
Citation: Wang, X.; Han, Y.; Ni, Q.; Li,

R.; Goldman, R. Birational Quadratic

Planar Maps with Generalized

Complex Rational Representations.

Mathematics 2023, 11, 3609. https://

doi.org/10.3390/math11163609

Academic Editor: Jay Jahangiri

Received: 28 July 2023

Revised: 18 August 2023

Accepted: 19 August 2023

Published: 21 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Birational Quadratic Planar Maps with Generalized Complex
Rational Representations †

Xuhui Wang 1,* , Yuhao Han 1, Qian Ni 2, Rui Li 1 and Ron Goldman 3

1 Department of Mathematics, Hohai University, Nanjing 211100, China
2 School of Physical and Mathematical Sciences, Nanjing Tech University, Nanjing 211816, China
3 Department of Computer Science, Rice University, Houston, TX 77251, USA; rng@rice.edu
* Correspondence: xhw@hfut.edu.cn
† This paper is an extension of our paper published in Wang, X.; Wu, M.; Liu, Y.; Ni, Q. Constructing quadratic

birational maps via their complex rational representation. Comput. Aided Geom. Desi. 2021, 85, 101969.

Abstract: Complex rational maps have been used to construct birational quadratic maps based
on two special syzygies of degree one. Similar to complex rational curves, rational curves over
generalized complex numbers have also been constructed by substituting the imaginary unit with
a new independent quantity. We first establish the relationship between degree one, generalized,
complex rational Bézier curves and quadratic rational Bézier curves. Then we provide conditions to
determine when a quadratic rational planar map has a generalized complex rational representation.
Thus, a rational quadratic planar map can be made birational by suitably choosing the middle Bézier
control points and their corresponding weights. In contrast to the edges of complex rational maps of
degree one, which are circular arcs, the edges of the planar maps can be generalized to hyperbolic
and parabolic arcs by invoking the hyperbolic and parabolic numbers.
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1. Introduction

A birational planar map is a rational function p(s, t) from R2 to R2 with a rational
function p−1(x, y) inverse to p(s, t), i.e., p−1(p(s, t)

)
= (s, t). The research on birational

maps traces its history back to 1863 when birational maps were known as Cremona transfor-
mations. H. Hudson published a monograph in 1927 to classify Cremona transformations
in the plane and in 3D space [1]. However, [1] predates by over half a century Bézier and
B-spline curves and surfaces.

Free-form deformation (FFD) is an artist-friendly tool, which is used to model defor-
mations by warping the ambient space [2]. FFD has numerous applications such as image
morphing [3,4], facial animation [5] and medical image registration [6].

A preimage of a given (x, y) is defined as any (s, t) for which p(s, t) = (x, y). Com-
puting FFD preimages is also required in many applications, e.g., extended FFD [7] and
directly manipulated FFD [8]. However, computing preimages usually involves solving
a system of nonlinear equations using either numerical methods or algebraic techniques.
The computation of preimages can be simplified when the rational map used in FFD is
birational. Hence, the notion of birational FFD is put forward in [9], i.e., an FFD in which
the control points can be moved freely and the FFD can be made birational by adjusting the
weights.

Birational FFDs of degree 1× 1, i.e., birational quadrilateral maps, are constructed
by considering axial moving lines in [10]. The inverses of birational quadrilateral maps
are also discussed from the viewpoint of generalized barycentric coordinates [11,12]. The
relationship between the inverses of rational quadrilateral maps and their characteristic
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conic is presented in [13]. Hence, by setting the isoparametric curves to be monoid curves,
Seberberg et al. [9] studied the construction of the birational 2D FFD of degree 1× n. To
characterize the birational maps, Botbol et al. [14] provides a birationality criterion for
bigraded birational maps. Note that the current methods to construct birational maps focus
on the discussion of 2D rational maps related to bidegree cases [9,10].

