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Abstract: Due to COVID-19, online education has become an important tool for teachers to teach
students. Also, teachers depend on a multimedia teaching system (platform) to finish online education.
However, interacted images from a multimedia teaching system may suffer from noise. To address
this issue, we propose a lightweight image denoising network (LIDNet) for multimedia teaching
systems. A parallel network can be used to mine complementary information. To achieve an adaptive
CNN, an omni-dimensional dynamic convolution fused into an upper network can automatically
adjust parameters to achieve a robust CNN, according to different input noisy images. That also
enlarges the difference in network architecture, which can improve the denoising effect. To refine
obtained structural information, a serial network is set behind a parallel network. To extract more
salient information, an adaptively parametric rectifier linear unit composed of an attention mechanism
and a ReLU is used into LIDNet. Experiments show that our proposed method is effective in image
denoising, which can also provide assistance for multimedia teaching systems.

Keywords: lightweight CNN; dynamic convolution; adaptive activation function; image denoising;
multimedia teaching system

MSC: 68T45

1. Introduction

Traditional teaching requires students to learn knowledge through face-to-face meth-
ods. Although it has good effects, it has higher requirements for students in terms of time
and space. To break these limitations, online education has been developed. It mainly
depends on a multimedia system (platform) to complete teaching tasks. Also, obtained
images in the multimedia system constitute important media for human-to-human inter-
action. However, these images often suffer from some challenges from noise caused by
camera shake, hardware quality, weather [1], etc. After analyzing the process of collecting
and disseminating relevant teaching resources, teaching images often suffer from chal-
lenges, i.e., noise from collection equipment. To address these mentioned drawbacks, image
denoising techniques are also applied.

An image denoising technique is a classical low-level technique and has been ap-
plied in various fields, i.e., activities recognition [2] and remote sensing [3]. For instance,
an expected patch log likelihood (EPLL) [4] used a mixed Gaussian model to learn prior
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knowledge from many natural image blocks for image denoising. Also, block match-
ing and three-dimensional filtering (BM3D) [5] utilized collaborative filtering on similar
two-dimensional image blocks to remove noise. A weighted nuclear norm minimization
(WNNM) algorithm can exploit an image’s non-local self-similarity to extract more infor-
mation for image denoising [6]. Although these methods can restore images, they face
some challenges. That is, they excessively rely on manual adjustment of parameters and
complex parameters. Due to strong expressive ability, convolutional neural networks
(CNNs) have obtained abilities of feature extraction. Thus, CNNs have been applied in the
field of image denoising. For instance, a denoising convolutional neural network (DnCNN)
first utilized convolution and residual learning operations to complete denoising work [7].
To suppress the influence of the background on noise, an attention mechanism is fused in
a CNN to separate background and foreground to suppress noise [8]. To address image
denoising under complex scenes, a dynamic convolution is used in a CNN to achieve an
adaptive denoiser, according to different noisy images [9]. To obtain a better denoising
effect, a combination of an omni-dimensional dynamic convolution and attention mecha-
nisms is integrated into a CNN to enhance the expressive ability of a denoising network,
which can enhance interaction quality of the multimedia teaching system between students
and teachers. Le et al. uses two phases, i.e., a feature augmentation stage and a feature
refinement stage, to design a CNN to extract more accurate structural information for image
denoising [10]. To reduce the complexity of a denoiser, Lin et al. simplified the residual
spatial–spectral module and knowledge distillation to achieve a lightweight method to
accelerate noise removal [11] Alternatively, a combination of a non-local algorithm and a
residual CNN achieves a lightweight CNN to suppress noise [12]. That is, we present a
lightweight image denoising network as well as LIDNet for multimedia teaching systems.
LIDNet uses a parallel sub-network to mine complementary information for image denois-
ing. To achieve an adaptive CNN, a dynamic convolution based on kernel information
and input channel number and output channel number fused into an upper network can
automatically adjust parameters to achieve a robust CNN, according to different input
noisy images. That also enlarges differences in network architecture, which can improve
the denoising effect. To refine the obtained structural information, a serial network is set
behind a parallel network. To extract more salient information, an adaptively parametric
rectifier linear unit composed of an attention mechanism and a ReLU is used in LIDNet.
Experiments show that our proposed method is effective in image denoising, which may
also provide assistance for multimedia teaching systems.

