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Abstract: The widespread dissemination of rumors (fake information) on online social media has had
a detrimental impact on public opinion and the social environment. This necessitates the urgent need
for efficient rumor detection methods. In recent years, deep learning techniques, including graph
neural networks (GNNs) and recurrent neural networks (RNNs), have been employed to capture the
spatiotemporal features of rumors. However, existing research has largely overlooked the limitations
of traditional GNNs based on message-passing frameworks when dealing with rumor propagation
graphs. In fact, due to the issues of excessive smoothing and gradient vanishing, traditional GNNs
struggle to capture the interactive information among high-order neighbors when handling deep
graphs, such as those in rumor propagation scenarios. Furthermore, previous methods used for
learning the temporal features of rumors, whether based on dynamic graphs or time series, have
overlooked the importance of differential temporal information. To address the aforementioned
issues, this paper proposes a rumor detection model based on multi-hop graphs and differential time
series. Specifically, this model consists of two components: the structural feature extraction module
and the temporal feature extraction module. The former utilizes a multi-hop graph and the enhanced
message passing framework to learn the high-order structural features of rumor propagation graphs.
The latter explicitly models the differential time series to learn the temporal features of rumors.
Extensive experiments conducted on multiple real-world datasets demonstrate that our proposed
model outperforms the previous state-of-the-art methods.
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1. Introduction

Since the advent of the Internet era, online social networks have become an indispens-
able part of our lives. Platforms such as Twitter, Facebook, and Sina Weibo, which focus on
social networking or possess social networking attributes, have become primary channels
for people to access and share information on a daily basis. However, the exponential
growth of content on social media platforms has been accompanied by a proliferation of
rumors (fake information), which has had a detrimental impact on the online social envi-
ronment [1]. The widespread dissemination of rumors distorts facts, leading individuals
toward erroneous positions and thereby undermining the public opinion within social
networks and posing a serious threat to society [2].

Detection methods and intervention strategies for rumors on social networking plat-
forms have received considerable attention. Facebook encourages users to actively flag
suspicious information, while Sina Weibo has established a dedicated Weibo Community
Management Center to handle user reports of fake information. However, these existing
approaches rely solely on manual verification which, although typically accurate, is limited
in effectiveness due to the complexity of the identification process and the constraints of hu-
man resources in practical application. Consequently, an increasing number of researchers

Mathematics 2023, 11, 3461. https://doi.org/10.3390/math11163461 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11163461
https://doi.org/10.3390/math11163461
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0009-0001-9646-6168
https://orcid.org/0000-0002-8249-0183
https://doi.org/10.3390/math11163461
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11163461?type=check_update&version=2


Mathematics 2023, 11, 3461 2 of 22

have been dedicating efforts to developing algorithms for detecting rumors, with the aim
of automatically identifying rumors on the internet and addressing the challenges posed
by the overwhelming volume of rumors that surpass the capacity of manual verification.

Early automatic rumor detection methods primarily relied on traditional machine
learning. Researchers utilized feature engineering to model information from various
dimensions of rumor events, followed by supervised training of classifiers to classify
rumors and non-rumors. For instance, the authors of [3] employed decision trees, those
for [4] utilized random forests, and the authors of [5,6] employed support vector machines
(SVMs). These methods demonstrated certain rumor detection capabilities but heavily
depended on feature engineering, thus exhibiting noticeable limitations. In recent years,
however, deep neural networks (DNNs) have gained popularity, eliminating the need for
intricate feature engineering. By training on raw data alone, DNNs can achieve optimal
performance, making them widely applicable in the field of rumor detection. For instance,
the authors of [7] employed recurrent neural networks (RNNs) to learn the textual content of
rumors, while those for [8] utilized convolutional neural networks (CNNs) to extract textual
information. Furthermore, with the development of graph neural networks (GNNs) and
RNNs, effective modeling of the spatiotemporal features of rumors has become feasible. For
instance, the authors of [9] used a tree-structured recursive neural network for propagation
feature extraction, and those for [10,11] employed graph convolutional neural networks
(GCNs) for structural feature extraction. The authors of [12] captured text and propagation
features using a graph encoder and decoder model, and those for [13] utilized gated
recurrent units (GRUs) to extract a rumor’s temporal and propagation features. These
methods have demonstrated excellent performance in rumor detection tasks.

Despite the effective progress made in previous work, several issues still remain. First,
existing methods primarily utilize GNNs based on message-passing frameworks to learn
the structural features of rumors. However, the propagation of rumors follows a tree struc-
ture that unfolds based on time and interaction relationships, with the information source
serving as the root node. The connectivity within rumor propagation graphs is relatively
simple, but the depth exceeds that of typical graphs. Figure 1 illustrates the distinction
between typical graphs and rumor propagation graphs. The characteristics of rumor propa-
gation graphs pose limitations on the application of existing GNN frameworks for rumor
detection tasks. Specifically, when faced with deeper node relationships, traditional GNNs
can only aggregate information from high-order neighboring nodes by stacking multiple
layers. However, this approach leads to issues such as oversmoothing of node features and
gradient vanishing, resulting in performance degradation of the network [14,15]. Therefore,
a challenge lies in how to better extract the interaction relationships among multi-hop
neighbors within rumor propagation graphs.

Furthermore, the current approaches for extracting the temporal features of rumors,
whether based on dynamic graphs [16–19] or time series [20,21], only focus on learning
features at the level of the original semantic information. However, some studies have indi-
cated that word embeddings, which are used to represent semantic information, possess
certain distinctive properties. By analyzing arithmetic operations on word embeddings,
the authors of [22] discovered that certain word embedding models can encode linguis-
tic relational patterns. Moreover, the authors of [23–25] conducted case studies on the
meanings of individual neurons in word embeddings and found systematic distributions
of different linguistic attributes within the embeddings. This allows us to consider word
embeddings as relatively stable signals and obtain their changing information through
differential operation. The advantage of modeling differential time series explicitly is that
rumor features can be extracted from a perspective that varies in time series.

