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Abstract: In this paper, we propose clustering methods for use on data described as tropically convex.
Our approach is similar to clustering methods used in the Euclidean space, where we identify
groupings of similar observations using tropical analogs of K-means and hierarchical clustering in the
Euclidean space. We provide results from computational experiments on generic simulated data as
well as an application to phylogeny using ultrametrics, demonstrating the efficacy of these methods.
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1. Introduction

Unsupervised learning comprises all machine learning methods that are used to
identify relationships among data observations with no identified dependent variable.
The goal is to identify relationships among observations based on independent features
of the data [1]. Clustering methods are popular unsupervised learning methods that help
identify homogeneous groupings of data observations. For data in the Euclidean space,
several popular tools exist to identify clusters of similar data, such as principal component
analysis (PCA) [2], K-means clustering [3], hierarchical clustering [4], and density-based
spatial clustering of applications with noise (DBSCAN) [5], among others.

While supervised learning methods over tropical linear spaces are burgeoning
(See [6–8]), unsupervised learning methods for use in a tropical linear space are limited.
In [9], the authors proposed tropical principal component analysis (PCA) to estimate the
best-fit polytope to data described as tropically convex. Beyond tropical PCA, unsuper-
vised learning methods are mostly neglected and tropical analogs of Euclidean clustering
methods are non-existent.

To begin to remedy the paucity of tropical unsupervised learning methods, we intro-
duce two tropical clustering methods: tropical K-means clustering and tropical hierarchical
clustering. Throughout this paper, we follow the methodologies shown in [1], adapting
their algorithms for use over tropically convex data. In Section 2, this paper presents a
brief overview of the tropical projective torus Re+1/R1 with definitions and operations
that are needed for our clustering techniques. In Section 3, we introduce the tropical clus-
tering methods, associated dissimilarity measures, and clustering analysis tools. Section 4
provides results from computational experiments using both clustering methods. Lastly,
in Section 5, we apply tropical hierarchical clustering to the ultrametric space to illustrate
its application to phylogeny.

All code and vignettes used in this paper can be found at https://github.com/
barnhilldave/Tropical-Clustering (accessed on 10 June 2023).

2. Tropical Basics

In this paper, we consider the tropical projective torus Re+1/R1, where 1 := (1, 1, . . . , 1)
is the vector with all ones in Re+1. This means that if v := (v1, . . . , ve+1) ∈ Re/R1, then

(v1 + c, . . . , ve+1 + c) = (v1, . . . , ve+1) = v. (1)
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which means that Re+1/R1 is isomorphic to Re.

Example 1. Consider the point x ∈ Re/R1 where x = (5, 7, 2). By Equation (1), (5, 7, 2) =
(0, 2,−3) = (−2, 0,−5) = (3, 5, 0).

This section provides a brief overview of some necessary definitions related to tropical
algebra and geometry as they pertain to the tropical clustering methods introduced in later
sections. For an in-depth treatment of tropical algebra and tropical geometry, see [10,11].

Definition 1 (Tropical Arithmetic Operations). Under the tropical semiring (R∪{−∞},⊕,�) ,
we have the tropical arithmetic operations of addition and multiplication, defined as follows:

c1 ⊕ c2 := max{c1, c2}, c1 � c2 := c1 + c2 where c1, c2 ∈ R∪ {−∞}.

Note that −∞ is the identity element under addition ⊕ and 0 is the identity element under
multiplication � over this semiring.

Definition 2 (Tropical Scalar Multiplication and Vector Addition). For any c1, c2 ∈ R ∪
{−∞} and for any v = (v1, . . . , ve+1), w = (w1, . . . , we+1) ∈ Re+1/R1, we have tropical scalar
multiplication and tropical vector addition, defined as follows:

(c1 � v)⊕ (c2 � w) := (max{c1 + v1, c2 + w1}, . . . , max{c1 + ve+1, c2 + we+1}).

Definition 3. Suppose we have S ⊂ Re+1/R1. If

c1 � v⊕ c2 � w ∈ S

for any c1, c2 ∈ R and for any v, w ∈ S, then S is called tropically convex. Suppose V =
{v1, . . . , vs} ⊂ Re+1/R1. The smallest tropically convex subset containing V is called the tropical
convex hull or tropical polytope of V, which can be written as the set of all tropical linear
combinations of elements in V

tconv(V) = {a1 � v1 ⊕ a2 � v2 ⊕ · · · ⊕ as � vs | a1, . . . , as ∈ R}.

A tropical line segment between two points v1, v2, is a tropical polytope, P , of a set of two points
{v1, v2} ⊂ Re+1/R1 and is calculated by

(ve+1−ue+1)� u⊕ v = v
(ve−ue)� u⊕ v = (v1, v2, v3, . . . , ve−1, ve − ue + ue+1)

...
(v2−u2)� u⊕ v = (v1, v2, v2 − u2 + u3, . . . , v2 − u2 + ue+1)
(v1−u1)� u⊕ v = u.

(2)

As in Euclidean geometry, a tropical line segment is geodesic.

Example 2. Consider the set of points V := {(4, 4, 4), (2, 5, 3), (6, 8, 11)}. By Equation (1),
V := {(0, 0, 0), (0, 3, 1), (0, 2, 5)}. The tropical polytope defined by these points has a planar
representation shown in Figure 1. The black lines between points in Figure 1 represent tropical line
segments between each pair of vertices.
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(0,0,0)

(0,2,5)

(0,3,1)

Figure 1. Tropical polytope defined in Example 1.

Definition 4. For any points v := (v1, . . . , ve+1), w := (w1, . . . , we+1) ∈ Re+1/R1, the tropi-
cal distance (also known as the tropical metric) dtr between v and w is defined as follows:

dtr(v, w) := max
i∈{1,...,e+1}

{
vi − wi

}
− min

i∈{1,...,e+1}

{
vi − wi

}
.

