
generalisation ability and cannot be applied to changing scenarios. Taking it a step further,
Dai et al. [35] proposed a distributed machine learning (DML) technique to achieve reliable
downlink cascaded channel estimation and neural network architectures.

Deep learning is an effective way to improve the estimation performance. Three
practical residual neural networks, namely, generative adversarial networks based con-
volutional blind denoising (GAN-CBD) network, convolutional blind denoising network
(CBDNet), and multiple residual dense network (MRDNet), were proposed in [36] using
the low-rank structure of the channel. Specifically, the GAN-CBD and CBDNet based
on the generative adversarial network were used in the offline phase to obtain accurate
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CSI, and then the MRDNet was used to adapt the online cascaded channel estimation
with improved generalization and fitting capabilities flexibly. A semi-blind joint channel
estimation and symbol detection scheme was proposed in [37]. The method proves that the
BS received signal follows the PARATUCK2 tensor model and there is no training phase,
symbol detection, and channel estimation are done simultaneously. It is difficult to meet
the demand for a large number of training symbols in practice, and two Cramér-Rao lower
bound (CRB)-based training signal design methods for enhanced sparse channel estimation
were proposed in [38]. The CRB for the channel parameters consisting of path gain and
path angle is derived under the assumption of Bayesian mixture parameters.

Practical application: The impact of its hardware cost and accidents on RIS need to
be considered. The increase in the number of antennas in large-scale MIMO systems leads
to high power consumption and high cost. Wang et al. [39] proposed to equip the BS
with a small number of analog-to-digital converters (ADCs). The channel estimation was
then completed using the bilinear generalized approximate message passing (BiG AMP)
algorithm. The method in this paper requires only 8 bit quantization to achieve the same
results as infinite bit.

To address the information loss due to quantization, a Bayesian optimal estimation
framework was introduced to reduce the cost and power consumption. RIS was proposed
in [40] to apply low-precision ADC quantization in large-scale MIMO communication
systems. Further, a channel estimation algorithm based on GAMP algorithm and combined
with expectation maximization (EM) and nearest neighbor learning (NNL) algorithms was
proposed. It compensated for the loss caused by low precision ADC quantization, which
can guarantee the estimation performance while reducing power consumption.

To solve array blocking problems caused by sand, dust, rain, and snow cover in
practical applications, the joint array diagnosis and channel estimation methods applied to
single-user and multi-users were proposed in [40], respectively. It reduced the influence
caused by the outside world to improve channel estimation accuracy and usage efficiency.

To eliminate inter-cell and intra-cell interference, Ye et al. [41] achieved a proper phase
shift for each element design by designing different reflection coefficients. It ensured
that the performance of the desired user was maximised and that interference to the
undesired user was minimised. An efficient 2D line spectrum optimization based on ANM
was also proposed for channel estimation, and the design of reflection beamforming was
accomplished using this method, but the performance was limited when the number of
users increased.

Integrating RIS into vehicles can achieve good applications in the future. The mobility
of vehicles makes the CSI change contiguously, which makes it difficult to obtain accurate
instantaneous CSI. Therefore, a transmission protocol with a reasonable configuration
of CSI acquisition time scale was proposed in [42], which can reduce the channel infor-
mation update frequency, the proposed method can reduce the complexity and training
overhead effectively.

Wideband systems: The proposed method for narrowband systems is not generally
applicable in wideband systems. Wan et al. [43] proposed to use OFDM to overcome
frequency selective fading in wideband, and then used BS-RIS as prior knowledge to
design the pilot to estimate BS-UE and RIS-UE by the distributed OMP (DOMP) method
jointly. Liu et al. [44] transformed the wideband channel estimation into a parameter
recovery problem. Several pilot symbols were used to detect the channel parameters
by a newtonian OMP (NOMP) algorithm. This method considered the phase and delay
differences between the received signals at different BS antennas and RIS elements.

Wang et al. [45] applied the super-resolution (SR) method in images to channel estima-
tion. Then, they proposed a switch-based method for LS estimation and super-resolution,
which can reduce the training overhead while ensuring the channel estimation accuracy.

Zheng et al. [46] proposed a channel estimation method based on canonical polyadic
decomposition (CPD) by representing the received signal as a third-order tensor using the
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inherent sparsity of mmWave. Then, the channel parameters were estimated based on the
structured CPD method.

The problem of high pilot overhead due to a fully passive RIS can often also be solved
by assisted methods. Ruan et al. [47] proposed an approach of using reference points
for separate channel estimation to overcome the problem of large training overhead for
cascaded channels. The proposed method achieves a 2 dB reduction in NMSE compared
with the best benchmark solution.

Due to the passive characteristic of the RIS, setting up active elements in the passive
RIS is necessary to estimate the channels of the BS-RIS and RIS-UE separately. In the
next part of this section, the fully passive hardware architecture of the RIS changes to a
semi-passive structure, and the corresponding channel estimation methods change.

3.1.2. Channel Estimation for Semi-Passive RIS

The fully passive RIS can perform cascaded channel estimation due to the inability
to transmit and receive signals. Due to the inability to decouple well in high-dimensional
channels and the scaling ambiguity, it is difficult to obtain CSI for BS-RIS and RIS-UE.
Therefore, several active RIS elements are proposed to be placed in the RIS, as shown in
Figure 2b, which can both exploit the advantages of RIS in saving power to a certain extent
and accomplish signal processing more efficiently.

An architecture with only a few active elements was proposed in [48]. A CS method
was proposed to perform channel reconstruction for sampled channels sensed by a few
elements. Another method was to use deep learning to learn the best mapping from the
best reflection matrix.

Hu et al. [49] proposed a receiver element RIS structure equipped with only a portion
of 1-bit quantization. The training signal at the passive RIS element was first recovered
using the alternating direction method of multipliers (ADMM), and then the full channel
information was obtained using channel sparsity and the GAMP algorithm.

A deep denoising neural network-assisted compressed channel estimation method
was proposed in [50]. The complete channel matrix was obtained from partial cells using the
channel reconstruction method. The use of denoising networks can achieve performance
gains of up to 4 dB above the initial estimation.

Jin et al. [51] proposed an approach to reshape the channel matrix into a two-dimensional
image, using single-scale enhanced deep super-resolution (EDSR) neural network and multi-
scale deep super-resolution (MDSR) neural network to recover the channel using low sparse
channel properties. This approach can increase the generalization capability and reduce the
hardware complexity.

Lin et al. [52] considered time-varying channels and proposed a hybrid RIS structure
composed of active and passive elements. The narrowband was modeled as a third-order
CPD problem and the wideband problem as a fourth-order CPD problem. Then, the
tensor problem was solved by an algebraic method to recover the channel parameters and
complete the channel estimation. This can help to improve the accuracy of estimating and
reduce the complexity of estimating.