To effectively capture the spatiotemporal features of rumors and achieve better de-
tection performance, this paper proposes a novel self-connected multi-hop graph neural
network and differential temporal perception (SMGaDTP) model. The model consists of
two main components: the self-connected multi-hop graph attention network (SC-MGAT)
module based on multi-hop graphs and the differential temporal perception (DTP) module
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based on differential time series. The former is utilized to capture the structural fea-
tures of rumors during their propagation, while the latter focuses on extracting features
from the temporal aspects of rumors. Additionally, data augmentation techniques such
as DropEdge [26] and TemporalDrop are applied to the SC-MGAT and DTP modules,
respectively. The main contributions of our work can be summarized as follows:

• This paper proposes a novel SMGaDTP model for rumor detection tasks. Compared
with previous works, this model has the capability to simultaneously learn both the
deep structural features and temporal features of rumors.

• The SC-MGAT is proposed in this paper, which builds upon the multi-hop graph
and incorporates an enhanced message-passing framework to aggregate extensive
neighborhood information. Additionally, a self-connected readout mechanism is
introduced to achieve hierarchical extraction of global information.

• DTP is proposed in this paper, which models events from the perspective of differential
time series to characterize the temporal variations of events. Based on this, a novel
local window attention mechanism and GRU are employed to learn temporal features.

• Extensive experiments on real-world datasets demonstrate that the proposed methods
outperform the previous state-of-the-art approaches. Further experiments also indicate
that the SC-MGAT exhibits a significant improvement over traditional GNNs in
addressing the oversmoothing problem.

The outline of this paper is as follows. Section 2 presents an overview of the relevant
previous work. Section 3 provides a formalized description of the proposed problem.
Section 4 provides a comprehensive introduction to the proposed model. Section 5 conducts
extensive experiments to analyze the effectiveness of the model. Section 6 summarizes the
findings and discusses the limitations of this paper.

(a) (b)
Figure 1. (a) A sample from the real-world Weibo dataset representing the propagation process
of a specific rumor event. (b) A sample from the Les Misérables Co-Occurrence Network dataset,
constructed based on Victor Hugo’s novel Les Misérables, representing the network graph of character
relationships. Rumor propagation graphs often exhibit a significant distance from the root node to
the leaf nodes, while typical graphs lack a discernible root node, with all nodes maintaining a high
level of connectivity.

2. Related Work

Currently, numerous scholars have proposed various methods for rumor detection
tasks employing different feature types and architectures. The main features used include
text, visuals, user profiles, statistics, structures, and time sequences. The primary architec-
tures encompass traditional machine learning, CNNs, RNNs, GNNs, and dynamic graph
neural networks (DGNNs). In this section, we will primarily focus on reviewing existing
work that utilizes text and propagation features. Table 1 shows a summary of the previous
work and points out the issues that this paper aims to overcome.
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Table 1. Summary of previous work.

Foundation Method Limitation

Machine learning [3,27,28] Only shallow features can be expressed
Text-based [7,8,29–37] Lack of propagation features
RNN-based [9,13,20,21,38] Weaker ability to model structural features
GNN-based [11,39–42] Lack of temporal and deep structural features

DGNN-based [16–19] Lack of deep structural features

2.1. Text-Based Rumor Detection

Text is the core feature of rumors. In the era of traditional machine learning, researchers
primarily relied on a series of feature engineering techniques to extract information such
as lexical features, symbolic features, and sentiment features from text. For instance, the
authors of [3] subdivided text features into string length, presence of emoticons, and per-
sonal pronouns. The authors of [27] incorporated the word distribution ratios of rumor
and non-rumor information as text features. The authors of [28] included features such
as tags, links, and questions present in the text. However, these methods only utilized
shallow information and had limited generalization capabilities. Subsequent deep learning
algorithms overcame the limitations of traditional machine learning and enabled modeling
of deep semantic information. The authors of [7] used RNNs to capture long-range depen-
dencies in text. The authors of [8] employed CNNs to extract deep features from text. The
authors of [29] introduced a word-sentence-document structure to extract hierarchical text
features while preserving the text’s structural hierarchy. Attention mechanisms automati-
cally capture the dependencies between words, giving them a significant advantage over
CNNs or RNNs in modeling text content. Consequently, attention mechanisms have been
employed to model tweet information in rumors by researchers, such as those in [30,31].
Building upon this, some scholars [32,33] recognized that different domains have distinct
linguistic expression forms and incorporated domain-specific terminologies into text fea-
tures. Additionally, other researchers [34–37] noted the presence of emotional and thematic
information in rumor events and extracted features such as sentiment and topics from text
for rumor detection tasks.

2.2. Propagation-Based Rumor Detection

In order to effectively capture the multidimensional features of rumors and achieve
better detection performance, recent works have focused on exploring the differences
between rumors and non-rumors in the propagation process. They have modeled events
from the perspective of propagation, including structural and temporal aspects, to achieve
more accurate identification. The authors of [38] modeled rumor propagation as a prop-
agation tree and employed kernel learning to extract features from the propagation tree.
Similarly, the authors of [9] modeled rumor propagation as a tree and used recursive units
to learn propagation features in a top-down and bottom-up manner. The authors of [13]
considered the influence of temporal relationships based on the tree structure and pro-
posed a deep spatiotemporal network to simultaneously learn the structural and temporal
features of rumors. The authors of [20] combined an RNN with attention mechanisms to
capture the contextual changes of semantic information over time in events. The authors
of [21] modeled rumors as dynamic time series over time and used GRU units to learn
temporal information.

