
Citation: Baek, H.; Lee, J.

Contention-Free Scheduling for

Single Preemption Multiprocessor

Platforms. Mathematics 2023, 11, 3547.

https://doi.org/10.3390/

math11163547

Academic Editors: Chin-Chia Wu,

Win-Chin Lin, Jatinder N. D. Gupta

and Xingong Zhang

Received: 11 July 2023

Revised: 13 August 2023

Accepted: 15 August 2023

Published: 16 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Contention-Free Scheduling for Single Preemption
Multiprocessor Platforms
Hyeongboo Baek 1 and Jaewoo Lee 2,*

1 Department of Computer Science and Engineering, Incheon National University,
Incheon 22012, Republic of Korea; hbbaek@inu.ac.kr

2 Department of Industrial Security, Chung-Ang University, Seoul 06974, Republic of Korea
* Correspondence: jaewoolee@cau.ac.kr; Tel.: +82-2-820-5935

Abstract: The Contention-Free (CF) policy has been extensively researched in the realm of real-time
multi-processor scheduling due to its wide applicability and the performance enhancement benefits
it provides to existing scheduling algorithms. The CF policy improves the feasibility of executing
other real-time tasks by assigning the lowest priority to a task at a moment when it is guaranteed not
to miss its deadline during the remaining execution time. Despite its effectiveness, existing studies on
the CF policy are largely confined to preemptive scheduling, leaving the efficiency and applicability of
limited preemption scheduling unexplored. Limited preemption scheduling permits a job to execute
to completion with a limited number of preemptions, setting it apart from preemptive scheduling.
This type of scheduling is crucial when preemption or migration overheads are either excessively
large or unpredictable. In this paper, we introduce SP-CF, a single preemption scheduling approach
that incorporates the CF policy. SP-CF allows a preemption only once during each job’s execution,
following a priority demotion under the CF policy. We also propose a new schedulability analysis
method for SP-CF to determine whether each task is executed in a timely manner and without
missing its deadline. Through simulation experiments, we demonstrate that SP-CF can significantly
enhance the schedulability of the traditional rate-monotonic algorithm and the earliest deadline
first algorithm.

Keywords: real-time multi-processor scheduling; contention-free policy; limited preemption scheduling

MSC: 68M20

1. Introduction

Real-time systems are characterized not only by their functional traits but also by
their temporal ones [1]. For instance, in automotive systems, the wheel control system’s
precise execution within a set timeframe, or deadline, is vital for accurate vehicle control.
A key technique in designing such systems is real-time scheduling, which allows for the
efficient distribution of computing resources like CPU and memory within the system. Real-
time scheduling research primarily focuses on two critical areas: the design of scheduling
algorithms and schedulability analysis. The former determines the execution order of
real-time tasks, while the latter involves a mathematical assessment of whether a system
can meet its deadlines under a scheduling algorithm [2–5].

In recent decades, real-time systems have made effective use of multiprocessor plat-
forms to execute tasks with substantial computational demands [6]. This trend has spurred
extensive theoretical research in real-time scheduling. Some studies have introduced new
real-time scheduling algorithms that effectively alter task priorities during runtime [7],
while others have concentrated on theoretical optimality or clarifying the relationships
between different scheduling algorithms [8]. Additional research has proposed execution
techniques that can be incorporated with existing scheduling algorithms [9–11].

Mathematics 2023, 11, 3547. https://doi.org/10.3390/math11163547 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11163547
https://doi.org/10.3390/math11163547
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-9518-3556
https://orcid.org/0000-0001-5887-2184
https://doi.org/10.3390/math11163547
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11163547?type=check_update&version=2

Mathematics 2023, 11, 3547 2 of 14

Emphasizing the latter approach is vital, given its potential to enhance both current
and future algorithm scheduling performance. The Zero-Laxity (ZL) [9] policy and the
Contention-Free (CF) policy [10,11] are successful examples of this approach. The ZL policy
reduces deadline violations by assigning the highest priority to a real-time task at an instant
where the task would fail to meet its deadline if not immediately executed. Conversely,
the CF policy enhances the feasibility of executing other real-time tasks by assigning the
lowest priority to a task at a moment when it is guaranteed not to miss its deadline during
the remaining execution time [12–14].

The CF policy has been extensively studied in the field of scheduling due to their broad
applicability and the performance enhancement benefits they offer to existing scheduling
algorithms. However, existing studies are largely confined to preemptive scheduling,
leaving the efficiency and applicability of limited preemption scheduling unexplored.
Limited preemption scheduling permits a job to execute to completion with a limited
number of preemptions, distinguishing it from preemptive scheduling. This scheduling
type is essential when preemption or migration overheads are either excessively large
or unpredictable.

In this paper, we introduce SP-CF, a single preemption scheduling approach that in-
corporates the CF policy. SP-CF allows a preemption only once during each job’s execution,
following a priority demotion under the CF policy. We also propose a new schedulability
analysis method for SP-CF to judge whether each task is executed timely and without
missing its deadline. The performance of this technique is evaluated using simulation-
based experiments.

Section 3 discusses the system model and basic concepts targeted in this study.
Section 4 presents the operation of the single-preemption scheduling with the CF pol-
icy. In Section 5, we extend the existing schedulability analysis called deadline-based (DA)
analysis [15] to our SP-CF scheduling. Section 6 uses our Java simulator to analyze the
performance of DA analysis, and Section 2 presents the related work. Section 8 provides
the paper’s conclusion.

2. Related Work

In the past few decades, numerous research studies within the realm of real-time
systems have been centered on creating scheduling algorithms for multiprocessor sys-
tems. The aim is to enhance the system’s schedulability. Notably, ER-Fair [16], LLREF [17],
and RUN [7] have been introduced as the optimal scheduling algorithms for multiprocessor
systems, with each iteration refining the scheduling costs [17]. A salient example is the RUN
algorithm, which repurposes the multiprocessor task scheduling problem into a unipro-
cessor issue, thereby significantly reducing the amount of preemptions when compared to
rate-based methodologies.

Simultaneously, an alternate approach has been pursued that involves the creation
of scheduling policies designed to enhance schedulability analysis and can be integrated
into most existing scheduling algorithms. The ZL and CF policies are prominent examples
of such strategies. The ZL policy [9] boosts a task’s priority to the highest level when it is
scheduled to prevent any deadline misses, while the CF policy [10,11] reduces the priority
to the lowest level when its schedulability is secured. Additional research into the CF policy
was conducted to better utilize contention-free slots [18]. Furthermore, a proposal was put
forth for RTA associated with the CF policy.