In the high frequency band, the channel estimation problem is mostly converted to a
compressed sensing problem because of its channel sparsity characteristics. It can be solved
using greedy algorithms, message passing algorithms, and optimisation algorithms. Using
this feature and the channel estimation protocol, up to 80% reduction in pilot overhead can
be achieved in the method proposed in this paper. In practical situations, the hardware
losses and costs associated with high frequency bands need to be considered. It is also
necessary to consider the Doppler shift caused by the actual movement of cars, high-speed
trains, etc. Therefore, a suitable channel estimation method needs to be selected. The com-
plexity can be reduced by using deep learning methods instead of algorithms, and of
course also for denoising purposes. The channel estimation algorithms, and performance
comparison in high frequency bands are described in Table 3. Table 3 describes the methods
from four aspects: system setup, problem, method, and results analysis.
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Table 3. Channel estimation in high frequency bands sorted by publication years.

Ref. Year System
Setup Problem Method Results Analysis

Wang et al. [26] 2020 MISO High training
overhead

Conversion to sparse
channel recovery problem

Approximate NMSE of 0.04
obtained using the
GAMP algorithm

Wan et al. [43] 2020 MIMO Wideband system
estimation issues

DOMP algorithm and
redundant dictionary

Pilot design and redundant
dictionaries can improve
performance significantly

Liu et al. [50] 2020 MIMO High training
overhead

The deep denoising neural
network assisted
compressive channel
estimation

4 dB performance gain over
initial estimation

Shtaiwi et al. [34] 2021 MIMO High training
overhead

Estimate active users and
use CNN’s STS framework
to estimate inactive users

The larger the number of
active users, the smaller
the NMSE

Li [40] 2021 MIMO High cost/array
block

An EM-NNL-GAMP
method/Joint array
diagnosis and channel
estimation algorithm

Outperformed other
algorithms at 2 bit/Different
methods for different
situations were effective for
array diagnosis and
channel estimation

Liu et al. [44] 2021 MIMO High pilot overhead
Convert a parameter
recovery problem and use
NOMP algorithm

Low SNR and small number
of pilots had better
performance than OMP

Wang et al. [45] 2021 SISO High training
overhead SR method in images

10% rate improvement
compared with LS
(rSNR = 35 dB)

Taha et al. [48] 2021 MIMO High training
overhead

Reconstruction of the full
channel from subsampled
channels using CS and deep
learning

Achieved 90% of the best rates

Hu et al. [49] 2021 MIMO
High hardware cost
and energy
consumption

The semi-passive RIS
equipped with a partial 1-bit
quantization, ADMM and
GAMP algorithms

Better than baseline at
high SNR

Jin et al. [51] 2021 MIMO Low estimation
accuracy

Reshape the channel matrix
into a two-dimensional
image

As the proportion of active
cells increases, EDSR had
better NMSE performance and
MDSR reduced complexity

Lin et al. [52] 2021 MIMO
The problem of
time-varying
channels

Modeling as a CPD problem
and solving tensor problems
with algebraic algorithm

Reduced complexity and great
results at high SNR

Chung et al. [27] 2022 MISO High training
overhead

Two-stage beam training and
FALS

FALS required 45% fewer
training symbols compared
with the OMP and ANM
algorithms (eNMSE= 0.1)

Xu et al. [28] 2022 MISO High training
overhead

Deep DNN assisted
compressed channel
estimation algorithm

NMSE decreased with
increasing spatial and
temporal sampling

He et al. [29] 2022 SIMO High training
overhead

The model-driven deep
unfolding neural network

Achieved the same NMSE
with 25% less training
overhead than LS

Zhou et al. [30] 2022 MISO High training
overhead

Multi-user correlation,
channel sparsity, invariance
of channel coherence blocks

60% reduction in pilot
overhead compared with
baseline scheme
(eNMSE = 10−3)

Peng et al. [23] 2022 MIMO High training
overhead

A three-stage estimation
protocol using the
correlation between typical
users and normal users

50% reduction in pilot
overhead compared with
OMP (eNMSE = 10−2)
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Table 3. Cont.

Ref. Year System
Setup Problem Method Results Analysis

Albataineh et al.
[31] 2022 MIMO High pilot overhead

Extends the Re‘nyi entropy
function as the
sparsity-promoting
regularizer

An improvement over
the OMP

Lin et al. [24] 2022 MIMO Inefficient method
A MO and AM based
method and a three-stage
algorithm

The MO method had good
results when the overhead
was higher than 130. The CS
method proposed in this
paper is better than GAMP

Zhou et al. [32] 2022 MISO

Grid mismatch issues
and estimation
performance
degradation

Dictionary is optimized to
adapt to channel
characteristics

Better than the predefined
dictionary method when the
training overhead was small

Dai et al. [35] 2022 MIMO High training
overhead The DML algorithm Used in different scenarios

Jin et al. [36] 2022 MIMO Low estimation
accuracy

GAN-CBD, CBDNet, and
MRDNet

MRDNet achieved better
NMSE performance than
GAN-CBD and CBDNet,
with improvements of 5.63 dB
and 4.51 dB, respectively

Du et al. [37] 2022 MIMO Low estimation
accuracy

Semi-blind joint channel
estimation and symbol
detection algorithm

Better NMSE and
BER performance

Noh et al. [38] 2022 MIMO Fewer training
symbols

Two CRB-based training
signal design algorithms for
enhanced sparse channel
estimation

Significant performance gain
when the number of training
symbols was less than the
number of RIS
reflection elements

Ye et al. [41] 2022 SISO Interference
problems

Maximize power at desired
users and eliminate
interference at undesired
users

The reflector element changed
from 8 to 16, achieved a power
gain of approximately 10 dB

Chen et al. [42] 2022 MIMO

High mobility leads
to CSI changes and
requires high
overhead

A reasonable configuration
of the CSI acquisition time
scale

The communication
performance was improved in
mobile vehicle scenarios

Zheng et al. [46] 2022 MIMO High training
overhead

The received signal is
represented as a low-rank
third-order tensor

Significantly reduced training
overhead and better
performance compared with
SOMP algorithm

Ruan et al. [47] 2022 MIMO High training
overhead

Used reference points to aid
estimation

NMSE was reduced by 2 dB
compared with the best
benchmark solution
(rSNR = 10 dB)

Chen et al. [22] 2023 MIMO High training
overhead

Two-stage channel
estimation method using
common sparse structure

80% and 60% pilot overhead
reduction in LS and MMV
respectively (eNMSE = 10−2)

Chung et al. [33] 2023 MIMO High training
overhead

Location-aware channel
estimation based on ANM

2D ANM location awareness
was only at 32 training
symbols, 3D ANM maximum
training symbols was 32, both
better than 1D ANM

Wang et al. [39] 2023 MIMO High cost
Low-resolution ADCs and
Bayesian optimal estimation
framework

The BiG AMP algorithm had
better performance in few bit
quantization, and 8 bit
quantization was almost as
good as infinite bit quantization
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3.2. Channel Estimation for RIS Systems in Low Frequency Bands

In this section, the focus is on the channel estimation method for RIS systems in low
frequency bands. At low frequency bands, due to its rich multipath scattering, an unstruc-
tured channel model is used, but it is difficult to describe the overall characteristics of the
propagation environment with the method. Unstructured CSI requires a large training
overhead; therefore, many channel estimation methods have been proposed to reduce the
training overhead.