Next, we remind the reader of the definition of a projection in terms of the trop-
ical metric onto a tropical polytope. The tropical projection formula can be found in
Formula 5.2.3 in [11].

Definition 5. Let V := {v1, . . . , vs} ⊂ Re+1/R1 and let P = tconv (v1, . . . , vs) ⊆ Re+1/R1
be a tropical polytope with its vertex set V. For x ∈ Re/R1, let

πP (x) :=
s⊕

l=1

λl � vl , (3)

where λl = mini=1,...,e+1(xi − vl
i) for vl := (vl

1, . . . , vl
e+1), x := (x1, . . . , xe+1).

Then
dtr(x, πP (x)) ≤ dtr(x, y)

for all y ∈ P . In other words, πP (x) is the projection of x ∈ Re+1/R1 in terms of the tropical
metric dtr onto the tropical polytope P .

We are interested in the region of ambient points in terms of πP (x). According to
the projection rule, i.e., Equation (3), two general nearby points are projected to the same
position if they have the same λl for all l. This condition takes place when the minimum of
min{x− vl} in Equation (3) is attained at the same (say, j-th) coordinates for all l. Thus,
we consider the region of x, where λl for all l includes xj for fixed j, i.e., λl = xj − vl

j for all
l, so that all the points in that region have the same λl . In fact, λl becomes a constant, as
λl = −wl

j after xj1 is subtracted under Re+1/R1. And, thus, πP (x) = λ ·V for all x in the
region represents the same point. This argument can be summarized as Lemma 1.

Lemma 1. Let P = tconv (v1, . . . , vs) ⊆ Re+1/R1 be a tropical polytope with its vertex set
{v1, . . . , vs} ⊂ Re/R1, where vl := (vl

1, . . . , vl
e) for l = 1, . . . , s. Let x = (x1, . . . , xe) ∈ Re/R1,

such that xj ≤ xk + minl=1,...,e{vl
j − vl

k} for fixed j and for all k. Then πP (x)i = maxl{vl
i − vl

j}
with λl = −vl

j. That is, all the points x satisfying the above inequalities are projected to the
same point.

Proof. Let xj ≤ xk + minl=1,...,e+1{vl
j − vl

k} for all k. Then xj ≤ xk + (vl
j − vl

k) for all k and

all l. Or xj − vl
j ≤ xk − vl

k for all k and all l. Then λl = min{x− vl} = xj − vl
j for all l.
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3. Tropical Clustering Methods

In this section, we introduce two tropical clustering methods. The first method we call
tropical K-means clustering, which is analogous to the Euclidean version described in [1].
Next, we introduce tropical hierarchical clustering. These methods are very similar to their
Euclidean counterparts, with the main difference involving replacing Euclidean distance
measures with the tropical metric.

3.1. K-Means Clustering in a Tropical Projective Torus

In the Euclidean space, K-means clustering is an iterative method that partitions data
observations into a pre-defined set of clusters C := {C1, . . . , CK}, where cluster Ck ∈ C
and the cardinality of C = |K| based on a distance measure from the observation to the
centroid ck, of the cluster Ck [1]. At each iteration, ck for each Ck ∈ C is calculated based
on the current membership of the Ck. Then, data observations are reassigned based on
which ck is closest in terms of a distance measure. This distance measure has the effect of
defining the within-cluster variation, which becomes the measure indicating the similarity
(or difference) between observations in the cluster. In [1], the authors employ squared
Euclidean distance as the method to measure within-cluster variation. This measure is
defined mathematically as

W(Ck) =
1
|Ck| ∑

i,i′∈Ck

e+1

∑
j=1

(xij − xi′ j)
2,

where xi := (xi1, . . . , xie+1) is the ith observation in the input data {x1, . . . , xn} ⊂ Re+1/R1,
and |Ck| represents the number of observations assigned to cluster Ck. In order to assign
observations to clusters, such that within-cluster variation is minimized, we arrive at the
following minimization problem:

min
C1,...,CK

K

∑
k=1

1
|Ck| ∑

i,i′∈Ck

e

∑
j=1

(xij − xi′ j)
2, (4)

which defines K-means clustering in terms of squared Euclidean distance [1]. Algorithm 1
shows the basic steps to conduct K-means clustering in the Euclidean space based on the
squared Euclidean distance.

Algorithm 1 K-Means clustering in the Euclidean space (from [1])

Input: A matrix representing data, X, where each row is an observation xi ∈ Rp and the
columns are the p features; set of possible clusters C = {C1, . . . , CK}, and |C| = K.
Output: Clusters.
Randomly assign each xi ∈ X to one of the K clusters.
while at least one xi changes the cluster assignments. do

Calculate the centroid ck for each cluster k ∈ K.
Assign each xi ∈ X to the cluster, Ck, where the Euclidean distance from xi to ck is

minimized.
end while
return x := xI .

Tropical K-means clustering is analogous to K-means clustering in the Euclidean space
with the exception of using the tropical metric in lieu of the Euclidean distance as a measure
of within-cluster variation. To begin, we first introduce Algorithm 2, which shows the
basic steps of executing K-means clustering in the tropical projective torus. Note that
Algorithm 2 mimics Algorithm 1, except that instead of a centroid defined by a point where
each coordinate represents an in-cluster feature average, we now define the centroid in
terms of the Fermat–Weber point using the tropical distance.
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Algorithm 2 K-means clustering in the tropical projective torus.

Input: A matrix representing data, X, where each row is an observation xi ∈ Re+1/R1
and the columns are the e features; the desired number of clusters: K.
Output: Clusters.
Randomly assign each xi ∈ X to one of the K clusters.
while at least one xi changes the cluster assignment. do

Calculate the F-W point ck, for each cluster k ∈ K.
Assign each xi ∈ X to the cluster, Ck, where dtr(xi, ck) is minimized.

end while
return x := xI .