Numerous studies have been conducted on non-preemptive scheduling for uniproces-
sor systems. Ekelin presented a scheduling algorithm designed for a set of independent
jobs [19]. Meanwhile, Nasri et al. proposed a scheduling algorithm specifically for the
periodic (loose-) harmonic task model [20,21]. This model was later improved to support
the general periodic task model [22]. Furthermore, efforts have been made to develop new
types of schedulability tests that provide timing guarantees for existing scheduling ap-
proaches [23,24]. The research has also extended beyond uniprocessor systems. One study
examined the scheduling of mixed-criticality tasks [25], while another research effort fo-

Mathematics 2023, 11, 3547 3 of 14

cused on scheduling within a multiprocessor environment, which necessitated information
about future job release patterns [6].

3. System Model

In this paper, we adopt the Liu & Layland task model [1], widely used in real-time
systems. As per this model, a system is comprised of a task set τ, containing n tasks,
denoted τi ∈ τ. Each task τi periodically generates an infinite number of jobs Ji. A task
τi is represented as (Ti, Ci, Di), where Ti is the task’s period, Ci signifies the worst-case
execution time of a job, and Di indicates the time interval between a job’s release time and
its deadline.

This paper assumes an m multiprocessor environment. A time slot is defined as the
minimum unit of time in which a job can be executed, with each job restricted to execute on
a single processor within a time slot. We consider a fixed-priority scheduling and earliest
deadline first (EDF) algorithm. The former assigns priorities to tasks themselves, where
all jobs generated by a task share the same priority. Accordingly, all jobs generated by
tasks with higher priority precede those generated by tasks with lower priority in terms
of priority. The latter assigns priorities to jobs rather than tasks, where a job with earlier
absolute deadline has a higher priority. A set of tasks with a higher priority than τ is
denoted as τhp, and a set of tasks with lower priority than τ is denoted as τlp. A CF slot is
characterized as a time slot where the number of available jobs is fewer than the number
of processors m. Thus, during idle time slots, all jobs can execute without competition.
According to SP-CF policy, preemption occurs only once during each job’s execution.

4. Single Preemption Scheduling with Cf Policy

In this section, we present the background of the fixed-priority non-preemptive
scheduling algorithm with the CF policy and the calculation method for CF slots.

4.1. Scheduling

Firstly, we describe the scheduling patterns of both non-preemptive scheduling and
SP-CF scheduling using an example task set. Figure 1a depicts the scheduling pattern
when three tasks, τ1 = (15, 4, 9), τ2 = (15, 4, 9), and τ3 = (15, 7, 10)}, are executed with the
fixed-priority scheduling algorithm in a two-processor system. Figure 1b illustrates the
scheduling pattern when applying the CF policy to the scheduling algorithm. Here, each
job is allowed to preempt only once following a priority demotion according to the SP-CF
policy. There are numerous methods to assign priorities to tasks within the fixed-priority
scheduling algorithm. For this example, we assume that task τ1 has the highest priority,
task τ2 holds intermediate priority, and task τ3 has the lowest priority.

τ1

τ2

τ3

0 10

9

9

4

τ1

τ2

τ3

0 102 4

Job release/

deadline

9

9

Deadline

miss

Initial

priority

execution

Demoted

priority

execution

Execution

completion

Priority

demotion

Preemption

(a) Non-preemptive Fixed-priority scheduling (b) SP-CF scheduling

Figure 1. Scheduling scenario of non-preemptive fixed-priority scheduling and SP-CF scheduling for
three tasks τ1 = (15, 4, 9), τ2 = (15, 4, 9), and τ3 = (15, 7, 10)} on a two-processor system.

Mathematics 2023, 11, 3547 4 of 14

As seen in Figure 1a, tasks τ1 and τ2 are executed on individual processors in the time
slots from 0 to 4. Upon completion of these two tasks, task τ3 begins execution. However,
the time slot required for task τ3 to complete its execution exceeds the remaining time slots,
resulting in a deadline violation at time 10.

Figure 1b portrays a scenario where the application of the CF policy to the fixed-
priority scheduling algorithm ensures all tasks can execute without missing a deadline.
Initially, the CF policy calculates the minimum number of CF slots existing within each
task’s job’s release time and deadline (the method for calculating the number of CF slots
will be detailed in Section 4.2). This calculation reveals at least two CF slots between the
release time and deadline of tasks τ1 and τ2. Between the time slots 0 and 4, there are three
runnable jobs and two processors, creating a need for contention slots. According to the
CF policy, at time 2, tasks τ1 and τ2 receive the lowest priority, and task τ3 commences its
execution. This is because the calculation shows that tasks τ1 and τ2 have at least two CF
slots. The lack of contention slots between 0 and 2 implies that the remaining executions
can take place in CF slots, ensuring no deadline misses. Thus, by comparing the remaining
execution time with the residual CF slots, it is feasible to dynamically lower the priority
and efficiently utilize the computational power of the multiprocessor. Please note that a
preemption occurs only for τ2 at time 2, following a priority demotion by the CF policy.

As depicted in Figure 1a, the duration when both processors are occupied is con-
strained to 4 units. However, as demonstrated in Figure 1b, when implementing the CF
policy, the utilization period of both processors extends to 6 units.

Algorithm 1 describes the execution procedure of the SP-CF scheduling. For each time
slot at t, a job Ji released by a task τi is placed in QH. The corresponding number of CF slots
Φi for the job is calculated, and the remaining execution time Ci(t) and remaining CF slots
Φi(t) are initialized with Ci and Φi(t), respectively (lines 1–3).

Algorithm 1 SP-CF scheduling.
At each time slot t,

if a job from τi is released then
Place the job into QH and initialize Φi(t) ← Φi and Ci(t) ← Ci.

end if
for each job in QH do

if the job from τi satisfies Φi(t) ≥ Ci(t) then
Transfer the job to QL.

end if
end for
if ∣QH∣ is less or equal to m then

Update Φi(t + 1) ←max (0, Φi(t) − 1) for all jobs in QH

end if
Assign priorities to jobs within the following three groups: hp, mp, and lp. Group hp has
a strictly higher priority than mp, and mp has a strictly higher priority than lp. Jobs of
hp were executed at time t − 1 and did not transition from QH to QL at time t. Jobs of mp
were released at time t and are currently in QH. Jobs of lp that transitioned from QH to
QL at time t or were present in QL but were not executed at time t − 1.
Assign priorities to jobs released at t in mp according to the base algorithms such as EDF
and RM.
Decrease Ci(t) ← Ci(t) − 1 for the (at most) m highest-priority jobs in hp, mp, and lp.