Complex rational curves were introduced by J. Sánchez-Reyes by allowing complex
weights in rational Bézier curves [15]. Based on the observation that complex rational
curves have two special syzygies of low degrees [16], we can construct birational quadratic
planar maps by exploiting their complex rational representations [17], which are complex
rational maps of degree one. Complex rational planar maps of degree one represent exactly
Möbius transformations. Based on Möbius transformations, Lipman et al. also introduced
the four-point interpolant (FPI) maps, where four endpoints are free to move. Since Möbius
transformations map lines to circles, the boundaries of the complex rational planar maps
of degree one and FPI are limited circular arcs. Recently, the planar and bent corner-
operated and transimilar (COTS) maps have been proposed to take the unit square to a
region bounded by four log-spiral edges [18,19]. Based on the self-similar property of the
log-spiral, the tiles of the COTS map of a regular pattern are similar, which will reduce
the query cost of point inclusion testing (PIT) [20] and total area calculation (TAC). To
increase the flexibility to construct birational planar maps and inspired by recent work on
generalized complex rational curves [21], we shall discuss the construction of birational
quadratic planar maps by probing their generalized complex representations. The main
contributions of this study are as follows:

• We introduce generalized complex rational curves and planar maps, and we discuss
their properties.

• We prove that degree one, generalized, complex rational maps correspond to quadratic
birational planar maps.

• We propose a new method to construct quadratic birational planar maps via general-
ized complex rational planar maps.

This paper is organized in the following fashion. We begin in Section 2 by recalling
some preliminary results about rational curves over generalized complex numbers. In
Section 3, we establish the relationship between quadratic rational Bézier curves and degree
one complex rational curves. By considering the bivariate case of generalized complex
rational curves, we construct birational quadratic planar maps by degree one, generalized,
complex rational maps in Section 4. We close in Section 5 with a brief summary of our work.

2. Rational Curves over Generalized Complex Numbers
2.1. Complex, Hyperbolic and Parabolic Numbers

Hyperbolic and parabolic numbers generalize complex numbers by introducing a
new quantity α: either α2 = −1 (complex numbers), or α2 = +1 (hyperbolic numbers), or
α2 = 0 (parabolic numbers). The quantity α here is not a real number but an independent
quantity. In addition, α commutes with every real number, and multiplication is associative
and distributes through addition. Thus, we have the following multiplication rules:

(a + bα)(x + yα) = (ax + byα2) + (ay + bx)α

=


(ax− by) + (ay + bx)α, α2 = −1;
(ax + by) + (ay + bx)α, α2 = 1, α 6= ±1;
(ax) + (ay + bx)α, α2 = 0, α 6= 0.

The conjugate of a + bα is defined by

a + bα = a− bα.
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Multiplying a generalized complex number by its conjugate yields a real number, i.e.,
(a + bα)(a + bα) = a2 − b2α2. The modulus (or absolute value) of a + bα is defined by

|a + bα| =
√
|(a + bα)(a + bα)| =

√
|a2 − b2α2|.

For generalized complex numbers, the analog of Euler’s formula is also true [22]. We have
the following exponential formulas:

• (Complex numbers) eαt = cos(t) + α sin(t);
• (Hyperbolic numbers) eαt = cosh(t) + α sinh(t);
• (Parabolic numbers) eαt = 1 + αt.

The exponential of generalized complex numbers represents either a rotation for
complex numbers, a scissor shear for hyperbolic numbers [23] or a classical shear for
parabolic numbers [24].

A generalized complex number can be identified with a point in the plane R2. Using
the standard basis {1, α}, we identify a + bα with the point or vector (a, b). In analogy with
complex numbers, we shall call the coefficient of 1 the real component and the coefficient
of α the imaginary component of a hyperbolic or parabolic number.

The hyperbolic numbers can be used to help solve cubic Equations [25] and write
Lorentz transformations in the special theory of relativity [22]. The parabolic numbers can
be used to help analyze the mechanics of a mechanism [26].

2.2. Complex, Hyperbolic and Parabolic Rational Curves and Planar Maps

Generalized complex Bézier curves are defined by

c(s) =
n(s)
d(s)

=
∑n

i=0 piwiBn
i (s)

∑n
i=0 wiBn

i (s)
, s ∈ [0, 1], (1)

where pi = xi + yiα are generalized complex control points, wi = ui + viα are generalized
complex weights and Bn

i (s) =
n!

i!(n−i)! s
i(1− s)n−i are Bernstein polynomials. c(s) is called

a complex, hyperbolic or parabolic rational Bézier curve when α2 = −1,+1, 0, respectively.
By separating the real and imaginary parts of (1), we obtain

c(s) =
n0(s) + αn1(s)
d0(s) + αd1(s)

