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Abstract: Leprosy (Hansen’s disease) is an infectious, neglected tropical skin disease caused by
the bacterium Mycobacterium leprae (M. leprae). It is crucial to note that the dynamic behavior of
any living microorganism such as M. leprae not only depends on the conditions of its current state
(e.g., substrate concentration, medium condition, etc.) but also on those of its previous states. In
this article, we have developed a three-dimensional mathematical model involving concentrations of
healthy Schwann cells, infected Schwann cells, and M. leprae bacteria in order to predict the dynamic
changes in the cells during the disease dissemination process; additionally, we investigated the
effect of memory on system cell populations, especially on the M. leprae bacterial population, by
analyzing the Caputo–Fabrizio fractionalized version of the model. Most importantly, we developed
and investigated a fractionalized optimal-control-induced system comprising the combined drug
dose therapy of Ofloxacin and Dapsone intended to achieve a more realistic treatment regime for
leprosy. The main goal of our research article is to compare this fractional-order system with the
corresponding integer-order model and also to distinguish the rich dynamics exhibited by the
optimal-control-induced system based on different values of the fractional order ζ ∈ (0, 1). All of the
analytical results are validated through proper numerical simulations and are compared with some
real clinical data.

Keywords: leprosy; mathematical modelling; optimal control; memory effect; Caputo–Fabrizio
fractionalized system

MSC: 49-XX; 92B05; 34A08; 34H05

1. Introduction

Leprosy (also known as Hensen’s disease) is an age-old disease and is described in
the literature of ancient civilizations. It is a chronic infectious disease caused by a type
of bacteria called Mycobacterium leprae (M. leprae), which primarily affects the peripheral
nerves, skin, and eyes, and finally leads to loss of ability to sense and touch accompanied
by dry, flaky, reddish skin due to inflammation. In very advanced cases, apparent loss of
various human organs, such as toes and fingers, and permanent blindness are observed [1].
The treatment of leprosy has certainly been advanced by the introduction of multidrug
therapy (MDT) in 1981, following the recommendation of the World Health Organization
(WHO) [2,3]. The number of new leprosy cases detected annually has remained quite
stable over the last 15 years [4]. According to the WHO report of 2022, about 1500 people
in the United States and 250,000 people around the world, especially India, Indonesia,
and Brazil, are affected by this disease every year. This situation clearly indicates that,
far from being eliminated as a public health problem, leprosy still causes considerable

Mathematics 2023, 11, 3630. https://doi.org/10.3390/math11173630 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11173630
https://doi.org/10.3390/math11173630
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-7454-4367
https://doi.org/10.3390/math11173630
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11173630?type=check_update&version=2


Mathematics 2023, 11, 3630 2 of 26

long-term morbidity in both the developing and developed worlds. After reviewing the
various issues related to classification, treatment regimes, drug resistance, and existing
elimination strategies, it has been observed that new anti-leprosy agents and treatment
designs are required in the near future [5]. In order to investigate the pathogenesis of
leprosy from a completely novel analytical and numerical point of view, considering only
systems involving ordinary differential equations (ODE) with integer-order (IO) derivatives
is not sufficient, and introducing fractionalized mathematical systems to introspect various
aspects of memory’s effect on leprosy dynamics becomes mandatory in this scenario.

In 2016, Westerlund pointed out that all matter has a memory [6]. The dynamic
behavior of living microorganisms such as M. leprae bacteria not only depends on the
conditions of their current state but also on those of their previous states to better predict
and interpret the pattern of the states at some point in the future [7,8]. It is to be noted that
integer-order (IO) derivatives only take into account the local properties (at time t). In the
real-world explanation, the IO differentiation explores the dynamics between two different
points. In such a situation, a natural question may arise about the nonlocal behavior of the
two points. To solve such limitations of local differentiation, researchers like Riemann and
Liouville first introduced the concept of differentiation with nonlocal or fractional-order
operators [9]. A fractional (fractional-order) derivative is a generalization of the integer-
order (IO) derivative and integral. It originated first in the literature about the meaning of
the 1

2 -order derivative, from L’Hospital’s to Leibnitz’s, in 1965 [10] and is a very promising
tool for describing the memory phenomenon [11–16]. The kernel function of a fractional
derivative is called the memory function [17,18]. Now, the leprosy model proposed by
Ghosh et al. [19] is an IO model which in general is memory-free. Hence, this research
work was unable to reflect any kind of memory effect through the model, which expresses
the limitation of the system in investigating the overall impact of the drug resistance of
M. leprae bacteria on the infection and disease dissemination process of leprosy.

The memory effect can be incorporated into an ODE-based system by introducing
fractional-order (ζ ∈ (0, 1]) derivatives as an index of memory [20]. The significance
of varying the fractional order in (0, 1] is that ζ tends to zero, which indicates that the
fractionalized system has ideal memory and that the system is free from memory as ζ
approaches 1. Although most of the early research studies on fractional-order systems were
based on the Caputo and Riemann–Liouville fractional-order derivatives, it has been proven
that these methods have certain drawbacks. For instance, the kernels of these methods have
singularity at the endpoint of an interval of definition [21–23], which inevitably restricts
their role and development in the modelling of different natural and human-made systems.
Thus, to overcome these issues, several new definitions of fractional derivatives have
been introduced in recent years [24–28]. The basic difference among these derivatives is
the varying structure of the kernels, which should be chosen to satisfy the requirements
of various systems. The main difference between the Caputo–Fabrizio (CF) and Caputo
fractional derivatives is that the CF derivative is obtained using an exponential decay law
while the Caputo derivative is completely based on the power law [23]. For these reasons,
we have chosen the CF fractional derivative over the classical Caputo derivative for the
construction of a fractionalized system in our research article.

Optimal control theory is yet another effective tool used in disease modelling [29,30].
It came into existence after the formulation of the most popular Pontryagin maximum
principle [31] and it provides further insight into the dynamics of the diseases in addition
to more appropriate control and preventive strategies [32]. Optimal control problems that
involve fractional calculus are called fractional optimal control problems (FOCPs), and these
are considered to be the generalized form of classic optimal control problems. There are
several research papers in the literature that provide the theoretical basis and fundamentals
of FOCPs, and most of these papers extensively investigate how to formulate FOCPs and
derive optimal conditions for several states and control variables using analytical and
numerical methods [33–36]. Nowadays, FOCPs have been applied to epidemiological and
infectious- and noninfectious-disease-based cell dynamic mathematical models in order to



Mathematics 2023, 11, 3630 3 of 26

develop faster and more accurate methods for controlling the disease. Hence, FOCPs are
potentially more flexible tools for modelling epidemiological and biological systems which
are closely related to memory effects.

Although there exist various types of therapy related to leprosy, none can fully cure
the disease. Moreover, due to the memory function of the bacteria, new resistant M. leprae
strains have been found and drug resistance capability has been observed to be built in most
of the cases [37,38]. In a recent study across three countries, it was found that from new
cases, 3% were Dapsone-resistant and 2% were Ofloxacin-resistant, and in samples from
relapsed patients, 15% and 8% were seen to be Dapsone-resistant and Ofloxacin-resistant,
respectively [39–42].

The dynamics of the mathematical model of leprosy proposed by Ghosh et al. [19]
in 2021 was based on ODE systems. To achieve our goal, we have developed a three-
compartmental fractional mathematical system in this research article by replacing the
integer derivative with a Caputo–Fabrizio derivative of fractional order ζ. We have proved
the existence and uniqueness of solutions of the fractional model with the help of the
renowned Banach Fixed-Point theorem and investigated the stability by adopting Picard’s
T-stability theory. Furthermore, we have studied the mechanisms of action and efficacy of
the combined biologic therapy, introducing Dapsone and Ofloxacin by stating an optimal
control problem to this fractional model. Our goal is to find the accurate optimal drug
dosage regimen for the eradication of the disease. The optimal control problem for min-
imizing the cost of immune therapy and for the simultaneous optimization of the effect
of this therapy on the infected Schwann cells and M. leprae bacteria are analyzed. The
main objective of this research article is to compare from a quantitative point of view the
fractional system and the corresponding optimal-control-induced system with the help of
the Caputo-Fabrizio fractional derivative for different values of the fractional order ζ. All of
our analytical results are validated through numerical simulations using MATLAB 2016a.