The channel estimation methods in low frequency bands are described in Figure 4.
Methods are based on fully-passive RIS and semi-passive RIS in different scenarios, which
are divided into four main aspects: MISO, MIMO, massive MIMO, and wideband system.

Low Frequency
Bands

Fully-passive RIS

Semi-passive RIS

Massive 
MIMO

MISO MIMO

Kundu 2021
Zhang 2021

Jensen 2020

Hu 2021

Jeong 2022

Mishra 2019

Zheng 2020

Mao 2022He 2020

Xu 2022

Hu 2022

Schroeder 2022Alexandropoulos 2022

Wideband 
system

Wei 2021

Gao 2021Yang 2022Guo 2022 Wei 2022

Shao 2022

Huang 2022

Wei 2021Araujo 2021

Yang 2020

Wang 2020

Figure 4. Channel estimation for RIS systems in low frequency bands.

The channel estimation methods of different RIS systems are presented by different
RIS architectures. Similar to the high band, the fully-passive RIS mostly uses the estimation
method of cascaded channels, while the semi-passive can use the method of separate
channel estimation.

3.2.1. Channel Estimation for Fully-Passive RIS

In a fully passive RIS-assisted low frequency system, channel estimation can be accom-
plished for the cascaded channel. In addition, the obtained CSI is sufficient to accomplish
setting the optimal phase to achieve maximum transmission efficiency. The methods ap-
plied will be varied for different system settings, we will present the channel estimation
methods for different system settings in the following.

MISO systems: Mishra et al. [53] first proposed the ON/OFF channel estimation
method. This method accomplishes channel estimation by sequentially turning on the RIS
element. Since the cascaded channels are only estimated one by one, the estimated variance
of each element is equal to 2. To reduce the variance, a minimum variance unbiased
(MVU) estimator was proposed in [54]. This method can be T (training periods) times
more accurate than the ON/OFF method of estimation. However, it required large pilot
overhead.

To further reduce the pilot overhead, different approaches were proposed in [55,56].
Zhang et al. [55] proposed a rank-one matrix factorization (MF) approach. AM and gradient
descent methods were then used to find the approximate optimal solution. An iterative
expectation maximization (EM) algorithm for semi-blind channel estimation was proposed
in [56]. The method first transforms the channel estimation problem into a maximum
likelihood estimation problem by initializing the semi-blind channel estimation with pilots
and solving it using EM. This method can reduce the pilot overhead by 85% compared
with the benchmark solution.

Kundu et al. [57] proposed an linear minimum mean square error (LMMSE) based
channel estimation method that further utilized CNN to approximate the optimal solution.
Both denoising CNN (DnCNN) and fast and flexible denoising network (FFDNet) were
considered in this paper. Improved MSE performance of DnCNN and FFDNet-based
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channel estimators as channels become more highly correlated. This method offered high
performance and relatively low implementation complexity.

MIMO systems: The increased number of users and antennas can make channel
estimation more challenging. In [58], a three-stage channel estimation method was pro-
posed considering the redundancy among channels without any assumption of sparsity
and low rank. The channel matrix of a typical user directly to the BS and the channel
matrix reflected by the RIS were estimated in the first two stages, respectively. Finally, the
channel estimation for other users was completed using the strong correlation between
other users and that user. This can reduce the pilot overhead and save estimation time in
MIMO systems.

Hu et al. [59] used the quasi static property of BS-RIS to perform channel estimation at
the time scale. Small-scale channel estimation was performed between UE and RIS, which
can reduce the pilot overhead significantly. Although this method reduces pilot overhead,
performance is worse than MVU. This property is used in later channel estimation methods
frequently.

A normally open training protocol was proposed in [60] and utilized a common
link structure to reduce the pilot overhead. This method offers a performance gain of
approximately 15 dB compared with the ON/OFF method.

To reduce the training overhead, Yang et al. [61] proposed the anchor-assisted ap-
proach, which assisted RIS in channel estimation by setting anchor points. While achieving
the same performance as the baseline solution, this method reduces the number of training
symbols by approximately 50.

The tensor modeling approach is also applicable to channel estimation. Dearaujo et al. [62]
proposed channel estimation method relying on parallel factor (PARAFAC) of received
signal tensor modeling. This method dealt with the non-ideal case, when there is phase
perturbation and when the receiver does not know the RIS phase shift.

Deep learning methods have received much attention in recent years and can be
applied to channel estimation to achieve better performance. Gao et al. [63] proposed a
three-stage DNN framework, which can achieve better performance without relying on
high pilot overhead and accurate channel statistics. Compared with the OMP method, this
method can reduce the pilot overhead by approximately 50%.

A cascaded channel estimation scheme based on dual-structured OMP (DS-OMP) was
proposed in [64] by exploiting dual structural sparsity of inter-user angular cascade chan-
nels.

In RIS-assisted wireless communication systems, not all devices are active at the same
time, and assigning potential devices to pilot sequences as well would lead to excessive
overhead. Shao et al. [65] proposed an unsourced random access (URA) scheme and
proposed a rank one decomposition-based message recovery and channel estimation
method for RIS-assisted URAs. Both channel estimation and signal recovery alone require
a lot of training and computation; therefore, Refs. [66,67] proposed joint channel estimation
and signal recovery methods that were able to cost lower complexity.

Massive MIMO systems: The larger number of antennas can make channel estimation
more difficult to achieve. To complete the channel estimation, He et al. [68] proposed a
two-stage cascaded channel estimation method. In the first stage, a BiG AMP algorithm
with sparse matrix decomposition was used. In the second stage, a matrix-completed
Riemannian streamlined gradient algorithm was used to accomplish accurate channel
estimation. The size of sparsity affects matrix decomposition and completion.

The deep learning approach is further utilized. Mao et al. [69] brought the results of
channel recovery into the residual network to reduce the errors caused by grid mismatch.
In order to improve the accuracy of the OMP algorithm, a residual structure-based OMP
(RS-OMP) network was proposed. Then, a straightforward network (SN) structure was
proposed instead of the OMP algorithm.

Wideband systems: Zheng et al. [70] designed a novel phase-shifted channel esti-
mation model for RIS-OFDM systems that satisfies the unit-mode constraint. With the
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same pilot overhead, this method improves gain by 14 dB over the ON/OFF method.
Yang et al. [71] proposed a method using RIS grouping in SISO systems. Both methods
provide accurate channel estimation results and a reduction in training overhead.