,

where n0(s), n1(s), d0(s), d1(s) ∈ R[s]. Multiplying the numerator and denominator in (1)
by the conjugate of the denominator yields

c(s) =

(
n0d0 − α2n1d1

)
+ α
(
n1d0 − n0d1

)
d2

0 − α2d2
1

. (2)

Thus, c(s) corresponds to a real rational curve in the homogeneous form:

C(s) =
(
n0d0 − α2n1d1, n1d0 − n0d1, d2

0 − α2d2
1
)
. (3)

Note that when n0(s)n1(s), d0(s), d1(s) are polynomials of degree n, i.e., c(s) is a general-
ized complex rational curve of degree n, its counterpart C(s) =

(
n0d0 − α2n1d1, n1d0 −

n0d1, d2
0 − α2d2

1
)

is a real rational curve of degree 2n.
To discuss rational planar maps, we extend the generalized complex rational curves

c(s) in 2D as follows:

c(s, t) =
n0(s, t) + αn1(s, t)
d0(s, t) + αd1(s, t)

, (4)
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where n0(s, t), n1(s, t), d0(s, t), d1(s, t) ∈ R[s, t]. Recall that a syzygy of Q(t1, t2, . . . , tm) ∈
Rk[t1, t2, . . . , tm] is a vector of polynomials

L(t1, t2, . . . , tm) =
(
l0(t1, t2, . . . , tm), l1(t1, t2, . . . , tm), . . . , lk−1(t1, t2, . . . , tm)

)
such that

L(t1, t2, . . . , tm) ·Q(t1, t2, . . . , tm) ≡ 0.

Following the results in [21], we have the following observation

Lemma 1. Given a rational planar map C(s, t) = (n0d0− α2n1d1, n1d0− n0d1, d2
0− α2d2

1) with
generalized complex rational representation (4),

L0(s, t) = (d0(s, t), α2d1(s, t),−n0(s, t)),
L1(s, t) = (d1(s, t), d0(s, t),−n1(s, t)).

(5)

are two syzygies of C(s, t). Moreover, L0(s, t)× L1(s, t) = C(s, t).

Proof. These results follow directly by substituting (5) into Li(s, t) · C(s, t), i = 0, 1 and
L0(s, t)× L1(s, t).

Note that the set of all syzygies of C(s, t) is also a free module of rank two over the
ring R[s, t] (for more details, the interested reader is referred to the proof of Proposition 2.1
in [27]). Moreover, µ-bases of generalized complex rational curves can be calculated via
these syzygies in the one-dimensional case [16,21].

3. Generalized Complex Rational Linear Curves

Let pl(s) denote the generalized complex rational Bézier curve of degree one:

pl(s) =
w0p0(1− s) + w1p1s

w0(1− s) + w1s
, s ∈ [0, 1], (6)

where pi = xi + αyi, wi = ui + αvi, i = 0, 1. Note that when w0, w1 ∈ R, pl(s) will
degenerate to a line segment connecting p0 and p1. Hence, in the rest of this paper, we
assume at least one of w0, w1 6∈ R.

Lemma 2. Let

p(s) =
p0w0B2

0(s) + p∗w∗B2
1(s) + p1w1B2

2(s)
w0B2

0(s) + w∗B2
1(s) + w1B2

2(s)
(7)

be the corresponding real rational curve of pl(s). Then, the control points and the weights in (7)
have the following properties:

(1) w0 = w0w0, w∗ = (w0w1 + w1w0)/2, w1 = w1w1, w0, w1, w2 ∈ R;
(2) p∗ = (w0w1p0 + w1w0p1)/(w0w1 + w0w1) = (w0w1p0 + w1w0p1)/(2w∗);
(3) p1 − p∗ = w0w1

2w∗ (p1 − p0), p∗ − p0 = w0w1
2w∗ (p1 − p0);

(4) (p1 − p∗)/(p1 − p0) is the conjugate of (p∗ − p0)/(p1 − p0);
(5) p∗ = (p0 + p1)/2 + w0w1−w0w1

4w∗ (p1 − p0) = (p0 + p1)/2 + λ∗(p1 − p0)α, where

λ∗ =
u1v0 − u0v1

−2(u0u1 + α2v0v1)
; (8)

(6) Geometrically, p∗ is on three different lines when α2 is set to −1,+1, 0. All three lines pass
through a common point (p0 + p1)/2. More precisely,

(a) When α2 = −1, the line is the perpendicular bisector of the line segment between p0 and
p1;
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(b) When α2 = 1, the line is symmetric to the line p0p1 about the axis (p0 + p1)/2 +
(1 + α)t, t ∈ R;

(c) When α2 = 0, the line is parallel to the y-axis, which also passes through the midpoint
(p0 + p1)/2.