The contributions of the proposed method can be summarized as follows:

1. A dynamic convolution based on kernel information and input channel number and
output channel number is used to adaptively mine more useful information, according
to different input images.

2. A combination of attention mechanism and ReLU is set behind each convolutional
layer in addition to the final convolutional layer to enhance the same distributions of
training samples for pursuing better denoising performance.

3. Our denoising method is useful for enhancing the interaction quality of a multimedia
teaching system between teacher and student.

The remainder of this paper is organized as follows. Section 2 lists related work
about image denoising based on dual networks and dynamic networks. Section 3 provides
detailed information of the proposed method. Section 4 presents analysis of our proposed
method and results. Section 5 gives the conclusion of this paper.

2. Related Work
2.1. A Dual Network for Image Denoising

To extract complementary information, dual networks are developed in image de-
noising [13]. For instance, Tian et al. [13] presented a dual denoising network with sparse
mechanism as well as DudeNet to extract complementary information to enhance denoising
effects. Alternatively, Bai et al. [14] achieved a dual network via encoder–decoder and
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channel attention architecture to extract local and non-local information for image denois-
ing, where image spatial details and semantic information can be obtained by a criss-cross
attention. To extract more information, Holla et al. [15] used edge information to design
a CNN to capture high-frequency information in image denoising. Zhang et al. fused
different masks into a CNN to facilitate complementary information to suppress noise [16].
To mine more high-frequency information, Qiao et al. combined two different networks and
a sharpening loss function to improve the quality of visual denoising images [17]. Liu et al.
used a wavelet decomposition technique to achieve a wide CNN to prevent vanishing and
exploding gradient problems [18]. To extract salient noise information, Chen et al. fused
a CNN and a transformer to implement a parallel network to extract structural informa-
tion and key information based on pixel relations for improving denoising effects [19].
For medical noisy image denoising, Jiang et al. [20] used residual connections and dilated
convolutions to achieve a heterogeneous dual network to mine more complementary in-
formation to suppress noise. According to the mentioned illustrations, we can see that
dual networks are useful for image denoising. Inspired by that, we design a dual network
architecture for image denoising in this paper.

2.2. Dynamic Networks for Image Denoising

To enhance the robustness of the image denoiser, a dynamic network is created [21].
For instance, Song et al. [21] combined dynamic convolutions and residual learning opera-
tions into a CNN to dynamically adjust parameters to obtain a robust denoising network,
according to different input images. Du et al. [22] exploited a dynamic attention mechanism
to better extract salient information for image denoising. Alternatively, Shen et al. [23] fused
a spatial module and dynamic convolution to obtain more spatial context information to
obtain better denoising performance. Tian et al. [9] used dynamic convolution and wavelet
transform to extract more useful information to improve denoising effects. According to
the mentioned descriptions, we can see that dynamic convolution is effective in image
denoising. Motivated by that, we use a dynamic convolution in this paper, according to
different kernel and channel information.

3. Proposed Method
3.1. Network Architecture

The proposed 17-layer LIDNet combines a parallel and series architecture. The parallel
architecture is composed of a 6-layer block called the dynamic feature extraction block
(DFEB) and a 6-layer block named complementary feature extraction block (CFEB). The se-
ries architecture contains an 11-layer block called the cascaded purification block (CPB),
which is shown in Figure 1. DFEB uses a dynamic convolutional layer to adaptively extract
structural information, including kernel information and channel information. To extract
complementary information, CFEB use several stacked convolutional layers, BN and a
combination of attention mechanism and activation function to extract complementary
salient information. Also, a residual learning operation is used to connect the obtained
information from a parallel network. To prevent over enhancement, a 11-layer CPB is
designed behind the parallel network. To construct a clean image, a residual learning
operation is used to act between an input image and output image of LIDNet. This process
can be shown as Equation (1).

IC = LIDNet(IN)

= CPB(DFEB(IN) + CFEB(IN)) + (IN),
(1)

where IC represents an output of LIDNet, which is regraded to a denoised image. IN
denotes the input noisy image, and LIDNet() expresses a function of LIDNet. DFEB,
CFEB, and CPB stand for functions of DFEB, CFEB, and CPB, respectively. + is a residual
learning operation, which is also shown as ⊕ in Figure 1. Furthermore, the MSE loss
function of LIDNet is introduced in Section 3.2.
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Figure 1. Network architecture of LIDNet.