2. Preliminaries

Some crucial fundamental definitions from the theory of fractional calculus are pre-
sented in this section.

Definition 1. The Caputo fractional derivative operator of order ζ (ζ ≥ 0) & n ∈ N ∪ {0} is
defined by [43]

Dζ
t (u(t)) =

1
Γ(n− ζ)

∫ t

0
(t− ξ)n−ζ−1 dn

dtn u(ξ)dξ (1)

where n− 1 ≤ ζ < n.

Definition 2. Let v ∈ H′(a, b), b > a, 0 < ζ < 1. Then, the time-fractional Caputo–Fabrizio
fractional differential operator is defined as [44]

CFDζ
t (v(t)) =

M(ζ)

1− ζ

∫ t

0
exp

[
− ζ(t− ξ)

1− ζ

]
v′(ξ)dξ, t ≥ 0, 0 < ζ < 1 (2)

where M(ζ) is a normalization function which depends on ζ and satisfies the condition M(0) =
M(1) = 1.

Definition 3. The Caputo–Fabrizio (CF) fractional integral operator of order 0 < ζ < 1 is given
by [45]

CFIζ
t (v(t)) =

2(1− ζ)

(2− ζ)M(ζ)
v(t) +

2ζ

(2− ζ)M(ζ)

∫ t

0
v(ξ)dξ, t ≥ 0. (3)

Here, it is important to note that

CFDζ
t (v(t)) = 0 if vs. is a constant function.
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Furthermore, it is imperative to observe that the previous definitions completely
suggest that the fractional integral of a function of order 0 < ζ < 1 is actually represented
by the average of the respective functions and their integral of order one. Furthermore,
the equation

2(1− ζ)

(2− ζ)M(ζ)
+

2ζ

(2− ζ)M(ζ)
= 1 (4)

holds true, which provides the following formula:

M(ζ) =
2

(2− ζ)
, 0 ≤ ζ < 1. (5)

Here, the specific form of the normalizing function M(ζ) given in (5) along with the
boundary conditions is used throughout the study and, more specifically, for the purpose
of numerical simulations.

Definition 4. The Laplace transform for the CF fractional operator of order 0 < ζ ≤ 1 for k ∈ N
is given as follows [44]:

L
(

CFDk+ζ
t (v(t))

)
(p) =

1
1− ζ

L
(

vk+1(t)L
(

exp
(
− ζ

1− ζ
t
)))

=
pk+1L(v(t))− pkv(0)− pk−1v′(0) . . .− vk(0)

p + ζ(1− p)
.

To be precise, we can say that

L
(

CFDζ
t (v(t))

)
(p) =

pL(v(t))
p + ζ(1− p)

, k = 0

L
(

CFDζ+1
t (v(t))

)
(p) =

p2L(v(t))− pv(0)− v′(0)
p + ζ(1− p)

, k = 1.

3. The Basic Integer-Order Model and the Caputo–Fabrizio Fractionalized
Mathematical Model Formulation

In recent years, fractional-order derivatives have gained huge importance in the field
of modeling real-world biological phenomena. The fractional-order derivative is in fact
a much generalized version of the integer-order derivative. In this research article, we
now introduce the basic three-dimensional nonlinear ODE-based mathematical model
developed in [19] that describes the fundamental disease dynamics of leprosy.

dSu

dt
= ν1Su

(
1− Su

Sumax

)
− β1SuBl ,

dSi
dt

= β1SuBl − µSi, (6)

dBl
dt

= ν2Bl

(
1− Bl

Blmax

)
− β2SuBl + σSi,

with initial values Su(0) = Su0 ≥ 0, Si(0) = Si0 ≥ 0 and Bl(0) = B0 ≥ 0 at t = 0. Here,
Su(t), Si(t) and Bl(t) denote the concentrations of healthy Schwann cells, infected Schwann
cells and M. leprae bacteria at any time t. ν1 and ν2 describe the intrinsic growth rates
of the Su(t) and Bl(t) populations, where Sumax and Blmax are the carrying capacity of the
same. β1 is the rate at which healthy cells are infected by M. leprae and µ denotes the
natural mortality rate of Si cells. The bacterial clearance rate results from the infection
and the proliferation rates of newly produced free M. leprae bacteria, which are indicated
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by the parameters β2 and σ, respectively. Modifying the above system in terms of the CF
(Caputo–Fabrizio) fractional differential system of equations, we obtain

CFDζ
t Su(t) = ν1Su

(
1− Su

Sumax

)
− β1SuBl ,

CFDζ
t Si(t) = β1SuBl − µSi, (7)

CFDζ
t Bl(t) = ν2Bl

(
1− Bl

Blmax

)
− β2SuBl + σSi

with initial values Su(0) = Su0 ≥ 0, Si(0) = Si0 ≥ 0 and Bl(0) = B0 ≥ 0 at t = 0.

3.1. The Iterative Scheme

We now consider system (7). The term SuBl is a nonlinear term and, hence, applying
the Laplace transformation operator (L) on both sides of the system (7), we obtain that

pL(Su(t))− Su(0)
p + ζ(1− p)

= L
(

ν1Su

(
1− Su

Sumax

)
− β1SuBl

)
,

pL(Si(t))− Si(0)
p + ζ(1− p)

= L(β1SuBl − µSi), (8)

pL(Bl(t))− Bl(0)
p + ζ(1− p)

= L
(

ν2Bl

(
1− Bl

Blmax

)
− β2SuBl + σSi

)
. (9)

The set in Equation (8) can now be rewritten in the following form:

L(Su(t)) =
Su(0)

p
+

(
p + ζ(1− p)

p

)
L
(

ν1Su

(
1− Su

Sumax

)
− β1SuBl

)
,

L(Si(t)) =
Si(0)

p
+

(
p + ζ(1− p)

p

)
L(β1SuBl − µSi), (10)

L(Bl(t)) =
Bl(0)

p
+

(
p + ζ(1− p)

p

)
L
(

ν2Bl

(
1− Bl

Blmax

)
− β2SuBl + σSi

)
.

Using the inverse Laplace, we obtain

Su(t) = Su(0) + L−1
[

p + ζ(1− p)
p

L
(

ν1Su

(
1− Su

Sumax

)
− β1SuBl

)]
,

Si(t) = Si(0) + L−1
[

p + ζ(1− p)
p

L(β1SuBl − µSi)

]
, (11)

Bl(t) = Bl(0) + L−1
[

p + ζ(1− p)
p

L
(

ν2Bl

(
1− Bl

Blmax

)
− β2SuBl + σSi

)]
.

We now present the series solutions generated by this method as follows:

Su =
∞

∑
n=0

Sun , Si =
∞

∑
n=0

Sin , Bl =
∞

∑
n=0

Bln . (12)

Furthermore, the series solution representation of the only existing nonlinear term
SuBl is given as

SuBl =
∞

∑
n=0

Gn where Gn =
n

∑
k=0

Suk

n

∑
k=0

Blk −
n−1

∑
k=0

Suk

n−1

∑
k=0

Blk . (13)



Mathematics 2023, 11, 3630 6 of 26

We now use the initial conditions to achieve the following recursive formulas:

Sun+1 = Sun(0) + L−1
[

p + ζ(1− p)
p

L
(

ν1Sun

(
1− Sun

Sumax

)
− β1Sun Bln

)]
,

Sin+1 = Sin(0) + L
−1
[

p + ζ(1− p)
p

L(β1Sun Bln − µSin)

]
, (14)

Bln+1 = Bln(0) + L
−1
[

p + ζ(1− p)
p

L
(

ν2Bln

(
1−

Bln
Blmax

)
− β2Sun Bln + σSin

)]
.

