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Abstract: The Split Vehicle Routing Problem with Simultaneous Delivery and Pickup (SVRPSDP)
consists of two subproblems, i.e., the Vehicle Routing Problem with Simultaneous Delivery and Pickup
(VRPSDP) and the Split Delivery Vehicle Routing Problem (SDVRP). Compared to the subproblems,
SVRPSDP is much closer to reality. However, some realistic factors are still ignored in SVRPSDP.
For example, the shipments are integrated and cannot be infinitely subdivided. Hence, this paper
investigates the Granularity-based Split Vehicle Routing Problem with Simultaneous Delivery and
Pickup (GSVRPSDP). The characteristics of GSVRPSDP are that the demands of customers are split
into individual shipments and both the volume and weight of each shipment are considered. In
order to solve GSVRPSDP efficiently, a Genetic-Simulated hybrid algorithm (GA-SA) is proposed,
in which Simulated Annealing (SA) is inserted into the Genetic Algorithm (GA) framework to
improve the global search abilities of individuals. The experimental results indicate that GA-SA
can achieve lower total costs of routes compared to the traditional meta-algorithms, such as GA, SA
and Particle Swarm Optimization (PSO), with a reduction of more than 10%. In the further analysis,
the space utilization and capacity utilization of vehicles are calculated, which achieve 86.1% and
88.9%, respectively. These values are much higher than those achieved by GA (71.2% and 74.8%,
respectively) and PSO (60.9% and 65.7%, respectively), further confirming the effectiveness of GA-SA.
And the superiority of simultaneous delivery and pickup is proved by comparing with separate
delivery and pickup. Specifically, the costs of separate delivery and pickup are more than 80% higher
than that of simultaneous delivery and pickup.

Keywords: vehicle routing problem; granularity; split; simultaneous delivery and pickup; simulated
annealing; genetic algorithm

MSC: 90-10

1. Introduction

The Vehicle Routing Problem (VRP) [1–3] is a classic NP-hard problem, which has wide
applications in the real world. Since it was first proposed by Dantzig and Ramser [4] in 1959,
VRP has been a hot topic in the operations research literature. Recently, more and more
researchers focus on variation VRPs, such as the VRP with time windows [5,6], the VRP
with simultaneous delivery and pickup [7,8] and the VRP with heterogeneous fleet [9,10].
These VRPs come from reality and have high practical application values [11–13].

The Vehicle Routing Problem with Simultaneous Delivery and Pickup (VRPSDP) was
proposed by Min [14] in 1989. The traditional VRP is equivalent to the delivery prob-
lem, i.e., transportation from one or more warehouse points to different customer points.
The pickup problem, on the other hand, is equivalent to the real-life return demands from
different customers. Simultaneous pickup and delivery means that delivery and pickup are
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considered simultaneously with the aim of reducing transportation costs and increasing
efficiency. VRPSDP is the foundation of the urban logistics distribution problem [15–18].

The Split Delivery Vehicle Routing Problem (SDVRP) was proposed by
Dror and Trudeau [19] in 1990. Its original intention was to solve the problem that the
demands of customers are larger than the capacity of vehicles in practice. In SDVRP,
transportation is be split according to customer demands, with multiple vehicles working
together to complete the transportation task. If the service is not completed at one time,
the vehicle needs to return to the depot point and restart the service. Research has proved
that both the number of vehicles and the total costs can be optimized by allowing the
demands of a customer to be split between any number of vehicles [20]. Afterwards, many
researchers have also begun to conduct extensive research based on SDVRP [21–24].

The Split Vehicle Routing Problem with Simultaneous Delivery and Pickup
(SVRPSDP) [25,26] is a combination of VRPSPD and SDVRP, in which delivery and pickup
are conducted simultaneously and meanwhile demands of customers can be divided.
However, it splits the demands of customers infinitely, without taking into account the
integration of shipments. That is, the sizes and weights of shipments are actually fixed
in reality, and each shipment should be transported as a whole [27,28]. Addressing this
issue, this paper establishes a new model called the Granularity-based SVRPSDP, shorted
as GSVRPSDP. In GSVRPSDP, each shipment of the customer is considered, rather than a
total demand value. Each shipment has two features: a volume and a weight. Meanwhile,
vehicles have volume and weight constraints. It is obvious that GSVRPSDP can be better
adapted to realistic transportation situations in the face of different kinds of shipments,
such as large-volume but relatively light shipments.

