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Abstract: The reconfigurable intelligent surface (RIS) is one of the most innovative and revolutionary
technologies for increasing the effectiveness of wireless systems. Deep learning (DL) is a promising
method that can enhance system efficacy using powerful tools in RIS-based environments. However,
the lack of extensive training of the DL model results in the reduced prediction of feature information
and performance failure. Hence, to address the issues, in this paper, a combined DL-based optimal
decoding model is proposed to improve the transmission error rate and enhance the overall efficiency
of the RIS-assisted multiple-input multiple-output communication system. The proposed DL model
is comprised of a 1-dimensional convolutional neural network (1-D CNN) and a gated recurrent unit
(GRU) module where the 1-D CNN model is employed for the extraction of features from the received
signal with further process over the configuration of different layers. Thereafter, the processed data
are used by the GRU module for successively retrieving the transmission signal with a minimal error
rate and accelerating the convergence rate. It is initially trained offline using created OFDM data sets,
after which it is used online to track the channel and extract the transmitted data. The simulation
results show that the proposed network performs better than the other technique that was previously
used in terms of bit error rate and symbol error rate. The outcomes of the model demonstrate the
suitability of the proposed model for use with the next-generation wireless communication system.

Keywords: reconfigurable intelligent surface (RIS); 1-dimensional convolutional neural network (1-D
CNN); gated recurrent unit (GRU); bit-error rate (BER); symbol-error rate (SER)

MSC: 94A14

1. Introduction

The growth of the fifth-generation (5G) mobile communication has caused a significant
bandwidth demand. In wireless networks, greater frequency bands are allotted and used
to enhance higher data rates and system capacity. The 5G New Radio (5G NR) is given to
mmWave frequencies between 24 GHz and 50 GHz. This technical development is expected
to lead to the employment of the sub-THz bands of 114–300 GHz in wireless communication
systems beyond the (B5G) or 6G systems [1]. For the next B5G or 6G wireless networks, the
reconfigurable intelligent surface (RIS) is being studied as a viable new technology [2]. The
real-time programmable controller in RIS is controlled by a number of passive devices that
may independently alter the phase of electromagnetic wave propagation [3,4]. The RIS can
be implemented in the walls of the inside and outside environment of the buildings and
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windows glasses [5–7]. The usage of RIS might be used to enhance wireless communications
by removing channel blockages, boosting non-line-of-sight connections, expanding the
coverage, and lowering inter-user interference (IUI). As each of its components has the
capacity to alter the phase and amplitude of the incoming signal, RIS may offer passive
beam-forming (BF) [8] by modifying the phase shift and amplitude reflection coefficients
of its constituent parts. In contrast to the conventional multiple-input multiple-output
(MIMO) systems, which place a greater emphasis on the base station (BS) and user BF, the
RIS-assisted communication system requires the joint design of active BF for BS and user,
as well as passive BF for RIS, in order to achieve the passive BF gain. Additionally, RIS-
assisted systems enhance spectral efficiency (SE) and energy efficiency (EE) while using less
money and little power. This is implemented by employing large-scale passive reflecting
components [9–11]. The literature has recently been devoted to several research activities
covering various aspects, such as channel modeling [12], channel (CE) estimation [13],
modulation and encoding [14], SE analysis [6,15], outage probability [16], symbol error
probability (SER) [17], energy efficiency [18], weighted sum rate [19,20], and the evaluation
of performance in RIS-supported wireless networks [21]. This is because RIS-enabled
settings provide significant potential advantages.

Deep learning (DL) approaches have the potential to significantly improve wireless
communication performance [22–26]. Many works were performed in RIS-based wireless
systems to handle problems related to channel state information (CSI) [27], CE [28], and
performance maximization [29,30] using the DL approaches. To avoid performance loss
using a DL model, in [29], the authors proposed an end-to-end training-based RIS-assisted
MIMO system. The proposed system optimized the signal processing operations at the
access point, RIS, and user at the same time, with active BF for the access point and user
and passive BF for RIS. For estimating and identifying symbols in signals sent by RIS, the
authors of [30] designed a DL method that employs fully connected layers for prediction
when estimating channels and phase angles from a reflected signal received through a
RIS. In [31], the authors proposed an effective RIS-assisted MIMO system based on a
DNN multi-stage training strategy model for perfect CSI acquisition. The authors in [32]
proposed a deep denoising neural-network-assisted compressive sensing broadband for the
mmWave RIS system. An indoor RIS-based communication environment was considered
in [33], where a trained DNN was used to determine the optimal phase shift by using the
target user position. A deep reinforcement learning framework was proposed in [34] for
predicting the RIS reflection matrix with minimal beam training overhead.

