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Abstract: In this article, we explore the construction of Jakimovski–Leviatan operators for Durrmeyer-
type approximation using Sheffer polynomials. Constructing positive linear operators for Sheffer
polynomials enables us to analyze their approximation properties, including weighted approxima-
tions and convergence rates. The application of approximation theory has earned significant attention
from scholars globally, particularly in the fields of engineering and mathematics. The investiga-
tion of these approximation properties and their characteristics holds considerable importance in
these disciplines.
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1. Introduction and Preliminaries

The Approximation theory, which serves as a vital connection between pure and prac-
tical mathematics, has recently benefitted a variety of computer techniques. It covers the
optimal method for approximating functions utilizing more straightforward or accessible
functions and processes based on the use of contemporary approximation technology. In
many situations requiring the approximation of continuous functions, positive approxi-
mation techniques naturally emerge. This is especially true when additional qualitative
features, such as monotonicity, convexity, pattern preservation, etc., are required.

To address practical and theoretical inquiries in various fields, such as measurement
theory, partial differential equations (PDEs), and probability theory, the positive approxima-
tion methods introduced by Korovkin [1] have emerged as crucial techniques. Korovkin’s
1953 development of a simple and effective criterion for determining if a given series of
positive linear operators on a space, C[0, 1], is an approximation process, i.e., if Kl(h)→ h
uniformly on [0, 1] for every h ∈ C[0, 1], has had significant implications. This methodology
has been extended to abstract spaces, like Banach lattices, Banach algebras, and Banach
spaces, making it applicable in diverse contexts. Numerous researchers have explored the
properties and convergence rates of Korovkin-type approximations. Notable contributions
can be found in works such as [1–11]. These studies have provided valuable insights into
approximation theory. Additionally, the literature offers further valuable information on
approximation theories, as can be seen in references such as [12–16].

Appell polynomials [17] are a special set of functions used in mathematical analysis
and various areas of applied mathematics. They are often used to represent and approx-
imate other functions in a given context. These polynomials have important properties
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that make them useful in different mathematical and engineering applications. These
polynomials are given by the generating relation:

J(ρ) exp (uρ) =
∞

∑
k=0

Jk(u)
ρk

k!
, (1)

where J(ρ) is expressed as follows:

J(ρ) =
∞

∑
k=0

Jk
ρk

k!
, ρ0 6= 0. (2)

Recently, substantial strides and breakthroughs have emerged in the expansion of
mathematical physics, with a particular focus on the realm of special functions. This modern
evolution has established a robust analytical framework, serving as the bedrock for solving
a multitude of intricate problems in the spheres of mathematical physics and engineering.
These strides have reverberated across an array of domains, showcasing their versatile
applications. Notably, the introduction of special functions endowed with approximation
properties stands as a pivotal leap forward within the special functions theory. These
functions have garnered acknowledgment for their paramount significance and pertinence
in both pragmatic real-world applications and the realm of pure mathematics.

Karaisa [18] introduced Durrmeyer-type Jakimovski–Leviatan operators for a specified
special polynomial sequence and, thus, are designed to operate on these special class of
mathematical functions called Appell polynomials, given by Expression (1), denoted as
jk(u), where k is a non-negative integer or zero.

The operators introduced by Karaisa are named after Durrmeyer, Jakimovski, and
Leviatan, which suggests that these operators may have been inspired by or are related
to the works of these mathematicians. The specific details of these operators and their
properties are elaborated in [18].

The scope of application for these operators is restricted to real-valued continuous
and bounded functions. In other words, the functions they operate on are defined for all
non-negative real numbers and do not exhibit extreme behavior or fluctuations. This choice
of function class is common in mathematical analysis, as it allows for well-behaved and
manageable mathematical operations.

Moreover, the functions on which these operators act are defined on the interval,
[0, ∞). This interval spans from 0 to positive infinity and is often used when dealing with
functions that have positive domain values or grow without bounds. These operators were
specifically designed for real-valued continuous and bounded functions, f , defined on the
interval, [0, ∞):

Ln( f ; u) =
e−nu

r(1)

∞

∑
k=0

jk(nu)
B(n + 1, k)

∫ ∞

0

ρk−1

(1 + ρ)n+k+1 f (ρ)dρ, u ≥ 0. (3)

Here, B(k + 1, n) denotes the Beta function, which is defined as follows:

B(η, ϑ) =
∫ ∞

0

ρη−1

(1 + ρ)η+ϑ
dρ = Γ(η)Γ(ϑ)

Γ(η+ϑ)
,

(
η, ϑ ≥ 0

)
.