The main algorithms currently used to solve the traditional VRP and its variants
are exact solution, meta-heuristic and super-heuristic [29–32]. Exact solution algorithms
take too long to solve, super-heuristic algorithms are more complex and involve a greater
workload, while meta-heuristic algorithms can obtain satisfactory solutions relatively
quickly. Moreover, hybrid meta-heuristic [33–35] has become a popular and effective
method in recent years, one which can compensate well for the shortcomings of a single
algorithm and allow the strengths of algorithms to complement each other [36], such as
Genetic Algorithm (GA) with strong global search capability versus Simulated Annealing
(SA) with strong local search capability. Hence, this paper designed a Genetic–Simulated
hybrid algorithm (GA-SA) to solve the GSVRPSDP. Through experiments, comparisons
with SA, GA and Particle Swarm Optimization (PSO) are performed to show that GA-SA
can obtain better objective optimization values and generate better vehicle travel paths in
the scenario of GSVRPSDP.

The rest of this paper is organized as follows. Section 2 describes the problem es-
tablished in this paper. Section 3 introduces the proposed GA-SA, including the solution
representation and individuals updating based on SA. Section 4 shows the experimental
design, including experimental data and parameters. Section 5 presents the results and
analytical discussion of the comparison experiments. Finally, Section 6 summaries the
paper and provides the future work.

2. Problem Definition

In this section, we first give the definition of the basic VRP, and then introduce the
GSVRPSDP that we constructed in this paper.

2.1. The Basic VRP Model

The basic VRP can be represented with a graph G = {V, E}. V = {0} ∪Vc is the set
of vertices, in which 0 represents the distribution center and Vc = {1, ..., N} represents the
customers. Each customer i ∈ Vc has a non-zero demand mi. E = {(i, j)|i, j ∈ V, i 6= j}
is the set of edges. A fleet of vehicles with a limited capacity is located at the center
to deliver shipments to all the customers. Each vehicle must start and end its route at
the center 0, and the total demands served by each vehicle cannot exceed its capacity. If
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the capacity is smaller than the total demands of all customers, then several vehicles are
needed, and each takes responsibility for several customers. For example, as shown in
Figure 1, four vehicles are needed to meet the demands of all customers, which are shown
as four routes. The objective of the VRP is to minimize the total costs of vehicles.

Figure 1. An example instance of the basic VRP model. 0 represents the distribution center, and 1–16
represent the customers. The example includes four routes, each of which is assigned a different color.

2.2. The Proposed GSVRPSDP Model

The proposed GSVRPSDP model is modified based on the basic VRP from the follow-
ing three aspects:

1. The customer not only has a delivery demand, but also has a pickup demand. To meet
the two demands efficiently, vehicles can deliver and pick up shipments simultaneously.

2. The demands of customers are composed of individual shipments, and each shipment
has a weight feature and a volume feature. Meanwhile, the vehicle not only has a
weight constraint, but also has a volume constraint.

3. The demands of customers can be split, which means that vehicles can deliver part of
the shipments and pick up part of the shipments from each customer.

The definition of notations in GSVRPSDP can be seen in Table 1, followed by decision
variables, and then the mathematical model of GSVRPSDP.

Table 1. The definition of notations in GSVRPSDP.

Parameter Description

C0 The fixed costs of vehicle operation
C1 The variable costs per unit distance travelled
N The number of customers
V The set of nodes (V = 0, 1, 2, 3, . . . , N,

where 0 denotes the distribution center;
1, 2, . . . , N denotes customer points)

K The number of vehicles to be used
SV The set of vehicles (SV = 1, 2, 3, . . . , K)
dij The distance from the customer i to the customer j
M_W The maximum load of the vehicle
M_V The maximum volume of the vehicle
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Table 1. Cont.

Parameter Description

mi
d The weight of the shipments of the ith customer

to be delivered.
vi

d The volume of the shipments of the ith customer
to be delivered.

mi
p The weight of the shipments to be picked up from the

ith customer.
vi

p The volume of the shipments to be picked up from the
ith customer.

mijk The weight of shipments on the vehicle k before
it is sent to the customer j after finishing
pickup and delivery at the customer i.

vijk The volume of shipments on the vehicle k before
it is sent to the customer j after finishing
pickup and delivery at the customer i.