For natural language processing and machine vision, the convolutional neural network
(CNN) model is basically used. It can extract the high level of features from the input and
also can be used for the time-series data processing [35]. The CNN model is composed of
an input layer, convolutional layer, pooling layer, fully connected layer, and output layer.
The structure of the 1-D CNN is illustrated in Figure 1a.

In [36], the authors proposed a CNN-based RIS-enhanced multiple-input single-output
system for the goal of sum-rate maximization. To archive the accurate CSI and improve
performance, an ordinary differential equation-based CNN structured in the RIS-orthogonal
frequency division multiplexing (OFDM) single antenna receiver was proposed in [37].
In [38], a CNN-based RIS-assisted OFDM with a single-input single-output system was
proposed for achieving the maximization of the achievable rate. In [39], the authors
presented a long short-term memory (LSTM)-based energy-efficient RIS wireless system
where they evaluated the system EE and achievable rate. The study in [40] presented
a CNN-based demodulation method for a multi-user RIS wireless system where, for
channel modeling, an OFDM system based on MIMO was taken into consideration. In [40],
the authors compared the achievement of the proposed demodulation (Demod)-CNN
with the conventional method in terms of bit-error rate (BER) and SER. In addition, the
temporal neural network (TCN)-based RIS-assisted MIMO wireless communication was
presented in [41], where the proposed TCN analyzed the achievable rate in terms of different
modulation schemes.



Mathematics 2023, 11, 3397 3 of 18

Figure 1. (a) The architecture of the 1-D CNN model; (b) the architecture of the GRU model; (c) the
architecture of the LSTM model; (d) the architecture of the RNN model.

LSTM and gated recurrent unit (GRU) are examples of recurrent neural networks
(RNNs) that are frequently employed to address sequence difficulties. In comparison to
traditional RNN, GRU is designed to store past state information more effectively. The
traditional RNN training process’s gradient vanishing and gradient explosion problems
can be addressed [42]. The hidden unit in the typical RNN structure, which may selectively
recall relevant information and discard unnecessary information, is replaced by a gate
structure in the GRU and LSTM. The update gate and the reset gate are used in the GRU
instead of the input gate, forget gate, and output gate of the LSTM [43]. The training setting
can be decreased to produce a quicker convergence speed, provided that the prediction
accuracy of the GRU is not less than that of the LSTM. Figure 1b shows the internal cell
structure of the GRU network. Figure 1c,d show the structure of LSTM and typical RNN
network, respectively. For a system with a one-bit ADC and massive MIMO, in [44],
the authors proposed the LSTM-GRU to evaluate the channel matrix and showed better
performance. For the purpose of CE of data subcarriers, in [45], the authors proposed a
DL-GRU neural network-based OFDM system in which the computing demands may be
greatly decreased and achieved a more satisfactory gain than other methods.

The performance in the aforementioned studies has a major influence on the SER and
BER by using CNN- and RNN-based models. Thus, the combination of 1-D CNN with
GRU can be a promising method to achieve high accuracy performance in RIS-assisted
communication systems. Motivated by the previous work and enhanced efficacy, herein, a
combined DL model, comprising a 1-D CNN and GRU network, is proposed. In terms of
SER and BER with various signal-to-noise (SNR) levels, the suggested model outperforms
the [40].

The key contributions of the proposed system can be summarized as follows:

• DL-cascaded model-based effective decoding is proposed for the RIS-assisted MIMO
system. The proposed DL model is structured with a 1-D CNN model, which extracts
the features in the form of complex numbers of the received channel matrix, and a
GRU network, which uses extracted data for obtaining the optimal prediction.

• Inter-carrier interference and inter-symbol interference (ISI) are taken into consid-
eration while segmenting the data of the received signals using a 1-D CNN-based
feature extractor. For handling the considerable ISI and accelerating the training
speed of the model, the GRU layers are utilized. Thus, the combined model enhances
demodulation accuracy.
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• The different layers of the proposed model are configured for improved accuracy and
effectiveness and are examined by an Adam optimizer.

• The efficiency of the proposed model is compared with a conventional system, the
LSTM model implemented in our experiment, TCN [41], and (Demod)-CNN-based
RIS model [40], with respect to the different SNR values where the proposed model
outperforms other methods at different SNRs with the measurement error of BER
and SER.

The remaining parts of the paper are arranged as follows. The system model for
RIS-based communication, which includes the channel model and signal transmission,
is described in Section 2. The training data preparation, training, and inference of the
proposed deep learning model are covered in Section 2.4. The simulation outcomes and
complexity analysis are reported in Section 3, and Section 4 presents the conclusion.

Notations: A vector and matrix are denoted by the lowercase and uppercase bold letters
h and H, respectively. HH stands for the conjugate transpose matrix of H, and diag(x)
stands for the diagonal matrix with vector x on its diagonal.