The approximate solution is assumed to be obtained as a limit when n → ∞, i.e.,
Su(t) = limn→∞ Sun(t), Si(t) = limn→∞ Sin(t) and Bl(t) = limn→∞ Bln(t).

3.2. Stability Analysis

In this section, first, we present the detailed definition of the T-stability of Picard’s
iteration [46].

Definition 5. Suppose T is a self-map on a complete metric space (Y, d). Consider an iter-
ation yn+1 = g(T, yn). Furthermore, let us assume that P(T) is the fixed-point set of T
with P(T) 6= φ and let {yn} converge to some point y ∈ P(T). Let {zn} ⊂ Y and define
{un} = d(Zn+1, g(T, zn)). Now, if un → 0 implies that zn → y, then the iteration method
yn+1 = g(T, yn) is said to be T-stable. Furthermore, note that the convergence of {zn} guarantees
that {zn} must be bounded above. If all these conditions hold true for yn+1 = g(T, yn), then
Picard’s iteration method is called T-stable.

Let (X, ‖.‖) be a Banach space. As every Banach space is a complete metric space with
the metric induced by the associated norm, Definition 5 holds true for (X, ‖.‖) also.

Theorem 1. Let T be a self-map on the space (X, ‖.‖), which satisfies the following:

‖Tx − Ty‖ ≤ Λ‖x− Tx‖+ $‖x− y‖ for all x, y ∈ X

where Λ ≥ 0 and $ ∈ [0, 1). Suppose T has a fixed point. Then, T is Picard’s T-stable.

Now, let us define a self-map T as

T(Sun(t)) = Sun+1 = Sun(0) + L−1
[

p + ζ(1− p)
p

L
(

ν1Sun

(
1− Sun

Sumax

)
− β1Sun Bln

)]
,

T(Sin(t)) = Sin+1 = Sin(0) + L
−1
[

p + ζ(1− p)
p

L(β1Sun Bln − µSin)

]
,

T(Bln(t)) = Bln+1 = Bln(0) + L
−1
[

p + ζ(1− p)
p

L
(

ν2Bln

(
1−

Bln
Blmax

)
− β2Sun Bln + σSin

)] (15)

For all m, n ∈ N, let us first construct the following differences:
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T(Sun(t))− T(Sum(t)) = Sun(t)− Sum(t)

+ L−1
[

p + ζ(1− p)
p

L
(

ν1Sun

(
1− Sun

Sumax

)
− β1Sun Bln

)]
−L−1

[
p + ζ(1− p)

p
L
(

ν1Sum

(
1− Sum

Sumax

)
− β1Sum Blm

)]
,

T(Sin(t))− T(Sim(t)) = Sin(t)− Sim(t) + L
−1
[

p + ζ(1− p)
p

L(β1Sun Bln − µSin)

]
−L−1

[
p + ζ(1− p)

p
L(β1Sum Blm − µSim)

]
,

T(Bln(t))− T(Blm(t)) = Bln(t)− Blm(t)

+ L−1
[

p + ζ(1− p)
p

L
(

ν2Bln

(
1−

Bln
Blmax

)
− β2Sun Bln + σSin

)]
−L−1

[
p + ζ(1− p)

p
L
(

ν2Blm

(
1−

Blm
Blmax

)
− β2Sum Blm + σSim

)]

(16)

where p+ζ(1−p)
p is a Lagrange multiplier in fractional form. As all the solutions Sun , Sin ,

Bln are Cauchy sequences in the Banach space (X, ‖.‖), it is true that ‖Sun − Sum‖ → 0,
‖Sin − Sim‖ → 0 and ‖Bln − Blm‖ → 0 as n, m → ∞. Due to this similar behavior of the
solutions, i.e., comparative influence of the solutions in [47], we have

‖Sun(t)− Sum(t)‖ ∼= ‖Sin(t)− Sim(t)‖,
‖Sun(t)− Sum(t)‖ ∼= ‖Bln(t)− Blm(t)‖.

(17)

Now, applying the norm on both sides of the first equation of (16), we obtain

‖T(Sun(t))− T(Sum(t))‖ = ‖Sun(t)− Sum(t)

+ L−1
[

p + ζ(1− p)
p

L
(

ν1Sun

(
1− Sun

Sumax

)
− β1Sun Bln

)]
−L−1

[
p + ζ(1− p)

p
L
(

ν1Sum

(
1− Sum

Sumax

)
− β1Sum Blm

)]
‖

= ‖Sun(t)− Sum(t) + L−1
[

p + ζ(1− p)
p

L
[
ν1(Sun(t)− Sum(t)

+

(
− ν1

Sumax

Sun(Sun − Sum)

)
+

(
− ν1

Sumax

Sum(Sun − Sum)

)
+ (−β1Bln(Sun − Sum)) + (−β1Sum(Bln − Blm))

]]
‖.

Using triangle inequality, we obtain

‖T(Sun(t))− T(Sum(t))‖ ≤ ‖Sun(t)− Sum(t)‖+ L−1
[

p + ζ(1− p)
p

L
[
‖ν1(Sun(t)− Sum(t)‖

+ ‖ − ν1

Sumax

Sun(Sun − Sum)‖+ ‖ −
ν1

Sumax

Sum(Sun − Sum)‖

+ ‖ − β1Bln(Sun − Sum)‖+ ‖ − β1Sum(Bln − Blm)‖
]]

.
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Then, using the relations in (17), we obtain

‖T(Sun(t))− T(Sum(t))‖ ≤ ‖Sun(t)− Sum(t)‖+ L−1
[

p + ζ(1− p)
p

L
[
‖ν1(Sun(t)− Sum(t)‖

+ ‖ − ν1

Sumax

Sun(Sun − Sum)‖+ ‖ −
ν1

Sumax

Sum(Sun − Sum)‖

+ ‖ − β1Bln(Sun − Sum)‖+ ‖ − β1Sum(Sun − Sum)‖
]]

≤ ‖Sun(t)− Sum(t)‖
[

1 + ν1E1(ζ)− 2M1
ν1

Sumax

E2(ζ)

− β1(M1 + M3)E3(ζ)

]
(18)

where E1(ζ), E2(ζ) and E3(ζ) are functions of L−1
[

p+ζ(1−p)
p L(.)

]
and ‖Sun‖ < M1,

‖Sin‖ < M2 and ‖Bln‖ < M3. Proceeding similarly, we obtain from the second and
third equations of (16)

‖T(Sin(t))− T(Sim(t))‖ ≤ ‖Sin(t)− Sim(t)‖
[

1 + β1(M1 + M3)E3(ζ)− µE4(ζ)

]
(19)

and

‖T(Bln(t))− T(Blm(t))‖ ≤ ‖Bln(t)− Blm(t)‖
[

1 + ν2E5(ζ)− 2M3
ν2

Blmax

E6(ζ)

− β2(M1 + M3)E3(ζ) + σE7(ζ)

] (20)

where E4(ζ), E5(ζ), E6(ζ) and E7(ζ) are functions of L−1
[

p+ζ(1−p)
p L(.)

]
and

[
1 + ν1E1(ζ)− 2M1

ν1

Sumax

E2(ζ)− β1(M1 + M3)E3(ζ)

]
< 1,[

1 + β1(M1 + M3)E3(ζ)− µE4(ζ)

]
< 1, (21)[

1 + ν2E5(ζ)− 2M3
ν2

Blmax

E6(ζ)− β2(M1 + M3)E3(ζ) + σE7(ζ)

]
< 1.