3.2. Loss Function

To fairly compare with the famous denoising benchmark of DnCNN, a mean squared
error (MSE) [24] is chosen as the loss function to train LIDNet. Specifically, MSE uses pairs
of

{
Ii
N , Ii

C
}
(1 ≤ i ≤ n) to train our LIDNet in a supervised way, where Ii

N and Ii
C are

defined as the i-th noisy and clean image, respectively. n represents the number of image
pairs in the training dataset. LIDNet also uses the popular Adam [25] to obtain reasonable
parameters. The mathematical expression of the loss function is as follows:

L(θ) =
1

2n

n

∑
i=1

∥∥∥LIDNet(Ii
N)− Ii

C

∥∥∥2
, (2)

where L is a loss function of MSE and θ stands for learned parameters.

3.3. Dynamic Feature Extraction Block

The first layer in DFEB consists of a convolutional and a rectified linear unit (ReLU) [26]
operation. The following 4 layers are composed of a convolutional, a batch normalization
(BN) operation and an adaptively parametric rectified linear unit (APReLU) [27]. And the
final layer has an omni-dimensional dynamic convolution (ODConv) [28], BN and APReLU.
In terms of parameter setting, the input channel number of the first convolutional operation
is the same with the channel of the input images. If the input image is color, input channel
number of LIDNet is 3. otherwise, input channel number of LIDNet is 1. Other numbers of
input and output channels of all the layers are 64. Every size of convolutional kernels in
LIDNet is set to 3 × 3. And the output of the DFEB is fused with the output of the CFEB
via a concatenation connection. Mathematical expression of the DFEB is shown as follows:

ODFEB = DFEB(IN)

= Conv6(4Conv2(Conv1(IN)))

= APReLU(BN(ODConv(4APReLU(4BN(4Conv(ReLU(Conv(IN)))))))),

(3)

where ODFEB is the output of DFEB. DFEB() expresses a function of DFEB. Conv1 means the
first layer of the DFEB, 4Conv2 means 4 stacked layers in DFEB, which form the second layer
to the fifth layer, and Conv6 means the last layer of the DFEB. Conv stands for a function
of a convolutional operation, ReLU stands for an activation function of ReLU, BN stands
for the batch normalization operation, APReLU stands for another activation function of
APReLU, and ODConv stands for ODConv operation. 4APReLU(4BN(4Conv())) is the
equation for the 4Conv2.

3.4. Complementary Feature Extraction Block

The lower branch in a parallel architecture is CFEB, which is responsible for extracting
complementary features by a different network architecture. The first layer in CFEB consists
of a convolutional and a ReLU operation. And the following 5 layers are composed of a
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stacked combination of convolutional, BN, and APReLU operations. As shown in Figure 1,
the difference between DFEB and CFEB is mainly reflected on the last convolutional layer.
Specifically, the CFEB uses a common convolution operation to replace the ODConv as the
final layer in the DFEB. Input and output channel numbers of the final convolutional layer
are both 64. The mathematical expression of CFEB is as follows:

OCFEB = CFEB(IN)

= 5Conv2(Conv1(IN))

= 5APReLU(5BN(5Conv(ReLU(Conv(IN))))),

(4)

where OCFEB is the output of CFEB. CFEB() expresses a function of CFEB. Conv1 means
the first layer of the CFEB and 5Conv2 means 5 stacked layers in the DFEB, which is as the
second layer to the sixth layer in the CFEB. 5APReLU(5BN(5Conv())) is equal to 5Conv2.

3.5. Concatenated Purification Block

To refine fused structural information from DFEB and CFEB, CPB is set as the last part
of LIDNet. Specifically, its first 10 layers in CPB are composed of convolutional, BN, and
APReLU operations. And its last layer is simply a common convolutional operation, which
is used to construct clean images. To construct a clean image, a residual learning operation
is used to act between an input image and output image of LIDNet. The numbers of input
and output channels are 64 except the output channel number of the final convolutional
layer, which is the same as the channel of the input image. The mathematical expression of
CPB is as follows:

OCPB = CPB(ODFEB + OCFEB)

= Conv11(10Conv1(ODFEB + OCFEB))

= Conv(10APReLU(10BN(10Conv(ODFEB + OCFEB)))),

(5)

IC = IN − OCPB, (6)

where OCPB is the output of CPB. CPB() expresses a function of CPB. 10Conv1 means the
10 stacked layers in CPB, which form the first layer to the tenth layer, and Conv11 means
the last layer of the CPB. 10APReLU(10BN(10Conv())) is equal to 10Conv1.

