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Abstract: Recent advanced systems in the speech recognition domain use large Transformer neural
networks that have been pretrained on massive speech data. General methods in the deep learning
area have been frequently shared across various domains, and the Transformer model can also be
used effectively across speech and image. In this paper, we introduce a novel masking method for
self-supervised speech representation learning with salt-and-pepper (S&P) mask which is commonly
used in computer vision. The proposed scheme includes consecutive quadrilateral-shaped S&P
patches randomly contaminating the input speech spectrum. Furthermore, we modify the standard
S&P mask to make it appropriate for the speech domain. In order to validate the effect of the proposed
spectral S&P patch masking for the self-supervised representation learning approach, we conduct
the pretraining and downstream experiments with two languages, English and Korean. To this end,
we pretrain the speech representation model using each dataset and evaluate the pretrained models
for feature extraction and fine-tuning performance on varying downstream tasks, respectively. The
experimental outcomes clearly illustrate that the proposed spectral S&P patch masking is effective
for various downstream tasks when combined with the conventional masking methods.

Keywords: self-supervised learning; speech representation learning; salt-and-pepper masking;
spectrum patch masking

MSC: 68T10

1. Introduction

The majority of recent speech representation models typically depend on large Trans-
former neural networks [1] that are pretrained using self-supervised learning methods
with thousands of hours of speech data. In general, self-supervised speech representation
learning utilizes the structure of the input speech itself for the learning process without
any annotations. Through speech representation pretraining with massive speech datasets,
researchers have been able to achieve state-of-the-art performance on a diverse set of speech-
related tasks, such as speech recognition (ASR), phoneme recognition, emotion recognition,
and speaker verification [2–6]. Overall, the pretraining of large Transformer networks using
self-supervised learning techniques has become a key strategy for advancing state-of-the-art
speech processing technology.

Various promising outcomes of neural network models and sophisticated method-
ologies are often adapted to various other domains as well. Specifically, the Transformer
network was first proposed in natural language processing (NLP) tasks such as machine
translation and language modeling and has become popular in various domains, including
computer vision, speech, and signal processing. Moreover, the masked language modeling
for self-supervised learning introduced in BERT [7] has found extensive use in speech
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representation learning tasks [3,6,8–12]. Contrastive Predictive Coding (CPC) [13], a well-
known technique for representation learning, is extensively applied in speech [2,4,10,14,15],
NLP [16,17], and computer vision domains [18–20], even in a supervised setting [21].

Especially, speech spectrograms share similar data formats with images, and conse-
quently, there has been a mutual influence between data preprocessing techniques and data
training neural networks. For example, several applications of transfer learning from visual
to audio tasks have been demonstrated to be effective [22,23]. The vision Transformer [24],
derived from the Transformer for word sequences, has enabled patch embedding in audio
streams [25,26].

SpecAugment [27] is a speech data augmentation technique inspired by “Cutout” [28],
an augmentation method proposed in the computer vision domain. Within the domain of
self-supervised speech representation learning, masking techniques based on SpecAugment
are mainly used in reconstruction tasks [3,6,8–12]. Similar to image processing techniques,
SpecAugment performs masking over continuous time–frequency regions of a given input
spectrogram by drawing continuous blocks with zero values. By reconstructing these
masked regions to their original forms, the pretrained model can learn more robust speech
representations and has outperformed conventional techniques in several downstream
tasks [3,6,8,9,11,12].

In the computer vision domain, salt-and-pepper (S&P) noise refers to a type of impulse
contamination in an image, where random white and black dots appear. This kind of noise
can often be eliminated by using techniques such as denoising autoencoders [29,30] and
convolutional-neural-network-based median layers [31,32]. These denoising pretext tasks
aim to remove or reduce the noise to improve their quality and make them more useful for
downstream tasks.

Inspired by this, we introduce a novel self-supervised speech representation learning
strategy that utilizes the S&P mask. The proposed masking method involves consecutive
quadrilateral-shaped S&P patches that contaminate the speech spectrogram by a randomly
determined percentage. The S&P noise in computer vision, however, cannot be effectively
applied to the speech domain due to the difference in resolution or scale between the
spectrograms and images. To cope with this problem, the proposed scheme uses the S&P
mask modifying the standard S&P noise to make it suitable for the speech domain. Figure 1
presents the overall framework of this paper.

Figure 1. The overall framework of this paper consists of two parts. The left side illustrates the
architecture of the speech representation model that uses the proposed spectral S&P patch masking
for self-supervised learning. On the right side, labeled speech data are finally trained using the
pretrained speech representation model. In other words, the pretrained encoder is connected to the
downstream model, which can be used as a feature extraction (weight frozen) or fine-tuning (gradient
flow) approach.
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To assess the efficacy of the proposed spectral S&P patch masking method for self-
supervised speech representation learning, pretraining experiments are performed sep-
arately in two languages: English [33] and Korean [34]. The pretrained model is then
evaluated in two ways, namely feature extraction and fine-tuning, on several downstream
tasks, which include speech recognition for both the English and Korean datasets, phoneme
classification, keyword spotting, and speaker identification. Furthermore, a comparative
analysis is conducted to determine the effectiveness of the spectral S&P patch masking
method on its own, as well as in combination with other conventional masking approaches.
Our findings confirm that the proposed spectral S&P patch masking, when utilized in
conjunction with conventional masking techniques, yields superior results for various
speech-related downstream tasks. These results indicate that the proposed method can
serve as a valuable supplement to existing self-supervised learning techniques, potentially
leading to improvements in speech representation learning.

The main contributions of this paper can be summarized as follows:

• We propose a straightforward and novel masking method for self-supervised speech
representation learning with consecutive quadrilateral-shaped S&P patch blocks. S&P
masking has not been attempted before for speech representation learning.

• Due to the difference in resolution or scale between the spectrogram and the image,
applying S&P noise directly is not a useful method. To this end, we demonstrate that
modifying S&P noise is more applicable for reconstruction objectives of self-supervised
speech representation learning.

• We show that the combination of the proposed spectral S&P patch method with the
conventional reconstruction-based speech representation learning approach is more
effective in several speech downstream tasks compared with using the traditional
masking methods alone.

The rest of this paper is organized as follows: A concise overview of related works on
S&P noise and masking reconstruction for self-supervised speech representation learning
is provided in Section 2. In Section 3, the details of the proposed spectral S&P patch
masking and pretraining method are introduced. In Section 4, detailed information about
the experimental setting is provided, including various downstream tasks such as feature
extraction, fine-tuning, and the datasets used. In Section 5, extensive experimental results
are presented to validate the effectiveness of the proposed method. Finally, the discussion
and conclusion of this paper are given in Sections 6 and 7.