So, we can conclude that the self-map T defined in (15) has a fixed point. In view
of (21) and also choosing $ = (0, 0, 0) and

Λ =


1 + ν1E1(ζ)− 2M1

ν1
Sumax

E2(ζ)− β1(M1 + M3)E3(ζ),
1 + β1(M1 + M3)E3(ζ)− µE4(ζ),
1 + ν2E5(ζ)− 2M3

ν2
Blmax

E6(ζ)− β2(M1 + M3)E3(ζ) + σE7(ζ),

we can see that all the conditions of Theorem 1 are satisfied. Thus, the self-mapping T is
Picard’s T-stable. Here, it is important to note that Λ is a constant, not a function.

Summarizing the previous discussions, we now present the following theorem.

Theorem 2. Consider system (7) with the set of equations in system (14). Let T be a self-map as
defined by (15). If the conditions (21) are satisfied by T, then T has a fixed point and, hence, T is
Picard’s T-stable.
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3.3. Existence of the Solutions

Using fixed-point theory, we now show the existence of the solutions of system (7) in
this subsection. For this, let us first observe that

Su(t)− Su0(t) =
2(1− ζ)

M(ζ)(2− ζ)

(
ν1Su(t)

(
1− Su(t)

Sumax

)
− β1Su(t)Bl(t)

)
+

2ζ

M(ζ)(2− ζ)

∫ t

0

(
ν1Su(y)

(
1− Su(y)

Sumax

)
− β1Su(y)Bl(y)

)
dy,

Si(t)− Si0(t) =
2(1− ζ)

M(ζ)(2− ζ)
(β1SuBl − µSi)

+
2ζ

M(ζ)(2− ζ)

∫ t

0
(β1Su(y)Bl(y)− µSi(y))dy,

Bl(t)− Bl0(t) =
2(1− ζ)

M(ζ)(2− ζ)

(
ν2Bl(t)

(
1− Bl(t)

Blmax

)
− β2Su(t)Bl(t) + σSi

)
+

2ζ

M(ζ)(2− ζ)

∫ t

0

(
ν2Bl(y)

(
1− Bl(y)

Blmax

)
− β2Su(y)Bl(y) + σSi(y)

)
dy.

Let T1 be an operator on H to itself, i.e., T1 : H→ H. Here, T1 is chosen as an operator
for the entire system. Applying it, we obtain that

T1(Su(t)) =
2(1− ζ)

M(ζ)(2− ζ)
K1(t, Su(t)) +

2ζ

M(ζ)(2− ζ)

∫ t

0
(K1(y, Su(y)))dy,

T1(Si(t)) =
2(1− ζ)

M(ζ)(2− ζ)
(K2(t, Si(t))) +

2ζ

M(ζ)(2− ζ)

∫ t

0
(K2(y, Si(y)))dy, (22)

T1(Bl(t)) =
2(1− ζ)

M(ζ)(2− ζ)
(K3(t, Bl(t))) +

2ζ

M(ζ)(2− ζ)

∫ t

0
(K3(y, Bl(y)))dy

where

K1(t, Su(t)) = ν1Su(t)
(

1− Su(t)
Sumax

)
− β1Su(t)Bl(t),

K2(t, Si(t)) = β1Su(t)Bl(t)− µSi(t),

K3(t, Bl(t)) = ν2Bl(t)
(

1− Bl(t)
Blmax

)
− β2Su(t)Bl(t) + σSi(t).

Let P ⊂ H be bounded. We aim to show that T1(P) is compact to ensure the existence
and boundedness of the solutions of system (7), where T1 is defined as in (22). We can see
that there exist positive reals κ1, κ2 and κ3 such that ‖Su‖ < κ1, ‖Si‖ < κ2 and ‖Bl‖ < κ3.
From the first equation of (22), we can write

‖T1(Su(t))‖ = ‖
2(1− ζ)

M(ζ)(2− ζ)
K1(t, Su(t)) +

2ζ

M(ζ)(2− ζ)

∫ t

0
(K1(y, Su(y)))dy‖

≤ 2(1− ζ)

M(ζ)(2− ζ)
‖K1(t, Su(t))‖+

2ζ

M(ζ)(2− ζ)
‖
∫ t

0
(K1(y, Su(y)))dy‖

≤
[

2(1− ζ)

M(ζ)(2− ζ)
+ a1

2ζ

M(ζ)(2− ζ)

]
‖K1(t, Su(t))‖

≤ R1

[
2(1− ζ)

M(ζ)(2− ζ)
+ a1

2ζ

M(ζ)(2− ζ)

]
which implies

‖T1(Su(t))‖ ≤
2R1

M(ζ)(2− ζ)
(1 + ζa1 − ζ)
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and also proceeding similarly, we can obtain

‖T1(Si(t))‖ ≤
2R2

M(ζ)(2− ζ)
(1 + ζa2 − ζ),

‖T1(Bl(t))‖ ≤
2R3

M(ζ)(2− ζ)
(1 + ζa3 − ζ)

where
R1 = max

t∈[0,1]
Su∈[0,κ1]

K1(t, Su(t)),

R2 = max
t∈[0,1]

Si∈[0,κ2]

K2(t, Si(t)),

R3 = max
t∈[0,1]

Bl∈[0,κ3]

K3(t, Bl(t)).

Hence, we have proved that T1(P) is bounded. Let, t2 > t1 and Su, Si, Bl ∈ P. So, for a
given ε > 0, there exists η satisfying that ‖(t2 − t1)‖ < η, and we can write the following:

‖K1(t2, Su(t2))− K1(t1, Su(t1))‖ ≤ ν1‖Su(t2)− Su(t1)‖

+
ν1

Sumax

‖Su(t2) + Su(t1)‖ ‖Su(t2)− Su(t1)‖

+ β1‖Bl‖ ‖Su(t2)− Su(t1)‖

≤ ν1‖Su(t2)− Su(t1)‖+ 2κ1
ν1

Sumax

‖Su(t2)− Su(t1)‖

+ β1κ3‖Su(t2)− Su(t1)‖

≤
[

ν1 +
2κ1ν1

Sumax

+ β1κ3

]
‖Su(t2)− Su(t1)‖.

(23)

Assuming that if the function Su(t) is Lipschitz-continuous, i.e., for some real number
L1 ≥ 0 and for all t1, t2, the inequality ‖Su(t2) − Su(t1)‖ ≤ L1‖t2 − t1‖ holds, we can
rewrite (23) as

‖K1(t2, Su(t2))− K1(t1, Su(t1))‖ ≤ G1‖t2 − t1‖ (24)

where G1 = L1

[
ν1 +

2κ1ν1
Sumax

+ β1κ3

]
. Similarly, we have

‖K2(t2, Si(t2))− K2(t1, Si(t1))‖ ≤ G2‖t2 − t1‖, (25)

‖K3(t2, Bl(t2))− K3(t1, Bl(t1))‖ ≤ G3‖t2 − t1‖ (26)

if Si(t) and Bl(t) are also Lipschitz-continuous, i.e., for some real numbers L2, L3 ≥ 0,
the conditions

‖Si(t2)− Si(t1)‖ ≤ L2‖t2 − t1‖,
‖Bl(t2)− Bl(t1)‖ ≤ L3‖t2 − t1‖ hold, respectively, for all t1, t2.
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Furthermore,

‖T1(Su(t2))− T1(Su(t1))‖ ≤
2(1− ζ)

M(ζ)(2− ζ)
‖K1(t2, Su(t2))− K1(t1, Su(t1))‖

+
2ζ

M(ζ)(2− ζ)
R1‖K1(t2, Su(t2))− K1(t1, Su(t1))‖

≤ 2(1− ζ)

M(ζ)(2− ζ)
G1‖t2 − t1‖+

2ζ

M(ζ)(2− ζ)
R1G1‖t2 − t1‖

(using inequality (24)).