2. RIS-Assisted System and Channel Model

In this section, the RIS-assisted system, channel modeling, and selected precoder
structure are described.

2.1. System Model

Figure 2 depicts a RIS communication system where I user equipment (UE) contains a
single antenna, and the base station (BS) contains M uniform linear array (ULA) antennas.
The total number of RIS is taken to be uniform planner array (UPA) N elements. For the
i-th UE (i = 1, 2, ..., I), the received signal through RIS can be stated as follows [6]:

yi = HH
2,iΩHbrx + ni, (1)

where x ∈ CM×1 represents the precoded transmit signal with Q subcarriers in each
OFDM symbol. Inverse discrete Fourier transform (IDFT) is used to process the OFDM
data symbols after they are transformed to the time domain. Then, the CP data are
inserted as a guard interval. Discrete Fourier transform (DFT) is carried out at the UE
after the CP data are removed. Thereafter, yi is the signal that is received at the i-th UE.
Hbr ∈ CN×M is the channel matrix from BS to RIS, the channel matrix between RIS and
the i-th UE is H2,i ∈ CN×1, and at the i-th user, the additive white Gaussian noise is
represented ni ∼ CN (0, σ2). The phase shift values of RIS elements are represented by Ω =
diag(Ψ) ∈ CN×N , which is the diagonal matrix of Ω. Each element can be characterized
as Ψ = [γ1ejζ1 , γ2ejζ2 , . . . , γNejζN ]T ∈ CN×1, where the phase shift coefficient and the
amplitude for the n-th reflective elements are ζn ∈ [0, 2π] and γn ∈ [0, 1]. Consequently,
the symbol Ω can be written as follows:

Ω =


γ1ejζ1 . . . . . . . . .

. . . γ2ejζ2 . . . . . .
...

... . . .
...

. . . . . . . . . γNejζN

. (2)

The constant amplitude coefficient is assumed to be ζn = 1 for convenience in calcula-
tions [9]. In this study, the direct communication channel Hd ∈ CM×1 between BS to UEs is
also considered. The BS to the i-th UEs channel HH

2,iΩHbr ∈ CM×1 via RIS is assumed. In
particular, it is important to remember that the matrix Ω = diag(Ψ) is a diagonal matrix.
Thereafter, the previous whole channel matrix HH

2,iΩHbr can be reformed as follows:
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HH
2,iΩHbr =HH

2,idiag(Ψ)Hbr = ΨTdiag(HH
2,i)Hbr, (3)

Hcas =HH
2,iΩHbr, (4)

where the cascaded channel for the i-th UEs is Hcas ∈ CN×M and only relies on the downlink
CSI [46]. Therefore, the total received signal yrit at the i-th UEs via the cascaded channel
and the direct communication link can be written as follows [47]:

yrit = HH
2,iΩHbrx + Hdx + ni, (5)

where Hd is the direct communication link from BS to the i-th UEs.

Figure 2. The architecture of RIS-assisted downlink MIMO communication.

2.2. Channel Model

The three-dimensional (3D) Saleh-Valenzuela channel model is used in this research
for the mmWave propagation [48], which is a statistical channel model in a multipath prop-
agation scenario. The prevalent theory of the channel model for mmWave communication
can be represented as follows [49]:

H =

√
N
L

L

∑
l=1

ηla(ζ
H
l , φH

l ), (6)

where the channel vector is represented as H, the complex gain of the l-th path is ηl , and
the number of total paths is L. The azimuth angle of departure and the elevation angle of
departure are ζH

l and φH
l , respectively. The array response vector is defined as a(ζH

l , φH
l ).

The array response vector for a standard N1 × N2 is expressed as follows [49]:

a(ζ, φ) =
1√
N
[e−j2πd sin(ζ) cos(φ)n1/λ]⊗ [e−j2πd sin(φ)n2/λ], (7)

where n1 = [0, 1, . . . , N1− 1] and n2 = [0, 1, . . . , N2− 1], the carrier wavelength is λ, and the
antenna spacing is d, the antenna inter-space satisfies the condition d = λ/2. Accordingly,
the BS to RIS channel Hbr can be presented as follows:

Hbr =

√
MN
L1

L1

∑
l1=1

ηl1 b(ζHr
l1

, φHr
l1
)aH(ζHt

l1
, φHt

l1
)T , (8)



Mathematics 2023, 11, 3397 6 of 18

where L1 stands for the pathway numbers among the BS and RIS, ηl stands for the complex
gain of those paths, b(ζHr

l φHr
l ) is the steering vector related to the RIS, and a(ζHt

l , φHt
l ) is

the steering vector connected to the BS for the l-th path.
The following definitions can be used to describe the channel HH

2,i between the RIS
and the UE, as follows:

HH
2,i =

√
N
L2

L2

∑
l2=1

ηl2 aH(ζHt
l2

, φHt
l2
), (9)

where the complex gain of paths is ηl2 , and L2 is the number of pathways among the RIS
and the i-th UE. ζHt

l2
and φHt

l2
represent the departure angles in azimuth and elevation,

respectively. The array response vector is defined as a(ζHt
l2

, φHt
l2
). In conclusion, according

to (4), (8), and (9), the cascaded channel matrix Hcas from BS to the i-th UE can be expressed
as follows [6]:

Hcas =

√
MN
L1L2

L1

∑
l1=1

L2

∑
l2=2

ηl1 ηl2

diag(aH(ζHt
l2

, φHt
l2
))b(ζHr

l1
, φHr

l1
)aH(ζHt

l1
, φHt

l1
)T . (10)

2.3. Design of Precoder

Dirty paper coding (DPC), successive interference cancellation (SIC), maximum ratio
transmission (MRT), zero-forcing (ZF), and minimal mean squared error (MMSE) are ex-
amples of linear and non-linear precoders that can be taken into consideration in a MIMO
system. Although non-linear precoders exhibit the best performance, implementation
is impractical because of the enormous computational complexity. Liner precoders can
be implemented in the MIMO system due to the low complexity with sub-optimal per-
formance. In multi-user systems, the linear precoder of ZF performs IUI removal more
efficiently than the linear precoder of MRT. Additionally, the ZF precoder performs sim-
ilarly to the MMSE precoder when the noise value is taken into account [50]. Hence, ZF
precoder Z = [z1, ..., zI ] ∈ CM×I is implemented in this study. For total matrix channel
Hall = [H1, ..., HI ]

T ∈ CI×M, the precoder Z can be written as follows:

Z = Z
√

P, (11)

where the ZF precoder matrix stands for Z, and the power allocation matrix is represented
by P = diag(δi, ..., δI). The i-th UE’s transmit power at the BS is represented by the δi symbol.

2.4. Proposed Deep Learning Model

The dataset generation, structure, and operation of the model are described, and the
training and testing procedures are described at the end of this section.

2.4.1. Dataset Preparation

In this paper, 128 OFDM subcarriers are taken into consideration for the transmission
of data, and quadrature phase shift-keying (QPSK) modulation is used to map the bits
belonging to symbols. The data are transmitted over a RIS-assisted cascaded and direct
channel. The BS sends the whole OFDM packet to the UE along with the additional AWGN
noise. The generated feature vector Vce and matching label are used to store the received
OFDM packet as training data samples. The number of labels is created by the combination
of data from BS antennas where 4 unique symbols can be generated by each antenna; in this
way, 42 = 16 labels are generated where 2 is the BS antennas number. The feature vector
Vce holds the complex signal of each symbol in the OFDM packet. To train the suggested
model, the complex signal is first divided into real Re and imaginary Im components. The
generated transmission and reception data are divided into training ξ and validation τ
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data, respectively. A total of 256,000 data samples are generated where 80% are used for
training ξ and 20% for validation τ. Finally, the dataset and label samples are stored for the
training and validation process. The example datasets of the real and imaginary parts of
symbols with corresponding labels are shown in Figure 3.

Figure 3. Dataset examples including real and imaginary parts with its labels.

2.4.2. Model Construction and Operation

The proposed model is comprised of two different networks such as 1-D CNN and the
GRU network. The proposed CNN-GRU-based network design is shown in Figure 4. The
input layer, convolutional layer, pooling layer, GRU layer, and output layer make up the
proposed model’s structure. The input OFDM demodulated information is extracted by
the convolutional layer, and afterward, the pooling layers are used to compensate for the
features. Then, the GRU layer is utilized for memorizing features of the previous 1-D CNN
output. In the end, the classification is performed by the softmax layer for GRU output.
The operation of each layer of the proposed model is described as follows:

Figure 4. The architecture of the proposed CNN-GRU network: the 1-D CNN network with its layers
(left side) and the GRU network layers (right side).

Input layer: We consider the input sequence features matrix of Q = [S1
Re , S1

Im , S2
Re ,

S2
Im , S3

Re , S3
Im , ..., SN

Re , SN
Im ], which is composed with two numerical values together

and the corresponding label classes. The i-th output of the sequence matrix is Si, so that
S0 = Q. Eight real and imaginary values, which correspond to label 1, are contained in each
sequence. The dimension of 8× 1 in the input layer is assumed to equal the size of the
input features. Two numerical values of sequence features with their associated labels are
supplied into the CNN’s input layer from the created dataset, where the configuration sets
the number of features in the input data to be equal to the input size.