(7) The weight w∗ satisfies

(w∗)2 =
w0w1

1− 4α2(λ∗)2 .

Proof. Items (1), (2), and (3) can be verified by multiplying the denominator and numerator
of (6) by w0(1− s) + w1s.

Since the conjugate of w0w1
2w∗ is w0w1

2w∗ , it follows from (3) that (p1 − p∗)/(p1 − p0) is the
conjugate of (p∗ − p0)/(p1 − p0). Hence, (4) holds.

Again, according to (3),

(p1 − p∗)− (p∗ − p0) = (p0 + p1)− 2p∗ =
w0w1 −w0w1

2w∗
(p1 − p0). (9)

By solving for p∗ in (9), we obtain p∗ = (p0 + p1)/2 + w0w1−w0w1
4w∗ (p1 − p0). Substituting

wi = ui + αvi, i = 0, 1 into w0w1−w0w1
4w∗ yields

w0w1 −w0w1

4w∗
=

(u1v0 − u0v1)

−2(u0u1 + α2v0v1)
α.

By setting λ∗ = (u1v0 − u0v1)/(−2(u0u1 + α2v0v1)), it follows from (9) that p∗ = (p0 +
p1)/2 + λ∗(p1 − p0)α. Thus, (5) holds.

We shall prove (6) based on (5). Since

w0w1 −w0w1

4w∗
(p1 − p0) = λ∗α

(
(x1 − x0) + (y1 − y0)α

)
= λ∗((y1 − y0)α

2 + (x1 − x0)α),

corresponds to the vector λ∗
(
(y1 − y0)α

2, (x1 − x0)
)
∈ R2, it follows that

(a) When α2 = −1, the vector λ∗
(
− (y1 − y0)α

2, x1 − x0
)
= λ∗

(
− (y1 − y0), x1 − x0

)
,

which is perpendicular to the vector (x1− x0, y1− y0). Thus, p∗ is on the perpendicular
bisector of the line segment between p0 and p1;

(b) When α2 = 1, the vector λ∗
(
(y1− y0)α

2, x1− x0
)
= λ∗

(
y1− y0, x1− x0

)
. Hence, p∗ −

(p0 + p1)/2 = λ∗
(
y1 − y0, x1 − x0

)
. Since the vector

(
y1 − y0, x1 − x0

)
is symmetric

to the vector p1 − p0 = (x1 − x0, y1 − y0) about the axis y = x, it follows that p∗ is on
a line symmetric to the line p0p1 about the axis (p0 + p1)/2 + t(1, 1), t ∈ R;

(c) When α2 = 0, the vector λ∗
(
(y1 − y0)α

2, x1 − x0
)
= λ∗

(
0, x1 − x0

)
. Hence, p∗ =

(x0 + x1, y0 + y1)/2 + λ∗
(
0, (x1 − x0)

)
, which is on a line parallel to the y-axis.

Next, we shall prove (7). Recall from (8) that λ∗ = u1v0−u0v1
−2(u0u1+α2v0v1)

∈ R. On the other
hand,

w∗ = (w0w1 + w1w0)/2 = u0u1 − α2v0v1, w0w1 = (u2
0 − α2v2

0)(u
2
1 − α2v2

1).

Hence, when u0u1 − α2v0v1 6= 0,

1− 4α2(λ∗)2 = 1− α2 (u1v0 − u0v1)
2

(u0u1 − α2v0v1)2 =
w0w1

(w∗)2 .

Thus, (w∗)2 = w0w1
1−4α2(λ∗)2 and (7) holds.