Finally, choosing

η =
ε

2(1−ζ)
M(ζ)(2−ζ)

G1 +
2ζ

M(ζ)(2−ζ)
R1G1

,

we can see that ‖T1(Su(t2))− ‖T1(Su(t1))‖ ≤ ε holds.
Similarly proceeding and using inequalities (25) and (26), we can also easily show that

‖T1(Si(t2))−‖T1(Si(t1))‖ ≤ ε and ‖T1(Bl(t2))−‖T1(Bl(t1))‖ ≤ ε hold, which guarantees
the equicontinuity of T1. Hence, according to the well-known Arzela–Ascoli theorem, we
can say that T1(P) is compact. Next, we present the following theorem by summarising
the previous discussions on the existence of the solutions of system (7), and then we move
forward to show the uniqueness of the solutions of system (7).

Theorem 3. Let P ⊂ H be bounded and T1 be defined as in (22). Then, there exist κ1, κ2 and
κ3 such that if the functions Su(t), Si(t) and Bl(t) are Lipschitz-continuous, i.e., if for some real
numbers, L1, L2 and L3 ≥ 0, the following conditions hold

‖Su(t2)− Su(t1)‖ ≤ L1‖t2 − t1‖,
‖Si(t2)− Si(t1)‖ ≤ L2‖t2 − t1‖,
‖Bl(t2)− Bl(t1)‖ ≤ L3‖t2 − t1‖,

for all t1, t2, then T1(P) is compact. Thus, all the solutions of system (7) exist and are bounded.

3.4. Uniqueness of the Solutions

To prove the uniqueness of the solutions of system (7), let us consider the mapping T1
again which was defined previously. Now,

‖T1(Su(t))− T1(S̃u(t))‖ = ‖
2(1− ζ)

M(ζ)(2− ζ)
(K1(t, Su(t))− K1(t, S̃u(t)))

+
2ζ

M(ζ)(2− ζ)

∫ t

0
(K1(y, Su(y))− K1(y, S̃u(y)))‖

≤
[

2D1

M(ζ)(2− ζ)

]
‖Su(t)− S̃u(t)‖.

Similarly, we can obtain

‖T1(Si(t))− T1(S̃i(t))‖ ≤
[

2D2

M(ζ)(2− ζ)

]
‖Si(t)− S̃i(t)‖,

‖T1(Bl(t))− T1(B̃l(t))‖ ≤
[

2D3

M(ζ)(2− ζ)

]
‖Bl(t)− B̃l(t)‖
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where D1, D2, D3 ∈ R. Hence, the operator T1 is a contraction if the following condi-
tions hold:

2D1

M(ζ)(2− ζ)
‖Su(t)− S̃u(t)‖ < 1,

2D2

M(ζ)(2− ζ)
‖Si(t)− S̃i(t)‖ < 1,

2D3

M(ζ)(2− ζ)
‖Bl(t)− B̃l(t)‖ < 1

which ensures the existence of unique positive solutions of system (7) using fixed-point
theorem.

4. Equilibria and Stability

Our CF fractionalized mathematical model (7) has two equilibria, namely the disease-
free equilibrium E0 and the endemic equilibrium E∗. Here, E0 is given as E0 = (Sumax , 0, 0).
The value of the basic reproduction number R0 is given as R0 = β1σSumax

µ(β2Sumax−ν2)
[19]. R0 is

actually interpreted as the secondary number of new infections in a completely susceptible
healthy Schwann cell population and, based on the above, we now present the following
theorem on the stability of E0 for our system (7) as follows:

Theorem 4. The disease-free equilibrium E0 of system (7) is locally asymptotically stable if R0 < 1.

To obtain the coordinates of the endemic equilibrium E∗, we now set the right-hand
sides of system (7) to zero. Hence, we obtain the values of S∗u, S∗i and B∗l , which are already
described in the article by Ghosh et al. [19]. In this context, we now present the following
theorem, which describes the required criterion about the stability of E∗ [48].

Theorem 5. If the matrix (I − (1− ζ)J ) is invertible, then the endemic equilibrium E∗ of the CF
fractionalized system (7) is locally asymptotically stable if all the roots of the characteristic equation
det(x(I − (1− ζ)J )− ζJ ) = 0 of system (7) evaluated at E∗ are negative real or have negative
real parts where J denotes the Jacobian matrix of system (7) at E∗ = (S∗u, S∗i , B∗l ).

5. Optimal-Control-Induced Caputo–Fabrizio Fractional Mathematical Model

Optimal control is a very useful tool for controlling the progression of a disease in
the human body. Furthermore, this tool has gained major importance lately for the in-
vestigation of efficient and cost-effective drug treatment policies for various infectious
diseases and for other different important biological problems based on fractional math-
ematical models [36,43,49,50]. In our research article, we have analyzed our formulated
CF fractionalized model (7) by incorporating two control functions, u1(t) and u2(t); one
is an effect of the drug Ofloxacin and another is of Dapsone on various cell densities,
respectively. Here, Ofloxacin blocks the occurrence of new infections, and by preventing
the formation of folic acid, Dapsone specifically inhibits replication of M. leprae bacteria.
The optimal-control-induced CF fractional mathematical model is presented as

CFDζ
t Su(t) = ν1Su

(
1− Su

Sumax

)
− β1(1− u1(t))SuBl ,

CFDζ
t Si(t) = β1(1− u1(t))SuBl − µSi, (27)

CFDζ
t Bl(t) = ν2(1− u2(t))Bl

(
1− Bl

Blmax

)
− β2(1− u1(t))SuBl + σSi

with initial values Su(0) = Su0 ≥ 0, Si(0) = Si0 ≥ 0 and Bl(0) = B0 ≥ 0 at t = 0.
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Our main aim is to decrease the number of infected cells and the bacterial density as
well as to increase the healthy cell concentrations. Let us now consider the state system
given by (27) with the class of admissible controls defined as

U = {(u1(·), u2(·)) : u1, u2 are Lebesgue measurable functions on [0,1] and

0 ≤ ui(t) ≤ 1 for i = 1, 2}.
(28)

So, the objective function for the CF fractionalized optimal control system (27), (28) is
given as

J (u1(·), u2(·)) =
t f∫

0

[
1
2

C1u2
1(t) +

1
2

C2u2
2(t) + S2

i (t) + B2
l (t)

]
dt (29)

where C1 and C2 measure the cost associated with the control functions u1(t) and u2(t),
respectively. Then, we find the optimal controls u1 and u2 to minimize the cost function

J (u1, u2) =

t f∫
0

[ψ(Su(t), Si(t), Bl(t), u1(t), u2(t), t)]dt (30)

subject to the constraints CF
0 Dζ

t (Su(t)) = α1, CF
0 Dζ

t (Si(t)) = α2 and CF
0 Dζ

t (Bl(t)) = α3,
where αj = αj(Su, Si, Bl , u1, u2, t) and j = 1, 2, 3, and the given initial conditions are
Su(0) = Su0 and Si(0) = Si0 , Bl(0) = Bl0 .

Now, we first present a formulation of a generalized fractional optimal control problem
(FOCP) and deduce the necessary conditions for its optimality. For this, let us consider a
generalized FOCP as

J(v) =

t f∫
0

[L(t, x, v)dt]dt (31)

subject to the constraints CF
0 Dζ

t (x(t)) = g(t, x, v) with initial condition x(0) = x0. Here, x(t)
and v(t) are state and control vectors, respectively, and L and g are differentiable functions
with 0 < ζ ≤ 1.

Theorem 6. We define a Hamiltonian as follows:

H(t, x, v, φ) = L(t, x, v) + φ ∗ g(t, x, v) (32)

where φ ∈ C1[0, t f ] is a function. If φ, x, v satisfy the following equations:

CF
0 Dζ

t (x(t)) =
∂H(t, x(t), v(t), φ(t))

∂φ
, CF

t Dζ
t f
(φ(t)) =

∂H(t, x(t), v(t), φ(t))
∂x

,

∂H(t, x(t), v(t), φ(t))
∂v

= 0, φ(t f ) = 0

then (x, v) is the minimizer of (31).