If a job Ji exists in a time slot at t with a remaining execution time Ci(t) less than or
equal to Φi(t), the job is moved to QL (lines 4–8). For each job in QH, if the current time
slot is a CF slot, Φi(t) decreases by 1 (lines 9–11). Priorities are then assigned to the jobs in
QH based on a fixed priority algorithm (line 12). Finally, at most m jobs in QH and QL are
executed, where all jobs in QH hold a strictly higher priority than all jobs in QL (line 13).

Priorities are assigned within the following three groups: hp, mp, and lp. The hp group
has a strictly higher priority than mp, and mp has a strictly higher priority than lp.

Mathematics 2023, 11, 3547 5 of 14

hp: jobs that were executed at time t − 1 and did not transition from QH to QL at time t.
mp: jobs that were released at time t and are currently in QH.
lp: jobs that transitioned from QH to QL at time t or were present in QL but were not

executed at time t − 1.

The following lemma discusses a specific property of SP-CF scheduling concerning
the number of preemptions for each job.

Lemma 1. For a given set of real-time tasks on m processors, each job experiences at most one
preemption under SP-CF scheduling.

Proof. Let us suppose a job of τi can experience multiple preemptions. From line 12 in
Algorithm 1, it can be observed that running jobs (i.e., jobs executed at time t − 1 in hp) that
do not experience a priority demotion (i.e., jobs that do not transition from QH to QL) at
time t holds a highest priority compared to jobs in mp and lp. Moreover, this priority can
only be altered when a job shifts from hp or mp to lp after experiencing a priority demotion,
thereby inducing a preemption possibility. This contradicts our initial assumption for
the lemma.

4.2. Contention-Free Slots

As observed in Algorithm 1, the CF policy calculates the minimum number of CF
slots that can exist before the deadline of each job (line 2). When the remaining execution
time and remaining CF slots of a job become equal during execution, the job’s priority is
demoted to the lowest (i.e., moved to QL). Jobs with demoted priority can encounter at least
as many CF slots as the remaining execution time, ensuring that no deadline miss occurs.
In this section, we will explore how to calculate the number of CF slots for each task.

In real-time scheduling with the CF policy, the number of CF slots for each task is
precalculated before execution, and its value decreases whenever a CF slot is encountered
during execution. The fundamental concept used in calculating the number of CF slots is to
analyze the execution loads of all possible jobs between the release time and the deadline
of a single job. Afterward, we determine the maximum number of contention slots (i.e.,
time slots where competition occurs, and the number of running jobs exceeds the number
of processors) that the jobs need to compete for processor usage. This value is referred to as
the contention slot value. By subtracting the contention slot value from the existing time
slots, we can calculate the minimum number of CF slots.

To determine the minimum number of CF slots between the release time and the
deadline of job generated by τi, we first need to calculate the maximum possible execution
load within that interval.

Figure 2 illustrates the maximum achievable execution load of within the interval
between the release time and the deadline [26]. As seen in Figure 2, in the scenario where
the maximum execution of occurs, the execution of the first job starts at the beginning of
the interval L and ends at the deadline of that job. The subsequent jobs are executed as
soon as they are generated to maximize the amount of execution. The maximum achievable
execution load of within the interval is calculated as the sum of the number of running jobs
that can be executed and the execution load of jobs that cannot be executed.

Lemma 2 (Execution load of task τi). The maximum execution load of a task τi within the
interval L, denoted as Wi(L), can be calculated as follows:

Wi(L) = ni(L) ⋅Ci +min(Ci, L +Di −Ci − ni(L) ⋅ Ti)) (1)

where ni(L) = ⌊ L+Di−Ci
Ti

⌋ represents the total number of jobs that execute fully for Ci within the
interval L, and whose subsequent job release also exists within the interval L.

Mathematics 2023, 11, 3547 6 of 14

Job release/deadline

Ti

Di

Ci

Ti

Di

Ci Ci

L

Figure 2. Workload under any scheduling in an interval of length L.

Proof. By the definition of ni(L), at most ni(L) jobs can fully execute for Ci units within
the interval L. The rest of the time in L, L + Di − Ci − ni(L) ⋅ Ti, can accommodate the
execution of at most one more job. Therefore, the maximum execution load Wi(L) is given
by Equation (1).

For instance, in Figure 1a, from τ3’s perspective, the deadlines of the first jobs of τ1 and
τ2 come before the end of the interval of interest, which is the D3 interval of τ3. Therefore,
these jobs belong to n3(L). Note that Wi represents the maximum workload that can occur
in the worst-case scenario, so the sum of the higher priority executions in the example
of Figure 1a, which depicts a real case, can be less than the maximum workload. Using
the maximum execution load Wi, we can calculate the minimum number of CF slots that
can exist in the interval L. Assuming m processors, the size of the available execution
time space in the interval is m ⋅ L. In each contention time slot, at least m tasks execute.
Therefore, the number of contention slots that can exist in the interval L cannot exceed the
following value.

Lemma 3 (Contention slots [11]). The number of contention slots that can exist in the interval L
does not exceed the following value:

⌊
∑τi∈τ Wi(L)

m
⌋ (2)

Proof. Given that each contention slot accommodates at least m tasks, the sum of the
execution loads of all tasks in τ cannot exceed m times the number of contention slots.

We can use the maximum contention slots obtained from Equation (2) to calculate the
minimum CF slots in the interval Dk of τk as follows.

Theorem 1 (Minimum CF slots). The minimum number of CF slots that can exist in the interval
Dk of τk, denoted as Φk, can be calculated as follows:

Φk = max(0, Dk − ⌊
Ck +∑τi∈τ∖τk

Wi(Dk)
m

⌋) (3)

Proof. From Lemma 3, the number of contention slots does not exceed ⌊∑τi∈τWi(Dk)
m ⌋. Since

we are looking at the Dk interval, there is necessarily only one job of τk within this interval.

Therefore, the expression can be reduced to ⌊
Ck+∑τi∈τ∖τk

Wi(Dk)
m ⌋. Hence, the rest of the slots

in Dk must be CF slots. If the calculated number of CF slots is negative, it is corrected to
zero.