Calculating a Tropical Fermat–Weber Point

As mentioned in [12], because of the non-Euclidean nature of tropical geometry, it is
natural to use the Fermat–Weber points of a given sample defined in Equation (6). In tropical
K-means clustering, we use the tropical Fermat–Weber point to represent the centroid of
each cluster. In general, for a given set of observations, X, where |X| = p, the Fermat–Weber
point is a point, y, which satisfies

arg min
y

p

∑
i=1

d(y, xi), (5)

where d(.) represents a distance measure and xi ∈ X. A tropical Fermat–Weber point is
similarly defined, except using the tropical metric. Therefore, the tropical Fermat–Weber
point u ∈ Re/R1 satisfies

arg min
u

p

∑
i=1

dtr(u, xi). (6)

The Fermat–Weber point u, calculated from (6), provides the representation of a
centroid based on the tropical metric. For each iteration of Algorithm 2, we recompute a
Fermat–Weber point for each cluster as long as observations continue to be reassigned to
different clusters. A possible challenge to using the tropical Fermat–Weber point is that the
point may not be unique. Therefore, it is conceivable that the cluster membership may not
change when it should, or the converse. This bears further research and exploration. For a
thorough discussion on tropical Fermat–Weber points, see [13].

Example 3. Consider the points V = {(0, 0, 0), (0, 2, 5), (0, 3, 1)} (recall Equation (1)) in R3/R1
that are members of cluster C1. Let the point y = (0, 6, 3) have membership in cluster C2. The gray
triangle in Figure 2 shows the Fermat–Weber region for the points in C1, meaning that any point
contained in the triangle represents a tropical Fermat–Weber point satisfying (6). Letting the
vertices of the triangle be represented by z1 = (0, 1, 1), z2 = (0, 2, 2), and z3 = (0, 2, 1), we
calculate dtr(y, z1) = 5, dtr(y, z2) = 4, and dtr(y, z3) = 4. If we let u2 represent the Fermat–
Weber point for C2, and 4 ≤ dtr(u2, y) ≤ 5, it is possible that y retains membership to C2,
even though there are points in the Fermat–Weber region of C1 that are closer, according to the
tropical metric.
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(0,0,0)

(0,2,5)

(0,3,1)(0,1,1)

(0,2,2)

(0,2,1)

Figure 2. Fermat–Weber region defined by three points in Example 3. Any point in the gray triangle
satisfies (6).

Using the F-W point to represent the centroid of a cluster, we now introduce
Algorithm 2 to define K-means clustering over the tropical projective torus.

As can be seen in Algorithm 2, there are two main steps after initialization. First, we
calculate ck for each Ck ∈ C defined by the current membership of Ck. The second step
involves calculating dtr(xi, ck) for each k ∈ [K] and assigning xi to Ck, such that dtr(xi, ck)
is minimized. The goal for K-means clustering over Re/R1 is to minimize a cost function
that is similar to (4), but instead of using the squared Euclidean distance as a measure of
the within-cluster variation, we replace it with the tropical metric. This leaves us with the
following objective function, minimizing within cluster variation

min
C1,...,CK

K

∑
k=1

1
|Ck| ∑

j∈[|Ck |]
dtr(uk, xj),

where [|Ck|] := {1, . . . , |Ck|} with |Ck| is the number of elements in the cluster Ck.

3.2. Hierarchical Clustering over the Tropical Projective Torus

Another method of clustering often used in the Euclidean space is hierarchical cluster-
ing. Unlike K-means clustering, hierarchical clustering does not require a predetermined
number of clusters to assign observations. Instead, hierarchical clustering combines ob-
servations into clusters by progressively calculating what we call the inter-cluster distance
using a dissimilarity measure [1]. In the Euclidean space, there are several dissimilarity
measures available. For a list of the more popular dissimilarity measures, see Table 10.2
in [1]. Algorithm 3 shows a generic hierarchical clustering algorithm in the Euclidean space.

Algorithm 3 Hierarchical Clustering in the Euclidean Space (from [1])

Input: A matrix X representing data with rows being the observations, with each row
xi ∈ X being a point xi ∈ Re, the columns are the e features, and |X| represents the
number of observations; dissimilarity measure.
Output: Set of clusters C for each iteration.
Let each xi ∈ X represent a cluster.
for i = |X|,. . . ,2 do

Examine all pairwise inter-cluster distances.
Fuse the two clusters with the smallest inter-cluster distance.
Compute pairwise inter-cluster distances of the remaining i− 1 clusters.

end for
return C.

Algorithm 3 begins by allowing each observation to represent its own cluster. Then
using the dissimilarity measure, clusters are grouped pairwise at each step until all obser-
vations are grouped together in a single cluster. Additionally, at each iteration, the value
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of the dissimilarity measure is captured. One (informal) way to determine the number of
clusters in the data is to examine the dissimilarity measure between two iterations. If the
dissimilarity measure from the current iteration to the next is very large, then this can
provide an indication of separation between clusters in the current iteration.

Visually, this progressive fusing of clusters has a tree representation known as a den-
drogram. The dendrogram resulting from hierarchical clustering consists of x− and y−axes,
where the x−axis shows the observations. The y−axis represents the dissimilarity measure
(often called the height) between clusters as they fuse. Figure 3 provides an example of
a dendrogram after hierarchical clustering was employed on N = 100 observations of
simulated data, where 50 points each were taken from two Gaussian distributions with
differing mean and standard deviation parameters.

88
61 83 52 87

79
72 62 73 67 97 75 86 65 56 71

36
76

57 10
0

53 64 58 80 96 66 85 95 70 94 63 42 51 98 91 68 99 90 60 74 54 55 89 59 84 78 82 92 81 93 69 77 3 32
5

47 18 37 21 43 26 50
44

25 41 45 30 34 28 17 29
14

40 4
13 33 10 46

7 39 20 6 31
8 23 48 11 16 27 19 22 15 49 12 38 2 35

24
1 9

0
1

2
3

4
5

6
7

Cluster Dendrogram

Observations

H
ei

gh
t

Figure 3. Dendrogram for simulated data using “complete” dissimilarity measures as described
in [1]. The height represents the value of the dissimilarity measure that clusters fuse. The den-
drogram constructed uses the hclust function from the stats package version 4.4.0 in R statistical
software [14].