Proof. Let us first substitute Equation (32) in (31); hence, we obtain

J(v) =

t f∫
0

{H(t, x, v, φ)− φ ∗ g(t, x, v)}dt. (33)

The necessary condition for the optimality of the FOCP is

δJ(v) = 0. (34)
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To obtain the optimal control laws, we choose the variation of equation (33) as

δJ(v) =
[

δx
∂H
∂x

+ δvs.
∂H
∂v

+ δφ
∂H
∂φ
− δφ CF

0 Dζ
t (x(t))− φ

(
CF
0 Dζ

t (δx(t))
)]

dt (35)

where δx, δv, δφ are variations of x, v and φ, respectively.
Again,

t f∫
0

φ(t)
(

CF
0 Dζ

t (δx(t))
)

dt =

t f∫
0

δx
(

CF
0 Dζ

t (φ(t))
)

dt−
(

CF
t I1−ζ

t f
(φ(t)

)
δx. (36)

Substituting (36) in (35), we obtain

δJ(v) =

t f∫
0

[
δ(x)

[
∂H
∂x
− CF

0 Dζ
t (φ(t))

]
+ δvs.

∂H
∂v

+ δφ

[
∂H
∂φ
− CF

0 Dζ
t (x(t))

]]
dt

+ CF
t I1−ζ

t f
(φ(t))δx

∣∣∣
t=t f

.

(37)

Now, we know δJ(v) = 0. Hence, considering Equation (37), the coefficients of δx, δv,
δφ must be equal to zero, which leads us to the following equations:

CF
0 Dζ

t (x(t)) =
∂H(t, x(t), v(t), φ(t))

∂φ
, CF

t Dζ
t f
(φ(t)) =

∂H(t, x(t), v(t), φ(t))
∂x

,

∂H(t, x(t), v(t), φ(t))
∂v

= 0, CF
t I1−ζ

t f
(φ(t))

∣∣∣
t=t f

= φ(t f ) = 0.

In addition, the following necessary conditions must also hold for the optimality of
the FOCP defined in (31), which are noted here in the form of the following lemma.

Lemma 1. The following conditions hold true for the generalized FOCP described in (31):

CF
t Dζ

t f
(φ(t)) =

∂H(t, x(t), v(t), φ(t))
∂x

(38)

and CF
0 Dζ

t (φ(t f − t)) =
∂H(t f − t, x(t f − t), v(t f − t), φ(t f − t))

∂x
(39)

where 0 < ζ ≤ 1.

Proof. The definition of the CF fractional derivative (2) is given as

CF
0 Dζ

t ( f (t)) =
1

1− ζ

∫ t

0
exp

[
− ζ(t− x)

1− ζ

]
f ′(x)dx, t ≥ 0, 0 < ζ < 1.

From the above-mentioned definition of the CF fractional derivative, it follows that

CF
t f−tD

ζ
t f
(φ(t f − t)) =

1
1− ζ

∫ t f

t f−t
exp

[
−

ζ(t f − t− x)
1− ζ

]
φ′(x)dx. (40)
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Now, assuming t f − x = y, from Equation (40), we obtain that

CF
t f−tD

ζ
t f
(φ(t f − t)) =

1
1− ζ

∫ 0

t
exp

[
− ζ(y− t)

1− ζ

]
φ′(t f − y)(−dy)

=
1

1− ζ

∫ t

0
exp

[
− ζ(y− t)

1− ζ

]
φ′(t f − y)dy.

(41)

Hence, the optimality conditions are achieved as

CF
0 Dζ

t (x(t)) =
∂H(t, x(t), v(t), φ(t))

∂φ
,

CF
0 Dζ

t (φ(t f − t)) =
∂H(t f − t, x(t f − t), v(t f − t), φ(t f − t))

∂x

and
∂H
∂v

= 0 where H := H(t, x(t), v(t), φ(t)).

(42)

We now shift our focus from the generalized point of view, specifically to our CF
fractionalized optimal-control-induced (CFOC) system (27), (29), (30). Let us first consider
the following modified cost function:

Ẑ =

T∫
0

[
H(Su, Si, Bl , u1, u2, t)−

3

∑
j=1

θjαj(Su, Si, Bl , u1, u2, t)

]
dt. (43)

Hence, the Hamiltonian is defined as

H(Su, Si, Bl , u1, u2, t) = ψ(Su, Si, Bl , u1, u2, t) +
3

∑
j=1

θjαj(Su, Si, Bl , u1, u2, t). (44)

Then, utilizing (42), the necessary and sufficient conditions for the CF fractional
optimal control (CFOC) problem defined in (27), (29), (30) are given as

CF
0 Dζ θ1 =

∂H
∂Su

, CF
0 Dζθ2 =

∂H
∂Si

, CF
0 Dζ θ3 =

∂H
∂Bl

,
∂H
∂ui

= 0, i = 1, 2,

and CF
0 Dζ

t (Su(t)) =
∂H
∂θ1

, CF
0 Dζ

t (Si(t)) =
∂H
∂θ2

, .CF
0 Dζ

t (Bl(t)) =
∂H
∂θ3

.

Moreover, θ1, θ2 and θ3 are Lagrange’s multipliers, which express the necessary and
sufficient conditions in terms of the Hamiltonian for the fractional optimal control problem
defined above.

Now, consider system (27). Let us consider the Hamiltonian defined in (44). Rewriting
it in the following form, we obtain

H(Su, Si, Bl , u1, u2, θ) =
1
2

C1u2
1 +

1
2

C2u2
2 + S2

i + B2
l

+ θ1

(
ν1Su

(
1− Su

Sumax

)
− β1(1− u1(t))SuBl

)
+ θ2

(
β1(1− u1(t))SuBl − µSi

)
+ θ3

(
ν2(1− u2(t))Bl

(
1− Bl

Blmax

)
− β2(1− u1(t))SuBl + σSi

)
.

(45)

Theorem 7. If u∗1 , u∗2 are optimal controls of the given CFOC system defined by (27), (29), (30),
and if S∗u, S∗i , B∗l are the corresponding optimal paths, then there exist co-state variables θ∗1 , θ∗2 , θ∗3
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such that besides the given control system being satisfied, the following conditions, i.e., the co-state
equations, hold true also. The co-state equations are given as

CF
0 Dζ

t θ∗1 = −θ∗1

[
ν1 −

2Suν1

Sumax

− β1(1− u1)Bl

]
− θ∗2 β1(1− u1)Bl

+θ∗3 β2(1− u1)Bl ,
CF
0 Dζ

t θ∗2 = θ∗2 µ− θ∗3 σ− 2Si, (46)
CF
0 Dζ

t θ∗3 = θ∗1 β1(1− u1)Su − θ∗2 β1(1− u1)Su

−θ∗3

[
ν2(1− u2)

[
1− 2Bl

Blmax

]
− β2(1− u1)Su

]
− 2Bl

with transversality conditions θ∗1 (t f ) = 0, θ∗2 (t f ) = 0, θ∗3 (t f ) = 0, and the optimality conditions
are given by

H(S∗u(t), S∗i (t), B∗l (t), u∗1(t), u∗2(t)) = min
0≤ui≤1

H(S∗u, S∗i , B∗l , u∗i ),

u∗1(t) = min
{

1, max
(

0,
SuBl(β1θ∗2 − β2θ∗3 − β1θ∗1 )

C1

)}
,

u∗2(t) = min

1, max

0,
θ∗3 ν2Bl

(
1− Bl

Blmax

)
C2

.

(47)

Proof. The adjoint system (46) is obtained fromH as follows

−dθ1

dt
=

∂H
∂Su

, − dθ2

dt
=

∂H
∂Si

, − dθ3

dt
=

∂H
∂Bl

with transversality conditions given as θ1(t f ) = θ2(t f ) = θ3(t f ) = 0. Furthermore, the
characterization of the CF fractionalized optimal controls u∗1(t) and u∗2(t) are achieved by
solving the following equations

∂H
∂u1

= 0,
∂H
∂u2

= 0

on the interior of the control set and utilizing the properties of the control space U .