Apart from using RNN architectures to extract propagation features, another main-
stream approach is to model events as graphs and utilize graph neural networks under
the message-passing framework to learn the propagation features of rumors. For instance,
the authors of [39] proposed a GNN-based semi-supervised method for fake news detec-
tion. the authors of [11] employed a bidirectional graph convolutional network to learn the
propagation and aggregation structures of rumors and included a root node enhancement
mechanism in each GCN layer to strengthen the influence of the rumor source on the
entire rumor event. The authors of [43] proposed source identification based on graph
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convolutional networks, using spectral domain convolution to obtain the multi-hop neigh-
bor information of nodes and locate multiple rumor sources without prior knowledge
of the underlying propagation model. In addition to the aforementioned methods based
on homogeneous graphs, the authors of [40] modeled the global relationships among all
source tweets, retweets, and users as a heterogeneous graph to capture richer structural
information. The authors of [41] constructed a word-user heterogeneous graph based on
the textual content of rumors and the propagation of source tweets, and they proposed
a heterogeneous graph attention network framework based on metapaths to capture the
global semantic relationships of text content and global structural information of source
tweet propagation. The authors of [42] introduced the concept of a joint graph to integrate
the propagation structure of all tweets and mitigate sparsity issues, and they utilized
network embeddings to learn the representations of nodes in the joint graph.

Considering that static graph structures cannot model the temporal features of rumor
propagation, recent research has extended events to dynamic graph structures. The authors
of [16] represented rumor posts and their response posts as discrete dynamic graphs and
used graph snapshot representation learning with attention mechanisms to capture the
structural and temporal information of rumor propagation. The authors of [17] introduced
a novel framework for fake news detection based on temporal propagation, modeling
the temporal evolution patterns of real-world news as graph evolution patterns under
continuous time dynamic diffusion network settings. The authors of [18] modeled each
news propagation graph as a series of graph snapshots recorded at discrete time steps
and used GCN and attention mechanisms to extract temporal information. The authors
of [19] proposed a dual dynamic graph convolutional network that models the dynamic
information in message propagation and the dynamic information in the knowledge graph
background, learning the two types of structural information in a unified framework.

3. Problem Statement

The propagation of an event in the social network space can be viewed as a set of
interacting temporal signals. Therefore, it can be represented by an undirected graph with
temporal relationships, denoted as T = (V(t), E(t)), where V(t) = {v(t1)

1 , v(t2)
2 , ..., v(tn)

n }
and E(t) = {e(t1)

1 , e(t2)
2 , ..., e(tm)

m }. Here, n represents the number of nodes (i.e., the number
of tweets in an event), and m represents the number of edges (i.e., the number of interaction
relationships in an event). Each node v(ti)

i ∈ V(t), i ∈ [1, n] represents a tweet vi published

at time ti, and each edge e
(tj)

j ∈ E(t), j ∈ [1, m] represents a response relationship between
a tweet vj that appeared at time tj and a previous tweet vp, p ∈ [1, j− 1]. It is important to
note that the response relationship is undirected, and the nodes and edges are sequences
with a temporal order. For each tweet v(ti)

i in the graph, its initial feature representation
can be denoted as hi, which is obtained through processing the information of the original
tweet, thereby forming a set of node features H = {h1, h2, ..., hn}, where hi ∈ Rd and d
represents the dimensionality of the node embeddings. As for the set of edges in the graph,
this is represented by the adjacency matrix A = (aij)n×n, where

aij =

{
1, i f eij ∈ E(t)
0, otherwise

(1)

The task of rumor detection aims to accurately identify which information in a series
of events is a rumor and which is not. For a rumor detection dataset, it can be represented
as C = {c1, c2, ..., cN}, where ci represents a specific event in C, N denotes the total number
of events in the dataset, and ci = (Ti, ŷi), Ti is the temporal propagation graph of ci, while
ŷi ∈ {0, 1} represents the label of ci (where zero indicates a non-rumor and one indicates a
rumor). The objective of this study is to learn a mapping function F from the dataset C
such that, given the propagation graph Ti of any other event, we can use F to track the
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interactions in Ti and obtain its predicted label ŷi, enabling accurate classification of the
event. In other words, the objective is to achieve F (Ti)→ ŷi.

4. Model
4.1. Model Framework

This section provides a brief introduction to the proposed model, and the overall
framework of the model is illustrated in Figure 2. The input of the model is a representation
of a specific event in the form of a rumor propagation temporal graph T , where each node
corresponds to a tweet and each edge represents the replying relationship between tweets.
The output of the model is the probability that the event is a rumor.

Figure 2. Model framework.

For an input T , we consider two components: the adjacency matrix and the node set.
Regarding the adjacency matrix, it is initially decomposed into two directed adjacency
matrices representing the paths of propagation and diffusion:

(
↼
A,

⇀
A) = ToDirect(A), (2)

where ToDirect(·) denotes the decomposition of an undirected adjacency matrix into two

distinct directed adjacency matrices and
↼
A and

⇀
A are the upper triangular and lower trian-

gular matrices, respectively. Subsequently, matrix exponentiation is applied to compute N
multi-hop adjacency matrices, each containing neighbors at varying distances:

A(k) =
↼
A

k
+

⇀
A

k
, (3)

Ak = Filter(A(k) = 1), (4)

where Filter(· = 1) signifies the preservation of elements in the matrix that are equal
to one, Ak represents the adjacency matrix that exclusively contains k-hop neighbors,
A = {A1, A2, ..., AN} denotes the collection of multi-hop adjacency matrices, and N repre-
sents the number of samples taken. As for the node set, the corresponding initial embed-
dingsH = {h1, h2, ..., hn} are obtained through an embedding layer, which incorporates
information such as the text, timestamp, and structural characteristics of each node.

After obtaining the node embeddings and multi-hop adjacency matrices, we proceed
to learn the features of the rumor in terms of both the structural and temporal aspects.
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Specifically, the initial node embeddings H and the collection of multi-hop adjacency
matrices A are fed into the SC-MGAT module for in-depth structural feature learning.
On the other hand, the node embeddingsH are sorted in ascending order based on their
timestamps:

Sorted(H)→ S̄ , (5)

and the resulting time series S̄ = {s1, s2, ..., sn} is then fed into the DTP module for
temporal feature learning. Finally, the structural feature and temporal feature are combined
and fed into a classifier composed of linear layers, yielding the ultimate classification result.

