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Abstract: With the advent of smart mobile devices, end users get used to transmitting and storing
their individual privacy in them, which, however, has aroused prominent security concerns inevitably.
In recent years, numerous researchers have primarily proposed to utilize motion sensors to explore
implicit authentication techniques. Nonetheless, for them, there are some significant challenges in
real-world scenarios. For example, depending on the expert knowledge, the authentication accuracy
is relatively low due to some difficulties in extracting user micro features, and noisy labels in the
training phrase. To this end, this paper presents a real-time sensor-based mobile user authentication
approach, ST-SVD, a semi-supervised Teacher–Student (TS) tri-training algorithm, and a system with
client–server (C-S) architecture. (1) With S-transform and singular value decomposition (ST-SVD),
we enhance user micro features by transforming time-series signals into 2D time-frequency images.
(2) We employ a Teacher–Student Tri-Training algorithm to reduce label noise within the training sets.
(3) To obtain a set of robust parameters for user authentication, we input the well-labeled samples into
a CNN (convolutional neural network) model, which validates our proposed system. Experimental
results on large-scale datasets show that our approach achieves authentication accuracy of 96.32%,
higher than the existing state-of-the-art methods.

Keywords: mobile user authentication; deep learning; large-scale data analysis; implicit authentica-
tion; user micro feature

MSC: 68T07; 68T09

1. Introduction

With the advancement of mobile communication technology and hardware updates,
mobile intelligent terminal devices have become increasing popular and are widely used in
people’s daily lives. The mobile application market has an anticipated annual consumer
spending of USD 233 billion on the Apple App Store and Google Play store in 2022–2026 [1].
According to Grand View Research, the global mobile application market is expected to
grow at a compound annual growth rate (CAGR) of 13.4% from 2022 to 2030 [2]. As more
and more users transmit and even store their private data in mobile devices, it becomes
very important to avoid information leakage in the network attack and defense. Especially
in the instance where users are part of organizations such as enterprises, governments,
and national infrastructure, the information leakage caused by advanced persistent threat
attacks, conducted mainly by accessing the mobile devices to collect valuable confidential
information, would be a catastrophe. Therefore, in order to safeguard their privacy and
security, it is urgent to design suitable and robust user authentication models based on
both the application scenarios and the features of mobile devices.
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The current authentication methods for mobile users can be broadly categorized
into two types: knowledge-based and biometric-based. Knowledge-based authentication
methods [3] require users to explicitly input information such as passwords or patterns.
Although these methods are widely used due to their low cost, they have to face challenges
from the perspective of usability and security [4,5]. For example, (1) they are prone to
various attacks such as brute force, shoulder surfing, smudge, inference, and social en-
gineering attacks, and (2) inputting the same password repeatedly in small dialog boxes
would have impact on the user physical experience. In contrast, biometric-based authen-
tication methods [6] can mitigate the above issues to some extent. However, frequently
using the facial or fingerprint recognition may also, especially in some ungoverned sce-
narios, bring psychological discomfort. Therefore, both usability and security should be
the priority for the authentication systems. Recently, there has been extensive research on
user dynamic authentication methods based on motion sensors. These methods identify
users’ information with machine learning or deep learning methods to discern unique
behavioral patterns through their gait/gestures, because no privacy-related permissions
are required in motion sensors. Then, researchers collect a series of non-privacy motion
sensor data, such as accelerometer, gravity sensor, and gyroscope sensor data (through the
system-level interface any application can obtain the data). However, in real-world and
complex environments, it is hard to distinguish user micro features. The major challenges
are as follows:

(1) In mobile user authentication, the majority of sensory signal transformation methods
rely on expert knowledge [7,8]. They lack the in-depth data mining of motion sensor
signals, and they are unable to effectively learn the complex nonlinear relationships
between invariant features.

(2) Label noise is widely present in the training phase, e.g., device owners lend their
phones to others. Most research has paid more attention to signal denoising, but less
to reducing label noise [9,10]. If a classifier is trained with incorrect labels, continuous
errors can accumulate. Even if labeled samples are obtained from the target person,
the classifier may still fail to authenticate the device owner.