The analytical sections of our study come to an end here and next we proceed to the
numerical outcomes for validation of the analytical portions of our proposed systems.

6. Numerical Simulation

In this section, we perform numerical simulations for both the Caputo–Fabrizo frac-
tional system denoted by (7) and also the CF fractionalized optimal control system (27). All
the numerical results are compared with the analytical and theoretical outcomes previously
achieved. We chose the initial values according to the cardinal rule of scientific hypothesis.
Some values of the parameters were chosen from the research articles [19,51,52], and the
other values were estimated. The values of the parameters which we have used here are
described in the following table denoted by Table 1. All of our numerical findings here
were obtained using MATLAB 2016a. Throughout the study, the interval of consideration
was chosen as [0, 2.5× 103].

Here, we want to mention that Table 1 actually refers to the values of the system param-
eters for system (7) and system (27) for the fractional order ζ = 1. During the simulations
of the figures for ζ ∈ (0, 1), we adopted the technique proposed by Atangana et al. [53].
To avoid the dimension mismatching of (time)−1 and (time)(−ζ) between the left- and
right-hand sides of the systems, the dimensions of the system parameters were modified
accordingly and the corresponding values were utilized for the numerical simulations.
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Table 1. List of parameter values used in numerical simulation for systems (7) and (27) for ζ = 1.

Parameter Parameter Definition Assigned Value References

ν1 growth rate of Su 0.4 [19,51]
ν2 growth rate of Bl 0.01–0.05 [19,52]

Sumax carrying capacity of Su 600–1400 [19,51,52]
Blmax carrying capacity of Bl 400–550 [19,51,52]

µ natural death rate of Si 0.1 Estimated
β1 infection rate 0.0003–0.0046 [19]
σ proliferation rate of Bl 0.1–0.35 [19,51]
β2 clearance rate of Bl 0.00015–0.0003 [19,51]

In Figures 1 and 2, the behavior of the cell densities and the phase portrait diagrams
of the healthy Schwann cells, infected Schwann cells and M. leprae bacteria for system (7) in
the 3-D phase space are exhibited, respectively, for ζ = 1, i.e., for the classical integer-order
system. Figure 1 depicts oscillatory periodic solutions and stable limit cycles. On the
contrary, in Figure 2, stable solutions are observed whenever the value of ν2 is increased
from 0.03 to 0.05, which describes that the intrinsic growth rate of the bacterial population
is a very crucial parameter for demonstrating the dynamical shift in system (7).

We now move on to understand the behavior of system (7) in the previous memory
states, i.e., for the noninteger cases or fractional-order cases for the value of ζ ∈ (0, 1).
Considering ζ = 0.8, Figure 3 shows that system (7) produces oscillatory solutions and
stable limit cycles for ν2 = 0.03, while Su cell, Si cell and Bl bacteria reach the stable
concentrations of approximately 50 mm3, 120 mm3 and 1100 mm3, respectively, at the
endemic steady state E∗ described in Figure 4.

(a) (b)
Figure 1. Behavior of the solutions of the system populations and 3-D phase portrait diagrams of the
CF fractionalized system (7) depicting the oscillatory dynamics and appearance of limit cycles for
ζ = 1. Values of ν2 = 0.03, Sumax = 1000 were used to simulate the subfigures in this figure, where all
the other parameter values were chosen from Table 1. (a) Behavior of the trajectories of system (7);
(b) 3-D phase diagram for system (7) in Su − Si − Bl space.
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(a) (b)
Figure 2. Behavior of the solutions of the system populations and 3-D phase portrait diagrams of
the CF fractionalized system (7) depicting the stable behavior for ζ = 1. Values of ν2 = 0.05 and
Sumax = 1000 were used to simulate the subfigures in this figure where other parameter values were
chosen from Table 1. (a) Behavior of the trajectories of system (7); (b) 3-D phase diagram for system
(7) in Su − Si − Bl space.

(a) (b)
Figure 3. Time series and phase portrait diagram of the CF fractionalized system (7) depicting the
unstable oscillatory behavior of the system state populations and appearance of stable limit cycles
for ζ = 0.8. Values of ν2 = 0.03 and Sumax = 1200 were used to simulate the subfigures in this figure
where other parameter values were chosen from Table 1. (a) Behavior of the trajectories of system (7);
(b) 3-D phase diagram for system (7) in Su − Si − Bl space.

(a) (b)
Figure 4. Time series and phase portrait diagram of the CF fractionalized system (7) depicting the
asymptotically stable behavior of the system state populations for ζ = 0.8. Here, values of ν2 = 0.05
and Sumax = 1200 were used to simulate the subfigures in this figure. Values of all the other parameters
were chosen from Table 1. (a) Behavior of the trajectories of system (7); (b) 3-D phase diagram for
system (7) in Su − Si − Bl space.
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Next, a comparison of system (7)’s behavior is investigated for two different values
of ζ. Keeping the whole parameter set fixed, we varied the fractional order from ζ = 1
to ζ = 0.6. The numerical outcomes in Figure 5 exhibit unstable behavior with sustained
oscillations of the cell population densities of system (7) for ζ = 1, but moving towards
the previous memory state for ζ = 0.6, Figure 6 shows that after a little initial fluctuation,
the system state populations become asymptotically stable. In addition, in Figure 7, the
stability regions of the interior equilibrium E∗(S∗u, S∗i , B∗l ) for the CF fractionalized system
(7) for three different values of ζ, i.e., for ζ = 1, 0.8, 0.6, are clearly demonstrated in
Figures 7a, 7b and 7c, respectively.

(a) (b)

(c) (d)

(e)
Figure 5. Times series and phase portrait diagrams of the CF fractionalized system (7) depicting the
sustained oscillatory unstable behavior of the system state populations and appearance of limit cycles
for ζ = 1. Here, values of ν2 = 0.035 and Sumax = 1200 were used for simulating the subfigures in
this figure. All the other parameter values were chosen from Table 1. (a) Behavior of the trajectories
of system (7); (b) 3-D phase diagram for system (7) in Su − Si − Bl space; (c) 2-D phase diagram of
system (7) in the Su − Bl plane; (d) 2-D phase diagram for system (7) in the Su − Si plane; (e) 2-D
phase diagram for system (7) in the Si − Bl plane.
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(a) (b)

(c) (d)

(e)
Figure 6. Times series and phase portrait diagrams of the CF fractionalized system (7) depicting the
asymptotically stable dynamics of the system state populations for ζ = 0.6. Here, major observations
are noted by studying the comparative behavior of system (7) between the CF-fractional order
ζ = 1 (unstable in the form of stable periodic solutions and limit cycles shown in Figure 5) and
ζ = 0.6 (stable behavior demonstrated in this figure, i.e., in Figure 6). Here, values of ν2 = 0.035 and
Sumax = 1200 were used for simulating the subfigures in this figure. All the other parameter values
were chosen from Table 1. (a) Behavior of the trajectories of system (7); (b) 3-D phase diagram for
system (7) in Su − Si − Bl space; (c) 2-D phase diagram of system (7) in the Su − Bl plane; (d) 2-D
phase diagram for system (7) in the Su − Si plane; (e) 2-D phase diagram for system (7) in the
Si − Bl plane.
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(a) (b)

(c)
Figure 7. Representation of the stability regions for the Caputo–Fabrizio (CF) fractionalized system
(7) for different values of CF fractional order ζ. Values of the parameters were chosen as ν1 = 0.4,
Blmax = 530, µ = 0.1, β1 = 0.00032, σ = 0.3, β2 = 0.00024 and all the values of other parameters
were taken from Table 1. (a) Stability region for CF fractional order ζ = 1; (b) stability region for CF
fractional order ζ = 0.8; (c) stability region for CF fractional order ζ = 0.6.