3.3. Dissimilarity Measures for Tropical Hierarchical Clustering Using Pairwise Distances

The most popular dissimilarity measures used in classical hierarchical clustering em-
ploy the Euclidean distance [1]. We can use a similar approach for tropical hierarchical
clustering by replacing the Euclidean distance with the tropical distance. Tropical dissimi-
larity measures (or tropical linkages) using pairwise tropical distances are defined in a similar
fashion as linkages in the Euclidean space. Table 1 shows summaries of tropical pairwise
dissimilarity measures.

Definition 6 (Tropical Pairwise Complete Linkage). The tropical complete linkage between
two clusters, Ck and Cj, is a dissimilarity measure determined by identifying points xi

k ∈ Ck and
xl

j ∈ Cj, where dtr(xi
k, xl

j) is the largest. This is defined mathematically as

max
i∈[|Ck |]
l∈[|Cj |]

dtr(xi
k, xl

j).

Example 4. Consider clusters C1 := {(0, 0, 0), (0, 2, 5), (0, 3, 1)}, and C1 := {(0, 5.5, 3), (0,6,4),
(0, 7, 3.5). Figures 4 and 5 illustrate which points in C2 define the dissimilarity for each dissimilarity
measure we consider for tropical hierarchical clustering.
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(0,0,0)

(0,2,5)

(0,3,1)

(0,7,3.5)

(0,5.5,3)

(0,6,4)

C1

C2

Figure 4. Tropical pairwise complete linkage for Example 4. The complete linkage defined by the
red tropical line segment as calculated by Equation (2), representing the maximum distance between
a pair of vertices defining the polytope in each cluster.

Definition 7 (Tropical Pairwise Single Linkage). For two clusters, Ck and Cj, a tropical single
linkage is determined by xi

k ∈ Ck and xl
j ∈ Cj, where dtr(xi

k, xl
j) is minimized. That is

min
i∈[|Ck |]
l∈[|Cj |]

dtr(xi
k, xl

j).

(0,0,0)

(0,2,5)

(0,3,1)

(0,7,3.5)

(0,5.5,3)

(0,6,4)

C1

C2

Figure 5. Tropical pairwise single linkage for Example 4. The single linkage defined by the red
tropical line segment as calculated by Equation (2), representing the minimum distance between a
pair of vertices defining the polytope in each cluster.

Definition 8 (Tropical Pairwise Average Linkage). For a given cluster Ck, the tropical pair-
wise average linkage between Ck and a separate cluster Cj is given by taking the average of
dtr(xi

k, xl
j)) over all xi

k ∈ Ck. Specifically,

1
|Ck|

|Ck |

∑
i=1

|Cj |

∑
l=1

dtr(xi
k, xl

j).

A benefit to defining tropical linkages as shown in Table 1 is that we can leverage the
functionality of the hclust function in R because its input is an R distance object. This
allows us to build dendrograms as we would using Euclidean distances.
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Table 1. Tropical pairwise dissimilarity measures.

Linkage Description

Complete Maximum pairwise tropical distances attained from all pairwise tropical distances between
points in one cluster and points in another cluster.

Single Minimum pairwise tropical distance attained from all pairwise tropical distances between
points in one cluster and points in another cluster.

Average Average pairwise tropical distance computed between points in one cluster and points
in another cluster.

Dissimilarity Measures for Tropical Hierarchical Clustering Using Projections

An alternative to pairwise tropical distances between points in different clusters is to
calculate the tropical distance between a point in a cluster and its projection onto another
cluster. A cluster of points in the tropical projective torus is a tropically convex set that
can be defined as a tropical polytope. We denote the tropical polytope defined by the
points in cluster Ck as P(Ck). To determine the dissimilarity between two clusters, Ck and
Cj, we can project each point from Ck onto P(Cj). The projection of a point onto P(Cj)
is the point in P(Cj) that is closest in terms of the tropical distance to the point being
projected. Calculating the distance between a point and its projection provides the basis of
a dissimilarity measure.

For a cluster of points in Re+1/R1, we say the dissimilarity measure, or linkage,
relative to another cluster is determined by the tropical distance between each point
and its projection onto the tropical polytope defined by another cluster [1]. Here, we let xi

k
represent the ith point in cluster Ck, and πP(Cj)

(xi
k) represent the projection of xi

k onto the
cluster Cj, as defined by (3). The definitions that follow describe the linkages we consider
in this paper, which we call tropical complete linkage, tropical single linkage, and tropical average
linkage. Table 2 summarizes these linkages.

Definition 9 (Tropical Complete Linkage). The tropical complete linkage between two
clusters, Ck and Cj, is a dissimilarity measure determined by identifying point xi

k ∈ Ck, where
dtr(xi

k, πP(Cj)
(xi

k)) is the largest. This is defined mathematically as

max
i∈[|Ck |]

dtr(xi
k, πP(Cj)

(xi
k)).

Example 5. Consider clusters C1 := {(0, 0, 0), (0, 2, 5), (0, 3, 1)} and C1 := {(0, 5.5, 3),
(0, 6, 4), (0, 7, 3.5). Figures 6–8 illustrate which points in C2 define the dissimilarity for each
of the dissimilarity measures we consider for tropical hierarchical clustering.