2. Related Work

In this section, we briefly review the S&P noise in the computer vision domain and the
masking-based reconstruction method for self-supervised speech representation learning.

2.1. Salt-and-Pepper Noise

S&P noise is a common type of image distortion caused by impulse contamination in
the field of computer vision, where white and black pixels are randomly caused throughout
the image, resembling grains of salt and pepper. In the conventional approaches, the
removal of this kind of noise involves using median filtering, which replaces each pixel in
the image with the median value of the neighboring pixels [35,36] and CNN-based median
layers [31,32]. Furthermore, recent approaches to the utilization of S&P noise as a pretext
task for unsupervised learning have been demonstrated to be effective [30,37,38]. As a
result, pretrained models are able to obtain improved performance in downstream tasks
by learning to extract stable and consistent features, achieved through reconstructing the
original input data from noisy and contaminated data. In contrast to existing research
focused on the image domain, our study introduces a novel modification to the conven-
tional pointwise S&P noise technique by transforming it into quadrilateral-shaped patch
masking. This adaptation ensures its suitability for the speech domain, and we utilize it as
a reconstruction objective for self-supervised speech representation learning. Furthermore,
the pretrained speech representation model with the proposed spectral S&P patch masking
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demonstrates synergistic effects when combined with conventional masking approaches
across various downstream tasks.

2.2. Masked Reconstruction for Self-Supervised Speech Representation Learning

Inspired by BERT [7], masking-based reconstruction is one of the most commonly
used in self-supervised speech representation learning techniques [2–6,8,9,11,12]. The
objective of the masking-based speech representation model is to restore the original speech
frames from the masked ones using a reconstruction loss function. To this end, continuous
time frames of the given spectrogram are randomly chosen and then masked by zero
value or replaced with other frames. Similar to SpecAugment [27], a more recent method
includes masking both time and frequency regions of spectrograms. This process enables
the pretrained model to restore the contaminated input speech features while also acquiring
robust speech representation. In this study, we introduce a straightforward spectral S&P
patch masking method for self-supervised speech representation learning that randomly
masks selected regions with consecutive quadrilateral-shaped S&P blocks, without any
complex operations. Adding the proposed method to the previous studies [3,6,12] will
demonstrate more effectiveness for various speech downstream tasks compared with
conventional masking methods only.

3. Method
3.1. Modified S&P for Speech Representation Learning

Typically, image pixels usually have integer values between 0 to 255, where 0 and
255 represent black and white color in the image, respectively. S&P noise in computer
vision refers to a type of impulse contamination that results in random white and black
dots appearing in image pixels. Directly applying the S&P noise technique originally
designed for image data in the computer vision domain to spectrograms would not yield
effective results. This is primarily because of the inherent differences in data scales between
spectrogram and image. Generally, spectrograms consist of floating-point values, while
image data are represented using that of an integer. As a consequence, applying the S&P
noise method to spectrograms as a masking strategy that operates on a different scale
may lead to suboptimal outcomes when we perform self-supervised speech representation
learning. Therefore, it is crucial to consider the specific characteristics and requirements of
spectrogram data to enhance speech representation learning effectively. In this work, the
proposal is made to modify S&P noise to enhance its suitability for speech samples.

Let x f ,t, for ( f , t) ∈ S ≡ {1, . . . , F}×{1, . . . , T}, be the original F-by-T spectrogram x at
pixel location ( f , t) and [vmin, vmax] be the dynamic vector range of x, i.e., vmin ≤ x f ,t ≤ vmax
for all ( f , t) ∈ S . Consequently, a noisy spectrogram is denoted as y. Therefore, the
proposed S&P noise for speech samples at pixel location ( f , t) is given by

y f ,t =


vmax, with probability s
vmin, with probability p
x f ,t, with probability 1− p− s

(1)

where s and p are the probability of salt and pepper noise, respectively, with α representing
the noise level defined as the sum of s and p. In this work, we set s and p to 0.002, resulting
in α being equal to 0.004. Note that the speech data are normalized with zero mean and
unit variance before obtaining the salt values used for self-supervised learning.

3.2. Consecutive Quadrilateral-Shaped Spectral S&P Patch Masking for Self-Supervised Learning

Unlike image data, speech has continuous characteristics and is larger than the image
in scale (time frames). Scale issues may prevent accurate self-supervised speech represen-
tation learning when the original S&P noise is applied to the masking strategy. Figure 2
shows the different point sizes of the S&P noise applied to masking the spectrograms. As
shown in Figure 2b, the original point-shaped S&P noise (frame-level noise) is a very small



Mathematics 2023, 11, 3418 5 of 22

portion of the given spectrogram. As a result, conventional point-shaped S&P noise is
not very effective for self-supervised pretext tasks in the speech domain, since the single
pointwise noise is a tiny fraction of the spectrogram (e.g., 10 s is 1000 frames and the
pointwise 1 frame noise is 25 ms), that is, typically extracted with a window size of 25 ms.

Figure 2. Illustration of the S&P patch masking on the spectrogram with various consecutive factor C
but same total noise masking level α = 0.004. (a) shows the input original spectrogram while (b–g)
illustrates the masked spectrogram on different hyperparameters C = 1, 2, 4, 6, 8, 10, respectively.

To consider the specific scale characteristics of spectrogram data and improve the
effectiveness of the masking strategy using S&P for speech representation learning, we
propose a solution that substitutes consecutive quadrilateral-shaped patches for point-
shaped noise, illustrated in Figure 2. To this end, a consecutive factor C is employed, which
determines the number of frames to be masked during pretraining. This encourages the
model to learn contextualized representations from the spectrogram structure. Specifically,
the initial step of the process entails the random selection of a spectrum point denoted
as y f ,t according to Equation (1). Subsequently, a quadrilateral-shaped region with a side
length of C is masked starting from the selected point, where C represents a certain value.
For instance, if C is assigned a value of 3, the masking process involves 9 points within
the square region, resulting in a square size of 9 × 9. The termination condition for each
random point y f ,t is when it intersects with either the endpoint of a horizontal or vertical
point within the spectrogram or when it is moved by C.