Based on the above analysis, we are now ready to derive conditions for a general real
rational quadratic Bézier curve to have a generalized complex rational representation.
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Theorem 1. Suppose that the two endpoints p0, p1 and their weights w0, w1 > 0 are fixed for the
rational quadratic curve (7). If the middle control point and its weight satisfy the following two
conditions:

(1) p∗ can be expressed as p∗ = (p0 + p1)/2 + α(p1 − p0)λ for some λ ∈ R;
(2) w∗ can be expressed as

w∗ =
√

w0w1

1− 4α2λ2 , (10)

then p(s) has a generalized complex rational representation.

Proof. When the middle control point and its corresponding weight satisfy conditions
(1) and (2), it can be verified that p(s) corresponds to a generalized complex rational
representation w0p0(1−s)+w0z0p1s

w0(1−s)+w0z0s if we choose w0 such that w0w0 = w0 and set

w1 = w0z0, (11)

where

z0 =

{ (
w∗ + α

√(
(w∗)2 − w0w1

)
α2
)
/w0, α2 = ±1,(

w∗(1 + 2λα)
)
/w0, α2 = 0.

(12)

Remark 1. Based on Theorem 1, a rational quadratic Bézier curve p(s) in (7) with complex rational
representation is fully determined by p0, p1, w0, w1 and the parameter λ. To ensure that the curve
segment is located in the convex hull of the control polygon p0p1p2, we shall adopt the positive
square root for w∗ in (10). The complementary segment of the curve is generated by reversing of the
sign of w∗ [28].

Remark 2. When w0 6= 0, we can divide the numerator and the denominator of pl(s) by w0.
Hence, pl(s) can be rewritten as

pl(s) =
p0(1− s) + w1/w0p1s

(1− s) + w1/w0s
=

p0(1− s) + z0p1s
(1− s) + z0s

.

Thus, the choice of the ratio z0 = w1/w0, instead of w0 itself, affects the shape of the curve p(s).

Remark 3. z0 in (12) can be expressed in exponential form:

z0 =



√
w1

w0
eα arctan(2λ), α2 = −1;√

w1

w0
eα artanh(2λ), α2 = 1;√

w1

w0
eα(2λ), α2 = 0.

Remark 4. In the case of hyperbolic rational curves, since α2 = 1, it follows from (10) that the
parameter λ must satisfy: λ ∈ (−1/2, 1/2).

Example 1. (α2 = −1) Consider two endpoints p0 = (2, 1), p1 = (5, 0) and their corresponding
weights w0 = 4, w1 = 9. Choose p∗ = (p0 + p1)/2 + α(p1 − p0)λ with λ = 1/2, 1, 3/2. From
(10), we need to set the weight w∗:

w∗ =
√

w0w1

1− 4λ2α2 = 3
√

2,
6√
5

, 3

√
2
5

.
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Choose w0 = 1+ α
√

3. Then, w1 = − 3(−1+
√

3)
2
√

2
+ 3

4

(√
2 +
√

6
)

α, 3
2

(
1√
5
− 2
√

3
5

)
+

3(2+
√

3)
2
√

5
α,

3(1−3
√

3)
2
√

10
+

3(3+
√

3)
2
√

10
α. The corresponding rational quadratic curves p(s) are shown in Figure 1a

(blue curves).

p*

p0

p1

p*

p*

(a) λ =
1
2

, 1,
3
2
(α2 = −1)

p*

p*

p1

p*
p0

(b) λ =
1
16

,
1
4

,
7

16
(α2 = 1)

p*

p*

p1

p*

p0

(c) λ =
1
3

, 1,
5
3
(α2 = 0)

Figure 1. Generalized complex rational curves of degree one. The control polygon (red color) and the
corresponding curve (blue color) vary as the parameter λ changes.

Example 2. (α2 = 1) Consider two endpoints p0 = (1, 2), p1 = (5, 3) and their corresponding
weights w0 = 3, w1 = 9. Choose p∗ = (p0 + p1)/2 + α(p1 − p0)λ with λ = 3/16, 5/16, 7/16.
From (10), we need to set the weight w∗:

w∗ =
√

w0w1

1− 4α2λ2 = 8

√
3
7

, 6,
24√

5
.

Let w0 = (2, 1). Then, w1 = 17√
21

+ 10√
21

α, 5 + 4α, 23√
5
+ 22√

5
α. The corresponding rational

quadratic curves p(s) are shown in Figure 1b (blue curves).