For example, in Figure 1b, from τ3’s perspective, the deadlines of the first jobs of τ1 and
τ2 come before the end of the interval of interest, which is the Dk interval of τ3. Therefore,

Mathematics 2023, 11, 3547 7 of 14

these jobs belong to ni(Dk). Additionally, the third and fourth executions of these jobs are
run after their priorities are demoted, so they belong to Φk.

5. Schedulability Analysis under SP-CF Scheduling

In this section, we extend the existing DA analysis proposed for general scheduling
to SP-CF scheduling, aiming to propose a new schedulability analysis to judge the timely
execution of tasks.

5.1. Da for SP-CF with Fixed-Priority Scheduling

The response time of task τi is defined as the biggest difference between the release
time and the finish time of all jobs Ji belonging to τi. By the definition of response time of
task τi, if the response time of τi is less than or equal to Di, it is determined that all jobs
Ji can complete their execution within its deadline. The following lemma provides the
method whether the response time of a task τk under SP-CF with fixed-priority scheduling
is less than or equal to Dk.

Lemma 4 (DA for fixed-priority scheduling). Given Wi(Dk) as the maximum execution load of
task τi within interval Dk on m processors, the task τk can complete its execution within Dk if the
following equation holds:

max
τj∈τlp(k)

Cj +
∑τi∈τhp(k)

min(Wi(Dk), Dk −Ck + 1)
m

+Ck ≤ Dk, (4)

where lp(k) and hp(k) represent the sets of tasks within τ that have a lower priority and a higher
priority than τk, respectively.

Proof. Due to the property of single-preemptiveness, the execution of a task τk can be
blocked by an already executing lower-priority job, and the amount of blocking cannot be
larger than maxτj∈τlp(k) Cj. By Lemma 2, the maximum execution of higher-priority task τi
in interval Dk is upper-bounded by Wi(Dk). If the value Wi(Dk) exceeds Ck, it implies that
the task τk can be executed concurrently, and the maximum value of Wi(Dk) is Dk −Ck + 1.
In a system with m processors, a task experiences interference in a time slot if there are at
least m jobs with higher priority. For a job of τk to be response, the execution for Ck should
be completed. Thus, the lemma holds.

Then, we derive DA for SP-CF with fixed-priority scheduling. The following lemma
derives the execution load of task τi under SP-CF with fixed-priority scheduling.

Lemma 5 (Execution load of task τi under SP-CF). The maximum execution load of task τi
within interval Dk under SP-CF scheduling is given by:

WΦ
i (Dk) = nΦ

i (Dk) ⋅ (Ci −Φi) +min(Ci −Φi, Dk +Di −Ci −Φi − ni(Dk) ⋅ Ti), (5)

where nΦ
i (Dk) is derived by

nΦ
i (Dk) = ⌊Dk +Di −Ci −Φi

Ti
⌋. (6)

Proof. During the execution of task τi, there exists a minimum number of CF slots calcu-
lated by Equation (3) in Theorem 1. This allows task τi to execute without contention in
these slots. Hence, for each task τi, we can exclude an amount of interference time equal to
Φi as shown in Figure 3. By Lemma 2, the lemma holds.

Mathematics 2023, 11, 3547 8 of 14

Job release/

deadline

Ti

Di

Ci

Dk

Φi

Execution in

contention-free slots

Ti

Di

Ci

Φi Φi

Ci

Figure 3. Worst-case execution scenario under SP-CF with fixed-priority scheduling.

Using Lemma 5, DA for SP-CF is derived as follows.

Theorem 2 (DA for SP-CF with fixed-priority scheduling). Using the maximum execution
load of task τi in the interval Dk under SP-CF scheduling, the task τi can complete its execution
within Dk if the following equation is satisfied:

max
τj∈τlp(k)

Cj +
∑τi∈τhp(k)

min(WΦ
i (Dk), Dk −Ck + 1)
m

+Ck ≤ Dk (7)

Proof. By the proof of Lemma 4, this theorem holds.

5.2. Da for SP-CF with Edf Scheduling

This subsection derives DA for SP-CF with EDF scheduling. Unlike SP-CF with the
fixed-priority scheduling, a job Ji with the later absolute deadline cannot interfere a job of Jk
with the earlier absolute deadline according to the scheduling policy of EDF. For example,
the third job in Figure 3 cannot participate in Wi(Dk) to interfere Jk because its absolute
deadline is later than that of Jk of interest. As shown in Figure 4, the worst-case execution
scenario under SP-CF with EDF scheduling occurs when the deadline of the last job of τi
and the end of the interval of length Dk are aligned.

Job release/

deadline

Ti

Di

Ci

Dk

Φi

Execution in

contention-free slots

Ti

Di

Ci

Φi Φi

Ci

Figure 4. Worst-case execution scenario under SP-CF with EDF scheduling

Using the worst-case execution scenario under SP-CF with EDF scheduling shown
in Figure 4, the following lemma derives the execution of task τi under SP-CF with EDF
scheduling in an interval of length Dk.

Mathematics 2023, 11, 3547 9 of 14

Lemma 6 (Execution load of task τi under SP-CF with EDF scheduling). The maximum load
EΦ

i (Dk) of task τi within interval Dk under SP-CF with EDF scheduling is given by:

EΦ
i (Dk) = nΦ

i (Dk) ⋅ (Ci −Φi) +min(Ci −Φi, Dk − ni(Dk) ⋅ Ti), (8)

where nΦ
i (Dk) is derived by

nΦ
i (Dk) = ⌊Dk

Ti
⌋. (9)

Proof. By the proof of Lemma 5, the lemma holds.

Using Lemma 5, DA for SP-CF with EDF scheduling is derived as follows.

Theorem 3 (DA for SP-CF with EDF scheduling). Using the maximum execution of task τi in
the interval Dk under SP-CF with EDF scheduling, the task τi can complete its execution within
Dk if the following equation is satisfied:

max
τj∈τ∖τk

Cj +
∑τi∈τhp(k)

min(EΦ
i (Dk), Dk −Ck + 1)
m

+Ck ≤ Dk (10)

Proof. By the proof of Theorem 2, this theorem holds.

6. Evaluation

In this section, we assess the efficacy of our proposed SP-CF scheduling methodology,
as applied to the fixed-priority and EDF scheduling. We conducted experiments based on
a simulator we implemented ourselves in Java SE 21. We consider rate-monotonic (RM)
scheduling as the most typical form of fixed-priority scheduling. RM assigns higher priority
to tasks with shorter periods. We conduct our evaluation by performing experiments with
a custom-built Java simulator, allowing us to ascertain the number of randomly gener-
ated task sets that can guarantee the absence of deadline violations under the evaluated
techniques.