4.2. Embedding Layer

The embedding layer is designed to create original feature representations for each
input graph. For an input graph T with n nodes, each node vi in the graph considers
three aspects of information—tweet text, timestamp, and structure—and encodes them
separately. Specifically, for the textual content, pretrained word embeddings are utilized to
obtain robust text feature representations:

WordEmbed(v1
word, v2

word, ..., vn
word)→ Hword, (6)

where Hword = [w1, w2, ..., wn], wi ∈ Rw represents the word embedding, and w is the
dimension of embedding. Regarding the timestamp, it is decomposed and encoded to
extract information such as the year, month, day, hour, minute, and second:

TimeEmbed(v1
time, v2

time, ..., vn
time)→ Htime, (7)

where Htime = [t1, t2, ..., tn], ti ∈ Rt represents the time embedding and t is the dimension
of embedding.

Most existing works have not taken into account encoding the structural information
of nodes. However, previous research [44] has demonstrated that the expressive power
of the classical GNN is limited by the 1-Weisfeiler-Lehman (1-WL) graph isomorphism
test. Furthermore, the authors of [45] highlighted the importance of structural information
for graph classification tasks. Encoding structural features for nodes can alleviate these
limitations. Additionally, in the propagation process of rumor events, the local neighbor-
hood structure of nodes reflects rich social information and can, to some extent, indicate the
influence of nodes throughout the entire event. Therefore, drawing inspiration from [45,46],
structural information encoding can be employed for nodes in graph T :

Hneigh = [A1 · 1, A2 · 1, A3 · 1, ..., Aq · 1]T , (8)

Hidentity = [diag(A1), diag(A2), diag(A3), ..., diag(Aq)]T , (9)

Hstruct = Concat(Hneigh, Hidentity), (10)

where A ∈ Rn×n represents the adjacency matrix of the graph T , 1 ∈ Rn represents a vector
of ones, diag(·) refers to a vector containing the diagonal elements of a matrix, q represents
the number of recursive encodings, Hstruct = [u1, u2, ..., un], and ui ∈ Rq represents the
structural embedding.

Finally, the textual, temporal, and structural embeddings are concatenated to obtain
the initial embedding for each node:

H = Concat(Hword, Htime, Hstruct), (11)

where H = [h1, h2, ..., hn], hi ∈ Rd represents the node embedding and d = w + t + q is the
dimension of embedding.
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4.3. Self Connected Multi-Hop Graph Attention Network (SC-MGAT)

A few researchers have noticed the issue of high-order neighbor message passing in
GNNs. Inspired by the deep residual network (ResNet) [47], researchers such as those
in [15] have employed residual connections to alleviate the problems of gradient vanish-
ing and oversmoothing. However, they are not efficient in aggregating information from
multiple hops of neighboring nodes. Another approach proposed in [48] involves concate-
nating features from multiple hops of neighbors and aggregating them using attention
mechanisms. However, this approach simplifies the hierarchical structure of aggregating
multi-hop neighbors. Therefore, building upon previous works, the self-connected multi-
hop graph attention network (SC-MGAT) is proposed, which consists of two components:
the multi-hop graph attention network (Multi-hop GAT) and the self-connected aggregation
(SCA). Figure 3 illustrates the workflow of the SC-MGAT.

Figure 3. The workflow of the SC-MGAT (taking the example of ζ(l) = l).

4.3.1. Multi-Hop Graph Attention Network (Multi-Hop GAT)

The Multi-hop GAT builds upon and improves the traditional message-passing
paradigm. Specifically, for a given graph G = (V , E), the input consists of a set of node
representations

{
hi ∈ Rd | i ∈ V

}
and the corresponding edges E . The output is a new set

of node representations
{

h′i ∈ Rd′ | i ∈ V
}

. The nodes are updated using the following
function:

h(l)
v = φ

(
h(l−1)

v , f
({

h(l−1)
u |u ∈ N (k)(v)

}))
, (12)

This differs from the approach presented in [44], where N (k) represents the k-hop
neighbors of node v, indicating that during the lth layer of message passing, the k-hop
neighbors’ features from the l− 1 layer are utilized. The function f denotes the aggregation
function, while φ represents the update function and

k = ζ(l), ζ : Z ≥ 1→ Z ≥ 1, (13)

where Z ≥ 1 refers to the set of positive integers. For a general GNN, ζ(l) ≡ 1, indicating
the continuous use of one-hop neighbors message passing. By selecting different mapping
functions ζ, various receptive fields for message passing can be achieved, thus enabling
efficient aggregation of global graph information.

Inspired by [49,50], the aggregation and update process of neighbor nodes in this
paper is as follows. First, for any node i and its k-hop neighbor j, the scoring function ϑ
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is used to compute the edge score between the two nodes. The edge score represents the
importance of neighbor j to node i:

ϑ(hi, hj) = aTLeakyReLU
(
W1hi + W1hj

)
, (14)

where a ∈ Rd′ and W1 ∈ Rd′×d are trainable parameters. After obtaining the edge scores
for all neighbors j ∈ N (i), a softmax function is applied to normalize the edge scores.
Finally, the node i obtains its new representation h′i through weighted aggregation of the
edge scores:

∂ij = softmaxj(ϑ(hi, hj)) =
exp(ϑ(hi, hj))

∑j′∈N (i) exp(ϑ(hi, hj′))
, (15)

h′i = σ
(
∑j∈N(i) ∂ij · σ

(
W2 · [W1hi ‖ W1hj]

))
, (16)

where W2 ∈ Rd′×2d′ is a trainable parameter and σ denotes a nonlinear activation function.
Through the aforementioned calculations, the new node feature set after aggregation can
be obtained, denoted asH = {h1, h2, ..., hn} → H′ = {h′1, h′2, ..., h′n}.