4. Experiments
4.1. Datasets

The video quality of many courses inevitably declines due to the impact of the envi-
ronment and equipment during shooting. To achieve better performance in multimedia,
we propose LIDNet to denoise these teaching images. The architecture of our LIDNet is
shown in Figure 1.

For image denoising with Gaussian noise, 400 images with sizes of 180 × 180 from
Ref. [29] are used to train a denoising model. Three different denoising models with noise
levels of 15 and 25 can be trained, respectively. To train a blind denoising model with noise
levels from 0 to 55, a blind model is trained. Specifically, patch sizes are set to 40 × 40.

To fairly test denoising performance, public BSD68 [30], Set 12 [31], Kodak24 [32], and
collected educational images from the Internet are used as test datasets. Guassian noise
with noise levels of 15 and 25 is added on BSD68, Set12, Kodak24, and collected educational
images from the Internet to test the denoising performance of the proposed method.

4.2. Parameter Setting

This paper has the following experimental settings. The number of training epochs
is 180. The original learning rate is 1 × 10−3 and it will decline to 0.2 times when the
epoch is 30, 60, and 90, respectively. Batch size is set to 128. Adam is used to optimize
parameters [25], where β1 is 0.9 and β2 is 0.999. More parameters can be found in Ref. [13].
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The LIDNet can be trained on a PC with Intel Xeon Gold 6330 Processor and one Nvidia
GeForce RTX 3090. Furthermore, all the codes run on Ubuntu 20.04 with Python 3.8,
PyTorch 1.11.0, and CUDA 11.7.

4.3. Network Analysis

This paper uses a parallel network architecture to extract complementary information
for image denoising, where a parallel network consists of an upper network (also regarded
as dynamic feature extraction block, DFEB) and lower network (also regarded as comple-
mentary feature extraction block, CFEB). It connects a serial architecture (concatenated
purification block, CPB) to extract more hierarchical structural information. Also, each
branch in the parallel network is composed of six layers of stacked architecture. The
upper network is composed of a Conv + APReLU, four Conv + BN + APReLU, and a
ODConv + BN + APReLU, where APReLU [27] is composed of an attention mechanism
and a ReLU is used to extract salient information and nonlinear information. Also, OD-
Conv [28] utilizes convolutional kernel information and channel information to dynamically
learn parameters to adaptively train a denoising model for different given noisy images.
‘LIDNet without global residual connection and ODConv + BN + APReLU’ has an improve-
ment of 0.013dB compared to ‘LIDNet with only Conv + APReLU in the upper network’
in Table 1, which describes the effectiveness of four Conv + BN + APReLU in the upper
network for image denoising. Also, the denoising effect of ‘Conv + APReLU’ in the upper
network is verified by ‘The combination of lower network and CPB’ and ‘LIDNet with
only Conv + APReLU in upper network and without global residual connection’ in Table 1.
To test the denoising performance of DFEB, we use ‘The combination of lower network and
CPB’ and ‘LIDNet without global residual connection’ to conduct comparative experiments.
As shown in Table 1, we can see that ‘LIDNet without global residual connection’ exceeds
‘The combination of lower network and CPB’ in terms of PSNR. That shows that DFEB in
the parallel network is effective for image denoising. Additionally, to test complementarity
of two sub-networks, ‘The combination of lower network and CPB’ is superior to ‘CPB’
in terms of image denoising in Table 1, which shows the superiority of a parallel network
for image denoising. To prevent the interference of upper and lower networks, a serial
network is set behind a parallel network to refine the obtained structural information for
image denoising. Finally, a global residual connection is employed between outputs of the
first layer in a lower network and the last layer in the CPB to construct clean images.

Table 1. Denoising results (average PSNR (dB)) of several networks on BSD68 for noise level of 25.