When a larger value of C is used (Figure 2e,f), the model is encouraged to learn
relationships between more distant parts of the spectrogram. This can be advantageous
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for capturing higher-level structures and dependencies that span across larger temporal
contexts. On the other hand, when a smaller value of C is employed (Figure 2c,d), the
model is focused more on local relationships within shorter temporal windows. This can
be beneficial for capturing fine-grained details and local patterns within the spectrogram.

Using excessively small or large values of C, however, can lead to challenges in
accurate speech representation learning. Extremely small values (Figure 2b) might overly
constrain the model’s ability to learn meaningful representations, limiting its capacity to
capture the relevant information within the spectrogram. Conversely, excessively large
values might (Figure 2f) hinder the model’s capability to faithfully reconstruct the original
input spectrogram. Therefore, finding an appropriate range for the value of C is crucial
for ensuring accurate speech representation learning. We provide an exposition on how
the consecutive factor C affects the learning of speech representation for its performance of
downstream tasks in Section 5.

3.3. Pretraining with S&P Patch Masking for Self-Supervised Learning

To pretrain the speech representation model in self-supervision manner, the first
step involves applying the proposed spectral S&P patch masking to the original input
spectrogram. Figure 3 provides an overview of the masking process using the proposed
spectral S&P patch.

Figure 3. The overall process of the proposed spectral S&P patch masking with α = 0.004 and
C ∼ [3, 5]. (a) shows the input original spectrogram while (b) and (c) demonstrate the spectrogram
after being masked with the S&P patches and conventional time-frequency regions masking respec-
tively, and (d) shows the combination of both (b) and (c). In (d), both the pepper and conventional
masking regions (green) are masked with zero value and the salt (yellow) regions consist of the
maximum value in the given spectrogram. (e) shows that the yellow area in the spectrogram denoted
where the model will be learned during the reconstruction pretext tasks. The masked input spectro-
gram (d) is subsequently fed into the speech feature representation model. The model is trained with
the objective of accurately reconstructing the masked spectrogram (d) to the original spectrogram (a)
using the reconstruction loss.
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Initially, the input original spectrogram (Figure 3a) is masked by applying S&P values.
The process of setting the region masked by the S&P patch involves assigning a value of
zero to half of the region and the maximum value of the given spectrogram to the other half,
depending on the total masking value α. This ensures that half of the masked region contains
no information (represented by a value of zero), while the other half retains the maximum
value from the original spectrogram. This approach helps to introduce randomness and
variability in the masked region, promoting robust feature learning during the self-supervised
training process. In Figure 3b, the pepper and salt patch regions are depicted in green and
yellow colors, respectively. We use a random value of C between 3 and 5 (denoted C ∼ [3, 5])
with α = 0.004 condition during pretraining to encourage the model to learn contextualized
representations from spectrogram structure. Note that the quadrilateral-shaped spectral
S&P patches can be rectangle or square and overlapped with each other.

In addition, the proposed spectral S&P patch masking approach can be easily inte-
grated with other masking methods. Figure 3c depicts the conventional time–frequency
region masking method [6], while Figure 3d illustrates the combination of Figure 3b,c. Note
that the existing masking methods can be time, frequency, or time–frequency regions for
reconstruction [3,6,12]. In Figure 3e, the yellow area in the spectrogram represents the
specific region where the model focuses on reconstruction for pretraining tasks.

To reconstruct the masked spectrogram shown in Figure 3d back to its original form in
Figure 3a, 3-layer bidirectional Transformer encoders with 768 hidden sizes and position
encoding, 3072-dimensional feed-forward networks, and 12 multihead attentions are used.
Speech sequence length is limited to under 1500 to fast model training, which is approxi-
mately 15 s. The proposed pretrained model utilizes the masked spectrogram as input and
generates a reconstructed version using L1 loss as the objective function for minimizing
between the original spectrogram and predicted outputs.

In order to perform the aforementioned process using the proposed spectral S&P
patch masking, we use 80-dimensional log Mel Fbank (filter bank) features, which were
extracted with a window size of 25 ms and an overlap size of 10 ms. These speech features
are normalized with a mean of zero and a unit variance to use as input to the model. To
optimize the pretrained model, the AdamW optimizer with a learning rate scheduler is
used, which increases from 0 up to a maximum value of 0.0002 after 7% of the training
steps have been completed and then decreases back to 0. In the pretraining experiments,
32 batch size and 4 gradient accumulation steps are used until 1,000,000 steps, which are
approximately 100 epochs, to learn optimal model parameters that minimize the L1 loss for
reconstruction. For reproducibility reasons, we use the same configuration as described in
the S3PRL toolkit [39].

To summarize the pretraining stage, we aim to let the pretrained model learn representa-
tions that capture essential information from the masked spectrogram in Figure 3d in order to
successfully reconstruct the original spectrogram in Figure 3a using the reconstruction loss.

3.4. Training Pretrained Model on Downstream Tasks

To evaluate the effectiveness of the pretrained model using the proposed S&P patch
masking, there are two ways to measure several downstream tasks.

(1) Speech representation extraction: To obtain speech representations from the pretrained
model, we extract the hidden states of the last layer of the model, which correspond to
the deepest Transformer encoder layer. Subsequently, these extracted representations are
utilized as inputs for the downstream model, effectively replacing the speech features
(e.g., log Mel Fbank). By feeding the speech representations of the pretrained model to
the downstream model, we enable it to leverage the rich and meaningful information
encoded in the representations for performing various tasks. Note that when training the
downstream tasks in this manner, the parameters of the pretrained model are frozen. In
other words, the parameters of the pretrained model are not updated during the training
process of the downstream tasks. This allows the pretrained model to serve as a fixed
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speech feature extractor, providing stable and reliable representations for the downstream
tasks. This method is represented as “feature extraction” in later experimental tables.

(2) Fine-tuning: Another approach for utilizing the pretrained model is through fine-
tuning in conjunction with downstream models. In this method, the output of the pretrained
model is connected to a downstream model, and the downstream model can be of any
type, depending on the specific task at hand. Initially, while the pretrained model retains
its learned knowledge, the parameters of the downstream model are randomly initialized.
During fine-tuning, both the pretrained model and the downstream model are updated
together. The fine-tuning process involves jointly optimizing the parameters of both models
using task-specific training data. This method is denoted as “fine-tuning” in subsequent
experimental tables.

4. Experimental Setup

In this section, a comprehensive evaluation of the proposed spectral S&P patch mask-
ing for self-supervised speech representation learning by performing six downstream tasks
is conducted.