Example 3. (α2 = 0) Consider two endpoints p0 = (1, 2), p1 = (5, 3) and their corresponding
weights w0 = 4, w1 = 9. Choose p∗ = (p0 + p1)/2 + α(p1 − p0)λ with λ = 1/3, 1, 5/3. From
(10), we need to set the weight w∗:

w∗ =
√

w0w1

1− 4α2λ2 = 6.

Let w0 = (2, 1). Then, w1 = 3 + 7
2 α, 3 + 15

2 α, 3 + 23
2 α. The corresponding rational quadratic

curves p(s) are shown in Figure 1c (blue curves).

4. Construction of Quadratic Birational Maps via Generalized
Complex Representations

To generate planar rational maps, we generalize pl(s) in (6) to the bivariate setting as
follows.

Consider three non-collinear endpoints p100, p010, p001. Let

pl(s, t) =
p100w100u + p010w010s + p001w001t

w100u + w010s + w001t
, (13)

0 ≤ u, s, t ≤ 1, u = 1− s− t,
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where w100, w010, w001 are generalized complex weights, denoted by

w100 = u0 + αv0, w010 = u1 + αv1, w001 = u2 + αv2,

p100w100 = x̂0 + αŷ0, p010w010 = x̂1 + αŷ1, p001w001 = x̂2 + αŷ2.

To avoid the degenerate case, we also assume w100, w010, w001 6= 0. In addition, at least
one of w100, w010, w001 is not fully real throughout the rest of the paper. Note that the
complex, hyperbolic and parabolic rational curves are invariant with respect to Möbius
transformations, i.e., applying a Möbius transformation to the control points and weights
is equivalent to applying the Möbius transformation to every point on the curve (for more
details, the readers are referred to Theorem 4.5 in [21]).

Multiplying the numerator and denominator in (13) by the conjugate of the denomina-
tor yields the corresponding quadratic real rational planar map:

p(s, t) =
∑i+j+k=2 pijkwijkB2

ijk(u, s, t)

∑i+j+k=2 wijkB2
ijk(u, s, t)

, (14)

where Bn
ijk(u, s, t) are Bernstein polynomials defined by

Bn
ijk(u, s, t) =

n!
i!j!k!

uisjtk, i + j + k = n,

and wijk = (wi1 j1k1 wi2 j2k2 + wi1 j1k1 wi2 j2k2)/2,

pijk = (wi1 j1k1 wi2 j2k2 pi1 j1k1 + wi1 j1k1 wi2 j2k2 pi2 j2k2)/(2wijk),

(i, j, k) = (i1 + i2, j1 + j2, k1 + k2), i1 + j1 + k1 = i2 + j2 + k2 = 1.

Denote by P(s, t) =
(
a(s, t), b(s, t), c(s, t)

)
, the homogeneous form of p(s, t) =

( a(s,t)
c(s,t) ,

b(s,t)
c(s,t)

)
. Next, we shall derive the syzygies of a planar rational map P(s, t) that is endowed

with a generalized complex representation (13).
From Lemma 1, there are two special syzygies L0(s, t), L1(s, t) in the form (5) of

P(s, t), which are R[s, t]-independent. Let l0(x, y; s, t) = L0(s, t) · (x, y, 1) and l1(x, y; s, t) =
L0(s, t) · (x, y, 1). Then, after calculation, we obtain(

l0(x, y; s, t)
l1(x, y; s, t)

)
= mss + mtt + m0,

where

ms =

(
x(u1 − u0) + α2y(v1 − v0) + (x̂1 − x̂0)

x(v1 − v0) + y(u1 − u0) + (ŷ1 − ŷ0)

)
,

mt =

(
x(u2 − u0) + α2y(v2 − v0) + (x̂2 − x̂0)

x(v2 − v0) + y(v2 − v0) + (ŷ2 − ŷ0)

)
,

m0 =

(
xu0 + α2yv0 − x̂0
xv0 + yu0 − ŷ0

)
.

With the above notation in hand, we are now ready to give the inversion formulas for
a rational quadratic map with a generalized complex rational representation.

Theorem 2. For a real planar rational quadratic map p(s, t) with a generalized complex rational
representation (13), the inversion equation is{

s = det(M1)/ det(M0),
t = det(M2)/ det(M0),
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where

M0 = (ms, mt), M1 = (m0, mt), M2 = (ms, m0).