(0,0,0)

(0,2,5)

(0,3,1)

(0,7,3.5)

(0,5.5,3)

(0,6,4)

πC1
((0, 7, 3.5))

C1

C2

Figure 6. Tropical complete linkage for Example 4. The dotted line represents the projection of
(0, 7, 3.5) ∈ C2 onto C1 as calculated using Equation (3).
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Definition 10 (Tropical Single Linkage). For two clusters, Ck and Cj, a tropical single linkage is
determined by the xi

k ∈ Ck, such that dtr(xi
k, πP(Cj)

(xi
k)) is minimized. That is

min
i∈[|Ck |]

dtr(xi
k, πP(Cj)

(xi
k)).

(0,0,0)

(0,2,5)

(0,3,1)

(0,7,3.5)

(0,5.5,3)

(0,6,4)

πC1
(0, 5.5, 3)

C1

C2

Figure 7. Tropical single linkage for Example 4. The dotted line represents the projection of (0, 5.5, 3) ∈
C2 onto C1 as calculated using Equation (3).

Definition 11 (Tropical Average Linkage). For a given cluster Ck, the tropical average linkage
between Ck and a separate cluster Cj is given by taking the average of dtr(xi

k, πP(Cj)
(xi

k)) over all

xi
k ∈ Ck. Specifically,

1
|Ck|

|Ck |

∑
i=1

dtr(xi
k, πP(Cj)

(xi
k)).

(0,0,0)

(0,2,5)

(0,3,1)

(0,7,3.5)

(0,5.5,3)

(0,6,4)

πC1
(0, 5.5, 3)

πC1
(0, 7, 3.5)

πC1
(0, 6, 4)

C1

C2

Figure 8. Tropical average linkage for Example 4. The dotted lines represent the projections of each
vertex in C2 onto C1 as calculated using Equation (3). Note that we average the tropical distances to
determine the linkage between C2 and C1.

Table 2. Tropical dissimilarity measures.

Linkage Description

Complete Maximum pairwise tropical distance attained after computing the tropical distance
between each point in a cluster and its projection onto another cluster.

Single Minimum pairwise tropical distance attained after computing the tropical distance
between each point in a cluster and its projection onto another cluster.

Average Average pairwise tropical distance computed
between points in a cluster and their projections onto another cluster.
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Algorithm 4 provides the general algorithm associated with tropical hierarchi-
cal clustering.

Algorithm 4 Hierarchical clustering in the tropical projective space

Input: A matrix X representing data with rows as the N observations, where each xi ∈ X
is a point xi ∈ Re+1/R1, the columns are the e features, and |X| represents the number
of observations; tropical dissimilarity measure.
Output: Set of clusters C for each iteration.
Let each xi ∈ X represent a cluster.
for i = n,. . . ,2 do

Examine all pairwise inter-cluster dissimilarities.
Fuse the two clusters with the smallest inter-cluster dissimilarity.
Compute the pairwise inter-cluster dissimilarity of remaining i− 1 clusters.

end for
return C.

3.4. Cluster Analysis

In the experiments that follow in the next section, we will apply the tropical clustering
algorithms to simulated data that can be analyzed visually. However, in most cases,
the dimensions of the data are too large for us to visualize, so we must establish some
metrics to analyze the cluster results. Leveraging terminology from graph theory, in this
section, we provide metrics that we call tropical withiness and tropical betweenness.

Definition 12 (Average Tropical Withiness). Consider a cluster, Ck, generated from a tropical
clustering algorithm. Average tropical withiness, denoted as Wtr(Ck), is an indication of the
relationship of the data in Ck. Mathematically, we define it as

Wtr(Ck) =
1
|Ck| ∑

i∈|Ck |
∑

j∈|Ck |
j 6=i

dtr(xi, xj).

Definition 13 (Maximum Tropical Withiness). Consider a cluster, Ck, generated from a tropical
clustering algorithm. Maximum tropical withiness, denoted as Wmax

tr (Ck), is an indication of
outliers in a cluster. Mathematically, we define it as

Wmax
tr (Ck) = max

i,j∈|Ck |
i 6=j

dtr(xi, xj).

Definition 14 (Tropical Betweenness). Consider two clusters, Ck and Cj, generated from a
tropical clustering algorithm. Tropical betweenness, denoted as BWtr(Ck, Cj), is an indication of the
relationship between clusters Ck and Cj. Formally, tropical betweenness is defined as

BWtr(Ck, Cj) =
1
|Ck| ∑

i∈Ck

dtr(xi
k, πP(Cj)

(xi
k)).

Because tropical betweenness is measured in terms of the tropical distance from a
point in a cluster to its projection onto the tropical polytope defined by another cluster,
the betweenness measured from cluster Ck to cluster Cj will likely be different than the
betweenness measured from Cj to Ck. However, the values should be relatively close, so
we use the average of the two measures. That is,

BWavg
tr (Ck, Cj) =

1
2
(BWtr(Ck, Cj) + BWtr(Cj, Ck)).
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Neither tropical withiness nor betweenness alone provides sufficient information
describing the clusters or their relationships with each other. However, relating the two
can provide some information on the overall relationship between points in the cluster and
the clusters themselves. One such method is to take the ratio of withiness to betweenness,
denoted asR(Ck) and defined as

R(Ck) =
Wtr(Ck)

1
K−1 ∑

j∈K
j 6=k

BWavg
tr (Ck, Cj)

.

A large value of R(Ck) suggests that Ck is not very dense and the tropical distance
between Ck and Cj is small. Such a situation could indicate some overlap between sub-
groups of data points and difficulty identifying meaningful clusters. A small value of
R(Ck) may indicate that data points assigned to Ck are close in terms of tropical distance
relative to the distance of the cluster to Cj. In this situation, clusters may be separated with
little overlap in the data. In the section that follows, we will see examples of well-separated
data and overlapping data as well as the challenges that overlapping data pose to our
tropical clustering methods.