Decision variables:

xijk =

{
1, The vehicle k travels from the customer i to j
0, otherwise

yik = The fraction of the number of shipments delivered to the ith

customer by the kth vehicle

zik = The fraction of the number of shipments picked up from the ith

customer by the kth vehicle

Mathematical model:

MinZ = C0K + C1

N

∑
i=0

N

∑
j=0

K

∑
k=1

dijxjjk (1)

K

∑
k=1

yik = 1(∀i = 1, 2, . . . , N) (2)

K

∑
k=1

zik = 1(∀i = 1, 2, . . . , N) (3)

K

∑
k=1

N

∑
j=1

x0jk =
K

∑
k=1

N

∑
j=1

xj0k = K (4)

N

∑
i=1

xijk =
N

∑
i=1

xjjk(k ∈ m, ∀j = 1, 2, . . . , N) (5)

K

∑
k=1

N

∑
i=0

mijk −
K

∑
k=1

Cd

∑
c

yd
jckmd

jc +
K

∑
k=1

Cp

∑
c

yp
jckmd

jc

=
K

∑
k=1

N

∑
i=0

mjik, ∀j = 1, 2, . . . , N (6)
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K

∑
k=1

N

∑
i=0

vijk −
K

∑
k=1

Cd

∑
c

yd
jckvd

jc +
K

∑
k=1

cp

∑
c

yp
jckvd

jc

=
K

∑
k=1

N

∑
i=0

vjik, ∀j = 1, 2, . . . , N (7)

mijk ≤ M, i ∈ n, j ∈ n, k ∈ SV (8)

vijk ≤ V, i ∈ n, j ∈ n, k ∈ SV (9)

K

∑
k=1

N

∑
i=0

xijk ≥ 1(j = 1, 2, . . . , N) (10)

K ≥ max

∑N
i=1 ∑

cd
i

c=1 vd
ic

V
,

∑N
i=1 ∑

Cd
i

c=1 md
ic

M

,

K ∈ N∗ (11)

K ≥ max

∑N
i=1 ∑

cp
i

c=1 vp
ic

V
,

∑N
i=1 ∑

cp
i

c=1 mp
ic

M

,

K ∈ N∗ (12)

Among them, Equation (1) is the objective function, which indicates that the goal
of problem is to minimize the sum of the vehicle fixed costs and the vehicle variable
costs. Constraint (2) insures that each customer receives its full shipments. Constraint (3)
insures that each customer sends its full shipments. Constraint (4) is the distribution center
constraint. All vehicles depart from the distribution center and return to the distribution
center after completing all distribution tasks. Constraint (5) indicates that the number
of vehicles entering and leaving the customer point is balanced. Constraint (6) is weight
constraint at the node. The weights of shipments change after the vehicle serves the
customer j. Constraint (7) is volume constraint on the node. The volumes of shipments
change after the vehicle serves the customer j. Constraint (8) is vehicle maximum load
constraint. The total weight of shipments loaded by the vehicle on any section of the
distribution path is less than the maximum vehicle load. Constraint (9) is the vehicle
maximum volume constraint. The total volume of shipments loaded in the vehicle in
any section of the distribution path is less than the maximum volume of the vehicle.
Constraint (10) is the customer point service constraint. Each customer point is served at
least once. Constraints (11) and (12) represent the required number of vehicle constraints.

3. A Genetic-Simulated Hybrid Algorithm for Solving the GSVRPSDP

For solving the proposed GSVRPSDP efficiently, a hybrid meta-heuristic (called GA-
SA) that combines the global search ability of GA and the local search ability of SA is
proposed. The overall procedure of GA-SA is shown in Algorithm 1. It can be seen that,
GA-SA follows the basic framework of evolutionary computation, and the basic idea of SA
is used to update individuals further after the offspring is generated based on GA operators
(i.e., crossover, mutation and reproduction). The individuals updating based on the SA
is a loop that has three substeps: (1) rescheduling customers, (2) optimizing loading and
(3) optimizing routes. The loop is controlled by a temperature, it has an initial value that is
bigger than 0. And each time the three steps proceed, the temperature declines. When the
temperature is no bigger than 0, it stops, and the new population is generated. However,
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if all individuals in the offspring are updated based on SA, the time consumed could be
very high. Hence, a certain proportion of offspring (i.e., α × POPSIZE) is selected to be
updated. In the experiments, parameter analysis is conducted to give a proper value of α.

Algorithm 1: GA-SA for solving the GSVRPSDP

1 Randomly initialise POPSIZE individuals
2 Initialize the temperature T
3 Calculate the fitness of the individuals based on Equation (1) while termination

condition not satisfied do
4 Generate offsprings using GP operators
5 Randomly select α × POPSIZE individuals
6 for each selected individual Ti do
7 Fitbest= f it(Ti) /* recording the best fitness during updating Ti

*/
8 Tbest=Ti /* recording the best individual during updating Ti */
9 while T > 0 do

10 Rescheduling customers
11 Optimizing loading
12 Optimizing routes
13 Evaluate the new individual T′i
14 if fit(T′i ) < fit(Ti) then
15 Fitbest= f it(T′i )
16 Tbest=T′i
17 T = T − 10

18 Ti ← Tbest

19 Return best solution

In the following section, we first introduce the solution representation, and then three
substeps of SA in detail.