4.1. Dataset Description

We standardize the audio sampling rate to 16 kHz to ensure that all speech data used
in the experiments have a consistent quality. Table 1 shows all the datasets used in this
paper. Details of various datasets used in this paper are as below.

Table 1. Speech datasets summary used in the pretraining and downstream experiments in this paper.
The symbols 7 and Xdenoted yes and no.

Dataset Specific Used For

Name Hours Pretraining Downstream Task

LibriSpeech [33] 960 X Phoneme Classification (100 h)
English ASR (100 h)

TIMIT [40] 5.4 7 Phoneme Classification (All)

Speech Commands [41] 18 7 Keyword Spotting (All)

VoxCeleb1 [42] 352 7 Speaker Identification (All)

KsponSpeech [34] 1000 X Korean ASR (All)

(1) LibriSpeech: The LibriSpeech dataset [33] is one of the widely used benchmarks
for speech recognition research. This dataset encompasses a large-scale collection of En-
glish speech recordings totaling approximately 960 h from audiobooks. The training set
comprises three subsets: train-clean-100, train-clean-360, and train-other-500. The “clean”
designation indicates the absence of noise, while “other” denotes the presence of noise.
The numbers 100, 360, and 500 refer to the respective hour durations of the subsets. For
evaluation purposes, the dataset includes the dev-clean, dev-other, test-clean, and test-other
subsets. In our experiments, we utilize a total of 960 h from the LibriSpeech dataset for
pretraining. For the downstream tasks, the train-clean-100 subset is used for training the
phoneme classification and English ASR tasks, and the dev-clean and test-clean subsets are
used for evaluation.

(2) TIMIT: The TIMIT [40] dataset is a well-known corpus used for speech recognition
and acoustic–phonetic studies. This dataset consists of recordings from 630 American
English speakers pronouncing phonetically rich sentences. In our experiments, we only
use this dataset for conducting phoneme classification for downstream tasks. The TIMIT
dataset is divided into three subsets: “train”, “dev”, and “test”. During our experiments,
we train the downstream tasks using the training set and determine the best-performing
checkpoint on the dev set to assess the performance on the test set.
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(3) Speech Commands: The Speech Commands [41] dataset is usually used in the
field of keyword spotting, which is specifically designed to recognize and classify spoken
commands of keywords. The dataset comprises recordings of short spoken commands
from a diverse set of speakers, covering different categories such as “yes”, “no”, “up”,
“down”, “left”, “right”, “stop”, “go”, and more. In our experiments, we train the keyword
spotting downstream model using the training set and then evaluate the performance of
the model on the development set and test set. Note that the Speech Commands dataset is
not utilized for pretraining in our experiments.

(4) VoxCeleb1: The VoxCeleb1 [42] dataset is an audio–visual dataset that contains more
than 100,000 utterances from 1251 celebrities. These utterances are extracted from videos
on YouTube. The VoxCeleb1 dataset is widely used for tasks such as speech recognition
and speaker identification. For conducting the speaker identification downstream task,
we utilize the VoxCeleb1 training and test set split provided within the dataset itself. The
VoxCeleb1 dataset is not used for pretraining in this paper.

(5) KsponSpeech: To explore the effectiveness of the proposed method in languages
other than English, the KsponSpeech [34] dataset is used for both pretraining and ASR
downstream tasks. By using a non-English dataset, we can evaluate the performance and
generalizability of the proposed method in different linguistic contexts. This allows us
to investigate the applicability and effectiveness of the method beyond the English lan-
guage. The KsponSpeech dataset is widely used in the Korean ASR domain and comprises
around 1000 h of speech from native Korean adult males and females, providing a total of
620,000 training examples. For pretraining, the speech samples that are shorter than 3 s
were excluded, so only 517,144 samples were utilized for self-supervised learning with
the proposed method. In contrast, all the KsponSpeech training samples were used to
measure ASR performance in the downstream task. In the Korean ASR experiment, the
ASR performance is reported on the KsponSpeech dev set.

4.2. Downstream Tasks Details

In this subsection, the respective six downstream tasks setup and training details are
explained.

(1) LibriSpeech phoneme classification: The framewise phoneme prediction performance
is evaluated using classifiers trained on the last hidden state of representations for both
the feature extraction and fine-tuning stages. To ensure reproducibility, this downstream
task follows previous work as described in [39]. For the phoneme classification task on the
LibriSpeech [33] dataset, the train-clean-100 subset includes 41 possible phoneme classes
used for training. To ensure consistency, we make use of aligned phoneme labels, train/test
split, and the development set derived from 10% of the training set as provided in [39].
In evaluating the LibriSpeech phoneme classification task, the phoneme classification
accuracy (%) on the development and test sets employing two measurement approaches
are provided: 1-linear classifier and 2-linear classifier. In the 1-linear classifier approach, a
single linear classifier is employed to evaluate the linear separability of phonemes. This
setting is denoted as “1-linear classifier”. Furthermore, the incorporated classifiers with
a single hidden layer of 768 dimensions are referred to as the “2-linear classifier” setting.
During training, the AdamW [43] optimizer with a learning rate of 0.0002 and a batch size
of 32 is used. The training process continues until 500,000 steps.

(2) TIMIT phoneme classification: For the TIMIT [40] phoneme classification task, frame-
wise phoneme predictions are estimated based on the manual phoneme transcriptions
provided in the TIMIT dataset. To ensure reproducibility, the procedures outlined in previ-
ous work [39] are followed. In experiments, the phoneme classification task is conducted
using the TIMIT training set, which comprises 39 phoneme classes, as described in [39,44].
The phoneme classification accuracy (%) on the test set is reported using three different
measurement approaches: conv-bank classifier, 1-linear classifier, and 2-linear classifier. In
the conv-bank classifier approach, a 64-dimensional hidden layer is utilized, along with
three 1D-CNN layers with kernel sizes of [3, 5, 7] and channel sizes of [32, 32, 32]. This is
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followed by a 96-dimensional hidden layer and a phoneme classifier. This specific setting
is referred to as the “conv-bank classifier” approach. The structures of both the 1-linear
classifier and the 2-linear classifier are equivalent to the phoneme classification setting
used for the LibriSpeech task. For training, the AdamW optimizer is employed with a
learning rate of 0.0002 and a batch size of 16. The training process for this task continues
until 500,000 steps.