2. Construction of Operators

Building upon Karaisa’s research [18], we develop positive linear operators utiliz-
ing Sheffer polynomials [19]. These polynomials possess generating expressions of the
following form:

r(ρ)euH(ρ) =
∞

∑
k=0
Sk(u)ρk, (4)
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where the analytical functions r and H are defined as follows:

r(ρ) =
∞

∑
k=0

rkρk, r0 6= 0, (5)

H(ρ) =
∞

∑
k=0

hkρk, h1 6= 0(k ≥ 0). (6)

The Sheffer polynomials fulfilling our restriction are listed as follows:

(i) r(1) 6= 0, rm−khk
r(1) ≥ 0, 0 6 k 6 m, m = 0, 1, 2, · · ·

(ii) The generating function (3) and the power series presented above converge for
values of

|ρ| < R; R > 1. (7)

Additionally, the following method is used to introduce the positive linear operators
using Sk(u) polynomials while taking the aforementioned limitations into account:

(r(1))−1

exp nuH(1)

∞

∑
k=0

Sk(nu)
B(n + 1, k)

∫ ∞

0

ρk−1

(1 + ρ)n+k+1 f (ρ)dρ =: Tn( f ; u), (8)

where u ≥ 0 and n ∈ N.

Remark 1. For H(ρ) = eρ, H(1) = 1 and Sk(nu) = jk(nu), in this case the operator (8)
reduces to the operator given by (3).

Remark 2. For H(ρ) = eρ, g(ρ) = 1 and Sk(nu) = (nu)k

k! we obtain the Sźasz operators [10].

3. Approximation Properties of Tn Operators

Significant advancements in the convergence of sequences, (Kn( f , u))∞
n=1, where

Kn( f , u) represents positive linear operators, were made by Korovkin. Notably, if Kn( f , u)
uniformly converges to f in specific scenarios, such as 1, ρ, ρ2 or 1, cos ρ, sin ρ ≡ f (ρ), it
also exhibits this convergence behavior for any given function, f .

Our goal is to prove the convergence theorem and determine the order of convergence
for the operators Tn( f ; u), as given in Equation (8).

Lemma 1. We extract the succeeding generating expression from (3) as follows:

r(1)enuH(1) =
∞

∑
k=0
Sk(nu),

(
r′(1) + nur(1)

)
enuH(1) =

∞

∑
k=0

kSk(nu),

[
n2u2r(1) +

(
2r′(1) + r(1)H′′(1) + r(1)

)
nu +

(
r′′(1) + r′(1)

)]
enuH(1) =

∞

∑
k=0

k2Sk(nu),

[
r(1)n3u3 +

(
r(1)H′′′(1) + 3r′(1)H′′(1) + 3r′′(1) + r(1) + 6r′(1) + 3r(1)H′′(1)

)
nu

+
(

3r(1)H′′(1) + 3r′(1) + 3r(1)
)

n2u2 +
(

r′′′(1) + 3r′′(1) + r′(1) + 3r′′(1)
)]

enuH(1)

=
∞

∑
k=0

k3 Sk(nu),[
r(1)n4u4 +

(
4r′(1) + 6r(1)

(
H′′(1) + 1

))
n3u3 +

(
6r′′(1) + r′(1)

(
12H′′(1) + 18

)
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+
(
3(H′′(1))2 + 4H′′′(1) + 18H′′(1) + 7

)
r(1)

)
n2u2 +

(
4r′′′(1) +

(
6H′′(1) + 18

)
r′′(1)

+
(
4H′′′(1) + 18H′′(1) + 14

)
r′(1) +

(
H′′′′(1) + 6H′′′(1) + 7H′′(1) + 1

)
r(1)

)
nu

+
(

r′′′′(1) + 6r′′′(1) + 7r′′(1) + r′(1)
)]

enuH(1) =
∞

∑
k=0

k4Sk(nu).