Xu et al. [72] extrapolated the partial RIS elements to the complete channel by closing
them and obtaining partial channel information. Using the compression idea, the extrap-
olation problem was transformed into a problem of recovering the channel parameters.
The complete channel was reconstructed using the sparse Bayesian learning (SBL) frame-
work finally. This method can reduce the pilot overhead while ensuring the accuracy. SNR
is improved by 12 dB gain compared with the LS method.

In OFDM systems, the carrier frequency offset problem is encountered. Jeong et al. [73]
proposed a joint carrier frequency offset (CFO) and channel impulse response (CIR) estima-
tion method to solve this problem. The method improved the channel estimation accuracy
under OFDM systems. This method can improve performance gains up to 30 times com-
pared with the benchmark scheme.

3.2.2. Channel Estimation for Semi-Passive RIS

The estimation of separate channels can be easily accomplished by setting active
elements with transceiver signal capability installed on the RIS. However, in semi-passive
RIS, it is necessary to consider not only the method of channel estimation, but also to set
the number and location of active RIS elements in a reasonable way. The goal is to be able
to improve the accuracy or reduce the complexity of channel estimation while ensuring
that the hardware complexity and power consumption are acceptable.

An architecture consisting of a passive RIS and an active RF chain for baseband
reception was proposed in [74]. Using this architecture and assuming sparse wireless
channels in the beamspace domain, an alternating optimization method was proposed to
achieve explicit channel estimation on the RIS side. This method saves pilot overhead and
training time.

Schroeder et al. [75] proposed a two-stage channel estimation scheme based on ANM.
A new two-stage channel estimation approach was developed in a hybrid RIS architecture.
The proposed channel estimation required fewer active RIS elements and only one-way
training, which has better estimation performance.

Hu et al. [76] proposed a semi-passive RIS using a grouping structure. Based on this
structure, a two-stage channel estimation method was proposed. The first stage estimated
the BS-RIS channel signal parameters by the estimation of signal parameters via rotational
invariance technique (ESPRIT). The second stage estimated the channel using the total LS
(TLS) ESPRIT and multi-signal classification (MUSIC) methods. This method has better
performance and lower training overhead, and the performance can be further improved
by flexibly allocating the training time between the two phases. The best performance is
achieved when the ratio of first stage to total time is 0.1. However, the grouping structure
made the beamforming performance degraded.

Compared with the high frequency bands, the low frequency bands lack channel
sparsity characteristics. Sparse matrices can be created by assuming a partial opening of
the RIS or other assumptions. High-dimensional matrices can be reduced in complexity by
matrix decomposition or by using tensor methods. Further, deep learning methods can be
used to improve the estimation performance and reduce the pilot overhead. The channel
estimation algorithms and performance comparison in low frequency bands are described
in Table 4. Table 4 describes the methods from four aspects: system setup, problem, method,
and results analysis.
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Table 4. Channel estimation in low frequency bands sorted by publication years.

Ref. Year System
Setup Problem Method Results Analysis

Mishra et al. [53] 2019 MISO Fully-passive RIS
cannot handle signals ON/OFF method Binary channel

estimation method

Jensen et al. [54] 2020 MISO
RIS increases the
number of estimated
links

MVU
Estimation accuracy was T
(training periods) times better
than the ON/OFF method

Wang et al. [58] 2020 MIMO High training
overhead

The relevance of typical user
and other users

Improve estimation
performance, more time slots
should be allocated for the
second stage to reduce
error propagation

He et al. [68] 2020 MIMO RIS cannot send and
receive signals

Sparse matrix decomposition
stage and matrix completion

Better than comparable matrix
decomposition and matrix
completion schemes.

Zheng et al. [70] 2020 SISO High training
overhead

Transmission protocol with
sequential channel
estimation and reflection
optimization

14 dB gain improvement over
ON/OFF method at the same
pilot overhead

Yang et al. [71] 2020 SISO High training
overhead Elements grouping

Better achievable rates than
methods without RIS
component grouping

Alexandropoulos
et al. [74] 2020 SISO High training

overhead
RIS architecture with a single
RF

Produced best estimation
performance with smaller
training symbols than OMP and
LS algorithms

Zhang et al. [55] 2021 MISO High training
overhead Matrix factorization Lower overhead and

higher accuracy

Kun et al. [57] 2021 MISO Low estimation
accuracy FFDNET and DNCNN

FFDNET outperformed
DNCNN at low SNR but
required noise
variance information

Hu et al. [59] 2021 MIMO High training
overhead BS-RIS quasi-static features

Reduced pilot overhead,
but worse performance
than MVU

Dearaujo et al.
[62] 2021 MIMO High training

overhead
PARAFAC tensor modeling
of the received signal

Robustness for amplitude and
phase perturbations

Gao et al. [63] 2021 MIMO High training
overhead

Integrated DNN to estimate
the direct channel, active RIS
and inactive RIS sequentially

50% reduction in pilot overhead
compared with OMP
(eNMSE = 10−2)

Wei et al. [64] 2021 MIMO High training
overhead

Cascaded channel estimation
scheme based on DS-OMP

Improved NMSE performance
as the number of common
paths increased

Wei et al. [66] 2021 MIMO

Large complexity for
both channel
estimation and signal
recovery

Joint channel estimation and
signal recovery algorithm

Only about 2.5 dB performance
difference compared with LS
scheme assuming perfect
channel knowledge

Huang et al. [56] 2022 MISO High cost/array
block

Iterative EM algorithm for
semi-blind channel
estimation

85% reduction in pilot overhead
compared with baseline scheme
(eNMSE = 10−2)

Yang et al. [61] 2022 MIMO High training
overhead

Anchor-assisted channel
estimation

Approximately 50 training
symbols can be reduced for the
same performance as the
baseline scheme

Shan et al. [65] 2022 MIMO High training
overhead

A rank one
decomposition-based
message recovery and
channel estimation
algorithm for RIS-assisted
URAs

Better separation than baseline
solution for active devices
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Table 4. Cont.