(3) Keyword spotting: To evaluate the quality of representations for the keyword spotting
task in both the feature extraction and fine-tuning stages, the Speech Commands [41] dataset
is used, following the setup employed in the S3PRL toolkit [39]. In this setup, keyword
spotting is treated as a 12-class classification problem. A two 256-dimensional hidden layer
feed-forward classifier is employed for this task. Prior to the output layer, mean pooling
over time is applied to the representations, as described in [39]. The evaluation metric
reported is the keyword classification accuracy (%) on the test set. This evaluation allows
for the assessment of the pretrained model’s representation transferability across different
domains. During the keyword spotting training, the Adam optimizer [45] is used with a
learning rate of 0.0001 and a batch size of 32. The training process for this task continues
until 200,000 steps.

(4) Speaker identification: For evaluating the speaker identification task in both the
feature extraction and fine-tuning stages, the VoxCeleb1 dataset [42] is used. A frame-wise
linear transformation is applied, followed by mean-pooling across all sequences. This is
then followed by another linear transformation with a cross-entropy loss for the utterance-
level task. This setting is consistent with the approach described in [39,46]. The evaluation
metric used for this task is accuracy (%), which measures the percentage of correctly
identified speakers. During training, the Adam optimizer is utilized with a learning rate
of 0.0001 and a batch size of 8. Additionally, 4 gradient accumulation steps are employed
until reaching 200,000 training steps.

(5) English ASR: To evaluate the English Automatic Speech Recognition (ASR) down-
stream performance in both the feature extraction and fine-tuning stages, the LibriSpeech
dataset [33] is utilized. Specifically, the train-clean-100, dev-clean, and test-clean subsets of
LibriSpeech are used for training, validation, and testing, respectively. The performance of
two types of deep neural network settings, BiGRU and BiLSTM, is measured as described
in [39,46]. For both the BiGRU and BiLSTM settings, a 2-layer bidirectional GRU and
bidirectional LSTM with a dimensionality of 1024 are used. The models are optimized
using the Connectionist Temporal Classification [47] loss on 32 English characters. Once
trained, the ASR models are decoded using the LibriSpeech official 4-gram language model
performed by KenLM [48] and the Wav2letter toolkit [49]. The evaluation metric reported
for English ASR modeling on the LibriSpeech dataset is the word error rate (WER, %) on
the test-clean subset. During the training stage, the Adam optimizer is used with a learning
rate of 0.0001, a batch size of 32, and a beam size of 5 until 200,000 steps.

(6) Korean ASR: To evaluate the performance of Korean ASR downstream performance
for feature extraction, the KsponSpeech dataset [34] is employed. In order to compare the
performance of feature extraction, the weights of various pretrained models are kept frozen.
The speech representations are extracted from the hidden state of the final bidirectional
Transformer encoder. These representations are then fed into the ASR model architecture
described in [50]. Specifically, an ESPNet [51]-like Transformer model is used for ASR
architecture, which includes 7-layer CNNs with 8 subsampling operations, followed by
3 Transformer encoder layers and 6 Transformer decoder layers. The maximum input
length for the training set is set to 25 s, and no additional normalization or preprocessing is
applied. During training, the AdamW optimizer is utilized with a learning rate of 0.001,
and a Transformer learning rate scheduler [1] is employed. The model is trained using a
total batch size of 64 on 4 TITAN RTX GPUs until 50 epochs. Label smoothing [52] is also
applied during training.

Unlike English characters, the KsponSpeech dataset includes 2311 symbols, including
special tokens such as "start", "end", "mask", "pad", and "unk". This makes the Korean ASR
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downstream task more challenging to predict accurately. To evaluate the performance of the
Korean ASR downstream task, the character error rate (CER, %) is used as a commonly em-
ployed metric in Korean ASR. The CER is computed at the syllable level by measuring the
Levenshtein distance [53] between the ASR-predicted results and the corresponding labels.

4.3. Software and Hardware Details

In all the experiments of this paper, the following software and hardware configu-
rations are utilized. By using these specific versions of the software and libraries, the
reproducibility and consistency of the experimental setup are ensured.

• Python version: 3.9.15
• GPU server: The pretraining and downstream experiments are conducted on an

NVIDIA RTX A6000 GPU (48GB) server and TITAN RTX GPU (24GB) server running
Ubuntu 18.04.6 LTS, respectively.

• Deep learning framework: PyTorch [54] version 1.12.1 with CUDA version 11.3 and
CuDNN version 8.21. These libraries enable efficient GPU acceleration for training
and inference.

• Speech preprocessing: For speech preprocessing tasks, we rely on the TorchAudio [55]
library (version 0.12.1) for audio-related operations. Additionally, Numpy [56] (ver-
sion 1.23.5) and SoundFile (version 0.11.0) are used for numerical computations and
reading and writing audio files, respectively.

• English ASR downstream: For English ASR tasks, both KenLM [48] (Available online:
https://github.com/kpu/kenlm, accessed on 14 June 2023) and Wav2letter++ [49]
(Available online: https://github.com/flashlight/wav2letter, accessed on 14 June
2023) libraries are employed. KenLM is used for language modeling, while
Wav2letter++ provides useful ASR functionality.

• Korean ASR downstream: In the case of Korean ASR tasks, the python-Levenshtein
library (version 0.20.9) is utilized to compute the edit distance metric.

5. Results

In all the downstream tasks, the effectiveness of the proposed spectral S&P patch masking
alone or combined with previous speech representations learning methods is compared.

Table 2 presents seven selected methods, including diverse self-supervised representa-
tion learning techniques (Fbank, APC [15], NPC [10], Mockingjay [3], Audio ALBERT [12],
TERA [6], and the proposed spectral S&P Patch). Note that the Fbank refers to the input
that is directly converted from the original speech without using any pretrained speech
feature representation. These methods have been chosen to provide a comprehensive eval-
uation of the proposed S&P patch masking in relation to existing approaches. In Table 2,
the designation of * models indicates the utilization of their pretrained weights from the
S3PRL [39] toolkit, which are employed for our downstream tasks without modification.
On the contrary, the † models listed in Table 2 signify the pretrained speech representation
models that we implement ourselves using the S3PRL toolkit.

Furthermore, the experimental results are presented by integrating their approaches
with contemporary self-supervision masking methods. In our experiments, note that
these combined experiments exclusively focus on parallel network-type models that are
composed of Transformer-based architectures [3,6,12], namely Mockingjay + Ours, Audio
ALBERT + Ours, and TERA + Ours.

https://github.com/kpu/kenlm
https://github.com/flashlight/wav2letter
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Table 2. Details of various self-supervised speech representation approaches. Nonparallel and
Parallel denote the using Non-Transformer and Transformer-based neural network architecture for
pretraining, respectively. * represents the pretrained model provided in the S3PRL toolkit. † denotes
the pretrained model we implemented ourselves using the S3PRL toolkit.