We evaluate the performance of our schedulability analysis by comparing its results
with those of the scheduling process, specifically looking for any deadline violations. This
comparison gives us a reliable measure of the scheduler’s accuracy, considering the integral
relationship between the scheduling algorithm and the real-time analysis technique.

To gauge the efficiency of the methodologies, we create a range of task sets at random.
This is achieved through the application of a task set generation method extensively
employed in a variety of prior studies [15,27,28]. The task sets generated are of two types,
characterized by implicit and constrained deadlines, and are evaluated under four different
processor numbers, i.e., m ∈ {2, 4, 8, 16}. The utilization (Ci/Ti) of each task is determined
by either a bimodal or exponential distribution, with input parameters drawn from the
set {0.1, 0.3, 0.5, 0.7, 0.9} [11]. Depending on the given bimodal parameter p, a value for
Ci/Ti is uniformly selected from the ranges [0, 0.5) and [0.5, 1) with probabilities p and
1 − p, respectively. For a given exponential parameter 1/λ, the value is derived from the
exponential distribution characterized by the probability density function λ ⋅ exp(−λ ⋅ x).
Each task has a Ti value that is uniformly chosen within [1, 1000], while Ci is determined
by the bimodal or exponential parameter, and Di is randomly selected within the range
[Ci, Ti]. Based on these parameters, we generate task sets, beginning by creating an initial
set of m + 1 tasks. The generated task set is then tested against the necessary feasibility
condition described in [29]. If the task set does not pass this test, it is discarded and a new
set is generated. Conversely, if it meets the criteria, the set is included for further evaluation.
This task set is then used as a basis for the next one by adding an additional task, and the
process is repeated. The feasibility condition, used during testing, suggests that a task
set with a system utilization (Usys = ∑τi∈T Ci/Ti) greater than m cannot be scheduled by

Mathematics 2023, 11, 3547 10 of 14

any algorithm. We generate a total of 10,000 task sets for each bimodal or exponential
distribution with their respective input parameters (e.g., bimodal distribution with 0.1),
each individual value of m (e.g., m = 2), and each type of deadline (e.g., implicit deadline).
Given the ten different distribution configurations, four different values of m, and two
types of deadlines, a total of 400,000 task sets (10,000 ⋅ 10 ⋅ 4) are generated.

We demonstrate the applicability of our synthetically produced task sets by illustrating
a real-time system along with its task parameters, which is also presented in [30]. A
prominent instance of an expansive real-time system is a satellite system. Focusing on this
realm, we delve into a reconnaissance satellite system that employs a specialized antenna
capable of sending and receiving radio signals to capture images from the target region,
regardless of obstructions like nighttime or overcast conditions. The Antenna Control
System (ACSW) [31] governs this specific antenna. Within the satellite system, tasks are
orchestrated by RM on a specialized RTOS termed RTEMS (Real-Time Executive for Multi-
Processor Systems) [32]. The ACSW oversees five main tasks: tHigh, tMilbus, tOne, tTwo,
and tSync, with the ensuing functionalities:

• “tHigh” processes each macro command (MCMD) from the ground station queue and
forwards relevant data to the other tasks.

• “tMilbus” fetches MCMDs using the MIL-STD-1553B protocol [33] and ensures the
authenticity of each MCMD via methods such as CRC prior to queuing.

• “tOne” supervises internal mode shifts, including equipment operations and telemetry
relay via the SpaceWire protocol [34].

• “tTwo” manages processes like FDIR, and crafts packets encapsulating system details
for transmission to ground control.

• “tSync” prepares operations whenever there’s excess computational capability.

Task metrics for ACSW are tabulated in Table 1. Parameters like Ti and Di are architect-
defined, while metrics such as BCET, WCET, and ACET are gauged from actual operational
conditions on the target system. This system boasts a 256MB SDRAM and operates on a
multi-processor system underpinning the FT Leon3 CPU architecture, clocked at 80 MHz,
complemented by SPARC BSP [35], which supports both MIL-STD-1553B (external) and
SpaceWire (internal) communication protocols. Notably, tSync operates flexibly, running
only when other tasks are not. Task frequencies align with their core purposes: MCMD
retrieval every 62.5 ms, MCMD reception every 125 ms, equipment mode switches every
250 ms, and system status updates every 500 ms. The task set crafting technique previously
explored yields multiple task combinations with assorted attributes. This versatility makes
it adaptable for diverse real-time systems with tasks operating in varying contexts.

Table 1. Task parameters (in milliseconds) for ACSW.

Ti Di WCET BCET ACET

tHigh 62.5 50 2.98 0.08 0.14

tMilbus 125 100 0.54 0.11 0.21

tOne 250 200 30.08 0.05 0.29

tTwo 500 400 231.72 37.7 147.5

We consider the following approaches.

• NPEDF: DA test for non-preemptive EDF that does not allow any preemption. For the
test, Equation (4) in Lemma 4 can be applied by substituting τlp(k) and Wi(Dk) by

τ ∖ τk and Ei(Dk) where Ei(Dk) = ⌊Dk
Tii

⌋ ⋅Ci +min(Ci, Dk − ⌊Dk
Tii

⌋) ⋅ Ti).

• SPEDF-CF: DA test for SP-CF with EDF in Theorem 3.
• NPRM: DA test for non-preeemptive RM in Lemma 4 that does not allow any preemption.
• SPRM-CF: DA test for SP-CF with RM in Theorem 3.

Mathematics 2023, 11, 3547 11 of 14

To evaluate the efficacy of the various schedulability analysis tests under consideration,
we start by determining the quantity of task sets deemed schedulable by each respective
technique. This is subsequently compared across different processor counts, ranging from
2 to 16 (denoted as m). We further delve into understanding the effect of the average task
set size (represented as n) and the average utilization of tasks in a set (denoted by Ci/Ti)
on the performance of each schedulability analysis technique. Figure 5 illustrates these
considerations when m = 2 and 16. Here, we focus on bimodal distributions with p = 0.9
and exponential distributions with both p = 0.1 and p = 0.9 parameters. Among the ten task
utilization distributions, the three are selected due to their distinct n (minimal, maximal,
and median) and Ci/Ti (maximal, minimal, and median). Each subplot in Figure 5 shows
the quantity of task sets that each schedulability test deems schedulable against the shifting
task set utilization (Usys = ∑τi∈T Ci/Ti) based on the assigned task utilization distribution.