(3) The quality of handmade features is crucial for the performance of most classifiers.
However, when dealing with complex mixed motion sensor signals, relying solely
on statistical features can lead to critical information loss [7,11–13]. Additionally, the
feature extraction process is typically fixed by the determined algorithm, whereas
iterative optimization can be used to update the parameters of the classification
model. This can hinder the improvement of algorithms for sensor-based mobile user
authentication.

To address the aforementioned challenges, this paper proposes an efficient sensor-
based mobile authentication method under a complex environment. Our system implicitly
collects motion sensor data in the interaction between users and their mobile phones
and utilizes S-transform (ST) [14] and singular value decomposition (SVD) to enhance
their micro features. One-dimensional time-series signals are then sent to a server for
label refactoring through a Teacher–Student (TS) tri-training semi-supervised algorithm.
The resulting data are then used to train a CNN (convolutional neural network) model
for feature extraction and classification, which is returned to the mobile terminal (client
side) for real-time authentication. Experimental results on large-scale real-world data
demonstrate that our method achieves higher accuracy, compared with existing state-
of-the-art methods [7,9–12]. The main contributions of our work include the following
aspects:

(1) A 2D image encoding method, ST-SVD, is proposed for 1D time-series signals by
using a multi-resolution analysis. This method combines S-transform (ST) and sin-
gular value decomposition (SVD) to obtain an optimal S-matrix to enhance the time-
frequency characteristics of sensory signals. Then, it allows CNN to learn high-level
features. Moreover, this method takes into account the spatio-temporal properties of
sensory signals.
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(2) A semi-supervised Teacher–Student (TS) tri-training algorithm is proposed to address
label noise in real-world motion sensor datasets. This algorithm effectively eliminates
the negative impact of noisy labels and provides high-quality training data for the
model.

(3) Integrating the aforementioned methods, we design a system with a client–server (C-
S) architecture. Experimental results on large-scale real-world datasets demonstrate
that the proposed system achieves a high authentication accuracy, outperforming
existing state-of-the-art methods.

The remainder of this paper is organized as follows. Section 2 presents related work.
Section 3 illustrates the system design in detail. Section 4 shows the overall evaluation of
our system. Section 5 concludes our work.

2. Related Work

Authentication methods for mobile device users. Mobile device user authentication
methods are essential for protecting user data. Currently, they can primarily be classified
into three types: knowledge-based methods [5], static feature-based methods [6], and dy-
namic behavior-based methods [7]. Knowledge-based methods require users to explicitly
enter a digital password or gesture pattern to unlock the mobile device or log into an
application. These methods can only verify whether a user knows the credential but cannot
determine whether the user is the device owner. Furthermore, they pose certain risks, such
as poor human–computer interaction experience and privacy leakage. Previous studies
have shown that they can easily be broken by brute force attacks [15], smudge attacks [16],
shoulder surfing attacks [17], and sensor inference [18]. In contrast, static biometric au-
thentication methods are based on fingerprints and faces, which can achieve relatively
high recognition accuracy [19–21]. However, except concerns about the user experience
and privacy leakage mentioned in Section 1, recent research has shown that misusing
fingerprint APIs on Android can make applications vulnerable to various attacks [19],
and face recognition methods based on deep learning algorithms have been proven to be
circumvented by sophisticated attackers [20,21]. Dynamic behavior-based authentication
methods access data from built-in sensors in mobile devices, including environmental
locations, keystroke behaviors, finger movements, etc., and they work through the combi-
nation of feature engineering and model training. These methods may call privacy-related
permissions to obtain user privacy data.

Static/dynamic feature authentication methods are based on credential technology
and privacy risks. Given their inherent drawbacks, numerous researchers [8,11–13,22–27]
proposed dynamic user authentication based on motion sensors, which has the following
limitations: First, most user authentication based on motion sensors requires a user to use
their phone at a fixed location or perform specific actions (in a lab environment), which is
unrealistic and results in a large number of noisy labels in complex environments (non-lab
environments). Second, the credibility of the data collected in complex environments is of-
ten questionable, for example, unreliable labels are generated if the phone is used by others
except the owner. To achieve both good user experience and high authentication accuracy
simultaneously, this paper proposes an effective sensor-based mobile user authentication
method in complex environments.