Representations Network Type No. Model Paramaters

Fbank * - 0

APC * [15] Non-parallel 9,107,024
NPC * [10] Non-parallel 19,380,560
Mockingjay * [3] Non-parallel 22,226,928
Audio ALBERT * [12] Non-parallel 7,805,264
TERA * [6] Non-parallel 21,981,008
S&P Patch † (Ours) Non-parallel 21,981,008

Combined with other representations

Mockingjay + Ours † Parallel 22,226,928
Audio ALBERT + Ours † Parallel 7,805,264
TERA + Ours † Parallel 21,981,008

5.1. LibriSpeech Phoneme Classification Results

Figure 4 demonstrates the performance of both feature extraction and fine-tuning for
the LibriSpeech [33] phoneme classification task using various representations. All the pre-
trained models of these features are extracted from the final layer. For the feature extraction,
all the pretrained model parameters are kept fixed when conducting the downstream task,
and the representations are provided as input to the downstream model. In contrast to the
feature extraction, all the pretrained model parameters are updated during the fine-tuning
experiments on the downstream task.

In Figure 4a, the proposed method outperforms the Mockingjay [3], considering the
average results from two methods: 1-linear classifier and 2-linear classifier. It is also
observed that combining the proposed method with representations from previous parallel-
based approaches yields better performance on average than when they are used alone.
Notably, the relatively lower performance of Mockingjay is significantly improved when
integrated with the proposed method (Mockingjay + Ours).

(a) Feature extraction performance.

Figure 4. Cont.
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(b) Fine-tuning performance.

Figure 4. Feature extraction (a) and fine-tuning (b) performance on LibriSpeech [33] phoneme
classification task between different representations. The higher the better.

According to the results presented in Figure 4, the fine-tuning performance (Figure 4b)
of all representations surpasses the performance observed on the feature extraction perfor-
mance (Figure 4a). Particularly, the proposed method demonstrates notable improvement
when compared with its performance in the feature extraction stage when used alone.
Furthermore, it is observed that the proposed method exhibits significant enhancement
compared with feature extraction, outperforming the APC [15] and NPC [10] approaches
in terms of average results from the 1-linear and 2-linear classifier. Additionally, it is
discovered that the proposed method shows synergistic performance when combined with
other methods for fine-tuning, similar to its performance in the feature extraction stage.

5.2. TIMIT Phoneme Classification Results

The performance of both feature extraction and fine-tuning for the TIMIT [40] phoneme
classification task using different representations are presented in Figure 5. As mentioned
previously, the conv bank classifier results for both the feature extraction and fine-tuning
stages are added to Figure 5. Among the various pretrained representations, the proposed
spectral S&P patch masking achieves the lowest performance among other pretraining
approaches on the feature extraction performance (Figure 5a) but outperforms the APC on
the fine-tuning performance (Figure 5b). However, when combined with other methods, it
exhibits effective performance, resulting in improved overall performance. Particularly, it
is found that when the pretrained models using the proposed method on the LibriSpeech
dataset are applied to a downstream task with a different domain (TIMIT dataset), they
still demonstrate a synergistic effect.

Furthermore, it is observed that all representations exhibit improved performance
when used with a deeper downstream model, both in the context of feature extraction and
fine-tuning. This can be a restricted labeled data environment, as observed in the TIMIT
dataset. Specifically, the performance achieved with the 2-linear classifier outperforms
that of the conv bank classifier and the 1-linear classifier for all representations. This
observation suggests that the 2-linear classifier is capable of extracting more informative
features compared with 1-linear classifier, leading to enhanced performance across all
representations. As a result, it is worth noticing that the pretrained model combined with
the proposed method and previous approaches for both feature extraction and fine-tuning,
even with limited labeled data (TIMIT dataset), shows synergistically to further improve
the overall performance.
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(a) Feature extraction performance.

(b) Fine-tuning performance.

Figure 5. Feature extraction (a) and fine-tuning (b) performance on TIMIT [40] phoneme classification
task between different representations. The higher the better.

5.3. Keyword Spotting Results

Figure 6 provides an overview of the keyword classification performance on the Speech
Commands [41] dataset, considering both feature extraction and fine-tuning tasks. Overall,
the results indicate that fine-tuning demonstrates higher performance compared with
feature extraction. Interestingly, the proposed method achieves the lowest keyword spotting
performance (80.40%) among the pretrained representations in the feature extraction but
achieves 92.86% accuracy, which outperforms the APC [15] (90.45%) and NPC [10] (90.34%)
methods when applied in the fine-tuning stage. Furthermore, a substantial improvement
is noted when the proposed method is combined with other representations, compared
with using them individually. Specifically, it is observed that the combination of the
proposed method with TERA [6], Audio ALBERT [12], and Mockingjay [3] leads to an
average performance boost, respectively, compared with using TERA, Audio ALBERT, and
Mockingjay alone.
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Figure 6. Feature extraction and fine-tuning performance for keyword spotting task on the Speech
Commands [41] dataset between different representations, respectively. The higher the better.

5.4. Speaker Identification Results

Figure 7 summarizes the speaker identification results for the VoxCeleb1 [42] dataset
across feature extraction and fine-tuning experiments. During feature extraction, the pro-
posed spectral S&P patch masking showed significantly outperforms the non-parallel-based
architectures of APC [15] and NPC [10]. Surprisingly, all representations exhibit perfor-
mance degradation when fine-tuning is applied to speaker identification downstream
tasks. Despite following the same settings as described in [39,46], it is conjectured that
the chosen hyperparameters for fine-tuning may not be suitable. Interestingly, the fine-
tuning performance using the proposed method outperforms that of NPC [10], as well
as the parallel-based architectures of Mockingjay [3] and Audio ALBERT [12]. Moreover,
experimental results indicate that combining the proposed method with other feature repre-
sentations leads to improved overall performance. This suggests that the proposed spectral
S&P patch masking can serve as simple yet effective self-supervised speech representation
learning techniques for speaker identification tasks.

Figure 7. Feature extraction and fine-tuning performance for speaker identification task on the
Voxceleb1 [42] dataset between different representations, respectively. The higher the better.