Lemma 2. For all u ∈ [0, ∞) and ei = ρi, we have the following:

Tn(e0; u) = 1, (9)

Tn(e1; u) = u +
A0

n
, (10)

Tn(e2; u) =
1
z−1

[
n2u2 + nu B0 +C0

]
, (11)

Tn(e3; u) =
1
z−2

[
n3u3 + n2u2A1 + nu A2 +A3

]
, (12)

Tn(e4; u) =
1
z−3

[
n4u4 + n3u3B1 + n2u2B2 + nu B3 +B4

]
, (13)

where

en = ρn,A0 =
r′(1)
r(1)

,B0 =
2r(1) + 2r′(1)H′′(1)r(1)

r(1)
,C0 =

r′′(1) + 2r′(1)
r(1)

(14)

and

A1 =
3r′(1) + r(1)(6 + 3H′′(1))

r(1)
,

A2 =
3r′′(1) + r′(1)(12 + 3H′′(1)) + r(1)(H′′′(1) + 6H′′(1) + 5)

r(1)
,

A3 =
r′′′(1) + 6r′′(1) + 5r′(1)

r(1)
,

(15)

B1 =
4r′(1) + r(1)(12 + 6H′′(1))

r(1)
,

B2 =
6r′′(1) + r′(1)(36 + 12H′′(1)) + r(1)(4H′′′(1) + 3(H′′(1))2 + 36H′′(1) + 32)

r(1)
,

B3 =
4r3(1) + 36r′′(1) + 64r′(1) + 17r(1)

r(1)
,

B4 =
r4(1) + 12r3(1) + 32r′′(1) + 17r′(1)

r(1)

and
z−n = Πn

i=0(n− i). (16)

Proof. Substituting f (ρ) = 1 into operator Equation (8), we obtain the following expression:

Tn(e0; u) =
(r(1))−1

exp nuH(1)

∞

∑
k=0

Sk(nu)
B(n + 1, k)

∫ ∞

0

ρk−1

(1 + ρ)n+k+1 dρ
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=
(r(1))−1

exp nuH(1)

∞

∑
k=0

Sk(nu) B(k, n + 1)
B(n + 1, k)

=
(r(1))−1

exp nuH(1)
enuH(1) r(1)

= 1. (17)

By substituting f (ρ) = ρ into operator Equation (8), we obtain the following expression:

Tn(e1; u) =
(r(1))−1

exp nuH(1)

∞

∑
k=0

Sk(nu)
B(n + 1, k)

∫ ∞

0

ρk

(1 + ρ)n+k+1 dρ

=
(r(1))−1

exp nuH(1)

∞

∑
k=0

Sk(nu)
B(n + 1, k)

B(n, k + 1)

=
(r(1))−1

exp nuH(1)

∞

∑
k=0
Sk(nu)

k
n

=
e−nuH(1)

n r(1)

∞

∑
k=0

k Sk(nu)

= u +
r′(1)
nr(1)

= u +
A0

n
. (18)

By substituting f (ρ) = ρ2 into operator Equation (8), it follows that

Tn(e2; u) =
(r(1))−1

exp nuH(1)

∞

∑
k=0

Sk(nu)
B(n + 1, k)

∫ ∞

0

ρk+1

(1 + ρ)n+k+1 dρ

=
(r(1))−1

exp nuH(1)

∞

∑
k=0

Sk(nu)
B(n + 1, k)

B(n− 1, k + 2)

=
(r(1))−1

exp nuH(1)

∞

∑
k=0
Sk(nu)

k + k2

z−1

=
e−nuH(1)

z−1 r(1)

∞

∑
k=0

k Sk(nu) + k2 Sk(nu)

=
e−nuH(1)

z−1

[
n2u2r(1) + nu

(
2r′(1) + r(1)(2 +H′′(1))

)
+r′′(1) + (r′(1))2 + nur(1)

]
enuH(1)

=
1
z−1

[
n2u2 + nuB0 +C0

]
. (19)

Consequently, by substituting f (ρ) = ρ3 into operator Equation (8), we obtain the
following expression:

Tn(e3; u) =
(r(1))−1

exp nuH(1)

∞

∑
k=0

Sk(nu)
B(n + 1, k)

∫ ∞

0

ρk+2

(1 + ρ)n+k+1 dρ

=
(r(1))−1

exp nuH(1)

∞

∑
k=0

Sk(nu)
B(n + 1, k)

B(n− 2, k + 3)

=
(r(1))−1

exp nuH(1)

∞

∑
k=0
Sk(nu)

k + 3k2 + k3

z−2
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=
e−nuH(1)

z−2 r(1)

∞

∑
k=0

kSk(nu) + 3k2Sk(nu) + k3Sk(nu)

=
e−nuH(1)

z−2

[
n3u3 + n2u2A1 + nuA2 +A3

]
(20)