 0

 50

 100

 150

 200

 0 0.5 1 1.5 2

SPRM-CF

NPRM

SPEDF-CF

NPEDF

T
h

e
 n

u
m

b
e

r
o

f
ta

s
k
 s

e
ts

 d
e

e
m

e
d

 s
c
h

e
d

u
la

b
le

Task set utilzation

(a)

 0

 50

 100

 150

 200

 0 0.5 1 1.5 2

SPRM-CF

NPRM

SPEDF-CF

NPEDF

T
h

e
 n

u
m

b
e

r
o

f
ta

s
k
 s

e
ts

 d
e

e
m

e
d

 s
c
h

e
d

u
la

b
le

Task set utilzation

(b)

 0

 50

 100

 150

 200

 0 0.5 1 1.5 2

SPRM-CF

NPRM

SPEDF-CF

NPEDF

T
h

e
 n

u
m

b
e

r
o

f
ta

s
k
 s

e
ts

 d
e

e
m

e
d

 s
c
h

e
d

u
la

b
le

Task set utilzation

(c)

 0

 50

 100

 150

 200

 0 4 8 12 16

SPRM-CF

NPRM

SPEDF-CF

NPEDF

T
h

e
 n

u
m

b
e

r
o

f
ta

s
k
 s

e
ts

 d
e

e
m

e
d

 s
c
h

e
d

u
la

b
le

Task set utilzation

(d)

 0

 50

 100

 150

 200

 0 4 8 12 16

SPRM-CF

NPRM

SPEDF-CF

NPEDF

T
h

e
 n

u
m

b
e

r
o

f
ta

s
k
 s

e
ts

 d
e

e
m

e
d

 s
c
h

e
d

u
la

b
le

Task set utilzation

(e)

 0

 50

 100

 150

 200

 0 4 8 12 16

SPRM-CF

NPRM

SPEDF-CF

NPEDF

T
h

e
 n

u
m

b
e

r
o

f
ta

s
k
 s

e
ts

 d
e

e
m

e
d

 s
c
h

e
d

u
la

b
le

Task set utilzation

(f)
Figure 5. Experiment results for m = 2 and 16. (a) Bimodal distribution with 0.9 for m = 2 (n = 3.1,
Ci/Ti = 0.56). (b) Exponential distribution with 0.1 for m = 2 (n = 11.6, Ci/Ti = 0.1). (c) Exponential
distribution with 0.9 for m = 2 (n = 4.3, Ci/Ti = 0.34). (d) Bimodal distribution with 0.9 for m = 16
(n = 19.8, Ci/Ti = 0.69). (e) Exponential distribution with 0.1 for m = 16 (n = 83.2, Ci/Ti = 0.1).
(f) Exponential distribution with 0.9 for m = 16 (n = 28.0, Ci/Ti = 0.4).

Our initial analysis, grounded on data from Figure 5, leads us to several observations
as follows.

Mathematics 2023, 11, 3547 12 of 14

O1. As can be seen in Figure 5b,e, all methods show high performance for distributions
with a low task utilization (Ci/Ti).

O2. In all cases, the RM series (i.e., LPRM-CF and NPRM) shows higher performance than
the EDF series (i.e., LPEDF-CF and NPEDF).

O3. In all cases, the techniques with SP-CF applied dramatically improve the performance
of RM and EDF for both m = 2 and m = 16.

O1 is due to the non-preemptive (e.g., for NPEDF and NPRM) or single-preemptive
(e.g., SPEDF-CF and SPRM-CF) characteristics of each approach. In such scheduling, a job
of τk of interest can be blocked by at most one lower priority job. Therefore, when the
distribution has a low average task utilization, the amount of blocking received from lower
priority tasks decreases.

O2 arises due to the pessimism in the schedulability analysis of NPEDF and SPEDF-CF,
compared to NPRM and SPRM-CF. Unlike RM, in the case of EDF, it assigns priority not to
the task itself but to each individual job. Therefore, in the schedulability analysis of NPEDF
and SPEDF-CF, when calculating the worst-case response time and comparing it with Dk, it
assumes interference from all tasks excluding the τk of interest. On the other hand, since
NPRM and SPRM-CF only consider tasks with higher priority than the τk of interest to
calculate the worst-case interference on τk, they show better performance than NPEDF and
SPEDF-CF in terms of the efficiency of the analysis.

O3 demonstrates the efficiency of SPCF in improving schedulability. As shown in
Theorems 2 and 3, under SPCF scheduling, the amount of interference received from higher-
priority jobs is reduced to a minimum contention-free maximum of Φi. This leads to the
improved performance compared to NPRM and NPEDF.

7. Discussion

We discuss the time complexity of the proposed methods as follows. Equation (7) is
applied to each task τi of the task set τ. For the first term of this equation, O(n) is needed,
and for the second term, O(n) is also required. Therefore, the total time complexity is O(n),
and when applied to n tasks, it becomes O(n2). The same goes for Equation (10).

In multi-processor real-time systems, global scheduling allows tasks to run on any
processor, providing increased flexibility and aiding load balancing [36]. However, this
flexibility comes at the cost of potential migration overheads and cache consistency issues.
EDF scheduling method prioritizes jobs with imminent deadlines due to their urgency and
is considered optimal for single-processor platforms [1]. Yet, in multi-processor contexts,
achieving peak performance entails not just addressing job urgency but also leveraging
the parallelism offered by using multiple processors concurrently. When setting priorities
at the job level, algorithms like EQDF [37] and SPDF [8] often outshine EDF. We consider
global scheduling, and their performance can be further enhanced by integrating them
with contention-free policies.

On the flip side, semi-partitioned scheduling mainly designates tasks to specific
processors while still allowing some tasks to migrate [38,39]. This approach melds the
benefits of task partitioning with the versatility of migration, enhancing cache efficiency,
reducing task contention, and curtailing wait times. Nevertheless, migration overheads
and algorithmic intricacies remain concerns. For semi-partitioned approaches, maximizing
the number of tasks allocated across processors is essential. Once designated, tasks can be
managed using ideal single-processor policies: EDF for task-level fixed priority and RM for
job-level fixed priority [1]. It is worth noting, however, that task partitioning is a recognized
NP-Hard challenge, and foundational partitioning techniques, like bin-packing, can exploit
only half of the available multi-processor power to maintain schedulability. The CF policy
strives for efficient multi-processor resource utilization. Given that EDF, which optimizes
computing resources, is already optimal for single processors, applying the CF policy there
would be superfluous. As such, integrating the CF policy within partitioned algorithms
delineates a distinct research trajectory.