4. Computational Experiments

In this section, we conduct computational experiments using tropical k-means and
hierarchical clustering methods. In each case, we generate random points in R3/R1 using
a Markov Chain Monte Carlo (MCMC) hit-and-run (HAR) method that samples tropical
points from a tropical polytope by employing a Gaussian kernel. The sampler takes the
user-defined location and scale parameters, µ and σtr, respectively, [15]. The sampler
mimics a Gaussian HAR sampler in the Euclidean space with σtr controlling the dispersion
of points sampled at about µ, which serves as a centroid. In addition, we apply tropical
K-means clustering to the iris data set from the MVTests package version 2.1.1 in R.

For each of our clustering methods, we conduct two experiments on N = 150 sam-
pled points divided into three groups of 50 points. Each group is sampled using differ-
ent locations and scale parameters. In this first experiment, 50 points are sampled with
µ1 = (0,−10,−20) and σ1

tr = 5, 50 points are sampled using µ2 = (0, 20, 30) and σ2
tr = 8;

moreover, 50 points are sampled using µ3 = (0, 30, 10) and σ3
tr = 3. The obtained sample

represents a situation where there is separation between each of the groups that make up
the sample.

The second experiment samples N = 150 points as well. In this case, 50 points are
sampled using parameters µ1 = (0,−5,−5) and σ1

tr = 4; 50 points are sampled using
µ2 = (0, 5, 5) and σ2

tr = 4; and 50 points are sampled using µ3 = (0, 10, 0) and σ3
tr = 4.

There is significant overlap between the points, making it more difficult to distinguish
between groups.

4.1. Tropical K-Means Clustering

We begin by applying tropical K-means clustering to each of the two samples de-
scribed above.

4.1.1. Experiment 1

In this first experiment, we observe the simulated data in Figure 9. The data are
colored according to the parameter sets from which they emanated.
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Figure 9. Simulated observations color-coded by parameter sets µi and σi
tr for K-means clustering

experiment 1. Colors indicate membership to one of three clusters.

Applying Algorithm 2 to the input of the K = 3-pre-defined clusters, we observed
that the three original groups are defined and membership is almost perfectly assigned
according to the true assignment. Figure 10 shows the progression of Algorithm 2.
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Figure 10. K-means progression for experiment 1. The top left plot represents the starting cluster
assignment. The top right and bottom left represent the first and second iteration results. The bottom
right plot represents the final clustering assignment. The colors indicate membership in one of the
three pre-determined clusters and filled circles indicate the position of the centroid.

For this experiment, the algorithm took five iterations to finalize the cluster assignment.
Only five observations are incorrectly assigned. For the three clusters, we also calculate
R(Ck). The final assignment of clusters is shown in the bottom right plot in Figure 10.
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C1 is the cluster of black points with R(C1) = 0.618; C2 is the cluster of red points with
R(C2) = 0.463; and C3 is the cluster of green points withR(C3) = 0.310.

4.1.2. Experiment 2

This experiment highlights the challenge of identifying clusters where observations
overlap. Figure 11 shows the observations as sampled using the Gaussian-like MCMC
HAR sampler. There is a noticeable (intentional) overlap in the observations.
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Figure 11. Simulated observations color-coded by parameter sets µi and σi
tr for K-means clustering

experiment 2. Colors indicate membership to one of three clusters.

The results from this experiment are shown in Figure 12, which shows the progression
of cluster assignments for the observations. The top left pane shows the starting assignment
with the top right and bottom left plots showing the first and second iterations, respectively.
The final assignment is shown in the bottom right plot. It took six iterations to finalize the
cluster assignment.
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Figure 12. Cont.
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Figure 12. K-means progression for experiment 2. The top left plot represents the starting cluster
assignment. The top right and bottom left represent the first and second iteration results. The bottom
right plot represents the final clustering assignment. The colors indicate membership in one of the
three pre-determined clusters and filled circles indicate the position of the centroid.

Algorithm 2 identifies the three clusters in their relative positions to each other; it has
a higher incorrect assignment rate. In total, 19 of the 150 observations were assigned to the
incorrect cluster. This is somewhat expected since there is significant overlap amongst the
observations. For the three clusters, we calculateR(Ck). Referencing the bottom right plot
in Figure 12, C1 is the set of green points withR(C1) = 1.068; C2 is the group of red points
withR(C2) = 0.826; the last group of black points, C3, hasR(C3) = 0.95. These values are
noticeably, though not surprisingly, higher than the results in experiment 1. The clusters
lie adjacent to each other, resulting in a small betweenness value. Also, the points in each
cluster are not tightly concentrated around their respective calculated centroids.

4.1.3. Iris Dataset

In this section, we apply tropical K-means clustering to the iris dataset from the
MVTests package in R. The data consist of 150 observations on four features. In these data,
there is a multinomial response variable, where each observation is classified as one of
three species of the iris flower. For each species, the observation numbers classified by
species type are s1 = s2 = s3 = 50. In this experiment, we remove the response variable
and see how well our tropical K-means clustering method correctly clusters data compared
to the Euclidean K-means clustering method. For both methods, we scale the data before
applying the clustering method. The results are shown in Table 3 with si representing the
actual counts of each species and ŝi representing the counts of each type in each cluster.

Table 3. Results for tropical K-means clustering (left) and classical K-means clustering (right) of the
iris data.

Tropical K-Means K-Means

s1 s2 s3 s1 s2 s3

ŝ1 49 0 0 ŝ1 50 0 0

ŝ2 1 38 9 ŝ2 0 39 14

ŝ3 0 12 41 ŝ3 0 11 36

In both cases, we scale the data prior to applying the clustering method and we achieve
similar results. Tropical k-means clustering provides slightly better results in this case, with
a correct cluster assignment rate of 0.8533 versus a correct cluster assignment rate of 0.8333.
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4.2. Tropical Hierarchical Clustering

Now, we turn our attention to tropical hierarchical clustering described in Algorithm 4.
We apply Algorithm 4 to similar observations as those used for tropical K-means clustering.