5.5. English ASR Results

In this section, the proposed method and the comparison results in terms of the
Word Error Rate (WER) metric are presented. The ASR models are trained using feature
extraction and fine-tuning approaches, respectively. All methods are pretrained with
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960 h of the LibriSpeech [33] dataset. For decoding and rescoring, the setup described in
Section 4.2 is employed for all representations, using both BiGRU and BiLSTM models as
ASR architectures.

In Tables 3 and 4, a summary of the results obtained from the feature extraction and
fine-tuning approaches using both BiGRU and BiLSTM frameworks is presented. These
tables include results from previous literature, as well as the proposed method. Overall,
when comparing the results from feature extraction and fine-tuning, it is consistently ob-
served that fine-tuning yields superior performance compared with using the extracted
speech feature representations for ASR downstream tasks. Similar to the findings in the Lib-
riSpeech phoneme classification task described in Figure 4, a significant improvement in the
performance of the proposed method is observed when transferring from feature extraction
to fine-tuning, especially outperforming the non-parallel-based approaches [10,15].

Table 3. Feature extraction and fine-tuning performance on LibriSpeech [33] ASR downstream task
using BiGRU network between different representations, respectively. The lower the better (↓).

Representations Feature Extraction (↓) Fine-Tuning (↓) Average (↓)
WER Rescore WER Rescore WER Rescore

Fbank 27.90 18.42 27.90 18.42 27.90 18.42

APC [15] 23.66 16.58 21.44 15.37 22.55 15.98
NPC [10] 24.18 16.25 21.20 14.55 22.69 15.40
Mockingjay [3] 26.45 17.59 19.48 14.43 22.97 16.01
Audio
ALBERT [12] 24.32 16.14 19.16 14.27 21.74 15.21

TERA [6] 22.47 14.96 19.95 14.16 21.21 14.56
Ours 26.35 16.83 20.39 14.52 23.37 15.68

Combined with other representations

Mockingjay +
Ours 26.35 16.83 20.39 14.52 23.37 15.68

Audio ALBERT
+ Ours 26.23 17.30 19.25 14.05 22.74 15.68

TERA + Ours 21.74 14.04 17.78 13.03 19.76 13.54

Table 4. Feature extraction and fine-tuning performance on LibriSpeech [33] ASR downstream task
using BiLSTM network between different representations, respectively. The lower the better (↓).

Representations Feature Extraction (↓) Fine-Tuning (↓) Average (↓)
WER Rescore WER Rescore WER Rescore

Fbank 22.89 15.35 22.89 15.35 22.89 15.35

APC [15] 21.94 15.32 19.18 13.26 20.56 14.29
NPC [10] 22.21 15.45 19.42 13.36 20.82 14.41
Mockingjay [3] 21.56 15.31 17.75 12.52 19.66 13.92
Audio
ALBERT [12] 21.13 14.54 17.20 12.25 19.17 13.40

TERA [6] 19.90 13.33 17.18 12.06 18.54 12.70
Ours 22.03 15.89 17.88 13.02 19.96 14.46

Combined with other representations

Mockingjay +
Ours 21.22 15.06 17.31 12.42 19.27 13.74

Audio ALBERT
+ Ours 20.58 14.24 17.03 12.02 18.81 13.13

TERA + Ours 18.02 12.94 16.37 11.51 17.20 12.23

In conclusion, it is found that the overall performance of the BiLSTM-based ASR
model in Table 3 exhibits notably better performance compared with the BiGRU model
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in Table 4. Furthermore, it is also observed that combining the proposed method with
other approaches leads to increased ASR performance in both the feature extraction and
fine-tuning stages.

5.6. Korean ASR Results

To measure the proposed spectral S&P patch masking on the Korean ASR downstream
task, we compare previous works that were pretrained on the KsponSpeech [34] dataset.
For training the Korean ASR downstream task, each pretrained model is utilized as a feature
extractor for the respective ASR model. All the pretrained comparisons experimental results
use the S3PRL toolkit [46]. We report the CER (%) on the KsponSpeech dev set.

Table 5 demonstrates the performance of feature extraction for the overall Korean
ASR performance, including the proposed method. According to our experimental results,
the ASR performance using the proposed spectral S&P patch masking alone achieves a
14.66% CER, which outperforms the NPC [10] (14.78%), Mockingjay [3] (17.25%), and Audio
ALBERT [12] (16.95%), respectively. This indicates that the proposed spectral S&P patch
can be simple yet effective for masking strategy, which can be useful for ASR downstream
tasks.

Table 5. Feature extraction performance on Korean ASR downstream task. The lower the better (↓).

Representations CER (↓)

Fbank 15.31

APC [15] 13.36
NPC [10] 14.78
Mockingjay [3] 16.95
Audio ALBERT [12] 17.25
TERA [6] 13.86
SVR1K [50] 12.32
Ours 14.66

Combined with other representations

Mockingjay + Ours 14.83
Audio ALBERT + Ours 15.87
TERA + Ours 12.14

In addition, while the ASR performances of conventional Mockingjay [3], Audio
ALBERT [12], and TERA [6] are 16.95%, 17.25%, and 13.86% of CER, respectively, each
method combined with the proposed S&P patch masking obtain performances of 14.83%,
15.87%, and 12.14%, which implies a relative average improvement of 10%. In particular,
when the proposed method was added to TERA (TERA + Ours), it outperformed the results
of SVR1K [50], which had the best ASR performance among all speech representations. As
a result, our results demonstrate that combining the proposed spectral S&P patch with
conventional masking methods is a useful supplement to the existing self-supervised
techniques for speech representation learning.

5.7. Ablation: Impact of Two S&P Patch Masking Hyperparameters

In this section, an ablation study is performed to further explore the effectiveness of the
proposed spectral S&P patch masking for self-supervised speech pretraining. Specifically,
we experiment and report on two hyperparameter factors: the total amount of the S&P patch
α and the consecutive noise patches factor C. The goal is to investigate the contribution of
quadrilateral-shaped noise patches in the speech domain. To this end, ablation studies are
conducted on the LibriSpeech phoneme classification task for both feature extraction and
fine-tuning, as well as on the Korean ASR task for the feature extraction task.

First, an investigation is conducted on six different values of α and eight different
values of C in the TERA + Ours setting for the LibriSpeech phoneme classification tasks.
According to the phoneme classification accuracy results obtained from the LibriSpeech
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test-clean set, as presented in Table 6a,b, our experimental findings indicate that when using
the parameters α = 0.004 and C ∼ [3, 5], the most promising outcomes are achieved for
both feature extraction and fine-tuning processes. In our findings, it is observed that there is
no significant difference in the fine-tuning performance when varying the hyperparameters.
However, a notable gap is noticed in the feature extraction performance across different
hyperparameter settings, especially in C. This observation supports the hypothesis that a
point-shaped S&P patch (C = 1) is not effective for learning speech feature representation.