Hence, the rational map (13) with generalized complex rational representation is birational.

Proof. The proof is similar to the proof of Theorem 4 in [17].

Given three endpoints p200, p020, p002 and their corresponding weights w200, w020,
w002 > 0, next we shall show how to obtain p110, p101, p011 and w110, w101, w011 such that
the rational quadratic map is endowed with a generalized complex rational representation.

Note that not all three middle points are free to be chosen arbitrarily. Without loss
of generality, we consider the two boundary curves p(s, 0), p(0, t) first. Choose two
parameters λ110, λ101 ∈ R to fix the middle points p110, p101, i.e.,

p110 = (p200 + p020)/2 + α(p200 − p020)λ110,

p101 = (p200 + p002)/2 + α(p200 − p002)λ101.

Then from (10) in Theorem 1, we obtain

w110 =

√
w200w020

1− 4α2λ2
110

, w101 =

√
w200w002

1− 4α2λ2
101

.

By setting the generalized complex weight w100 such that w200 = w100w100, we can com-
pute w010, w001 from (11).

Let p100 = p200, p010 = p020, p001 = p002, then

w011 = (w010w001 + w010w001)/2,

p011 = (w010w001p010 + w001w010p001)/(2w011).

In this way, we can construct a planar rational quadratic map (14) that is endowed with a
generalized complex rational representation

pl(s, t) =
p100w100u + p010w010s + p001w001t

w100u + w010s + w001t
.

Based on Theorem 2, the planar rational quadratic map p(s, t) is also birational.
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In general, the method of constructing a planar rational quadratic map that is endowed
with a generalized complex rational representation can be summarized in the following
Algorithm 1.

Algorithm 1 To construct a birational quadratic planar map with a generalized complex
rational representation

Input: Three endpoints p200, p020, p002; weights w200, w020, w002 > 0; two parameters
λ110, λ101 ∈ R

Output: A quadratic planar map p(s, t) that is endowed with generalized complex repre-
sentation
1. Calculate two real weights w110 =

√ w200w020
1−4α2λ2

110
, w101 =

√ w200w002
1−4α2λ2

101

2. Choose a generalized complex weight w100 such that w100w100 = w200. Calculate
the other two weights w010, w001 as (11)

3. Calculate the real weight w011 = (w010w001 + w010w001)/2
4. Set three middle points p110 = (p200 + p020)/2+ α(p200− p020)λ110, p101 = (p200 +

p002)/2 + α(p200 − p002)λ101, p011 = (w010w001p010 + w001w010p001)/(2w011)

return p(s, t) =
∑i+j+k=2 pijkwijk B2

ijk(u,s,t)

∑i+j+k=2 wijk B2
ijk(u,s,t)

.

Example 4. (α2 = 1) Fix three endpoints p200 = (0, 0), p020 = (6, 2), p002 = (3, 4). Set the
weights w200 = 36, w020 = 35, w002 = 8. The control points p110, p101 are fixed by choosing
λ110 = 1/12, λ101 = 1/6, i.e.,

p110 = (p200 + p020)/2 + α(p200 − p020)λ110 = 19/6 + 3α/2,

p101 = (p200 + p002)/2 + α(p200 − p002)λ101 = 1/6 + 5α/2).

Hence

w110 =

√
w200w020

1− 4α2λ2
110

= 36, w101 =

√
w200w002

1− 4α2λ2
101

= 18.

From (12), we obtain

z010 =
(
w110 + α

√(
(w110)2 − w200w020

)
α2
)
/w200 = 1 + α/6,

z001 =
(
w101 + α

√(
(w101)2 − w200w002

)
α2
)
/w200 = 1/2 + α/6.

Choose w100 = 6 + 0α. Hence, from (11),

w010 = w100z010 = 6 + α,

w001 = w100z001 = 3 + α.

Set p100 = p200, p010 = p020, p001 = p002. w011 and p011 can be calculated as follows:

w011 = (w010w001 + w010w001)/2,= 17,

p011 = (w010w001p010 + w001w010p001)/(2w011) = 159/34 + 93α/34.

Thus, we obtain a rational quadratic map p(s, t) with complex rational representation

pl(s, t) =
p100w100u + p010w010s + p001w001t

w100u + w010s + w001t
=

(38s + 13t) + (18s + 15t)α
(6− 3t) + (s + t)α

.