Convolutional layer (i = 1): To extract local features from the sequence data, we utilize
the convolutional layer. The convolutional layer’s parameters (k× s), where k is the kernel
size and s is the input data dimension, comprise a collection of learnable filters. In the
convolutional layer, a total of 64 filters in 3× 3 various sizes are used. The outcome feature
matrix Si may, thus, be represented as follows:

Si = f (Si−1 ⊗ wi + bi), (12)

where wi stands for the weight of the i-th layer, and bi stands for the layer’s bias. The
following layers make use of a non-linear or piecewise linear activation function called a
rectified linear unit (ReLU). If the output of the ReLU function is positive, it will be directly
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entered; otherwise, it will be 0. The ReLU function is shown mathematically as follows:
f (x) = max(0, x).

Pooling layer (i = 2): The main function of the pooling layer is to compress the features
that the convolutional layer has recovered in order to decrease the information dimension
and the risk of network overfitting. This layer’s function in the study is to cut down
on the computing time required to process sequence characteristics from earlier hidden
layers using a 1-D global average pooling approach. The output of the pooling layer is the
highest of the earlier features matrix. Consequently, the outcome feature matrix Si may be
expressed as follows:

Si = fp(Si−1), (13)

where the pooling function fp is used. The dimension of S2 is calculated from the pooling
layer as m/z× n, where z represents the scale value of the current layer of the pooling layer,
m represents the number of filters, and n represents the number of input data time steps.

GRU layer (i = 3): The GRU layer train is the feature vectors that the CNN extracts
where the GRU layer retains the internal workings of many features. According to the
structure of the GRU layer, the GRU operating system may be summed up in the next
following sentences. The input state information Xt at the present instant and the hidden
layer information Ht−1 that is previously learned are used to compute the update Ut and
reset gate Rt in the first step. The reset gate Rt is used in the second phase to count the
number of new pieces of information that are stored in the node Ĥt. The third step involves
using the update gate Ut to determine the hidden layer output at the present time. The
GRU computation procedure is explained using the formulas below:

Ut =σ(WUXt + VU Ht−1 + bU) (14)

Rt =σ(WRXt + VR Ht−1 + bR) (15)

Ĥt = tanh(WHXt + VH(Rt ⊗ Ht−1) + bH) (16)

Ht =(1−Ut)⊗ Ht−1 + Ut ⊗ Ĥt, (17)

where the values for the bias are bU , bR, and bH ; The gate activation function is calculated
using the sigmoid function, which is denoted by σ(c) = (1 + e−c)

−1. The hyperbolic
tangent function known as (tanh) is in charge of calculating the state activation function.
WU , WR, WH , VU , VR, and VH are weight matrices. While the input state Xt and the
output of the hidden layer at the previous instant are merged to generate Ĥt, the output
of the hidden layer at the current instant is represented by Ht. The Hadamard product is
represented as ⊗ for element-wise multiplication.

Fully connected layer (i = 4): The task of activation with the softmax is provided to the
fully linked layer, which plays a significant role in classification, and the final classification
is performed in this layer. Here, the model calculates the probability that each sample now
belongs to one of the classes and then derives the expression of a feature (Ypred), which is
stated as follows:

Ypred(i) = f (L = li|S3; (W, b)), (18)

where the GRU features are S3 and the activation function for softmax is f (·). The compu-
tation output for the i-th classes of the input data is represented by the variables li, where
W and b stand for the weight and bias values, respectively.

The cross-entropy operation calculates the cross-entropy loss for single-label and multi-
label classification tasks between network predictions and target values. Cross-entropy is
frequently the best choice when output probability models are dealt with. Furthermore, L2
regularization may be viewed as a successful compromise between the identification of
tiny weights and the reduction of the cost function [51]. Therefore, overfitting is avoided
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by using cross-entropy and L2 regularization. The following formulation of the loss
computation serves as the basis for the goal of model training:

Loss(W, b) = −
ns

∑
i=1

c

∑
t=1

(Y(t)(i) ∗ log(Y(t)
pred(i))+

λ

2

ns

∑
i=1

W2
i , (19)

where (Y(t)(i) represents the prospect of the known goal, (Y(t)
pred(i)) is the probability that

the i-th sample belongs to the t-th class, the number of samples is ns, the number of the
class is c, and finally, the term “λ” defines the coefficient of the regularization of L2. The
Adam optimizing strategy is applied to reduce the loss [52].

2.4.3. Overview of Training and Testing Process

In Figure 5, an illustration of the proposed RIS-assisted MIMO wireless communica-
tion’s training and inference process is presented. After the model is successfully trained,
it is validated to check for optimal performance and inference accuracy. Figure 6 shows
the flow chart for the testing procedure after training. The training procedure stops and
the model for inference is stored when it reaches a model accuracy of 99.95%. The train-
ing and validation performance for the 50 epoch according to its loss and accuracy are
shown in Figure 7. Figure 7 illustrates that the model performs consistently after 11 epochs,
demonstrating that the parameters have learned from the data by the model. During model
training, the Adam optimizer is used to analyze the data at a learning rate of 0.01. The
training and inference process is shown in Algorithm 1.