Ref. Year System
Setup Problem Method Results Analysis

Wei et al. [67] 2022 MIMO

Large complexity for
both channel
estimation and signal
recovery

Joint channel estimation and
signal recovery method

Approximately 18 dB gap from
baseline approach when pilot
length was 100

Mao et al. [69] 2022 MIMO
Grid mismatch issues
and performance
degradation

Residual networks to reduce
NMSE

SN worked well at small
training overheads, RS-OMP
achieved better results at large
training overheads

Xu et al. [72] 2022 MIMO High training
overhead

Subsampled information is
extrapolated to the full
channel

12 dB performance gain
compared with LS (The number
of active RIS elements was 1/16
of the total RIS elements)

Jeong et al. [73] 2022 SISO Carrier frequency
offset

A joint CFO and CIR
estimation

Up to 30 times higher
performance relative to
benchmark solutions

Schroeder et al.
[75] 2022 MIMO Low estimated

efficiency

Two-stage channel
estimation scheme based on
ANM

Better performance than
passive RIS

Hu et al. [76] 2022 MIMO High training
overhead ESPRIT, TLS, MUSIC Better performance than OMP

and LMMSE methods

4. Signal Processing Algorithms for RIS Channel Estimation

Based on different parameter acquisition schemes and mathematical modeling, we
divide channel estimation algorithms into five aspects: conventional-based, optimization-
based, CS-based, deep-learning-based, and composition-based algorithms.

4.1. The Conventional Algorithms for RIS Channel Estimation

In the generic channel estimation method, the transmitter transmits the pilot sequence
and the receiver receives the signal sequence to recover the channel matrix in the con-
structed channel model.

LS/LMMSE: LS estimation [77] and LMMSE are classical channel estimation methods
for finding model solutions for channel estimation, which was widely used in RIS-aided
systems for pilot-based channel estimation. The RIS channel estimation of conventional
LS/LMMSE has a large channel estimation pilot overhead; to minimize the LS/LMMSE
channel estimation error, the training reflection pattern and the transmit pilot sequence can
be designed jointly [78,79].

The conventional LS estimation scheme had a high pilot overhead, which was reduced
in [80]. Using a low-rank subspace, a reduced subspace LS estimation scheme and the
RIS phase shift pattern was optimized to minimize the MSE of the channel estimation.
Xu et al. [81] applied minimum MSE (MMSE) channel estimation to unmanned aerial
vehicle (UAV) scenarios with low-complexity optimization of the RIS phase shift matrix.

At high Doppler frequencies, the existing RIS channel estimation techniques assuming
block fading model pairs cause large errors. In [82], the characteristic of Doppler frequency
shift of the time-varying channel leads to a large estimation overhead. To reduce the
computational complexity, a correlation coefficient between direct line-of-sight and non-
line-of-sight was established. The function of the channel was modeled and the MMSE
estimation process was refined to improve the accuracy.

Grouping RIS: To reduce the training overhead and make full use of the spatial
correlation of the channel, a scheme of grouping RIS elements was proposed in [71].
The large RIS was divided into several small RIS groups and each group shared the same
common reflection coefficients, which was widely used in the subsequent RIS channel
estimation process.
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For the channel estimation problem of the uplink channel of a RIS-assisted multi-
user MIMO (MU-MIMO) system, the entire RIS surface was divided into sub-RISs and an
algorithm for estimating the channel using the symmetric positive definite (SPD) matrix [83]
was proposed.

Kalman filtering (KF): The channel coefficient matrix was kept constant during the co-
herent time and the channel was estimated for the elements of the multiple time blocks [84].
Mao et al. [85] used KF for mobile scenes and derived the best reflection coefficients for RIS
elements according to the MMSE .

For downlink communication system in a frequency division duplex MIMO system,
Cai et al. [86] proposed that the direct channel and the cascaded channel were estimated by
two KF tracking. The reflection coefficients at the pilot and RIS were designed jointly and
the optimal coefficient matrix was approximated by the columns of the discrete Fourier
transform (DFT) matrix.

Multi-stages: To further improve the estimation accuracy, the distributed multi-stage
algorithm was used for RIS channel estimation widely. To obtain higher accuracy channel
estimation with lower pilot overhead, in [87], an anchor-assisted multi-stage multiuser
wideband cascaded channel estimation scheme was proposed to estimate the cascaded
channels. In the first stage, Qian et al. [87] obtained BS-RIS CSI based on cyclic prefix single
carrier transmission and phase configuration at RIS. In the second stage, the cascade channel
information was estimated in the frequency domain using partial BS-RIS channel states.

The conventional-based channel estimation algorithms and performance comparison
are described in Table 5. Table 5 describes the methods from four aspects: antenna/RIS
architecture, channel model, major algorithm, and performance analysis.

Table 5. Comparison of conventional algorithms for RIS channel estimation.

Ref. Year Antenna/RIS
Architecture Channel Model Major Algorithm Performance Analysis

Zhou et al. [77] 2021 MIMO/Passive
RIS Static channel AoA estimation and LS

method

Improved estimation performance
compared with the existing channel
estimation algorithms (With low pilot
overhead)

Demir et al.
[80] 2022 MIMO/Passive

RIS Static channel Reduced-subspace LS and
array geometry

Reduced the eNMSE to −40 dB
(rSNR = 0 dB)

Xu et al. [81] 2022 SISO/Passive
RIS

Time-varying and
double selective
channel

MMSE and the
end-to-end system model

Reduced the required transmitted
power across the range of locations
spanning from 140 m to 800 m.

Shtaiwi et al.
[83] 2021 MIMO/Passive

RIS Static channel
SPD and
Maximum-margin matrix
factorization

Performance achieved up to 6 dB
enhancement as the sub-RIS size
increases

You et al. [84] 2020 MIMO/Passive
RIS

Time-varying
channel

RIS-elements grouping
and partition

Achieved close rate performance to
the case with phase shifts
when the number of bits was 3

Mao et al. [85] 2021 MIMO/Passive
RIS

Time-varying
channel

MMSE, KF, and
state-space model

Exhibited a better BER performance
than the MMSE estimator

Cai et al. [86] 2021 MIMO/Passive
RIS

Time-varying
channel

KF and codebook-based
low complexity design

Reduced computational complexity
and improved estimation accuracy

Xu et al. [82] 2023 SISO/Passive
RIS

High-dimensional
and high-Doppler
reflected fading
channels

MMSE interpolation and
multiplicative
concatenation of the
channel coefficient

Reduced the error floor while
achieving higher rates in high
mobility systems

Qian et al. [87] 2023 MIMO/Passive
RIS Static channel Two-phase and anchor-

aided channel estimation
Reduced polit overhead and
improved estimation accuracy

4.2. Optimization-Based Algorithms for RIS Channel Estimation

Optimization algorithms are also used in the RIS channel estimation process com-
monly. The generalized EM (GEM) algorithm is used to estimate the parameters in the



Mathematics 2023, 11, 3235 19 of 30

absence of variables, the model and parameters are adjusted to obtain the optimal solution
continuously. A spatially alternating GEM-based scheme for RIS-assisted channel measure-
ments was presented in [88]. The scheme was estimated by multipath component tracking
and maximum likelihood (ML) calculations.

In [89], a new over-the-air (OTA) method to estimate the true phase shift of the RIS
elements was modeled as a high-dimensional non-convex optimization problem. The ML
estimates were obtained by iterative algorithm. The root MSE (RMSE) of the phase estima-
tion was closed to the CRB, thus verifying the effectiveness of the proposed algorithm.