Different Networks PSNR(dB)

CPB 28.937

The combination of lower network and CPB 28.944

LIDNet with only Conv + APReLU in upper network and without global
29.219

residual connection

LIDNet without global residual connection and ODConv + BN + APReLU 29.232

LIDNet without global residual connection 29.237

LIDNet (Ours) 29.247

4.4. Comparisons with State of the Art

To test the effectiveness of proposed method, we choose several popular denoising
methods, i.e., EPLL, BM3D, WNNM, DnCNN, image restoration CNN (IRCNN) [33], fast
and flexible denoising network (FFDNet) [34], and a cascade of shrinkage fields (CSF) [35]
as comparative methods on the BSD68 and Set12 to conduct experiments. As shown in
Table 2, we can see that our LIDNet has obtained the best denoising result on the BSD68 for
σ = 15 and σ = 25. For instance, our LIDNet has an improvement of 0.11 dB compared to
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IRCNN for σ = 15. That shows that our method is effective for gray noisy image denoising.
To verify good denoising performance for a single gray noisy image, different methods on
Set12 are used to conduct denoising effects. As illustrated in Table 3, we can see that our
LIDNet has obtained the best denoising effect for single noisy image denoising. For instance,
our LIDNet has obtained an improvement of 0.09 dB compared to a popular denoising
method, i.e., WNNM for a noise level of 15. That shows that our method is a good denoising
tool for low-frequency noisy image denoising. Our LIDNet has obtained an improvement
of 0.06 dB compared to a popular denoising method, i.e., IRCNN for noise level of 25.
That shows that our method is a good denoising tool for high-frequency noisy image
denoising. According to that, we can see that our method is effective for single noisy image
denoising. Furthermore, to further demonstrate the denoising performance of our LIDNet
on color images, Table 4 records the denoising results from different models with different
noise levels. Compared with popular methods, i.e., IRCNN, FFDNet, D-BSN, FL(NLM),
and FL(BM3D), our LIDNet has also achieved improvements in denoising performance
for color noisy images. This also proved the effectiveness of LIDNet in processing color
noisy images.

Table 2. Average PSNR (dB) results of several networks on BSD68 for noise levels of 15 and 25.

Methods EPLL [4] BM3D [5] WNNM [6] DnCNN [7] IRCNN [23] FFDNet [34] CSF [35] LIDNet (Ours)

σ = 15 31.21 31.07 31.37 31.73 31.63 31.62 31.24 31.74
σ = 25 28.68 28.57 28.83 29.23 29.15 29.19 28.74 29.25

Table 3. PSNR (dB) results of different methods on Set12 with noise levels of 15 and 25.

Images C.man House Peppers Starfish Monarch Airplane Parrot Lena Barbara Boat Man Couple Average

Noise level 15

EPLL [4] 31.8 34.17 32.64 31.13 32.10 31.19 31.42 33.92 31.38 31.93 32.00 31.93 32.14
BM3D [5] 31.91 34.93 32.69 31.14 31.85 31.07 31.37 34.26 33.10 32.13 31.92 32.10 32.37

WNNM [6] 32.17 35.13 32.99 31.82 32.71 31.39 31.62 34.27 33.60 32.27 32.11 32.17 32.70
IRCNN [33] 32.55 34.89 33.31 32.02 32.82 31.70 31.84 34.53 32.43 32.34 32.40 32.40 32.77
FFDNet [34] 32.43 35.07 33.25 31.99 32.66 31.57 31.81 34.62 32.54 32.38 32.41 32.46 32.77

CSF [35] 31.95 34.39 32.85 31.55 32.33 31.33 31.37 34.06 31.92 32.01 32.08 31.98 32.32
LIDNet (Ours) 31.93 35.03 33.24 32.21 33.09 31.73 31.93 34.54 32.57 32.40 32.29 32.46 32.79

Noise level 25

EPLL [4] 29.26 32.17 30.17 28.51 29.39 28.61 28.95 31.73 28.61 29.74 29.66 29.53 29.69
BM3D [5] 29.45 32.85 30.16 28.56 29.25 28.42 28.93 32.07 30.71 29.90 29.61 29.71 29.97