The goal of this experiment is to determine how well Algorithm 4 correctly determines
the clusters using the different linkages. As is clear from Algorithm 4, there will be N
iterations in the algorithm until all points are members of a single cluster. Since we know
that there are three groupings of sampled points associated with different scales and
location parameters, the goal would be to see three clusters with correct membership, no
later than iteration 148.

4.2.1. Experiment 1

In this first experiment, we sample N = 150 points using the Gaussian-like tropical
HAR sampler, where we sample N = 150 points using the Gaussian-like tropical HAR
sampler. In this experiment, 50 points are sampled with µ1 = (0,−10,−20) and σ1

tr = 5,
50 points are sampled using µ2 = (0, 20, 30) and σ2

tr = 8, and 50 points are sampled using
µ3 = (0, 30, 10) and σ3

tr = 3. We then apply Algorithm 4 using each of the dissimilarity
measures defined in the previous section. Figure 13 shows the sampled points differentiated
by color. We see that the groups of the sampled are visually separable. We then apply
Algorithm 4 using each of the dissimilarity measures defined in the previous sections.
Figure 13 shows the sampled points differentiated by color. We see that the groups of
samples are visually separable.
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Figure 13. Simulated observations color-coded by the parameter set µi and σi
tr for experiment 1.

Colors indicate membership to one of three clusters.

Figure 14 shows the results using tropical average (top left), tropical complete (top
right), and tropical single (bottom) linkages.
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Figure 14. Results using tropical hierarchical clustering on 150 sampled points sampled using a
Gaussian-like MCMC HAR. Each plot represents clusters determined by tropical average (top left),
tropical complete (top right), and tropical single (bottom) linkages. Colors indicate membership to
one of three clusters.

The tropical complete linkage provided the best results, perfectly assigning all points
to clusters associated with their locations and scale parameters. For each of the three
clusters defined using the complete linkage, we also calculatedR(Ck). In this case, C1 is
the cluster of blue points, C2 is the cluster of magenta points, and C3 is the cluster of yellow
points. For each cluster, we haveR(C1) = 0.453,R(C2) = 0.626, andR(C3) = 0.287.

4.2.2. Experiment 2

Now, we want to observe how well Algorithm 4 identifies clusters, where there is
overlap amongst sampled points. Figure 15 shows the sampled points differentiated
by color.
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Figure 15. Simulated observations color-coded by parameter sets µi and σi
tr for experiment 2. Colors

indicate membership to one of three clusters.

Because the groupings overlap, it is difficult for the algorithm to discern between
different clusters. Regardless of which dissimilarity measure is used, clustering results
lead to one very large cluster and two small clusters, consisting of only a handful of points.
Figure 16 shows the result for each linkage.
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Figure 16. Results using tropical hierarchical clustering on 150 sampled points using a Gaussian-
like MCMC HAR. Each plot represents clusters determined by tropical average (top left), tropical
complete (top right), and tropical single (bottom) linkages. Colors indicate membership to one of
three clusters.

In terms of hierarchical clustering, the complete linkage seems to outperform the
others; however, for experiment 2, all linkage methods performed poorly. With that in
mind, we forego calculating associated clustering metrics.

Between the two clustering methods, tropical K-means performed better in terms of
identifying and correctly assigning observations to the correct cluster. However, as we
will see in the following sections, K-means clustering is not always a viable option for the
given data.

5. Applications to Phylogenetic Trees

A phylogenetic tree is a tree representation of evolutionary history among given
species. In this paper, we focus on equidistant tree, which is a rooted phylogenetic tree
whose distance from its root to each leaf is the same for all leaves. Equidistant trees can
be viewed as inferred phylogenetic trees in terms of the molecular clock. When inferring
the species tree, which is a phylogenetic tree of a given set of species, from gene trees (the
phylogenetic trees inferred from each gene) under the multi-species coalescent model, we
assume that all phylogenetic trees in the input sample are equidistant trees [16].

Phylogenomics is a new field that applies tools from phylogenetics to genome data.
In phylogenomics, we conduct statistical analyses on a sample of gene trees over the space
of phylogenetic trees, which is a set of all possible phylogenetic trees with a given set of
labels of leaves, i.e., species. However, the space of phylogenetic trees is not Euclidean and
it is a union of lower dimensional polyhedral cones with co-dimension (m

2 )− (m− 1) over
R(m

2 ), where m is the number of leaves [17–19]. Therefore, if we apply classical statistical
methods to a sample of phylogenetic trees, the results from such methods might lead to
misleading conclusions.
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In 2006, Ardila and Klivans showed that the space of equidistant trees is a tropical
linear space. Therefore, if we apply the tropical metric, we can use tropical linear algebra to
conduct statistical analyses over the space of equidistant trees. For example, Yoshida et al.
applied the tropical metric to the principal component analysis over the space of equidistant
trees [9].

In this section, we apply hierarchical clustering of the space of phylogenetic trees on m
leaves. We specifically focus on hierarchical clustering because obtaining a Fermat–Weber
point, as is required in tropically K-means clustering, may not be in the space of equidistant
trees [13]. In the sections that follow, we will review the definition of ultrametrics and its
relation to the space of phylogenetic trees. Then, we will use hierarchical clustering to
identify varying tree topologies over the ultrametric space Um.

5.1. Basics of Ultrametrics

Let [m] := {1, . . . , m}. Suppose a map u : [m]× [m] → R is a metric over [m]. This
means that u has to satisfy the following conditions:

Symmetry: u(i, j) = u(j, i) for all i, j ∈ [m]

Identity: u(i, j) = 0 if and only if i = j

Triangle Inequality: u(i, j) ≤ u(i, k) + u(j, k) for all i, j, k ∈ [m].

Suppose u is a metric on [m]. Then, if u satisfies the following condition, which is a
stronger condition on the triangle inequality:

max{u(i, j), u(i, k), u(j, k)} is achieved at least twice,

then, we call u an ultrametric.