To reduce the pilot overhead by exploiting the common-link variables and the user-
specific variables, Guo et al. [60] used an alternating optimization algorithm to achieve a
locally optimal solution for a non-convex optimization problem, with a low computational
complexity.

Modelling the millimetre wave channel estimation problem as a non-convex optimi-
sation problem, Lin et al. [24] used alternating minimisation and manifold optimization
algorithms to generate locally optimal solutions. To reduce the computational complexity,
a multi-stage computer-based algorithm is further designed.

The optimization-based channel estimation algorithms and performance comparison
are described in Table 6. Table 6 describes the methods from four aspects: antenna/RIS
architecture, channel model, major algorithm, and performance analysis.

Table 6. Comparison of optimization-based algorithms for RIS channel estimation.

Ref. Year Antenna/RIS
Architecture

Channel
Model Major Algorithm Performance Analysis

Xu et al. [88] 2022 MIMO/Passive
RIS Static channel Space-alternating GEM

and ML estimation
Showed better performance with RIS
designed by the ideal phase shift

Zhang et al.
[89] 2023 SISO/Passive RIS Static channel ML and CRB Phase estimates were close to the

Cramer Rao Bounds (rSNR = 20 dB)

Guo et al. [60] 2022 MISO/Passive
RIS Static channel Alternating

optimization
Approximately 15 dB performance
gain over ON/OFF method

Lin et al. [24] 2022 MIMO/Passive
RIS Static channel

Alternating
minimization and
manifold optimization

Performance improvements
achieved compared with several
state-of-the-art benchmark schemes

4.3. Compressed Sensing-Based Algorithms for RIS Channel Estimation

The problem is formulated as an optimization algorithm to recover the original signal
as accurately as possible from the sparse projection matrix, which is often used to deal with
the channel estimation problem of RIS [90].

The greedy algorithm, a common algorithm for CS, has low computational complexity
and is often used in the signal recovery process [91,92]. Common CS techniques such as
ANM [75], OMP algorithm [64], approximation messaging passing (AMP) [93], and tensor
decomposition technique [37] were widely used for the channel estimation process. The CS
algorithm constantly searches for the most suitable transform base to represent the channel
matrix as sparse, which is an optimization problem. The channel matrix is computed
accurately using a small amount of information, which reduces the pilot overhead during
channel estimation significantly.

OMP algorithm: The conventional OMP algorithm directly used for RIS channel
estimation leads to large complexity, and how to reduce the training overhead becomes a
topic worth discussing. The number of RIS components is large and the calculated pressure
of the composite channel is high. For the composite channel models, the channel estimation
problem was formulated as a sparse recovery problem for a set of independent dictionaries
in the angular and temporal domains.

The computational complexity of the multidimensional OMP strategy [94] was based
on compressed channel estimation, which was greatly reduced by not computing on the
large dictionary directly. The OMP algorithm was modified to exploit the joint corner-
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domain sparse structure of the cascaded channels associated with different users. The matri-
ces of the corner domain channels for different users had common non-zero rows. The joint
estimation of a large number of common corner domain cascaded channels increased the
number of training samples and reduced the effect of noise.

AMP algorithm: The sparsity of the OMP algorithm is a fixed value, which is not
compatible with the actual situation. The further proposed AMP algorithm has adap-
tive sparsity. A two-stage algorithm including matrix decomposition stage and matrix
completion stage was proposed in [68].

In [93], in the first stage, conventional channel training methods were used to estimate
the direct MIMO channel among UE terminals. In the second stage, the bilinear adap-
tive vector approximation messaging algorithm was used for dictionary matrix learning.
The sparsity of the phase-shifted coefficient matrix was used to remove the permutation
ambiguity from the channel during the training process. By using the statistical proper-
ties of the user-to-RIS and RIS-to-BS channels and the central limit theorem (CLT), it can
verify the approximate Gaussian distribution when the channel propagates in the sub-6
GHz band.

By using Gaussian approximation, the joint channel estimation and data detection
technique of the BiG AMP algorithm [95] was proposed. In the improved BiG AMP
algorithm, a pilot was used to eliminate the effect of quantization and the paper used a
quantization-aware approach to estimate the CSI. The performance was further improved
relative to Ref. [93].

During numerical processing, the row sparse matrix elements were coupled to each
other causing a certain degree of error in the conventional estimation scheme. A hybrid
approximate message passing framework was proposed in [96] to decompose the derivative
frequency matrix, and recover the row sparse representation in the model. The hybrid
architecture compensates for the problem that GAMP cannot operate in the non-Gaussian
distribution dictionary.

In this section, we give an overview of the idea and use of CS algorithms in the
RIS channel estimation process, mainly describing the shortcomings of the classical OMP
algorithm, such as high computational complexity and fixed sparsity leading to large
application limitations. The extension literature improves on the shortcomings, how to
reduce the computational complexity, and the joint adaptive sparsity AMP algorithm.

The compressed sensing-based channel estimation algorithms and performance com-
parison are described in Table 7. Table 7 describes the methods from four aspects: an-
tenna/RIS architecture, channel model, major algorithm, and performance analysis.

Table 7. Comparison of compressed sensing-based algorithms for RIS channel estimation.

Ref. Year Antenna/RIS
Architecture

Channel
Model Major Algorithm Performance Analysis

He et al. [68] 2020 MIMO/Passive
RIS

Time-varying
channels

Sparse matrix factorization
and completion

Improved channel estimation
accuracy over the baseline methods

Mirza et al. [93] 2021 MIMO/Passive
RIS Static channel Bilinear generalized AMP

50% reduction in transmit power
compared with random algorithm
when achievable rate was 3 bps/Hz

Bayraktar et al.
[94] 2022 MIMO/Passive

RIS Static channel Multidimensional OMP The error smaller than 20 cm for
80% of the user positions

Xiong et al. [95] 2023 MIMO/Passive
RIS Static channel Bilinear generalized AMP Improve the performance with

faster convergence

Zhou et al. [96] 2022 MIMO/Passive
RIS Static channel Generalized-AMP

1/6 reduction in training pilot
symbols compared with baseline
scheme (eNMSE = 10−2)

Wu et al. [97] 2022 MIMO/Passive
RIS Static channel Three-step OMP

50% reduction in pilot overhead
compared with based scheme
(eNMSE = −16 dB)
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4.4. Deep Learning-Based Algorithms for RIS Channel Estimation

Deep learning has been widely used for RIS channel estimation [98,99]. The learning
ability of neural networks can be used to estimate the full channel from the partial pilot
channel information [100,101]; it can also be combined with image processing techniques
to imagine the RIS channel information as two images: one corresponding to the real part
channel information and one corresponding to the imaginary part channel information.
Image processing techniques are more mature, and common interpolation and denoising
methods for images are further applied in RIS. The coarse channel information is extracted,
preprocessed, and then trained in the network to get the accurate CSI image. The intro-
duction of image processing techniques has opened up a new area worth exploring for
CSI [102,103].