4.3.2. Self-Connected Aggregation (SCA)

For graph-level classification tasks, after updating the features of the graph using a
GNN, it is typically necessary to perform a readout operation to extract information that
represents the entire graph:

hg = fread(hv|v ∈ V), (17)

where hg represents the global representation of the graph G and fread refers to the method
used to extract the global information from the graph. Common readout methods include
global average pooling, Top-K pooling [51], DiffPool [52], and ASAPooling [53]. However,
the previous methods only performed the readout operation in the final iteration step,
which is not favorable for our proposed Multi-hop GAT.

Specifically, the primary objective of the Multi-hop GAT is to hierarchically aggregate
high-order neighbor information to obtain rich graph representations, while performing a
readout only in the final layer would result in the loss of information from previous layers.
Meanwhile, generating graph-level representations, as pointed out in [54], is equivalent to
having a virtual super node in the graph where real nodes aggregate information along
virtual edges toward the super node:

hs ⇔ hg = fread(hv|v ∈ V), (18)

where hs represents the representation of the virtual super node. When the readout is
performed only in the final layer, the self-loop of the super node is consistently overlooked
which, as mentioned in [55], leads to an insufficient representational capacity for the
super node.

Therefore, inspired by [54], to better hierarchically aggregate multi-hop neighbor in-
formation and enhance the expressive power of global graph representations, we introduce
the self-connected aggregation (SCA) module into Multi-hop GAT. In this module, the
global information at each layer is determined by both the node information of the current
layer and the global information from the previous layer. Specifically, the computation is
as follows:

h(l)
g = fnn(h

(l−1)
g + fread(h

(l)
v |v ∈ V)), (19)

where l denotes the layer of the GNN and fnn represents the linear projection. By integrating
Multi-hop GAT with SCA, the algorithmic flow of the SC-MGAT can be obtained (see
Algorithm 1).
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Algorithm 1 SC-MGAT

INPUT: Node feature setH = {h1, h2, ..., hn}, Adjacency set A = {A1, A2, ..., AN}
OUTPUT: Final graph representation h(l)

g

1: h(0)
g = fread(hv|v ∈ V) //initialization graph representation

2: for l = 1→M do

3: k = ζ(l)

4: Ak = A[k] //obtain the adjacency matrix containing only the k-hop neighbors

5: DropEdge(Ak)

6: for all hv ∈ H do

7: N (k)(v) = Ak[v] //obtain the k-hop neighbors of node v

8: h(l)
v = φ

(
h(l−1)

v , f
({

h(l−1)
u |u ∈ N (k)(v)

}))
//message passing

9: end for

10: h(l)
g = fnn

(
h(l−1)

g + fread

(
h(l)

v |v ∈ V
))

//self-connection readout

11: end for

12: return h(l)
g

4.4. Differential Temporal Perception (DTP)

Rumor events in social networks evolve in chronological order. When a hot topic
emerges, an increasing number of users participate and contribute more information. These
pieces of information exhibit rich variations in terms of cycles or trends, such as changes in
sentiment polarity and topic shifts. Inspired by [56,57], this paper represents the temporal
propagation process of events as a multivariate time series S̄ = {s1, s2, ..., sn}, where n
represents the number of tweets related to a specific event and si ∈ Rd denotes the feature
representation at each time step. Based on this, the differential temporal perception (DTP)
module is proposed to capture the evolutionary features of events at the temporal level.
The process of the DTP module is shown in Figure 4.

Figure 4. The workflow of DTP.

The first step of DTP is to perform differential time series modeling. First, to simulate
the temporal changes of events, we perform a dropout operation on the initial series S̄
while preserving the temporal relationships:

TemporalDrop(S̄)→ S , (20)

where S = {s1, s2, ..., sm}. Then, the differential time series ∆ = {d1, d2, ..., dm} based
on the original time series S is constructed, where d1 = 0, and di = si − si−1, i ∈ [2, m].
Similar to [58], to retain the positional information of the sequence, positional encoding is
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applied to the differential series, resulting in a series P = {p1, p2, ..., pm} with the same
dimensions as ∆:

PE(pos,2i) = sin(pos/100002i/c), (21)

PE(pos,2i+1) = cos(pos/100002i/c), (22)

where pos ∈ [0, m] represents the position in the series and i ∈ [0, c] represents the dimen-
sion. The positional encoding series P is added to the differential series ∆ to obtain a new
series ∆̃ = {d̃1, d̃2, ..., d̃m}, where d̃i = di + pi.

Then, the series ∆̃, enhanced with positional encoding, will undergo local win-
dow attention (LWA) calculation. Specifically, to ensure temporal and local dependen-
cies, a fixed window size ω is used, and for any d̃i ∈ ∆̃, a corresponding subsequence
D̃i = [d̃i, d̃i−1, ..., d̃i−ω ] is extracted, where i > ω. If there are fewer than ω elements
before d̃i, then all preceding elements are considered. Subsequently, similar to [58], a
multi-head attention calculation is performed for all elements in the subsequence D̃i with
corresponding d̃i values:

headp = softmax(
Qp

TKp√
εp

)Vp
T , (23)

MultiHead(d̃i, D̃i) = Concat(head1, head2, ..., headh), (24)

Here, Qp = WQ
p × d̃p

i , Kp = WK
p × D̃p

i , and Vp = WV
p × D̃p

i , where WQ
p, WK

p,
WV

p ∈ Rεp×εp are trainable weight parameters, d̃p
i ∈ Rεp , and D̃p

i ∈ Rεp×(ω+1). In this
paper, we divide the input based on the feature dimension for different heads of the
multi-head attention. Hence, εp = d/h, where h is the number of heads.

For all d̃i ∈ ∆̃, we have d̃′i = MultiHead(d̃i, D̃i). This process yields a new sequence
∆̃′ = {d̃′1, d̃′2, ..., d̃′m} that incorporates local information. The new sequence is then fed into
the GRU to learn temporal information. The forward propagation process is as follows:

rt = σ(Wr · [d̃′t, ht−1]), (25)

zt = σ(Wz · [d̃′t, ht−1]), (26)

ĥt = tanh(Wh · [d̃′t, (rt � ht−1)]), (27)

ht = (1− zt)� ht−1 + zt � ĥt, (28)

where rt represents the reset gate, zt represents the update gate, and Wr, Wz, Wh ∈
Rd′×(d+d′) are trainable parameters, while d̃′t represents the input at time t, ht−1 ∈ Rd′ is
the hidden state at time t− 1, and d′ is the output dimension of the GRU. The output at the
final time step is used as the temporal feature representation of the entire sequence.