Again, put f (ρ) = ρ4 in operator Equation (8), we have the following:

Tn(e4; u) =
(r(1))−1

exp nuH(1)

∞

∑
k=0

Sk(nu)
B(n + 1, k)

∫ ∞

0

ρk+3

(1 + ρ)n+k+1 dρ

=
(r(1))−1

exp nuH(1)

∞

∑
k=0

Sk(nu)
B(n + 1, k)

B(n− 3, k + 4)

=
(r(1))−1

exp nuH(1)

∞

∑
k=0
Sk(nu)

3k + 7k2 + 6k3 + k4

z−3

=
e−nuH(1)

z−3 r(1)

∞

∑
k=0

3kSk(nu) + 7k2Sk(nu) + 6k3Sk(nu) + k4Sk(nu)

=
e−nuH(1)

z−3

[
n4u4 + n3u3 B1 + n2u2 B2 + nu B3 +B4

]
. (21)

Lemma 3. The following identities hold for the operators, Tn( f ; u), and for u ∈ [0, ∞):

Tn(s− u; u) =
A0

n
, (22)

Tn((s− u)2; u) =

(
u2 + 2u + 4H′′(1)

n− 1

)
+

(
2ur′(1)

n(n− 1)r(1)

)
+

(
r′′(1) + 2r′(1)
n(n− 1)r(1)

)
(23)

Tn((s− u)4; u) =

(
n4

z−3
− 4

n3

z−2
+ 6

n2

z−1
− 4 + 1

)
u4

+

(
n3

z−3
B1 − 4

n2

z−2
A1 + 6

n
z−1

B0 − 4
A0

z−0

)
u3

+

(
n2

z−3
B2 − 4

n
z−2

A2 + 6
C0

z−1

)
u2

+

(
n
z−3

B3 − 4
A3

z−2

)
u +

B4

z−3
(24)

where A0, B0, C0, A1, A2, A3, B1, B2, B3, B4, and z−1 are given by Equations (14)–(17).

Proof. Due to the linearity property of Tn, it can be inferred that

Tn(s− u; u) = Tn(s; u)− uTn(1; u),

Tn((s− u)2; u) = Tn(s2; u)− 2uTn(s; u) + u2Tn(1; u),

Tn((s− u)4; u) = Tn(s4; u)− 4uTn(s3; u) + 6u2Tn(s2; u),

− 4u3Tn(s; u) + u4Tn(1; u),

By utilizing Lemma (2), we can deduce statements (22), (23), and (24) accordingly.
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Theorem 1. For f ∈ C[0, ∞) ∩ E and | f (u)| 6 ceAu, then lim
n→∞

Tn( f ; u) = f (u) and the opera-

tors, Tn, converge uniformly in each compact subset of [0, ∞), where E := f : for all u ∈ [0, ∞),
A ∈ R, and c ∈ R+.

Proof. Considering Lemma (2), it can be deduced that

lim
n→∞

Tn(ei, u) = ui, i = 0, 1, 2.

Uniform convergence is verified on every compact subset of [0, ∞). By applying
Korovkin’s theorem, we obtain the desired result.

4. Order of Convergence

By employing the definitions of modulus II of continuity and Peetre’s K-functional,
along with the lemmas of Gavrea and Raşa [2] and Zhuk [20], the following conclusions
can be drawn:

Theorem 2. Consider a function, f m defined on C[0, a]. We can establish the following results:

|Tn( f ; u)− f (u)| ≤ 2h2a|| f ||+ 3
4
(a + 2 + h2)w2( f ; h), (25)

where
4
√

Tn((s− u)2; u) = h := hn(u).

Proof. Let us consider the second-order Steklov function, fh, associated with f . Conse-
quently, with the presence of Expression (9), we can deduce the following:

|Tn( f ; u)− f (u)| ≤ |Tn( f − fh; u)|+ | fh(u)− f (u)|+ |Tn( fh; u)− fh(u)|,
≤ |Tn( fh; u)− fh(u)|+ 2|| fh − f ||. (26)

By utilizing the inequality, ||gh − g|| ≤ 3
4W2(g; h) becomes

|Tn( f ; u)− f (u)| ≤ 3
2

w2( f ; h) + |Tn( fh; u)− fh(u)|. (27)

Considering that fh ∈ C2[0, a], we can infer the following from Lemma (12):

|Tn( fh; u)− fh(u)| ≤ || f ′h||
√

Tn((s− u)2; u) +
1
2
|| f ′′h || Tn((s− u)2; u), (28)