3.1. Solution Representation and Evaluation

Adopting the route-first split-second idea for solving routing problems [37], the chro-
mosome in GA-SA is a permutation of N customers without delimiters. Each customer is
represented by its number, from 1 to N. It implies that the vehicle will follow the shortest
paths between consecutive customers. Then greedy strategy is used to split the chromosome
into several feasible routes that meet the weight and volume constraints of vehicles.

For a given chromosome c = (τ1, τ2, . . . , τN), the first vehicle starts from the depot and
heads to serve the customer τ1, then it follows the customer permutation in the chromosome
to serve as many customers as possible. Then, a second vehicle will start from the depot
and go to serve the customer afterwards. The procedure is repeated until the final customer
in the chromosome is totally distributed to one vehicle. In this process, the vehicle will
deliver or pick up shipments according to the order of numbering from small to large and
adhere to the capacity and volume constraints. Furthermore, in the real world, it is common
for customers to have no pickup demands. In such cases, the vehicle simply skips over that
customer and continues on its route. If a former vehicle cannot meet the delivery or pickup
demands of one customer, it will serve as many as possible and the unserved demands
are fulfilled by the next vehicle. Along with each route, there are two permutations that
provide the delivery and pickup orders of shipments for each vehicle.

One example is shown in Figure 2, the chromosome is “[3, 2, 5, 4, 1]”. After serving
customer 3, the first vehicle can pick up part of the shipments of customer 2, then customer
2 is fulfilled by two vehicles. Details about the actual routes based on the chromosome and
the delivery and pickup lists can be seen in Figure 2.
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Chromosome: [3, 2, 5, 4, 1]

Route：         [[0, 3, 2, 0], 

                        [0, 2, 5, 0], 

                        [0, 4, 1, 0]]

Delivery list: [[d3
1
, d3

2
, d3

3
, d3

4
, d2

1
, d2

2
, d2

3
], 

                        [d5
1
, d5

2
, d5

3
], 

                        [d4
1
, d4

2
, d1

1
, d1

2
]]

Pickup list:   [[p2
1
, p2

2
, p2

3
], 

                        [p2
4
, p5

1
], 

                        [p4
1
]]

Serial 

No.
X     Y

No. of 

Delivery

Volume 

Set (m3)

Weight 

Set (kg)

No. of 

Pickup

Volume 

Set (m3)

Weight 

Set (kg)

0          25    25        --                  --            --                 --                --             --

1          26     5         2             {4, 5}       {5, 5}             0                 --            --

2          17    31         3         {1.2, 1.8, 1} {2, 3, 2}        4       

3          14    22         4         {2, 2, 1, 4}                         0                 --             --           

4          35    26         2              {1, 4}      {2, 1}            1               {4}         {1}

5          30    42         3          {7, 3, 2}    {3, 9, 1}          1               {7}         {3}

{2, 3, 0.5, 

2.5}

{5, 4, 

5.6, 2} 

Data of the instance example

0

1

2

3

4

5

0

1

2

3

4

5

M_W=15 kg

M_V=15 m3

{1, 8.5, 

4.2, 2}  

Figure 2. An example of the solution representation. Each route is denoted by a different color. In
the delivery list, dj

i represents delivery the jth shipment of the customer i, and in the pickup list, pj
i

represents pick up the jth shipment of the customer i.

The costs of the routes are calculated based on Equation (1), which is defined as the
fitness of the chromosome. The lower fitness indicates the better performance.

3.2. Initial Population and Termination Condition

Chromosomes in the initial population are generated either by the greedy strategy or
at random. The greedy strategy starts with an empty route. It randomly chooses a customer
first and adds it into the route. In each iteration, the nearest customer to the last customer
in the route is added. The step is repeated until all the customers are added.

The GA-SA stops when a maximal number of generations is reached.

3.3. Individuals Updating Based on SA

The individuals that are chosen will be updated based on the following three steps in
one loop.
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3.3.1. Rescheduling Customers

First, the individual is viewed as a chromosome without delimiters. Then, the Metropo-
lis rule in SA is used to reschedule customers to vehicles. That is, if a randomly generated
value is bigger than the probability P(T), the vehicle will serve the next customer based
on the permutation in the chromosome. Otherwise, the vehicle will go back to the depot,
and the customer will be served by a new vehicle. The goal of this process is to improve
the diversity of the population.

The acceptance probability P(T) is an equation relating to the temperature T, as shown
in Equation (13). As the evolution process proceeds, the temperature T gradually decreases,
and the probability of abandoning the next customer gradually decreases, which effectively
increases the convergence speed of the algorithm while enhancing the global convergence
of the algorithm.