Furthermore, by employing a multi-layer stacking approach, it is possible to learn the
temporal features over a broader range. Specifically, after obtaining a new sequence ∆̃′ that
fuses local information through LWA, a larger range of information can be further fused on
the basis of ∆̃′:

∆̃′i+1 = LWA(∆̃′i) (29)

Stacking LWA enables a linear expansion of the receptive field. Finally, all obtained
sequences {∆̃′1, ∆̃′2, ..., ∆̃′N} are processed in parallel using a GRU for temporal feature extrac-
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tion, and the resulting features are summed together to obtain the final temporal features:

ht
sum =

N

∑
i=1

GRU(∆̃′i) (30)

4.5. Classification Layer

The output of the SC-MGAT module is the structural feature representation h(l)
g , and

the output of the DTP module is the temporal feature representation ht
sum. These two

features are combined through an addition operation to obtain the final feature representa-
tion h:

h = h(l)
g + ht

sum (31)

Subsequently, several linear layers followed by nonlinear activation layers are applied
to obtain the final predicted label ŷ:

ŷ = sigmoid(W f h + b f ), (32)

where W f ∈ R1×d′ represents the trainable weight parameters and b f represents the bias
term. Finally, the model is trained using the cross-entropy function

L(Θm) = −∑(yilog(ŷi) + (1− yi)log(1− ŷi)), (33)

where Θm denotes the trainable parameters of the model, yi represents the true label of
event i, and ŷi represents the corresponding predicted label.

5. Experiments

This section extensively evaluates the proposed model to demonstrate its effective-
ness in the task of rumor detection. Specifically, Section 5.1 introduces the datasets and
preprocessing methods. Section 5.2 presents the baseline models used for comparison. The
experimental parameter settings are outlined in Section 5.3, while Section 5.4 showcases
the experimental results and analysis.

5.1. Datasets and Preprocessing

There are two highly representative real-world and publicly available datasets con-
structed from Twitter and Weibo in the rumor detection task. Each dataset consists of a
series of news events, with each event belonging to categories such as real news or fake
news. Below is the introduction to the datasets:

• Weibo: Initially proposed in [7], data were captured from Sina Weibo, a popular
online social media platform in China. This dataset contains comprehensive event
information, including text, timestamps, and user configurations, all stored in the
JSON file format. It consists a total of 2351 real news and 2312 fake news instances.

• Twitter 15 and Twitter 16: First introduced in [38], data were collected from the widely
used online social networking platform Twitter. Each dataset consists of news events
categorized into four classes: unverified, non-rumor, true, and false. These datasets
include only the IDs of the tweets. We collected additional information such as reply
texts and timestamps using the Twitter API.

We performed some simple preprocessing on the Weibo, Twitter 15, and Twitter 16
datasets. Subsequently, the preprocessed Twitter 15 and Twitter 16 datasets were merged
into one dataset named Twitter, and the final datasets are described in Table 2.

For Twitter 15 and Twitter 16, we initially removed invalid tweets caused by user
deletions or account suspensions. When constructing propagation graphs based on the
reply relationships, we directly linked tweets with missing parent nodes to their source
tweets. Next, we extracted events from Twitter 15 and Twitter 16 belonging to the non-
rumors and true rumors categories, considering them true news and fake news, respectively.
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These events were combined to create a larger dataset called Twitter, containing 562 fake
news and 575 true news instances.

Table 2. Dataset details.

Statistic Weibo Twitter

Fake news number 2133 562
Real news number 2209 575

Time length 1576 h 159 h
Avg. number of tweets 378 25
Max. number of tweets 2000 256
Min. number of tweets 10 2

As for the Weibo dataset, due to limitations in computational resources, we had
to remove events with over 2000 nodes. Similarly, we constructed the corresponding
propagation graph based on the reply relationships. Finally, this resulted in a dataset
comprising 2133 fake news and 2209 true news instances.

5.2. Baselines

The baseline models used for comparison with the proposed model in this paper are
as follows, and Table 3 presents the feature types used by each model:

• SVM-RBF [5]: A method based on SVM with a radial basis function (RBF) kernel. It
utilizes a range of statistical features from tweets to identify fake news.

• SVM-TS [6]: A linear SVM-based classifier that employs time series modeling tech-
niques to capture the temporal features of rumors.

• GCN [59]: A graph representation learning method that uses message passing to
aggregate information from neighboring nodes for feature extraction.

• GAT [49]: An advanced graph representation learning framework. Similar to a GCN, it
incorporates attention mechanisms to differentiate the importance of different nodes.

• BU-RvNN [9]: A rumor classification method based on bottom-up recursive neural
networks. It integrates text content and propagation structure features using GRUs
and performs classification based on the state of the root node.

• TD-RvNN [9]: A rumor classification method based on top-down recursive neural
networks. It integrates text content and propagation structure features using GRUs
and performs classification based on the state of the leaf nodes.

• STS-NN [13]: A rumor detection method based on deep spatiotemporal neural net-
works. It integrates rumor propagation and temporal features within a GRU-like unit
for learning.

• BiGCN [11]: A model based on GCNs that models rumor events separately using
propagation and diffusion structures, followed by a Bidirectional GCN for feature
extraction.