Algorithm 1 The training and inference process

Training process:
1: Load dataset χ.
2: split χ into a training ξ and a validation τ set at a ratio of 80% and 20%, i.e., 4:1.
3: for e: 1 to E do:
4: Pass the processed data to build the model and configure the layers.
5: Configure the model parameters such as learning rate ψ, maximum epochs Emax,
minibatch size mB, gradient threshold gT, and validation frequency fv.
6: Calculate the loss function using (19).
7: Computing the corrective parameters and obtaining the optimal performance while
updating the parameters, using the Adam optimization algorithm.
8: end for
9: Save model for inference step.
10: Output: proposed model.
Inference process:
11: Load the trained model.
12: Initialize the parameters.
13: for s: 1 to SNR do:
14: for i: 1 to Iteration do:
15: Generate data symbol to transmit.
16: Data transmit by Hcas and Hd channel matrix.
17: Match the label classes with a trained model to classify.
18: SER and BER performance with different SNR.
19: end for
20: end for
21: Output: SER and BER results.
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Figure 5. The structure of the proposed CNN-GRU network: training and testing phases.

Figure 6. Flowchart for the testing process of the proposed CNN-GRU model.



Mathematics 2023, 11, 3397 11 of 18

0 10 20 30 40 50

Epoch

0

20

40

60

80

100

T
ra

in
in

g
 A

cc
u
ra

cy
 (

%
)

0 10 20 30 40 50

Epoch

0

20

40

60

80

100

V
al

id
at

io
n
 A

cc
u
ra

cy
 (

%
)

0 10 20 30 40 50

Epoch

0

0.5

1

1.5

2

2.5

3

T
ra

in
in

g
 L

o
ss

0 10 20 30 40 50

Epoch

0

0.5

1

1.5

2

2.5

3

V
al

id
at

io
n
 L

o
ss

(a) (b)

(d)(c)

Figure 7. The model training performance analysis: (a) the training accuracy; (b) the validation
accuracy; (c) the training loss; (d) the validation loss.

3. Simulation Results

The simulation results of the proposed DL-based strategy are provided in this part
for wireless MIMO communication systems with RIS assistance. The simulation work is
performed with MATLAB and the Windows 10 Pro operating system. The DL layers are
connected to create the DNN. The DL ToolboxTM creates the DL model and keeps track
of the training procedure. The training performance is improved by using an NVIDIA
graphics card. In the mmWave propagation environment, it is indicated that there are
P1 = 2 and P2 = 4 channel paths, respectively, between the BS and RIS and between RIS
and each UE. The RIS to UEs channel HH

2,i is tuned to the non-line-of-sight (LOC), while
the BS to RIS channel Hbr is set to the LOC channel with 15 dB of Rician K-factor. The
obstructions prevent access to the BS to UEs direct channel Hd. Additionally, this simulation
takes into account a wireless system with RIS service in which transmit antennas are
deployed in ULA configurations and RIS components are deployed in UPA configurations,
with each transmit antenna and RIS element separated by a half-wavelength (λ/2). The
dimension of RIS elements is configured as N = 32× 16. Table 1 presents the simulation
settings for the proposed RIS communication system. In Sections 2.4.1 and 2.4.3, the
training data generation and training and testing procedure are presented. The model
training is implemented by setting the parameters listed in Table 2. The SNR value of
30dB is configured while the training datasets chi are being created. When evaluating the
simulation’s performance during the online testing phase, the [0:4:20] dB SNR range is taken
into consideration. To calculate the channel error rate, 128 quadrature phase-shift keying
(QPSK) symbols are produced using OFDM. A length of 32 cyclic prefix (CP) as a guard
interval is introduced to lessen ISI. In this study, the simulation is run to assess the BER
and SER analysis in comparison to the proposed DL model and earlier studies. The data
received by the i-th UEs are taken into account at a time for the BER and SER calculation.
The average error rate (ER) for the i-th UEs is represented by the BER and SER. The data
from the i-th UEs are first demodulated individually, then (ER) = (UE1+UE2, ...,+UEI)/T
is used to determine the (ER), where T is the number of the i-th UEs at the receiver terminal.
The inaccurate demodulated bit at the receiver is referred to as the (ER) for BER. (ER) for
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SER refers to the incorrect categorization of the received symbol. The effectiveness of the
proposed DL model is compared with the LSTM model, Demod-CNN model [40], and TCN
model [41], and traditional method in [40]. The effectiveness of the suggested CNN-GRU
is improved by cascading with the GRU module with 1-D CNN and different parameter
adjustments.