P(T) = 1− T
100

(13)

3.3.2. Optimizing Loading

The loading optimization mainly acts on the customers that are served by two vehicles.
The picked-up or delivered shipments are reassigned to the first vehicle, and the remaining
shipments will be served by the second vehicle. Meanwhile, the second vehicle will be
re-evaluated for how many customers it can serve.

Taking the instance in Figure 2 as an example, customer 2 has three delivery shipments
(represented as d1

2, d2
2 and d3

2) and four pickup shipments (represented as p1
2, p2

2, p3
2 and p4

2).
Before loading optimization, vehicle 1 picks up shipments p1

2, p2
2 and p3

2. The remaining
pickup shipments (i.e., p4

2) will be served by vehicle 2, which can be seen in the pickup list
in Figure 2. The loading optimization will randomly reassign shipments that are delivered
and picked up by vehicle 1 under the control of weight and volume constraints. Hence,
the new pickup list could be [[p1

2, p2
2, p4

2], [p3
2, p1

5], [p1
4]].

3.3.3. Optimizing Routes

This process aims to change the serving order of customers within the service scope of
a vehicle, which could further reduce the vehicle variable costs. The specific adjustment
method is determined by the number of customers served by a vehicle. (1) If the number of
customers is one or two, the serving order will not be changed because it has no influence on
the final costs. (2) If the number of customers is three (e.g., 1 2 3), there are six combination
patterns, i.e., 1 2 3, 1 3 2, 2 1 3, 2 3 1, 3 1 2 and 3 2 1. The algorithm first checks whether
these routes are feasible or not, that is, whether they can satisfy the weight and volume
constraints. Then, the feasible routes that have the minimal costs will be selected. (3) If
the number of customers is bigger than three, the algorithm will first randomly select ten
combination patterns and then select one feasible minimal costs route from them.

4. Experiment Setup

This section first presents the designed datasets that are consistent with the problem
model proposed in the paper. Then, the parameter settings are given. Finally, the key
parameter α, which represents the number of individuals being updated based on SA, is
analyzed, and the optimal values are recommended. The algorithms were implemented via
Spyder (Python 3.9) programming on a computer configured with AMD Ryzen 72,700 U,
2.20 GHz, 8 GB RAM, running under Windows 10 OS.

4.1. Experimental Data

Since there are no standard datasets matching the problem modeled in this paper, we
modified the benchmark SDVRP datasets (http://neumann.hec.ca/chairedistributique/
data/sdvrp/ (accessed on 15 July 2022)) to GSVRPSDP dataset. The datasets consist of four
groups of instances, which have 8, 16, 32 and 64 customers. For the instance with eight

http://neumann.hec.ca/chairedistributique/data/sdvrp/
http://neumann.hec.ca/chairedistributique/data/sdvrp/
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customers, the total number of both pickup and delivery shipments is 50. For the instance
with 16 customers, the total numbers of both pickup and delivery shipments are 100. For the
instance with 32 customers, the total number of both pickup and delivery shipments is
200. And for the instance with 64 customers, the total number of both pickup and delivery
shipments is 400. Table 2 shows the instance with eight customers, in which 1–8 denote
customers, and 0 is the depot. X and Y represent the x-coordinates and y-coordinates of
depot and customers. Each customer has a different number of shipments to be delivered
and picked up. And each shipment has a specific volume and weight. For example, line 4
in Table 2 shows that the coordinate of customer 2 is (17, 31); it has three shipments that
need to be delivered, the volumes of these goods are 1.3 m3, 1.1 m3 and 0.1 m3 and their
corresponding weights are 1.2 kg, 2.2 kg and 0.2 kg. Meanwhile, customer 2 has five
shipments that need to be picked up, whose volumes are 0.9 m3, 0.9 m3, 1.1 m3, 1.2 m3 and
1.7 m3, and the corresponding weights are 0.3 kg, 2.0 kg, 0.6 kg, 0.5 kg and 1.7 kg.

Table 2. VRPSPSP data with 8 customers.

Serial No. X Y No. of
Delivery

Volume Set
(m3)

Weight Set
(kg)

No. of
Pickup

Volume Set
(m3)

Weight Set
(kg)

0 25 25 - - - - - -

1 26 5 12
{2.5, 2.0, 1.1, 0.5,
0.8, 2.0, 1.7, 0.7,
1.7, 0.8, 2.1, 1.6}

{1.6, 1.2, 0.5, 1.9,
1.4, 1.5, 1.4, 1.0,
1.8, 0.7, 1.7, 2.1}

6 {1.7, 1.9, 2.5, 1.2,
1.3, 1.2 }

{1.9, 1.2, 2, 1.4,
1.1, 2.1}

2 17 31 3 {1.3, 1.1, 0.1} {1.2, 2.2, 0.2} 5 {0.9, 0.9, 1.1, 1.2,
1.7}

{0.3, 2.0, 0.6, 0.5,
1.7}

3 14 22 4 {1.5, 1.7, 0.1, 1.9} {0.1, 1.5, 1.6, 0.8} 12
{0.8, 1.6, 2.3, 1.4,
0.7, 1.2, 0.4, 1.9,
1.2, 2.2, 1.7, 2.3}