See Figure 2 for an illustration of the birational map p(s, t).



Mathematics 2023, 11, 3609 11 of 13

p200

p002

20

Figure 2. A birational quadratic planar map (α2 = 1). The points p011 on the red line segments are
fixed when the points p101, p110 on the blue line segments are chosen.

Let n0(s, t) = 38s + 13t, n1(s, t) = 18s + 15t, d0(s, t) = 6− 3t, d1(s, t) = s + t. Solving
the system of equations{

l0(x, y; s, t) = d0(s, t)x + α2d1(s, t)y− n0(s, t) = 0,
l1(x, y; s, t) = d1(s, t)x + d0(s, t)y− n1(s, t) = 0,

with respect to the variables s, t, we obtain the inversion equation:

s = −
6
(

x2 − 15x− y2 + 13y
)

3x2 − 79x− 3y2 + 117y + 336
, t =

6
(
x2 − 18x− y2 + 38y

)
3x2 − 79x− 3y2 + 117y + 336

.

Example 5. (α2 = 0) Fix three endpoints p200 = (0, 0), p020 = (6, 2), p002 = (3, 4). Set the
weights w200 = 9, w020 = 36, w002 = 1. The control points p110, p101 are fixed by choosing
λ110 = −1/6, λ101 = 1/6, i.e.,

p110 = (p200 + p020)/2 + α(p200 − p020)λ110 = 3 + 0α,

p101 = (p200 + p002)/2 + α(p200 − p002)λ101 = 3/2 + 5α/2.

Hence

w110 =

√
w200w020

1− 4α2λ2
110

= 18, w101 =

√
w200w002

1− 4α2λ2
101

= 3.

From (12), we obtain

z010 = w110
(
1 + 2αλ110

)
/w200 = 2− 2α/3,

z001 = w101
(
1 + 2αλ101

)
/w200 = 1/3 + α/9.

Choose w100 = 6 + 0α. Hence, from (11),

w010 = w100z010 = 6 + 2α,

w001 = w100z001 = 1 + α.

Set p100 = p200, p010 = p020, p001 = p002. w011 and p011 can be calculated as follows:

w011 = (w010w001 + w010w001)/2 = 6,

p011 = (w010w001p010 + w001w010p001)/(2w011) = 9/2 + 2α.
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Thus, we obtain a rational quadratic map p(s, t) with complex rational representation

pl(s, t) =
p100w100u + p010w010s + p001w001t

w100u + w010s + w001t
=

(36s + 3t) + (24s + 7t)α
(3 + 3s− 2t) + (2− t)α

.

See Figure 3 for an illustration of the birational map p(s, t).

p002

p020

p20

p110

Figure 3. A birational quadratic planar map (α2 = 0). The points p011 on the red line segments are
fixed when the points p101, p110 on the blue line segments are chosen.

Let n0(s, t) = 36s+ 3t, n1(s, t) = 24s+ 7t, d0(s, t) = 3+ 3s− 2t, d1(s, t) = 2− t, solving
the system of equations{

l0(x, y; s, t) = d0(s, t)x + α2d1(s, t)y− n0(s, t) = 0,
l1(x, y; s, t) = d1(s, t)x + d0(s, t)y− n1(s, t) = 0,

and with respect to the variables s, t, we obtain the inversion equation:

s = − −x2 + 15x− 9y
3(x2 + 11x− 27y− 60)

, t =
2
(
x2 − 18y

)
x2 + 11x− 27y− 60

.

5. Conclusions

We extended the construction of birational quadratic maps based on rational maps
over generalized complex numbers. When we need to construct birational quadratic
maps, the new method provides more options for choosing the middle control points
and their corresponding weights. Hence, we increase the flexibility of the boundary
curves of birational quadratic maps. The proof of the birational property is based on the
construction of two special syzygies. The formulas for the inversion equation are also
provided. Although we have generalized the construction of birational maps based on
generalized complex representations, the choice of the middle control points is still limited,
and we cannot construct quadratic birational planar maps by moving the three middle
points freely. In the future, we hope to construct general birational maps by setting α2 to
the real values other than −1, 0, 1, which will be used as a shape parameter to control the
shape of the boundaries.
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