WNNM [6] 29.64 33.22 30.42 29.03 29.84 28.69 29.15 32.24 31.24 30.03 29.76 29.82 30.26
IRCNN [33] 30.08 33.06 30.88 29.27 30.09 29.12 29.47 32.43 29.92 30.17 30.04 30.08 30.38
FFDNet [34] 30.10 33.28 30.93 29.32 30.08 29.04 29.44 32.57 30.01 30.25 30.11 30.20 30.44

CSF [35] 29.48 32.39 30.32 28.80 29.62 28.72 28.90 31.79 29.03 29.76 29.71 29.53 29.84
LIDNet (Ours) 30.20 33.10 30.83 29.39 30.40 29.09 29.52 32.39 30.04 30.18 30.04 30.08 30.44

To comprehensively test the denoising effect of our proposed method, we use qualita-
tive analysis to measure the effects of visual images. Specifically, we choose one area of
denoising images from BM3D, FFDNet, IRCNN, and LIDNet as observation areas. If the
observation area is clearer, its corresponding method shows better denoising performance.
As shown in Figures 2–4, we can see that our LIDNet is clearer than the results of other
methods. In Figure 3, other methods can obtain more incorrect texture information. Because
real noisy images are difficult to obtain in the world, we choose Guassian noise added on
educational images to test the performance of the proposed method for educational image
denoising. In Figure 4, we can see that our method can obtain clearer detailed information
for noisy educational image denoising. Thus, that not only shows that our method is
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superior to other methods in terms of qualitative analysis, but also that it is robust for
different scenes in terms of image denoising.

Table 4. Average PSNR (dB) results of different methods on CBSD68 and Kodak24 datasets with
noise levels of 15 and 25.

Datasets Models σ = 15 σ = 25

CBSD68

CBM3D [5] 33.52 30.71
DnCNN [7] 33.98 31.31
IRCNN [33] 33.86 31.16
FFDNet [34] 33.80 31.18
D-BSN [30] 33.56 30.61

FL (NLM) [12] - 31.01
FL (BM3D) [12] - 31.13
LIDNet (Ours) 33.99 31.37

Kodak24

CBM3D [5] 34.28 31.68
DnCNN [7] 34.73 32.23
IRCNN [33] 34.56 32.03
FFDNet [34] 34.55 32.11
D-BSN [30] 33.74 31.64

FL (NLM) [12] - 32.11
FL (BM3D) [12] - 32.26
LIDNet (Ours) 34.57 32.12

Figure 2. Visual effects of several denoising methods on an image from Set12 for noise level of 15.
(a) Original image, (b) noisy image (24.60 dB), (c) BM3D [4] (30.98 dB), (d) FFDNet [34] (31.99 dB),
(e) IRCNN [33] (32.02 dB), and (f) LIDNet (Ours) (32.21 dB).
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Figure 3. Visual effects of several denoising methods on an image from BSD68 for noise level of 25.
(a) Original image, (b) noisy image (20.19 dB), (c) BM3D [4] (29.49 dB), (d) FFDNet [34] (30.04 dB),
(e) IRCNN [33] (30.07 dB), and (f) LIDNet (Ours) (30.14 dB).

Figure 4. Visual results of several denoising methods on a real teaching image for noise level of 25.
(a) Original image, (b) noisy image (20.18 dB), (c) BM3D [4] (36.22 dB), (d) IRCNN [33] (36.50 dB),
(e) FFDNet [34] (36.73 dB) and (f) LIDNet (Ours) (36.82 dB).

5. Conclusions

Multimedia teaching systems have become a popular tool for online education. How-
ever, interacted images from a multimedia teaching system may suffer from noise. In this
paper, we present a lightweight image denoising network as well as LIDNet for multimedia
teaching systems. LIDNet uses a parallel network to mine complementary information.
To improve robustness of the obtained denoiser, an omni-dimensional dynamic convolution
is designed in one sub-network from the parallel network to automatically adjust parame-
ters to achieve an adaptive CNN. That also enlarges the differences in network architecture,
which can improve the denoising effect. To refine the obtained structural information,
a serial network is set behind a parallel network. To extract more salient information,
an adaptively parametric rectifier linear unit composed of an attention mechanism and a
ReLU is used in LIDNet. Experiments show that our LIDNet is effective in image denoising,
which can also provide assistance for multimedia teaching systems.
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