{1.7, 0.7, 2.1, 1.1,
2.2, 2.2, 0.2, 2.3,
1.4, 1.7, 1.7, 1.1}

4 35 26 5 {1.3, 0.7, 1.2, 2.1,
1.1}

{1.7, 1.1, 1.4, 1.9,
1.4} 8 {1.1, 2.1, 0.6, 2.5,

2.5, 1.8, 1.1, 2.2}
{0.7, 1.5, 2.5, 1.2,
1.8, 0.3, 2.4, 1.5}

5 30 42 10
{1.2, 0.9, 0.1, 1.0,
1.2, 1.7, 1.4, 2.3,

0.1, 0.5}

{2.1, 0.4, 0.2, 1.4,
0.9, 0.8, 1.6, 1.1,

0.6, 0.9}
4 {1.0, 0.5, 2.3, 2.1} {1.9, 2.3, 0.9, 1.5}

6 10 11 8 {2.4, 0.8, 1.1, 1.7,
1.5, 0.5, 1.6, 0.7}

{1.8, 2.1, 1.5, 0.9,
2.2, 1.1, 0.6, 0.9} 3 {1.1, 2.0, 1.5} {2.1, 0.8, 1.1}

7 41 21 3 {1.5, 1.1, 1.3} {1.2, 1.9, 0.8} 5 {2.5, 1.8, 1.1, 1.3,
1.9}

{1.8, 1.3, 0.4, 1.6,
1.2}

8 44 12 5 {0.9, 2.5, 1.2, 1.4,
1.1}

{1.6, 1.9, 1.5, 2.0,
1.3} 7 {0.4, 0.9, 2.2, 0.6,

1.2, 1.3, 2.4}
{0.5, 0.8, 2.2, 1.2,

1.5, 0.6, 0.1}

4.2. Parameter Settings

The superiority of the proposed GA-SA is shown by comparing it with the traditional
meta-algorithms, i.e., GA and PSO, in experiments. Therefore, the parameter settings can be
divided into three categories: (1) the vehicle parameters such as vehicle load and volume,
(2) the GA-SA parameters, which include the settings for the traditional GA and (3) the
PSO parameters. The settings of all parameter values are consistent with the standard
algorithms, and the same parameters that appeared in different algorithms have the same
values. Please see Table 3 for details.

Table 3. The parameter settings of the compared algorithms.

Parameter Description Value

M Vehicle load 15 kg
V Vehicle volume 15 m3

C0 Vehicle start-up costs 6
C1 Vehicle change costs 1
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Table 3. Cont.

Parameter Description Value

Pc Crossover probability 0. 9
Pm Mutation probability 0. 1

POPSIZE Population size 40
Generations Evolutionary algebra 50

tournament_size Select operation 5
Tend Termination temperature 1

w Inertia factor 0.2
C1 Self-perception factor 0.4
C2 Social perception factor 0.4

4.3. Sensitivity Analysis (α)

In order to find a good α value that can balance the run costs and the searching ability
of GA-SA, we investigated seven α values, i.e., 0, 0.1, 0.2, 0.4, 0.6, 0.8 and 1.0. α = 0 means
that no individuals are updated based on SA, which degenerates into the traditional GA,
and α = 1.0 means that all individuals are updated based on SA. The experiments are
taken on GSVRPSDP dataset with 8 customers. And based on our preliminary experiments,
results on other instances show the same pattern. The results are shown in Figure 3, which
illustrate that with the increment of α, the performance of GA-SA (i.e., the costs) has a high
improvement, but the run time rises sharply. For example, when α = 0, the averaged cost
is 302.56 and the run time is 536 s. When α = 0.6, the cost is 288.57 and the run time is
2423 s. It means that if 60% individuals are updated based on SA, the run time has almost
5 times higher than the traditional GA. However, when α > 0.4, with the increment of α,
the improvement of the costs is slight. Hence, we recommend α ∈ [0.2, 0.4] for GA-SA.
Specifically, we set α = 0.2 in the following experiments.
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Figure 3. The costs and run time of GA-SA with different values of α. The results are the average
values based on 30 independent runs.