In Figures 8 and 9, the effect of the optimal control treatment policy has been demon-
strated on the Caputo–Fabrizio fractionalized optimal control (CFOC) system for the
fractional orders ζ = 0.9 and ζ = 0.6, respectively. In both cases, the concentrations of
healthy Schwann cells (Su) are observed to be increased, and also the densities of Si and
Bl are decreased in the body of a leprosy-infected person. The bacterial concentration Bl
decreases to 510 mm3 in Figure 8c, while it decreases to a stable concentration of 420 mm3

depicted in Figure 9c. This indicates that the CFOC system (27) acts better when more
previous memory states are considered for ζ = 0.6. Now, looking into the optimal control
profiles of u∗1 and u∗2 , we can see that the drug therapy Dapsone denoted by u∗2(t) needs
to be increased after 520 days in case of ζ = 0.9, while it should be increased after nearly
1100 days up to the range 0.8–0.9 for ζ = 0.6 described in Figures 8d and 9d, respectively.
This happens due to the memory effect of M. leprae-induced infection and as the previous
memory stages of the bacteria are extremely correlated with the drug resistance scenarios
during the treatment [7]. Indeed, the M. leprae bacteria are highly Dapsone-resistant [39,54].
To tackle the dissemination of leprosy into the human body and to effectively inhibit bac-
terial drug resistance, applying the optimal control treatment approach for the previous
memory state of ζ = 0.6 is more realistic in nature and appropriate than the present state or
the states very adjacent to ζ = 0.9.
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(a) (b)

(c) (d)

Figure 8. Trajectories of the cell populations of the optimal-control-induced Caputo–Fabrizio frac-
tional (CFOC) system (27). Scenarios for both with and without control are exhibited here in subfigures
(a), (b) and (c), respectively, denoted by green and red color. In subfigure (d), optimal control profiles
of u∗1 and u∗2 are shown for CFOC system (27). Values of the parameters were chosen as ζ = 0.9,
ν2 = 0.03, Sumax = 1200 for simulating the subfigures of this figure and other parameter values were
selected from Table 1. (a) Behavior of the densities of healthy Schwann cells Su; (b) behavior of the
densities of infected Schwann cells Si; (c) behavior of the concentrations of M. leprae bacteria Bl ;
(d) dynamics of the optimal control profiles u∗1 and u∗2 for system (27).

(a) (b)

Figure 9. Cont.
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(c) (d)

Figure 9. Trajectories of the cell populations of the optimal-control-induced Caputo–Fabrizio frac-
tional (CFOC) system (27). Scenarios for both with and without control are exhibited here in subfigures
(a), (b) and (c), respectively, denoted by green and red colors. In subfigure (d), optimal control profiles
of u∗1 and u∗2 are shown for CFOC system (27). Values of the parameters were chosen as ζ = 0.6,
ν2 = 0.03, Sumax = 1200 for simulating the subfigures of this figure and other parameter values were
selected from Table 1. (a) Behavior of the densities of healthy Schwann cells Su; (b) behavior of the
densities of infected Schwann cells Si; (c) behavior of the concentrations of M. leprae bacteria Bl ;
(d) dynamics of the optimal control profiles u∗1 and u∗2 for system (27).

7. Discussion and Conclusions

Leprosy is a chronic infectious bacterial disease caused by the bacterium M. leprae.
Despite several attempts by clinical and experimental scientists in the past, complete
elimination of leprosy has still not been attained. The drug resistance characteristics of
the bacterium, its associated relapse problems, and designing a perfect drug dose regimen
in a cost-effective way remain a great challenge [37,55,56] for researchers worldwide.
Applications of new innovative tools and techniques are essential in this situation. Keeping
this in mind, we have formulated and analyzed a three-dimensional CF fractional-order-
based mathematical system and, most importantly, investigated the impacts of memory
effects on the CF fractionalized optimal control system by incorporating a combined drug
therapy of Ofloxacin and Dapsone. In this section, we will discuss the crucial interpretations
obtained from the analytical and numerical outcomes for both system (7) and system (27).

Firstly, we formulated an iterative scheme using the Laplace and inverse Laplace
transformations in Section 3.1. Following that, we established the stability of the solutions
using Picard’s T-stability iterative criterion in Theorem 2 in Section 3.2. For demonstrating
the existence and uniqueness of the solutions (Theorem 3 in Sections 3.3 and 3.4) of system
(7), we used the well-known Banach fixed-point theorem and Arzela–Ascoli theorem.
The formula for the basic reproduction number R0 was derived and the local asymptotic
stability of E0 for the CF fractionalized system (7) was investigated with respect to the
threshold value of R0 = 1. Besides this, we also described the stability criterion of the
endemic equilibrium E∗ of system (7) in Theorem 5 in Section 4. Furthermore, the CFOC
system (27) was investigated by suitably defining the control set U in Equation (28) and the
objective function (29) in Section 5. A generalized FOCP was formed in (31) and optimality
conditions were proven in detail for this FOCP denoted by (42). Then, the formulas in (42)
were applied to achieve the necessary and sufficient optimality conditions for system (27),
and also the values of the optimal control pair u∗1 and u∗2 and the co-state or the adjoint
equations with the corresponding transversality conditions were described elaborately in
Theorem 7.

In 2021, Ghosh et al. [19] described three strategies and, among them, Strategy-III was
found to be the most effective one. However, serious matters of concern in determining a
realistic and accurate therapy for leprosy are the high cost and extreme adverse effects of
the combined drug therapy. Here, in this research article, from Figures 8d and 9d, we can
observe that after introducing the memory effect, the amount of the drugs needed initially
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is much less for system (27) than for Strategy-III in both the memory-free model and integer-
ordered system, which is much better in terms of cost-effectiveness and safe therapeutics.

Furthermore, comparing Figures 8 and 9, we can notice that if the value of ζ is de-
creased from 0.9 to 0.6, oscillatory solutions appear for the specific range of the parameter
set, but in both cases, under the optimal treatment policy, the densities of the cell popu-
lations approach a stable concentration. The dynamics of the optimal control profile of
Ofloxacin remain almost similar for both ζ = 0.9, 0.6, but the control profile of Dapsone
provides notable differences. More specifically, for ζ = 0.6, the drug dose of Dapsone, i.e.,
u∗2(t), needs to be increased after 1100 days to tackle the highly Dapsone-drug-resistant
M. leprae [39,54] and the associated infection procedure. Thus, to build a perfect regimen for
combined therapy, acquiring enough knowledge from the previous memory states about
drug-resistance issues [38,57,58] is essential and, hence, CFOC system (27) with ζ = 0.6 is
very fruitful in this context. The more we reduce the value of ζ and approach the previous
memory states, the more accurate the precision will be. Still, future works on leprosy in
this aspect should also focus on investigating the memory stages for the value of ζ < 0.6,
and before implementation, the outcomes should be validated properly by clinical and
experimental researchers.

The memory effect for a biological problem actually involves the entire history before
the present instant, and the implication of fractional calculus can be viewed as a suitable and
exclusive tool for modeling these types of phenomena with hysteresis. Our present study
reveals that the whole M. leprae-induced infection in leprosy not only depends on the present
state but also on the previous memory stages of the infection process. With the different
circumstances and effects that the whole infection mechanism experiences in various
memory stages, the CF fractionalized system responds differently to the current conditions.
The knowledge accumulated by the metabolic activities in preceding stages confers fitness
to the bacteria in an evolutionary way, which validates that the history-dependent drug-
resistant behavior is essentially a clear manifestation of the memory effect in leprosy. Thus,
to overcome the drug resistance scenario, high-cost-related problems and side-effects of the
combined therapy more accurately and realistically, the three-dimensional Caputo–Fabrizio
fractionalized optimal control mathematical model (27) for the fractional order ζ = 0.6
presented in our research article should certainly be considered by mathematical and
clinical scientists for all future studies on leprosy.
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