Table 1. Simulation parameters of the RIS design.

Parameters Value

The number of RIS elements 32 × 16
BS to RIS paths 2

RIS to user paths 4
BS to user paths 2

Transmit antenna spacing 0.5 λ
RIS elements spacing 0.5 λ

Number of transmitter antenna 2
User number 2

BS antenna number 2
OFDM subcarrier number 128
Number of cyclic prefixes 32

Modulation type QPSK
Channel noise AWGN

Table 2. Simulation parameters of the proposed model.

Parameters Value

Maximum epochs number 50
No. of filters in convolutional layer 64
No. of hidden units in GRU layer 100

Fully connected layer 16
Size of minibatch 100

Learning rate 0.01
Gradient threshold 1

Validation frequency 50
Used optimizer Adam

3.1. Performance Evaluation

Figure 8 shows the prediction performance of the proposed CNN-GRU according
to the predicated and tested data where the examined model is learned with the Adam
optimizer with learning rate = 0.01 at the time of training. In Figure 8a, the confusion matrix
is analyzed in terms of predicted and true classes for the evaluation of prediction accuracy.
There are a total of 16 classes for prediction, and it is seen that the classification error of
classes is very marginal. Additionally, the performance of the test sequence prediction
between predicated and tested data is shown in Figure 8b. In Figure 8b, the orange and
blue color-covered regions are presented with test data and predicted data, respectively. To
be more clearly visible, the zoom view of the portion of the output is indicated by the blue
arrow. It is evident that the miss prediction rate of class with time step is very low and the
proposed model is highly efficient.
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Figure 8. CNN-GRU-based RIS-assisted MIMO communication prediction performance: (a) Confu-
sion matrix of predictions and true class; (b) Results of test sequence predictions between test and
prediction data (blue arrow indicates the zoom view of a portion of the output for more visible).

Figure 9 depicts the comparison of the proposed CNN-GRU decoding performance
with the traditional method, Demod-CNN model, TCN, and LSTM model according to the
BER versus different SNR values. The graph absolutely exhibits that the proposed CNN-
GRU-based demodulation system outperforms the traditional method, the Demod-CNN
model, TCN, and LSTM model. Due to the low SNR value at the SNR (0–5) dB range, the
proposed conclusions are less precise but not less than those of the other systems. However,
the model performance improves as the SNR values rise up to (5–20) dB. Evidently, the
proposed model significantly outperforms other systems at SNR ranging from 0 to 20 dB
and BER reaches approximately 10−5. In contrast, conventional and Demod-CNN systems
cover SNR ranging from 0 to 30 dB and BER reaches around 10−4. Up to 5 dB, the BER for
the proposed CNN-GRU model follows a similar pattern to all of the methods. After this
threshold, the BER for the proposed CNN-GRU model significantly decreases and ends
at 20 dB SNR. Additionally, the CNN-GRU is also compared with the LSTM model and
TCN model. It can be shown that the suggested model performs better than the LSTM and
TCN models with the SNR (0–20) dB range. Because of the low SNR values, the LSTM
model performance is degraded more than all other methods, but after 12 dB SNR, its
performance follows the proposed CNN-GRU model. In addition, TCN shows a little better
performance with (0–3) dB SNR, and after that, the performance is degraded and follows
the LSTM trends. This demonstrates how effectively the proposed CNN-GRU model can
demodulate and enhance the BER system performance.

Figure 9. BER simulation results of CNN-GRU-based RIS-assisted MIMO communication.
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Figure 10 shows the comparison of the proposed CNN-GRU decoding performance
with the traditional demodulation system, Demod-CNN model, and LSTM model according
to the SER versus different SNR values. The graph shows that the proposed CNN-GRU-
based demodulation system outperforms all other methods. Evidently, the proposed
model vastly outperforms other systems at SNR ranging from 0 to 20 dB and SER reaches
approximately 10−4. Contrarily, the conventional method and the Demod-CNN model
have SNR ranges of 0 to 30 dB and SER of approximately 10−3 and 10−4, respectively.
Unlike the BER accuracy of the proposed CNN-GRU model, SER performance is also
higher than the conventional, Demod-CNN, TCN, and LSTM models and shows significant
improvement in decoding capability. However, due to the lower SNR, the LSTM model
shows lower performance than the conventional and Demod-CNN models, but with higher
SNR, it follows the proposed model performance. Additionally, the TCN model has the
same performance with SNR range (0–6) dB, and after that, it follows the LSTM. It is seen
from the above simulation outputs that the CNN-GRU gains a noticeable performance
difference from the other four schemes. The summary is from the above simulation results;
in order to enhance BER and SER for RIS-based systems, the proposed model can be an
effective solution.

Figure 10. SER simulation results of CNN-GRU-based RIS-assisted MIMO communication.