Most of the data processed by the channel estimation are complex numbers, but the
existing deep learning library functions do not support the operation of the complex
number domain. The general practice is that the data need to be preprocessed before input
to the network, and the real and imaginary parts of the complex numbers are extracted
and then input to the neural network. Due to there being two kinds of real numbers without
mining the phase information of the complex numbers, this preprocessing scheme brings
much information loss.

The deep learning-based algorithms for RIS channel estimation are presented by
different network architectures, which are divided into six main aspects: end to end,
CNN, graph attention network (GANet), DNN, recurrent neural network (RNN), and long
short-term memory (LSTM).

End to end network: Existing RIS systems have separate functions for coding and
modulation, channel estimation, channel equalisation, decoding and demodulation. Ac-
tually, these modules can be also considered as a whole and modelled as an end to end
network. The end to end network can further optimise the performance of the system by
avoiding the system falling into local optima. Simultaneously, it optimizes the connec-
tion weight coefficients of the sender, RIS and receiver to minimize the cross-entropy loss
function of the system [100].

CNN: Ahmet et al. [104] designed CNN networks for direct channel and cascade
channel estimation, where the users accessed the network directly to estimate their own
channels. A large amount of reflective surface channel information was coupled with
each other, which were computationally difficult. Compensated learning-based neural
network was proposed in [105] to dynamically track the CSI. Due to the powerful adaptive
capability of deep learning networks, the estimation process learned the fading channel
knowledge directly without the priori knowledge. Chen et al. [105] reduced the number of
hidden nodes and introduced an offset learning module to improve the performance in the
network. Kundu et al. [57] modelled the channel estimation as an image problem, using
CNN networks to denoise and approximate the optimal MMSE channel results.

Liu et al. [106] developed a deep residual learning (DReL) framework applied to multi-
user cascaded RIS channel estimation. The correctness of DReL is verified by applying
it to CNN networks using Bayesian estimation theory derivation, avoiding the multi-
dimensional integral calculation of MMSE estimation. The accuracy of channel estimation
is further improved by exploiting the advantages of CNN and DReL in feature extraction
and denoising.

GANet: Tekbiyik et al. [107] used GANet for full duplex wireless communication link
channel estimation. The training results are robust under different propagation channels
with better performance compared with conventional LS estimation.

DNN: During the estimation of partially activated RIS element channel coefficients,
a three-stage estimation scheme was proposed in [63] for direct channel. Active RIS element
cascade channel and inactive RIS element cascade channel was continuously trained to
achieve good accuracy. Jin et al. [36] used residual neural networks for cascaded channel
estimation. The online cascade channel estimation was proposed to use the network as a
multi-residual dense network.
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As shown in Figure 5, Zhang et al. [108] proposed a deep learning network architecture
for RIS channel estimation.

To reduce the pilot overhead, a strategy of RIS grouping was used. The grouping
assumes that each group of RIS shares the same reflection coefficient, which is not consistent
with reality and causes channel interference under a certain degree. Zhang et al. [108]
designed two deep learning networks. The first network eliminates channel interference
when RIS grouping was used, and the second network extrapolated the full channel from a
partial channel. To separate the A′ real part from the imaginary part, the network consists
of three convolutional layers and multiple residual blocks (RBs) of the same structure.
Each RB contains three identical dense blocks (DBs); each DB consists of five convolutional
layers. A leaky rectified linear unit (LReLU) was used as the activation function for the
first four layers in a DB. The output feature information from the previous layers was
used as input to each subsequent convolutional layer, and Â′ was the output of IENet to
improved estimation accuracy for the partial channels. the result learned by the nonlinear
transformations, was multiplied by a constant β and then added to the result. CENet was
constructed from two convolutional layers and the same RBs. Â was the output of CENet.
In turn, all channel information was obtained.
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Figure 5. A deep learning network architecture for RIS channel estimation.

RNN: Considering the large number of RIS components and the relatively short
coherence time, Xu et al. [28] considered a deep learning scheme to infer the full channel
from partial channels in the antenna domain. Xu et al. used a RNN network in the time
domain to explore the connection among different time blocks.

In [109], the deep deterministic policy gradient-based scheme was developed to
adapt to the dynamic channel variations to suppress the interference of time-varying
channels. Machine learning for channel estimation using reinforcement learning correlation
algorithms was not applicable in RIS systems. For the RIS phase shift problem, the data
samples associated with the transition from one state to another, and it was difficult to
define. In [110], a deep neural network model consisting of two DNNs was proposed which
was more effective for a large number of RIS elements.

LSTM: The work in [111] exploited the dual time-scale channel property, where the
BS and RIS channels were static and the channel between the RIS and the user was dynamic.
In the subsequent channel estimation process, Xu et al. designed a LSTM based neural
network framework for the channel decomposition process and the channel prediction
process. Xu et al. changed the connection layer according to the nonlinear mapping
relationship between the input and the output, thus reducing the complexity.

The specific application scenarios of various network architectures in the process of RIS
channel estimation were described above. Suitable networks improve channel estimation
performances in unfavorable scenarios such as high-speed time-varying, noisy, etc.

The deep learning-based channel estimation algorithms and performance comparison
are described in Table 8. Table 8 describes the methods from three aspects: antenna/RIS
architecture, channel model, and performance analysis of deep learning model.
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Table 8. Deep learning-based algorithms comparison for RIS channel estimation.

Ref. Year Antenna/RIS
Architecture Channel Model Performance Analysis of Deep Learning Model

Xu et al. [28] 2022 MISO/Passive RIS Time-varying
Channel

Designed a two-part network of the proposed time
interpolation and space extrapolation to improve
estimation accuracy and robustness

Jin et al. [36] 2022 MIMO/Passive RIS Static channel Designed the GAN-CBD, CBDNet, and MRDNet to
get better generalization and fitting ability

Kundu et al. [57] 2021 MISO/Passive RIS Static channel Designed a denoising CNN to reduced computational
complexity and improved estimation accuracy

Gao et al. [63] 2021 MIMO/Semi-passive
RIS Static channel

Designed a three-stage training strategy RNN to
reduced pilot overhead and improved estimation
accuracy

Ahmetm et al. [104] 2020 MIMO/Passive RIS Static channel Designed a CNN network to improved channel
estimation accuracy

Chen et al. [105] 2022 MIMO/Passive RIS Static channel

Used a learning-based CNN to reduced
computational complexity and improved channel
estimation accuracy (when the
the number of pilots was more than 120, eNMSE < 0.2)

Tekbiyik et al. [107] 2021 MIMO/Passive RIS Static channel Used a graph attention network to enhanced system
robustness and reduced pilot overhead