By utilizing the inequality, ||g′′h || ≤
3

2h2 W2(g; h), Expression (28) gives

|Tn( fh; u)− fh(u)| ≤ || f ′h||
√

Tn((s− u)2; u) +
3

4h2 w2( f ; h)Tn((s− u)2; u). (29)

Furthermore, by utilizing inequality

|| f ′h|| ≤
2
η
|| fh||+

a
2
|| f ′′h ||,

in combination with ||g′′h || ≤
3

2h2 W2(g; h) gives

|| f ′h|| ≤
2
a
|| f ||+ 3a

4h2 w2( f ; h). (30)
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By incorporating inequality (30) into inequality (29) and setting h = 4
√

Tn((s− u)2; u),
we obtain the following:

|Tn( fh; u)− fh(u)| ≤
2
a
|| f || h2 +

3
4
(a + h2)w2( f ; h). (31)

By employing inequality (31) and inequality (27), we can establish assertion (25).

Theorem 3. If f ∈ C2
B[0∞), then

|Tn( f ; u)− f (u)| ≤ ξ|| f ||C2
B
, (32)

where

ξ : = ξn(u)

=
1

n− 1

[
u2

2
+
(

n(1 +
H′′(1)

2
) +

r′(1)
r(1)

)u
n
+

r′′(1)
2 + r′(1)

nr(1)

]
.

Proof. By leveraging the linearity property of the operator, Tn; Taylor’s expansion of f ;
and statement (9), the following becomes apparent:

Tn( f ; u)− f (u) = f ′(u)Tn(s− u; u) +
1
2

f ′′(η)Tn((s− u)2; u), η ∈ (u, s). (33)

Based on Lemma (2), the following can be observed:

Tn(s− u; u) =
A0

n
≥ 0 (34)

For s ≥ u, by incorporating Lemma (2) and (11) into (33), we can express this as
follows:

|Tn( f ; u)− f (u)| ≤
{

r′(1)
n r(1)

}
|| f ′||CB

+
1
2

{
u2 + 2u + uH′′(1)

n− 1
+

2ur′(1)
n(n− 1)r(1)

+
r′′(1) + 2r′(1)
n(n− 1)r(1)

}
|| f ||C2

B
.

This concludes the proof.

Corollary 1. Let f ∈ CB[0, ∞); thus, one has

|Tn( f ; u)− f (u)| 6 2M{w2( f ;
√

δ) + min(1, δ)|| f ||CB}, (35)

where
δ :=

1
2

ξn(u) = δn(u)

Moreover, the constant, M≥ 0, remains fixed and is independent of both f and δ. Additionally,
ξn(u) exhibits similarity to that of Theorem (3).

Proof. Let us consider g ∈ C2
B[0, ∞). According to Theorem (3), we obtain the following:

|Tn( f ; u)− f (u)| 6 |Tn( f − r; u)|+ |Tn(r; u)− r(u)|+ |r(u)− f (u)|

6 2|| f − r||CB + ξ||r||C2
B
= 2

[
|| f − r||CB + δ||r||C2

B

]
(36)
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As the left-hand side is not influenced by the choice of r ∈ C2
B[0, ∞), we can conclude

the following:
|Tn( f ; u)− f (u)| 6 2K( f ; δ), (37)

Assertion (35) is established by utilizing Peetre’s k-functional.

5. Weighted Approximation

Weighted approximation is a mathematical technique that involves modifying the
traditional notion of approximation by assigning varying degrees of importance or sig-
nificance (weights) to different parts of a given function or data set. This approach has
several advantages and significant applications across various fields of mathematics, sci-
ence, and engineering, as many real-world phenomena exhibit variations and complexities
that are not adequately captured by simple uniform approximations. This allows for
a more flexible and nuanced representation of such phenomena by assigning different
weights to different regions or points, emphasizing their importance or relevance. It further
enables the customization of approximation methods to meet specific requirements or
constraints. By assigning appropriate weights, it becomes possible to prioritize certain
characteristics or properties of the function being approximated, resulting in a more accu-
rate representation within a defined context. Further, it can enhance numerical stability by
reducing the influence of oscillations or rapid changes in the function being approximated.
This can lead to more stable and robust algorithms, especially in numerical analysis and
computational mathematics.

In the subsequent section, we present certain approximation properties for the operator,
Tn, within a space of weighted continuous functions. Specifically, we focus on a particular
class of functions defined on [0, ∞).