Figure 11 shows the analysis of SER and BER of the proposed CNN-GRU model by
changing different model parameters during the training of the model. The changing
parameters are considered three well-known optimization algorithms, namely, Adam,
SGDm, and RMSprop. In addition, to conform to the model learning rate (LR), we have
configured the training parameters by considering the LR of 0.01 and 0.001, respectively.
Figure 11a,b indicate that the simulation results are taken under the LR of 0.01 and three
optimization algorithms. In Figure 11a, with the same LR, the Adam optimizer shows
better SER performance than the others with different SNR values, and among SDGm and
RMSprop, RMSprop achieves a better SER performance than SGDm. A similar performance
happens for BER of Figure 11b. On the other hand, the simulation results of SER and BER
with LR of 0.001 and three optimizers are shown in Figure 11c,d. Figure 11c,d indicate that
with LR of 0.001, the SER and BER performance of the proposed CNN-GRU model is less
than LR 0.01. Furthermore, the Adam optimizer shows a better performance compared to
the others. It is indicated that in the lower SNR part, the three optimization algorithms
show similar performance and follow the same trend, which confirms the proposed model
robustness with three optimization algorithms.
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Figure 11. SER and BER simulation results of CNN-GRU model with different learning rate (LR) and
optimization algorithms for RIS-assisted MIMO communication: (a) SER with LR = 0.01; (b) BER
with LR = 0.01; (c) SER with LR = 0.001; (d) BER with LR = 0.001.

Figure 12 shows the throughput analysis comparison of the proposed CNN-GRU with
the traditional method, Demod-CNN model, TCN, and LSTM model regarding different
SNR values. The graph demonstrates that the suggested model performs almost as well
as other approaches in the SNR regions of (0–5) dB. At the initial values of the SNR, the
achievable rate of the CNN-GRU is 1.69 bps, which is similar to the other methods and is
1.85 bps with 5 dB SNR. After 5 dB SNR, the proposed CNN-GRU outperforms the other
methods, and it achieves the maximum rate at a 20 dB SNR value. Thus, the proposed
model exhibits the robustness of handling optimal prediction rates in different SNR ranges.

Figure 12. Throughput simulation results of CNN-GRU-based RIS-assisted MIMO communication.
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3.2. Complexity Analysis

The suggested combined model’s computational complexity is represented by the
following formula: O(Bs × Es(rc × pc × tc) + tsth(3ti + 3th + 3), where Bs represents the
number of input packets obtained, Es represents the size of an OFDM block, and rc repre-
sents the size of the CNN input; the number of filter size and neuron size of CNN are pc and
tc, respectively; the number of features in the input vector is ti; ts is the input time sequence
size; and th is the number of hidden units. On the other hand, the computational complexity
of Demod-CNN [40] can be defined as O(Bs × Es(rc × pc × tc)× 2). Additionally, the com-
putational complexity of the traditional OFDM system can be expressed as O(Ms), where
the modulation order is Ms [53]. Because only IFFT and FFT are employed, the traditional
OFDM is computationally efficient. We consider the parameter values to be Bs = 100,
Es = 128, rc = 8× 1, pc = 3× 64, tc = 100, ts = 64, ti = 300× 64, and th = 300× 100 for
example evaluation. After the consideration of these parameters using the Demod-CNN
expression, we require 3.9× 109 operations. In the case of the proposed model, we need
2.8× 1011 operations for the given parameters. The research above demonstrates that the
time complexity of the suggested model is greater than that of the conventional technique
and the Demod-CNN model. Although the proposed model requires more complexity than
others, it outperforms them all in terms of performance, and GPU parallel computing can
speed up the process.

4. Conclusions

In this paper, a combined DL network to obtain the optimal decoding rate is proposed
in the RIS-assisted MIMO wireless system. The proposed model is configured with a 1-D
CNN model and GRU module for acquiring the maximum prediction rate. The proposed
model is trained with simulated OFDM data over the RIS-assisted channel network in
the offline phase. Then, the learned model is deployed in the online phase to retrieve the
original data in the UE terminal to test the efficiency of the proposed model. As a result, it
is possible to extract the transmitted data and determine the BER and SER performance.
The error performance of the proposed model is evaluated with the well-known Adam
optimization algorithm. According to the simulation results, the proposed method has a
10−5 BER and 10−4 SER in 20 dB and is better compared to other benchmarking models.
In addition, the proposed CNN-GRU model has the highest throughput of 2 in 20 dB
SNR. Thus, it is shown that the performance of the proposed model outperforms the
conventional, Demod-CNN, TCN, and LSTM models in terms of BER, SER, and throughput.
The proposed system might offer a way to make the 5G communication system better.
Future applications of the proposed model could include more advanced, complicated
systems for RIS-assisted wireless communication systems.
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