5.3. Experimental Set-up

In the experiment of this section, all SVM-based methods were implemented using
sklearn, while all deep learning-based methods were implemented using PyTorch. The
parameters were optimized using the Adam optimizer [60] with an initial learning rate of
5× 10−5 and weight decay of 5× 10−4. Similar to a previous work [13], the entire dataset
was divided into training, validation, and testing sets at an 8:1:1 ratio. The model with the
best performance on the validation set was selected for testing. To ensure fair comparison,
all models that utilized textual information employed the average of all word embeddings
from the first layer encoder and the last layer encoder of the pretrained BERT model (first-
to-last layer average), resulting in a tweet embedding of dimension 768. It was observed
that the first-to-last layer average approach yielded significant performance improvements
compared with using the CLS token or averaging only the last layer, particularly on the
English datasets.
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Table 3. Types of features used by different algorithms.

Method Statistic Text Time Structure

SVM-RBF √

SVM-TS √ √

GCN √ √

GAN √ √

TD-RvNN √ √

BU-RvNN √ √

STS-NN √ √ √

BiGCN √ √

SMGaDTP √ √ √

In the SC-MGAT module, the parameter ζ(l) was set to 2l − 1, where l ∈ [1, 6]. This
means that each GNN layer utilized multi-hop neighbors with an interval of 1 (1-hop,
3-hop, 5-hop, ..., 11-hop), resulting in a total of six message-passing layers. For the DTP
module, the window size ω was set to four, and the number of layers in LWA was set to
two. For all datasets, the evaluation metrics used were precision (Prec.), recall (Rec.), F1
score (F1), and accuracy (Acc.) based on the predicted results. For each sample ci ∈ C,
the differences between the predicted values and true values were measured using true
positive (TP), false positive (FP), false negative (FN), and true negative (TN) results, and
the metrics were calculated using the following formulas:

Acc. =
TP + TN

TP + FP + TN + FN
, (34)

Prec. =
TP

TP + FP
, (35)

Rec. =
TP

TP + FN
, (36)

F1 =
2× Prec.× Rec.

Prec. + Rec.
(37)

5.4. Experimental Results and Analysis
5.4.1. Comparison of Model Performance

Table 4 presents the evaluation results of all methods using the Weibo dataset and the
Twitter dataset, where the best model is marked with bold formatting. From the table, the
following conclusions can be drawn:

• Overall, our model outperformed other baseline methods in all datasets. On the
Weibo dataset, our model improved the Acc and F1 by 1.39% and 1.42%, respectively,
compared with the best baseline. On the Twitter dataset, the improvements were
3.51% and 3.57%, respectively. This confirms that our model effectively extracted
more features compared with the baseline models, demonstrating the importance
of high-order neighbor interaction features and differential temporal information in
rumor detection tasks.

• The traditional machine learning-based methods exhibited lower performance across
all datasets compared with the deep learning-based methods. This is because tradi-
tional methods rely on manually selected features, while deep learning algorithms
can capture complex high-order features. Moreover, traditional machine learning
only utilizes statistical-level features for text content, making it difficult to model
semantic information.

• Consistent with [9] and others’ findings, BU-RvNN performed worse than TD-RvNN.
This is because BU-RvNN compresses features into a single node representation,
resulting in significant information loss. In contrast, TD-RvNN performs pooling on
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all leaf nodes to obtain the final features, thereby retaining more useful information.
STS-NN utilizes both temporal and structural features simultaneously, but it still failed
to achieve satisfactory results. This is partly due to compressing all the information
into the last node.

• Among all the baseline models, BiGCN demonstrated stronger performance. Despite
not utilizing temporal information, its ability to extract propagation and diffusion
features enabled better structural information learning compared with STS-NN and
TD-RvNN. However, the lack of high-order neighbor information (stacking only two
layers of the GCN, capturing at most the interaction features of the two-hop neighbors)
and the lack of temporal information restricted its performance.

Table 4. Rumor detection results of all algorithms.

Dataset Method Acc. Prec. Rec. F1

Weibo

SVM-RBF 0.8134 0.7925 0.8195 0.8058
SVM-TS 0.8295 0.7741 0.9024 0.8333

GCN 0.9286 0.9223 0.9268 0.9246
GAT 0.9470 0.9333 0.9561 0.9446

TD-RvNN 0.9585 0.9431 0.9707 0.9567
BU-RvNN 0.8963 0.9000 0.8780 0.8889
STS-NN 0.9332 0.9314 0.9268 0.9291
BiGCN 0.9447 0.9330 0.9512 0.9420

SMGaDTP 0.9724 0.9662 0.9756 0.9709

Twitter

SVM-RBF 0.8142 0.8462 0.7719 0.8074
SVM-TS 0.7727 0.7895 0.7759 0.7826

GCN 0.8421 0.8136 0.8727 0.8421
GAT 0.8860 0.8889 0.8727 0.8807

TD-RvNN 0.8596 0.8305 0.8909 0.8596
BU-RvNN 0.8509 0.8065 0.9091 0.8547
STS-NN 0.8684 0.8571 0.8727 0.8649
BiGCN 0.8947 0.8772 0.9091 0.8929

SMGaDTP 0.9298 0.9123 0.9455 0.9286

5.4.2. Ablation Study

In this section, ablation experiments were conducted to explore the contributions of
different modules in the model. Specifically, the following variants were proposed for
comparison with the original model:

• SMGaDTP w/o SC-MGAT: This variant removes the SC-MGAT module and retains
only the DTP module.

• SMGaDTP w/o DTP: This variant removes the DTP module and retains only the
SC-MGAT module.

• SMGaDTP w/o DTP + SCA: This variant removes both the DTP and SCA modules,
retaining only the Multi-hop GAT module.

Figure 5 displays the comparison results of different variants, and based on these
results, the following conclusions can be drawn:

• Overall, SMGaDTP performed better than the other variants on all datasets, indicating
that all the proposed modules play indispensable roles in rumor detection tasks.

• By comparing the w/o SC-MGAT, w/o DTP, and SMGaDTP variants, it can be ob-
served that the w/o SC-MGAT variant performed the worst among all the variants,
while the w/o DTP variant performed the best. This suggests that the structural
features of rumors are more significant than temporal features, and the SC-MGAT
module effectively captured the structural features of the rumors.