Let us consider the set of functions, h, that satisfy the condition, |H(y)| ≤ MH(1 + u2),
where Mh is a constant dependent on h. Here, Bu2[0, ∞) denotes the space defined on [0, ∞),
and Cu2[0, ∞) represents the subspace of B2

u[0, ∞) consisting of all continuous functions.
Moreover, C∗u2 [0, ∞) as the subspace of h ∈ Cu2 [0, ∞), for which lim|u|→∞

H(u)
1+u2 is finite. It is

evident that C∗u2 [0, ∞) ⊂ Cu2 [0, ∞) ⊂ B2
u[0, ∞). The norm on C∗u2 [0, ∞) is given as follows:

||h||u2 = sup
u∈[0,∞)

|H(u)|
1 + u2 . (38)

Lemma 4. Let the weight function ρ(u) = 1 + u2. If h ∈ Cy2 [0, ∞), then

||Tn(ρ; u)||u2 ≤ 1 + M.

Proof. Using Equations (9) and (11) from Lemma (2), we can deduce the following expres-
sions for n > 1:

Tn(ρ; u) = 1 +
1
z−1

[
n2u2 + nu B0 +C0

]
. (39)

Then, we deduce

||Tn(ρ; u)||u2 = sup
u≥0

[
1

1 + u2 +
nu2

(1 + u2)(n− 1)
+ 2u

(
r′(1) + r(1)

(
1 + H′′(1)

2
)

r(1)
(
1 + u2

)(
n− 1

) )

+
r′′(1) + 2r′(1)

(1 + u2)r(1)(n− 1)

]

≤ sup
u≥0

{
1 +

n
(n− 1)

+
r′(1) + r(1)

(
1 + H′′(1)

2
)

r(1)
(
n− 1

) +
r′′(1) + 2r′(1)

r(1)(n− 1)

}
.
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We have
lim

n→∞

n
n− 1

= 1, lim
n→∞

1
n− 1

= 0 and lim
n→∞

1
n2 − n

= 0.

Thus, in view of these assumptions, there exists a positive constant, M, such that

||Tn(ρ; u)||u2 ≤ 1 + M.

Thus, the proof is deduced.

Theorem 4. Consider the operators, Tn, defined by Equation (8) and the weight function, ρ(u) =
1 + u2. For any f ∈ C∗u2[0, ∞), the following holds:

lim
n→∞

||Tn( f ; u)− f (u)||u2 = 0.

Proof. Applying the weighted Korovkin theorem as stated by Gadzhiev [21], it suffices to
verify the following conditions:

||Tn(1; u)− 1||u2 = 0. (40)

Expression (10) follows

||Tn(e1; u)− e1(u)||u2 = sup
u≥0

∣∣∣ u
1 + u2 +

r′(1)
nr(1)(1 + u2)

− u
1 + u2

∣∣∣. (41)

Thus,
lim

n→∞
||Tn(e1; u)− e1(u)||u2 = 0, (42)

Then, in view of (11), it follows that

||Tn(e2; u)− e2(u)||u2 = sup
u≥0

∣∣∣∣∣ nu2

(n− 1)(1 + u2)

+
nuB0

(n2 − n)(1 + u2)
+

C0

n(n− 1)(1 + u2)
− u2

1 + u2

∣∣∣∣∣.
Therefore,

lim
n→∞

||Tn(e2; u)− e2(u)||u2 = 0.

Therefore, the proof is deduced.

6. Concluding Remarks

This article delved into the construction of Jakimovski–Leviatan operators for Durrmeyer-
type approximations utilizing Sheffer polynomials. By developing positive linear operators
based on Sheffer polynomials, we conducted a comprehensive analysis of their approxi-
mation properties, encompassing weighted approximations and convergence rates. The
field of approximation theory has received substantial attention from researchers world-
wide, particularly within the realms of engineering and mathematics. The study of these
approximation properties and their underlying characteristics holds significant importance
in advancing these disciplines.

One can examine the error estimation for the approximation using the Sheffer fam-
ily of operators. Additionally, it is possible to illustrate the approximate solution, f̌ (t),
of any continuous function using positive linear operators, Tn( f ; u). In a subsequent
study, extensions of these operators, such as Sheffer polynomials and other members of
the Kantrovich–Stancu type, will be utilized to investigate the Kantrovich–Stancu type
more extensively.
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