Example 6. Suppose m = 3. Then, a metric u on [3], such that

u(1, 2) = 2, u(1, 3) = 2, u(2, 3) = 1,

is an ultrametric.

A phylogenetic tree is a weighted tree whose internal nodes do not have labels and
whose external nodes, i.e., leaves, have labels. We consider a rooted phylogenetic tree with
a given leaf label set [m].

Definition 15. Suppose we have a rooted phylogenetic tree T with a leaf label set [m]. If the total
branch length in a unique path from its root to each leaf i ∈ [m] is the same for all i ∈ [m], then we
call T an equidistant tree.

In order to conduct any statistical analysis related to phylogenetic trees, we must map
a phylogenetic tree with [m] to a vector representation. One way to map a phylogenetic
tree to a vector is to map it to a dissimilarity map. This leads to the two following definitions.

Definition 16 (From [20]). A dissimilarity map d is a function d : [m]× [m]→ R≥0, such that
d(i, i) = 0 and d(i, j) = d(j, i) ≥ 0 for each pair i, j ∈ [m].

We can represent a dissimilarity map d by an m×m matrix D whose (i, j)th entry is
d(i, j). Because D is symmetric and all diagonal entries are zeros, we can regard d as a
vector, where d ∈ R(m

2 ).

Definition 17 (From [20]). Let T be a phylogenetic tree with m leaves labeled with the elements of
[m]. Assign a length `r ∈ R≥0 to each edge r ∈ T. Define d : [m]× [m]→ R≥0, such that d(i, j)
is the total length of the unique path from leaf i to leaf j. We call a function d obtained in this way a
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tree distance. Further, if each entry of the distance matrix D is non-negative, then d is a metric. We
call such a tree distance a tree metric. This allows us to embed D into Re, where e = (m

2 ).

In phylogenetics, we consider dissimilarity maps over the product of a leaf set [m],
where d(i, j) is the pairwise distance between a leaf i ∈ [m] to leaf j ∈ [m]. The vector of all
possible pairwise distances in T between any two leaves in [m] provides a representation
of a phylogenetic tree T with leaf label set [m]. This leads to the following theorem.

Theorem 1 ([21]). Suppose we have an equidistant tree T with a leaf label set [m] and suppose
u(i, j) for all i, j ∈ [m] is a distance from leaf i to leaf j. Then, u is an ultrametric if and only if T is
an equidistant tree.

Using Theorem 1, if we consider the spaces of all possible equidistant trees, then we can
consider the ultrametric space over [m], Um, as the space of phylogenetic trees on [m].

5.2. Hierarchical Clustering over the Space of Ultrametrics

In this section, we apply tropical hierarchical clustering methods to the space of
phylogenetic trees over m leaves, represented as the ultrametric space, Um. The reason
we focus on tropical hierarchical clustering (as opposed to tropical K-means clustering) is
simple: tropical K-means clustering defined in Algorithm 2 requires computing Fermat–
Weber points, but the resulting points may not be ultrametrics, potentially leading us to
false conclusions [13]. Tropical hierarchical clustering requires no such calculation. In a
case of ultrametrics, we use the DIvisie ANAlysis (DIANA) clustering algorithm [22] with
tropical distances (metrics) between all pairs of ultrametrics in a given sample.

We generate equidistant trees from the multi-species coalescent model with a given
species tree using Mesquite [23]. Under the multi-species coalescent model, there are two
parameters: species depth (SD) and effective population size Ne. We fix Ne = 10,000 and we
vary SD by the ratio R, such that

R =
SD
Ne

.

For each R = 0.25, 0.5, 1, 2, 5, 10, we generate two independent samples. For each
sample, we generate a sample of 1000 gene trees from a multi-species coalescent model
with a fixed species tree. These two independent samples for a fixed R have different
species of trees. Note that it is well-known that the smaller the R, the harder to classify two
different multi-species coalescent models (for example, [24]).

In this computational experiment, we fix m = 10, which means e = 45. We sample
random 20 trees from each sample and we repeat 100 times to estimate the accuracy rates
for clustering by different distributions. In Figure 17, we plot the averages of accuracy rates
from 100 repeats for each ratio R. We also compare the accuracy rates against DIANA with
the Euclidean metric (l2 norm).

Figure 17. The plots of estimated accuracy rates. We repeat 100 times for each R and the plot shows
the averages of accuracy rates from 100 repeats. The red line is for the accuracy rate of DIANA with
the tropical metric and the blue line is for the accuracy rate of DIANA with the Euclidean metric.
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6. Conclusions

In this paper, we introduced two tropical clustering tools used for tropical unsu-
pervised machine learning. Tropical K-means clustering is the analog of the Euclidean
K-means clustering method. Instead of a Euclidean distance, we incorporate the tropical
metric, and centroids are calculated by finding the tropical Fermat–Weber points for each
cluster instead of using feature means. Tropical hierarchical clustering mimics Euclidean
hierarchical clustering by using dissimilarity measures to progressively fuse clusters to-
gether at each iteration of Algorithm 4. Instead of computing dissimilarities using pairwise
distances between points in one cluster with points in another, we calculate the distance
between a point in one cluster and its projection onto the tropical polytope, defined by the
points in another cluster. In each case, cluster analysis metrics are introduced to understand
how well-separated clusters are as well as the relationship between points in each cluster.

Computational experiments showed that both methods can be effective, as long as
clusters are well-separated. Tropical K-means clustering provided promising results regard-
less of the overlap of data; however, because of some tropically convex data, such as data
defined as ultrametrics, a Fermat–Weber point will not necessarily be ultrametric, making
this technique potentially ineffectual in such a case. In tropical hierarchical clustering,
the tropical complete linkage provided the best overall cluster assignment. Further, in ana-
lyzing the space of equidistant trees on m leaves, it performed well if we used DIANA on
the tropical metric as the distance measure on trees for computing all pairwise distances
between trees in a given sample.
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