Table 6. Ablation study on hyperparameters of the proposed S&P noise patches. The higher the better
(↑). (a) LibriSpeech phoneme classification for both feature extraction and fine-tuning performance
comparison according to the various α. (b) LibriSpeech phoneme classification for both feature
extraction and fine-tuning performance comparison according to the various C. Bold denotes the
best result.

(a)

α C Feature Extraction (↑) Fine-Tuning (↑)

0.001

C ∼ [3, 5]

68.91 88.06
0.002 70.29 88.46
0.004 73.03 89.18
0.006 71.07 88.85
0.008 69.97 88.75
0.01 69.02 88.14

(b)

α C Feature Extraction (↑) Fine-Tuning (↑)

0.004

C = 1 70.84 87.89
C ∼ [1, 3] 71.82 88.13

C = 3 71.70 88.49
C ∼ [3, 5] 73.03 89.18
C ∼ [3, 8] 72.10 88.87

C = 5 71.59 88.49
C ∼ [1, 10] 68.85 88.44
C ∼ [3, 10] 71.76 88.86

As shown in Table 7, we also explore five different values of α and four different
values of C in the TERA + Ours setting for the Korean ASR downstream task. Similar to
Table 6, the best ASR performance is obtained when using the α = 0.004 and C ∼ [3, 5]
settings. In particular, it is observed that too small (point-shaped) or too large amounts of
S&P patches are not suitable for self-supervised pretext tasks. Additionally, considering
that the conventional pointwise (C = 1) S&P patch has a CER of 17.25%, the results provide
evidence that the proposed spectral S&P patch masking is highly effective. These findings
indicate that the consecutive patch masking factor C plays a crucial role in shaping the
effectiveness of the spectral S&P patch masking for speech representation learning.

According to the ablation study results for English and Korean ASR presented in
Tables 6 and 7, respectively, the optimal hyperparameter configuration that yielded the
best performance is α = 0.004 and C ∼ [3, 5]. Indeed, the results obtained from using
the representations of the fixed pretrained model without any parameter updates provide
support for the hypothesis that a point-shaped S&P patch with C = 1 is not effective for
speech representation learning. We also highlight the importance of using the proposed
quadrilateral-shaped patches to achieve effective speech feature representation learning.
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Table 7. Ablation study on hyperparameters of the proposed spectral S&P patch masking. The lower
the better (↓). (a) ASR performance comparison according to the various α. (b) ASR performance
comparison according to the various C. Bold denotes the best result.

(a)

α C CER (↓)

0.002

C ∼ [3, 5]

13.84
0.004 12.14
0.006 13.58
0.008 13.75
0.01 13.34

(b)

α C CER (↓)

0.004

C ∼ [1, 3] 17.25
C ∼ [3, 5] 12.14
C ∼ [3, 8] 13.51

C ∼ [3, 10] 15.82

6. Discussion

The primary goal of this paper is to successfully apply the spectral S&P patch masking
method for self-supervised speech representation learning. To the best of our knowl-
edge, this study is the first attempt to utilize the S&P patch as a masking strategy for
self-supervised speech representation learning. To address the difference in resolution or
scale between speech and image data, we have introduced the novel salt value and consec-
utive quadrilateral-shaped patches for masking, which allows for the useful extraction of
continuous information from the speech input.

In our experiments, we conducted an extensive investigation of a diverse range of
speech downstream tasks using the proposed method. Firstly, we obtained two pretrained
speech representation models on both English and Korean datasets. To ensure a fair
comparison of the proposed method, various pretrained weights (models) available in the
S3PRL toolkit were directly utilized, and the performance gap across different downstream
tasks was reported. As a result, the proposed method achieved similar performance to
other recent approaches when used alone for various downstream tasks. Furthermore, we
have shown that combining the proposed spectral S&P patch masking with conventional
methods for self-supervised speech representation learning leads to effective results in
various downstream tasks.

The primary limitation of our study lies in the fact that the proposed spectral S&P
patch masking method can only be utilized or combined with masking-based speech
representation learning approaches. To gain a more profound understanding of speech
representation pretraining, further research is required to extend the proposed method,
such as investigating its applicability to directly extracting speech using CNNs like wav2vec
2.0 [2] and HuBERT [5]. Second, in our study, we limited the pretraining to 960 h of the
LibriSpeech [33] dataset for the English ASR downstream task. To ensure fair comparisons
with other conventional masking-based approaches, we utilized the S3PRL framework
using 960 h of LibriSpeech dataset, as described in TERA and SUPERB. However, the
amount of data used for pretraining has a significant impact on the performance of models
in various downstream tasks. Even when using a large-scale speech dataset such as 60,000 h
of Libri-Light [57], further validation is required so verify whether the proposed method
shows reliable results. This will enable us to estimate the method’s scalability and its
potential to yield robust results under more data-rich conditions. Third, we observed that
keeping the pretrained weights frozen worked better than fine-tuning them during the
training of the Korean ASR model. In the future, we plan to concentrate on addressing
these limitations and potentially striving to improve the performance further.
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In conclusion, our findings demonstrated that the proposed spectral S&P patch mask-
ing shows reasonable performance on several downstream tasks, but it significantly en-
hanced effectiveness particularly when combined with other conventional approaches. We
believe that the proposed methods can be extended to various benchmarks and down-
stream tasks.

7. Conclusions

In this paper, we introduced simple yet effective spectral S&P patch masking for self-
supervised speech representation learning. In order to handle the difference in resolution
or scale between spectrograms and images, we also suggested consecutive quadrilateral-
shaped patches that extract the continuous information from spectrograms. Experimental
results demonstrate the effectiveness of the proposed method on several speech down-
stream tasks and show it can be a useful supplement to existing self-supervised techniques
for speech representation learning.

In our experiments, we observed that keeping the pretrained weights frozen worked
better than fine-tuning them during the training of the Korean ASR model. Moreover,
further studies are required to ensure that the proposed spectral S&P method can surpass
masking-based approaches and encompass direct waveform extraction using CNNs or
pretraining with quantizers. In the future, we plan to focus on these issues and potentially
improve the performance further.
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