Liu et al. [106] 2022 MIMO/Passive RIS Static channel

Designed the deep residual network and CNN
network to improved estimation accuracy and
reduced reflective elements by 70% compared with
LMMSE (eNMSE = −8 dB)

Zhang et al. [108] 2021 MISO/Passive RIS Static channel
Designed a channel extrapolation network to
improved estimation accuracy and enhanced network
generalization

Xu et al. [109] 2020 MIMO/Passive RIS Time-varying
channels

Used a deep reinforcement learning network to
increased system capacity and suppressed
interference

Li et al. [110] 2023 MIMO/Passive RIS Static channel Designed a double deep learning network to reduced
computational complexity

Xu et al. [111] 2022 MISO/Passive RIS Time-varying
channel

Designed a sparse-connected LSTM network to
improved estimation accuracy, reduced time delay
and pilot overhead

4.5. Composition-Based Algorithms for RIS Channel Estimation

The direction of algorithm evolution has been described, it is found that deep learning
algorithms are being integrated with conventional algorithms and used in the channel
estimation process widely. Deep learning can make up for the shortcomings of conventional
algorithms, such as improving the channel estimation accuracy and joint optimization of
multiple modules. The deficiencies of conventional algorithms with insufficient accuracy
can be further improved by using the good denoising function of neural networks to
improve the channel estimation accuracy.

SemiDefinite relaxation (SDR)-deep learning: Elements on the RIS were usually ar-
ranged in two dimensions, treating the channel information as a single image. Yin et al. [112]
first used a SDR scheme and then built an end to end deep learning channel prediction
model that predicted the entire CSI based on the pilot information. It outperforms existing
approaches based on grouping of RIS elements in terms of achievable rate.

LS-deep learning: Wang et al. [45] modelled the channel information estimated by LS
as a low-resolution image and then interpolate it into a high-resolution image linearly.

OMP-deep learning: Using the conventional CS OMP algorithm, it is assumed that
the arrival and departure angle bases fall on the discrete grid during the computation
exactly, which does not match the reality causing errors. Mao et al. [69] fused deep learning
in the OMP algorithm to get results after the residual network to improve the performance.
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AMP-deep learning: Conventional CS algorithms AMP algorithm can reduce the
pilot overhead substantially, but the estimation accuracy is insufficient. Tsai et al. [113]
proposed a hypernetwork-assisted based learned AMP network with dynamic shrinkage
parameters, where the adaptive shrinkage parameters of the network output are used
among layers instead of a fixed value, thus improving the estimation accuracy.

The core of the conventional approach is in the human perception and modeling of the
target problem, as well as proposing a solver to solve the model. Deep learning methods
that use parameters to fit the problem can outperform conventional methods in case of
good convergence. In most cases, the ability to fit a large number of network parameters is
stronger than that of the models constructed using some prior knowledge in conventional
methods. As the complexity of the problem increases, the advantage of deep learning
becomes more obvious; the conventional solution incorporating deep learning solution has
a broad development prospect.

The composition-based channel estimation algorithms and performance comparison
are described in Table 9. Table 9 describes the methods from three aspects: antenna/RIS
architecture, major problem, and performance analysis of deep learning model.

Table 9. Composition-based algorithms comparison for RIS channel estimation.

Ref. Year Antenna/RIS
Architecture Major Problem Performance Analysis of Deep Learning

Model

Wang et al. [45] 2021 SISO/Passive RIS High complexity of conventional
algorithms

Proposed a high resolution network with
low-precision by linear interpolation to
achieve 92% accuracy rate (rSNR = 35 dB)

Mao et al. [69] 2022 MIMO/Passive
RIS

Insufficient estimation performance
of the CS algorithm

Proposed residual network to improve the
performance to outperform the OMP
(rSNR = 35 dB)

Tsai et al. [113] 2022 MIMO/Passive
RIS

Insufficient performance of AMP
algorithm estimation

Proposed a hypernetwork-assisted LAMP
network with dynamic shrinkage
parameters to reduce memory overhead by
50% and execution time by 93%

Yin et al. [112] 2022 SISO/Passive RIS Insufficient performance of
conventional algorithm estimation

Designed an end to end deep learning model
to reduce channel estimation overhead

5. Conclusions
5.1. Overall Discussion

RIS, as a fundamental and innovative technology, has great potential and development
prospects in future 6G. In this paper, we investigate the key technology of channel estima-
tion for the emerging of RIS. The focus is on investigating the channel estimation methods
for RIS-assisted wireless communication systems in high and low frequency bands applica-
tions and the comparison under different channel estimation algorithms. Specifically, we
first compare the RIS channel estimation methods in different frequency bands, and analyze
the differences and development directions of channel estimation methods in fully-passive
RIS and semi-passive RIS. We introduce a system model using angular domain modeling
to accomplish channel estimation, in which fewer parameters can save training overhead.

We analyze the channel estimation methods in real situations, wideband, and different
system settings. Completing channel estimation in the real case requires consideration of
cost, fault detection, and mobility issues. Issues such as frequency selective fading need
to be considered in wideband, and issues such as mutual interference and pilot pollution
need to be considered in different system settings. Therefore, different channel estimation
methods need to be used in different scenarios.

We classify the channel estimation methods of RIS into conventional-based algorithms,
optimization-based algorithms, CS-based algorithms, deep learning-based algorithms, and
composition-based algorithms, and investigate the application of channel estimation in
RIS with different algorithms. We analyze the advantages and disadvantages of different
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methods, use the advantages and improve the disadvantages of different channel methods,
and continuously search for more efficient channel estimation methods. We focus on
emerging applications of deep learning in the field of RIS channel estimation, such as
fusing deep learning with conventional solutions, combining the field of deep learning
image processing with channel estimation and building end to end networks.

5.2. Future Work

Finally, RIS has great potential for development in the future, and it is crucial to obtain
accurate CSI to guarantee the efficient functioning of RIS. With the increase in cascaded
links in multi-RIS systems, the channel estimation complexity increases further and the
channel estimation method of single RIS may no longer be applicable. How to integrate
more efficiently with RIS in higher frequency bands, such as the THz band, is also an issue
of concern. Deploying RIS in complex and changing environments, such as cities with
tall buildings, moving vehicles or satellites, requires more appropriate channel estimation
methods to guarantee effective communication. The idea of fusing deep learning algorithms
with conventional schemes and using the powerful data fitting capability of deep learning
to improve the performance of conventional algorithms has a broad development prospect.
In summary, RIS has great potential and deserves further exploration and research. We
hope that this review can provide sufficient information and promote the development
of RIS, regarding which the method of RIS channel estimation is still an evolving process.
It is hoped that this research and analysis of RIS for wireless communication channel
estimation will stimulate further research into the next-generation wireless communication
technologies and their practical application in future wireless communication.
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