5. Results and Analysis

In the new algorithm, GA-SA, we proposed three substeps to improve the performance
of individuals in GA. In order to test the efficiency of each step specially, we run the
algorithm with rescheduling customers only (called GA-SAR) in the experiments. The other
compared algorithms are the traditional GA, PSO and SA. Each algorithm was run 30 times
independently for each instance, and the best, worst and average total costs were taken.
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5.1. Results

Table 4 shows the total costs of GA-SA, GA-SAR, the traditional GA, PSO and SA on
four VRPSPSD instances. Bold values indicate the superiority of the data. The percentages
are calculated as (CAlg.-(GA-SA))/CAlg., where CAlg. represents the costs obtained by the
compared algorithm (e.g., GA, PSO). From the table, we have the following observations:

• GA-SAR can obtain lower total costs than the traditional GA in terms of best, worst
and average. It shows that rescheduling customers based on a probability can help
GA get out of the local optimal and obtain better routes.

• GA-SA outperforms GA-SAR in four instances, which means that the loading opti-
mization and route optimization can further improve the diversity of individuals and
achieve much better results.

• Among all five compared algorithms, GA-SA obtains the lowest costs in terms of best,
worst and average in four instances. Specifically, the average total costs of GA-SA in
four instances are 4.7%, 10.4%, 19.2% and 13.4% lower than that of GA-SAR, GA, PSO
and GA, respectively. It shows the efficiency of the proposed strategy.

Table 4. The total costs comparison among GA-SA, GA-SAR, GA, PSO and SA for four
GSVRPSDP instances.

Customer No. Algorithm Best Average Worst

8

GA-SA 286.8 288.2 290.9
GA-SAR 286.8 289.8 291.8

GA 294.6 297.3 305.3
PSO 300.7 307.8 318.2
SA 294.7 301.2 307.2

16

GA-SA 542.4 561.1 571.3
GA-SAR 547.6 565.1 583.6

GA 558.4 573.8 587.6
PSO 581.4 589.5 601.5
SA 566.2 578.5 592.1

32

GA-SA 1161.8 1204.5 1251.9
GA-SAR 1187.9 1221.3 1321.6

GA 1265.7 1289.2 1339.6
PSO 1422.6 1476.7 1573.1
SA 1314.1 1325.9 1364.5

64

GA-SA 2639.9 2787.7 2994.6
GA-SAR 2897.3 3002.3 3276.2

GA 3194.5 3240.3 3348.4
PSO 3512.1 3620.5 3766.4
SA 3340.3 3384.9 3452.1

Average of four instances

GA-SA 1157.7 1210.4 1277.2
GA-SAR 1229.9 (5.9%) 1269.6 (4.7%) 1368.3 (6.7%)

GA 1328.3 (12.8%) 1350.2 (10.4%) 1395.2 (8.5%)
PSO 1454.2 (20.4%) 1498.6 (19.2%) 1564.8 (18.4%)
SA 1378.8 (16.0%) 1397.6 (13.4%) 1429.0 (10.6%)

Figure 4 shows the convergence curves of the average costs of the compared algo-
rithms for four instances, which shows the superiority of GA-SA more visually. It can be
summarized that PSO is obviously worse than the other algorithms. GA is easy to fall into
a local optimal solution, which leads to program interruption, and GA-SAR can jump out
of the local optimal solution and achieve a better result due to the introduction of a random
factor in rescheduling customers, which accepts a solution worse than the current one with



Mathematics 2023, 11, 3328 12 of 15

a certain probability when iteratively updating the feasible solution. GA-SA shows further
better convergence performance than GA-SAR.
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Figure 4. The convergence curves of the average costs of compared algorithms on four instances.

5.2. Effectiveness Analysis

For analyzing the routes generated by GA-SA in detail, we randomly choose a solution
of GA-SA on the instance with 16 customers and calculate the space utilization and capacity
utilization of vehicles. The results are shown in Table 5. It can be seen that the average space
utilization and the average capacity utilization of GA-SA is 86.1% and 88.9%, respectively,
which are much better than that of GA and PSO.

As presented in Section 3.1, if the shipments of a customer cannot be delivered or
picked up fully by one vehicle, GA uses a direct method, according to the order of num-
bering from small to large, to assign shipments to the first vehicle, and the remaining
shipments are assigned to the second vehicle. Meanwhile, in GA-SA, loading optimization
is introduced to break the numbering constraints and randomly reassigns shipments that
are delivered and picked up by the first vehicle under the control of weight and volume
constraints. This is helpful to fully utilize the loading capacity of the first vehicle, and the
second vehicle can have more capacity to serve more customers. For example, the routes
show that customers 16 and 12 are served twice, which indicates that it is very common
that the customers are served by two vehicles and reassigning shipments among them
could result in a better way to load shipments. To look at each route further, we found that
vehicle 2 has the lowest capacity utilization, which is 72.7%, but its space utilization rate
reaches 93.3%. This indicates that a large proportion of goods transported by vehicle 2 are
light goods.
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Table 5. An example of routes generated by GA-SA at the instance with 16 customers.