Mathematics 2023, 11, 3547 13 of 14

8. Conclusions

In this paper, we presented SP-CF, a unique single-preemption scheduling strategy incor-
porating the CF policy. This strategy permits a single preemption during each job’s execution,
post a priority demotion in accordance with the CF policy. Furthermore, we proposed a novel
schedulability analysis methodology, named DA analysis, for SP-CF. This method ensures the
punctual execution of each task without deadline violations, applicable not only to fixed-priority
scheduling but also to EDF scheduling. Through extensive simulation testing, we showed that
SP-CF offers a considerable enhancement in schedulability compared to traditional algorithms
like rate-monotonic and earliest deadline first algorithms.

Looking ahead, there are several intriguing avenues for future research. For instance,
further improvements to the DA analysis technique can be explored, along with the in-
troduction of novel real-time analysis methodologies such as response-time analysis [40].
It would also be of interest to investigate the applicability of these techniques in mixed-
criticality systems, where tasks have differing degrees of importance. Extending the analysis
to cyber-physical systems, which involve the intertwined functioning of computational
and physical elements, also promises valuable insights.

Author Contributions: Conceptualization, J.L. and H.B.; methodology, J.L.; software, J.L.; validation,
J.L. and H.B.; formal analysis, J.L.; investigation, J.L.; resources, J.L.; data curation, J.L. and H.B.;
writing—original draft preparation, J.L.; writing—review and editing, J.L. and H.B.; visualization,
J.L.; supervision, J.L.; project administration, J.L.; funding acquisition, J.L. All authors have read and
agreed to the published version of the manuscript.

Funding: This work was supported by Incheon National University Research Grant in 2022. This
research was also supported in part by the Chung-Ang University Research Grants in 2021.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Liu, C.; Layland, J. Scheduling Algorithms for Multi-programming in A Hard-Real-Time Environment. J. ACM 1973, 20, 46–61.

[CrossRef]
2. Lee, J.; Chwa, H.S.; Lee, J.; Shin, I. Thread-Level Priority Assignment in Global Multiprocessor Scheduling for DAG Tasks. J. Syst.

Softw. 2016, 113, 246–256. [CrossRef]
3. Lee, J.; Shin, K.G. Development and Use of a New Control Task Model for Cyber-Physical Systems: A Real-Time Scheduling

Perspective. J. Syst. Softw. 2017, 126, 45–56. [CrossRef]
4. Zeng, G.; Matsubara, Y.; Tomiyama, H.; Takada, H. Energy-aware task migration for multiprocessor real-time systems. Future

Gener. Comput. Syst. 2016, 56, 220–228. [CrossRef]
5. Park, S.; Kim, J.H.; Fox, G. Effective real-time scheduling algorithm for cyber physical systems society. Future Gener. Comput. Syst.

2016, 56, 253–259. [CrossRef]
6. Lee, H.; Lee, J. Limited Non-Preemptive EDF Scheduling for a Real-Time System with Symmetry Multiprocessors. Symmetry

2020, 12, 172. [CrossRef]
7. Regnier, P.; Lima, G.; Massa, E.; Levin, G.; Brandt, S. RUN: Optimal Multiprocessor Real-Time Scheduling via Reduction to

Uniprocessor. In Proceedings of the IEEE Real-Time Systems Symposium (RTSS), Vienna, Austria, 29 November–2 December
2011; pp. 104–115.

8. Chwa, H.S.; Back, H.; Chen, S.; Lee, J.; Easwaran, A.; Shin, I.; Lee, I. Extending Task-level to Job-level Fixed Priority Assignment
and Schedulability Analysis Using Pseudo-deadlines. In Proceedings of the IEEE 33rd Real-Time Systems Symposium (RTSS),
San Juan, PR, USA, 4–7 December 2012; pp. 51–62.

9. Baker, T.P.; Cirinei, M.; Bertogna, M. EDZL Scheduling Analysis. Real-Time Syst. 2008, 40, 264–289. [CrossRef]
10. Lee, J.; Easwaran, A.; Shin, I. Maximizing Contention-Free Executions in Multiprocessor Scheduling. In Proceedings of the IEEE

Real-Time Technology and Applications Symposium (RTAS), Chicago, IL, USA, 11–14 April 2011; pp. 235–244.
11. Lee, J.; Easwaran, A.; Shin, I. Contention-Free Executions for Real-Time Multiprocessor Scheduling. ACM Trans. Embed. Comput.

Syst. 2014, 13, 1–69. [CrossRef]
12. Cirinei, M.; Baker, T.P. EDZL Scheduling Analysis. In Proceedings of the Euromicro Conference on Real-Time Systems (ECRTS),

Pisa, Italy, 4–6 July 2007; pp. 9–18.
13. Davis, R.I.; Burns, A. FPZL Schedulability Analysis. In Proceedings of the RTAS, Chicago, IL, USA, 11–14 April 2011; pp. 245–256.
14. Lee, J.; Shin, K.G. Schedulability Analysis for a Mode Transition in Real-Time Multi-core Systems. In Proceedings of the IEEE

Real-Time Systems Symposium (RTSS), Vancouver, BC, Canada, 3–6 December 2013; pp. 11–20.

http://doi.org/10.1145/321738.321743
http://dx.doi.org/10.1016/j.jss.2015.12.004
http://dx.doi.org/10.1016/j.jss.2017.01.004
http://dx.doi.org/10.1016/j.future.2015.07.008
http://dx.doi.org/10.1016/j.future.2013.10.003
http://dx.doi.org/10.3390/sym12010172
http://dx.doi.org/10.1007/s11241-008-9061-6
http://dx.doi.org/10.1145/2494530

Mathematics 2023, 11, 3547 14 of 14

15. Bertogna, M.; Cirinei, M.; Lipari, G. Schedulability Analysis of Global Scheduling Algorithms on Multiprocessor Platforms. IEEE
Trans. Parallel Distrib. Syst. 2009, 20, 553–566. [CrossRef]

16. Moir, M.; Ramamurthy, S. Pfair Scheduling of Fixed and Migrating Periodic Tasks on Multiple Resources. In Proceedings of the
IEEE Real-Time Systems Symposium (RTSS), Phoenix, AZ, USA, 1–3 December 1999.