• By comparing the w/o DTP and w/o DTP + SCA variants, it can be inferred that
the SCA module plays an important role in SC-MGAT, enhancing its ability to learn
high-order neighbor information.
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Figure 5. (a) Results of ablation experiments on Twitter dataset. (b) Results of ablation experiments
on Weibo dataset.

5.4.3. Comparison of Early Detection

Early detection of rumors can significantly mitigate the damage caused by their spread.
Numerous scholars have employed differential equations and numerical simulation meth-
ods to study the rate of rumor propagation and the control strategies [61–63]. These studies
have all indicated that rumor dissemination exhibits a significant outbreak period, and
early intervention in rumors can greatly reduce their scale and destructiveness. Addition-
ally, some researchers have explored the sentiment scope on social media and pointed out
that fake news generates intense negative emotions with considerable aggressiveness and
stability. Furthermore, it tends to spread widely within the social space over time [64–66].
All of these studies have demonstrated the utmost necessity of intervening early in the case
of rumors.

Therefore, SMGaDTP and all well-performing baseline models were subjected to early
rumor detection capability testing. Specifically, early rumor detection testing requires
setting a series of truncation times where only tweets published before the truncation time
are used to test the detection capabilities of all models. In order to demonstrate the early
detection capabilities of all models comprehensively, the truncation time on the Twitter
dataset was set to {10 min, 20 min, 30 min, 40 min, 50 min, 1 h, 2 h, 3 h}, and the truncation
time on the Weibo dataset was set to {2 h, 4 h, 6 h, 8 h, 10 h, 12 h, 24 h, 36 h}.

The results of the early detection are shown in Figure 6. The models that used both
structural and temporal features are marked with solid lines, while the models that only
used structural features are represented with dashed lines. It can be observed that on
all datasets, as time progressed, our model generally outperformed the other baseline
models. Additionally, it can be noted that the models using temporal features exhibited a
stronger dependence on temporal information, with significant fluctuations in identification
accuracy as time advanced. However, regardless of the model, both on the Twitter and
Weibo datasets, optimal detection performance could be achieved after 1 h and 12 h,
respectively. This indicates that all models could effectively identify early-stage rumors.
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Figure 6. (a) Results of early detection on Twitter dataset. (b) Results of early detection on
Weibo dataset.

5.4.4. Comparison of Deep Graph Detection

In this section, 818 events (409 positive and 409 negative samples) with relatively long
node path relationships from the Weibo dataset were selected to demonstrate the differences
between SC-MGAT and GAT in deep graphing. These events were used to train and test
SC-MGAT and GAT, and all models used the same training parameters and experimental
settings. The results are shown in Figure 7, where GAT represents a single-layer GAT and
6-GAT denotes stacking six layers of GAT. From the results, it can be observed that simply
stacking multiple layers of GAT led to a decrease in performance compared with a single
layer of GAT. On the other hand, SC-MGAT outperformed both the single-layer GAT and
the stacked 6-GAT in all evaluation metrics. This further validates the effectiveness of our
proposed approach.

A c c . P r e c . R e c . F 10 . 8 8
0 . 9 0
0 . 9 2
0 . 9 4
0 . 9 6
0 . 9 8
1 . 0 0  6 - G A T  G A T

 S C - M G A T

Figure 7. Comparison of SC-MGAT, GAT, and multilayer GAT.

In addition, we randomly selected a sample from the test set and applied multi-
layer message passing using SC-MGAT and GAT. Afterward, for the nodes that had
undergone message passing, the cosine similarity between each node and all other nodes
was computed. The final similarity of each node in the graph was obtained by summing
up its cosine similarities with all other nodes.

Figures 8 and 9 illustrate the visualization results, where nodes with higher similarity
correspond to colors closer to deep red. From the visualization results, it can be observed
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that the traditional GAT exhibited oversmoothing phenomena after only three layers of
message passing. This is consistent with the experimental results that showed a perfor-
mance decrease when stacking multiple layers of GAT. In contrast, SC-MGAT maintained
a higher level of node discrimination even after six layers of message passing, effectively
avoiding the problem of oversmoothing.

(a) (b) (c)

(d) (e) (f)
Figure 8. Node similarity after message passing with 6-GAT, where (a–f) represent the results from
the first layer to the sixth layer, respectively.

(a) (b) (c)

(d) (e) (f)
Figure 9. Node similarity after message passing with SC-MGAT, where (a–f) represent the results
from the first layer to the sixth layer, respectively.

6. Conclusions

This paper proposes the SMGaDTP based on multi-hop graphing and differential
time series, which consists of two parallel parts: SC-MGAT and DTP. SC-MGAT learns
the structural features of rumors, while DTP learns the temporal features of rumors. We
extensively tested the proposed model on widely used real-world Weibo and Twitter
datasets, and the encouraging results demonstrated the effectiveness of our proposed
model. This indicates that high-order structural information and differential temporal
information can serve as effective features for rumor identification. Meanwhile, the ablation
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study demonstrates the respective contributions of each component of the model. Early
detection indicates the model’s capability to effectively recognize early-stage rumors. A
comparison of SC-MGAT and GAT on the deep graph further confirmed their significant
improvements in addressing the oversmoothing issue.

However, this study also has some limitations. First, the SC-MGAT module is built
upon the homogeneous graph and has not been extended to the heterogeneous graph, limit-
ing the model’s ability to extract richer heterogeneous information. Secondly, it only models
static graphs, making it challenging to capture the dynamic changes in event propagation
structures over time. As for the DTP module, it focuses solely on temporal differences,
neglecting the structural aspects. In the future, it can be expanded and integrated into the
structural dimension to achieve a more comprehensive understanding. Lastly, concerning
the fusion of temporal and structural features, this paper only employed a simple fully
connected layer, which may have resulted in insufficient feature integration. Future works
can explore more advanced methods, such as attention mechanisms and CNNs, to achieve a
more comprehensive fusion of spatiotemporal features. These innovative approaches could
potentially lead to improved performance and better understanding of the underlying
dynamics in the data.
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