Routes Space
Utilization

Capacity
Utilization

Vehicle 1 [0, 16, 8, 10, 0] 92.7% 98.7%
Vehicle 2 [0, 16, 7, 0] 93.3% 72.7%
Vehicle 3 [0, 12, 4, 0] 78.7% 81.3%
Vehicle 4 [0, 12, 3, 0] 90.7% 96.7%
Vehicle 5 [0, 13, 3, 2, 0] 71.3% 77.3%
Vehicle 6 [0, 11, 1, 13, 0] 97.3% 98.7%
Vehicle 7 [0, 1, 15, 0] 82.7% 94.7%
Vehicle 8 [0, 6, 15, 0] 79.3% 99.3%
Vehicle 9 [0, 5, 14, 0] 95.3% 93.3%

Vehicle 10 [0, 9, 14, 0] 79.8% 76.7%
GA-SA Average 86.1% 88.9%

GA Average 71.2% 74.8%
PSO Average 60.9% 65.7%

5.3. Analysis of the Superiority of Simultaneous Pickup and Delivery

Separate pickup plus separate delivery means pickup and delivery are two indepen-
dent tasks. In this section, we conduct experiments to compare the simultaneous pickup
and delivery and separate pickup plus separate delivery.

From Table 6, we found that the costs of separate pickup and separate delivery for
the same transportation task are more than 80% higher than the costs of simultaneous
pickup and delivery. This proves the high efficiency and low costs of simultaneous pickup
and delivery. Hence, it is necessary to include simultaneous pickup and delivery in the
vehicle-routing-related problems.

Table 6. Comparison of simultaneous pickup and delivery results.

Delivery Pickup Mean

8 Customers Instance
pickup and delivery - - 288.2

delivery + pickup 254.3 271.4 525.7
Growth multiplier - - 82.4%

16 Customers Instance
pickup and delivery - - 561.1

delivery + pickup 515.6 500.7 1016.3
Growth multiplier - - 81.1%

6. Conclusions

In this paper, the Granularity-based Split Vehicle Routing Problem with Simultaneous
Delivery and Pickup (GSVRPSDP) was formulated. In GSVRPSDP, the demands of cus-
tomers consist of the number of shipments that have specific volumes and weights. This
was suitable for various types of shipments in the real application, for example bulk items
and industrial shipments in business transportation, packages including food, clothing,
electronics and medications in e-commerce transportation, and even workers and tools
in line maintenance. Meanwhile, simultaneous delivery and pickup is very common in
real-world transportation. For example, in e-commerce transportation, delivery companies
need to deliver multiple packages to different destinations, while also requiring pickups
of returned packages from them. In line maintenance, utility companies need to dispatch
multiple workers or tools to different work sites for line maintenance, while also requiring
pickups along the way.

A hybrid meta-heuristic algorithm called GA-SA was implemented for solving the
GSVRPSDP. GA-SA proposed three substeps, including rescheduling customers, optimiz-
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ing loading and optimizing routes, to help individuls escape from the local optima and
achieve further improvements. The effectiveness of GA-SA was verified by comparing it
with GA-SAR (i.e., GA-SA with rescheduling customers only), GA, PSO and SA on four
instances, with the number of customers ranging from 8 to 64. The results demonstrated
that GA-SA could obtain the lowest transportation costs among the compared algorithms,
with reductions of 4.7%, 10.4%, 19.2% and 13.4% compared to GA-SAR, GA, PSO and SA,
respectively. Moreover, further analysis revealed that the vehicle space utilization and
capacity utilization of the routes obtained using GA-SA were 15–25% higher than those
obtained using GA and PSO.

For future work, in order to meet more complex requirements in the real world,
many other factors could be added into GSVRPSDP: (1) Uncertainty: in reality, some
information about the customers (e.g., the exact weights and volumes of shipments) and
roads (e.g., whether it can be travelled or not) is often unknown in advance, and is revealed
dynamically while the services are being conducted. (2) Time windows: customers may
have different requirements for the service time, and some customers may request a
delivery as soon as possible, while others may need to receive the goods on a specific time.
(3) Multi-objective optimization: it may be necessary to optimize for multiple objectives
simultaneously, such as minimizing the total distance traveled while also minimizing the
number of vehicles used. (4) Multiple depots: there may be multiple depots or warehouses
that need to be serviced by the vehicles.
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