17. Levin, G.; Funk, S.; Sadowski, C.; Pye, I.; Brandt, S. DP-FAIR: A Simple Model for Understanding Optimal Multiprocessor
Scheduling. In Proceedings of the Euromicro Conference on Real-Time Systems (ECRTS), Brussels, Belgium, 6–9 July 2010;
pp. 3–13.

18. Baek, H.; Lee, J.; Shin, I. Multi-Level Contention-Free Policy for Real-Time Multiprocessor Scheduling. J. Syst. Softw. 2018,
137, 36–49. [CrossRef]

19. Ekelin, C. Clairvoyant Non-Preemptive EDF Scheduling. In Proceedings of the Euromicro Conference on Real-Time Systems
(ECRTS), Dresden, Germany, 5–7 July 2006; pp. 23–32.

20. Nasri, M.; Kargahi, M. Precautious-RM: A predictable non-preemptive scheduling algorithm for harmonic tasks. Real-Time Syst.
2014, 50, 548–584. [CrossRef]

21. Nasri, M.; Fohler, G. Non-work-conserving scheduling of non-preemptive hard real-time tasks based on fixed priorities. In
Proceedings of the International Conference on Real-Time Networks and Systems, Lille, France, 4–6 November 2015; pp. 309–318.

22. Nasri, M.; Fohler, G. Non-work-conserving non-preemptive scheduling: Motivations, challenges, and potential solutions. In
Proceedings of the Euromicro Conference on Real-Time Systems (ECRTS), Toulouse, France, 5–8 July 2016; pp. 165–175.

23. Nasri, M.; Brandenburg, B. Offline Equivalence: A Non-preemptive Scheduling Technique for Resource-Constrained Embedded
Real-Time Systems. In Proceedings of the IEEE Real-Time Technology and Applications Symposium (RTAS), Pittsburg, PA, USA,
18–21 April 2017; pp. 75–86.

24. Nasri, M.; Brandenburg, B. An exact and sustainable analysis of non-preemptive scheduling. In Proceedings of the IEEE Real-Time
Systems Symposium (RTSS), Paris, France, 5–8 December 2017; pp. 12–23.

25. Nasri, M.; Gerhard, F. Open problems on non-preemptive scheduling of mixed-criticality real-time systems. In Proceedings of the
Real-Time Scheduling Open Problems Seminar, Lund, Sweden, 7 July 2015; pp. 17–18.

26. Bertogna, M.; Cirinei, M. Response-Time Analysis for globally scheduled Symmetric Multiprocessor Platforms. In Proceedings of
the IEEE Real-Time Systems Symposium (RTSS), Tucson, AZ, USA, 3–6 December 2007; pp. 149–160.

27. Baker, T. An Analysis of EDF Schedulability on a Multiprocessor. IEEE Trans. Parallel Distrib. Syst. 2005, 16, 760–768. [CrossRef]
28. Andersson, B.; Bletsas, K.; Baruah, S. Scheduling Arbitrary-Deadline Sporadic Task Systems on Multiprocessor. In Proceedings of

the IEEE International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA), Kaohisung,
Taiwan, 25–27 August 2008; pp. 197–206.

29. Baker, T.P.; Cirinei, M. A Necessary and Sometimes Sufficient Condition for the Feasibility of Sets of Sporadic Hard-deadline
Tasks. In Proceedings of the IEEE Real-Time Systems Symposium (RTSS), Rio de Janeiro, Brazil, 5–8 December 2006; pp. 178–190.

30. Baek, H.; Lee, J. Improved schedulability analysis of the contention-free policy for real-time systems. J. Syst. Softw. 2019,
154, 112–124. [CrossRef]

31. Baek, H.; Lee, H.; Lee, H.; Lee, J.; Kim, S. Improved Schedulability Analysis for Fault-Tolerant Space-Borne SAR System. In
Proceedings of the Conference on Korea Institute of Military Science and Technology (KIIT), Deajeon, Republic of Korea, 7–8 June
2018; pp. 1231–1232.

32. RTEMS Community. RTEMS Real-Time Operating System. Available online: https://www.rtems.org (accessed on 14 August 2023).
33. Excalibur Systems. MIL-STD-1553B. Available online: https://www.mil-1553.com (accessed on 14 August 2023).
34. European Space Agency. SpaceWire. Available online: http://spacewire.esa.int (accessed on 14 August 2023).
35. Cobham Gaisler. VxWorks 7 SPARC Architectural Port and BSP. Available online: https://www.gaisler.com (accessed on

14 August 2023).
36. Fisher, N.W. The Multiprocessor Real-Time Scheduling of General Task Systems. Ph.D. Thesis, University of North Carolina,

Chapel Hill, NC, USA, 2007.
37. Back, H.; Chwa, H.S.; Shin, I. Schedulability Analysis and Priority Assignment for Global Job-Level Fixed-Priority Multiprocessor

Scheduling. In Proceedings of the IEEE Real Time and Embedded Technology and Applications Symposium (RTAS), Beijing,
China, 16–19 April 2012; pp. 297–306.

38. Brandenburg, B.B.; Gul, M. Global scheduling not required: Simple, near-optimal multiprocessor real-time scheduling with
semi-partitioned reservations. In Proceedings of the IEEE Real-Time Systems Symposium (RTSS), Porto, Portugal, 29 November–
2 December 2016; pp. 1–15.

39. Baruah, S.; Fisher, N. The Partitioned Multiprocessor Scheduling of Deadline-Constrained Sporadic Task Systems. IEEE Trans.
Comput. 2006, 55, 918–923. [CrossRef]

40. Joseph, M.; Pandya, P. Finding response times in a real-time system. Comput. J. 1986, 29, 390–395. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TPDS.2008.129
http://dx.doi.org/10.1016/j.jss.2017.11.027
http://dx.doi.org/10.1007/s11241-014-9203-y
http://dx.doi.org/10.1109/TPDS.2005.88
http://dx.doi.org/10.1016/j.jss.2019.04.067
https://www.rtems.org
https://www.mil-1553.com
http://spacewire.esa.int
https://www.gaisler.com
http://dx.doi.org/10.1109/TC.2006.113
http://dx.doi.org/10.1093/comjnl/29.5.390

	Introduction
	Related Work
	System Model
	Single Preemption Scheduling with Cf Policy
	Scheduling
	Contention-Free Slots

	Schedulability Analysis under SP-CF Scheduling
	Da for SP-CF with Fixed-Priority Scheduling
	Da for SP-CF with Edf Scheduling

	Evaluation
	Discussion
	Conclusions
	References