Data denoising method for sensor-based mobile user authentication. Currently, most
dynamic authentication methods utilize motion sensors [8–13,22–27]. They do not consider
the impact of hardware noise. Then, it is very difficult for them to handle unlabeled
data (noise data) in real environments. Finally, overfitting occurs and authentication
accuracy decreases. In order to address the noise, some researchers [8] proposed noise
elimination algorithms to obtain an effective dataset in the data preprocessing stage, but
these algorithms cannot precisely distinguish the mislabeled and training samples. To
overcome it, researchers used semi-supervised methods, combining noisy data with a set
of clean labels [7]. Zhu et al. [7–9] observed that flat data cannot reflect the discrepancies
of different user patterns in its collection. Removing it will omit analyzing its usability.
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Additionally, when collecting users’ data, researchers find the data are often mislabeled,
such as unreliable labels we mentioned above. This paper simultaneously considers the
noise and mislabeled data during the training process, fitting the training requirements to
the greatest extent to provide high-quality data.

Mobile user authentication model based on motion sensors. The existing research
methods using motion sensors [8–13,22–27] continuously collect sensor data and estab-
lish corresponding models to verify users’ ID. Lu et al. [25] used unsupervised learning
algorithms to process unlabeled data, but this method resulted in high latency. Addition-
ally, unsupervised clustering algorithms with parameter adjustment have high overhead,
and the parameter’s generalization needs to be verified. Zhu et al. [7] designed a semi-
supervised online learning algorithm. It has a high level of accuracy and low latency in
processing unlabeled data under relatively complex environments, but the classification
they used (binary class SVM) is not applicable to time series data due to ignoring the con-
text of user behaviors. Furthermore, most existing studies [8–13,22–27] assume the input
data are sufficient, which is not considered in real complex environments. In contrast, this
paper proposes the transformation of 1D signals into 2D images. Meanwhile considering
the spatio-temporal characteristics of sensory signals, we extract spatio-temporal features
using CNN to achieve high mobile user authentication accuracy.

3. Methodology
3.1. Overview Framework

The method proposed in this paper is shown in Figure 1, consisting of the four
following steps:

1. Collecting mobile user authentication data. The sensor data are collected through
human–computer interaction between users and mobile devices.

2. Executing 2D optimal S-matrix coding with singular value decomposition (SVD) and
S-transform (ST). In this approach, the 1D time-series signals are transformed into 2D
matrix features with ST first. Then, SVD is applied to the S-matrix to enhance user
micro features.

3. Filtering mislabeled data and using Teacher–Student (TS) tri-training to correct misla-
beled data during training. This step can further improve the quality of the training
dataset.

4. Using a Convolutional Neural Network (CNN) model to extract features from 2D
optimal S-matrix images. The trained CNN model is used to authenticate whether the
user is the device owner.

3.2. Sensory Signal Collecting

With the advancement in hardware technology, chips such as the Graphics Processing
Unit (GPU) and Tensor Processing Unit (TPU) are being increasingly integrated into mobile
devices to meet the ever-growing computational needs. Likewise, a plethora of sensors,
e.g., accelerometer, gyroscope, gravity, light, and heart rate sensor, are being embedded
into smart devices as privacy-neutral sensors. Specific tasks can be achieved through these
sensors perceiving user behavior-related data.

Mobile devices are often equipped with various sensors of different functions to
collect user behavioral features, thus eliminating cumbersome explicit operations. The
more the sensor data are used for authentication, the less the attackers who can bypass
the corresponding authentication system are able to do so. However, this also increases
the probability that the authentication system rejects authorized device users. Therefore,
we have to make the following selection criteria: (1) The sensor needs to be universal, that
is, the sensor is popular and can be embedded in various mobile devices. (2) The sensor
needs to be privacy-neutral, that is, the collected information does not contain personal
identity-related content. For example, cameras, microphones, and GPS can, respectively,
obtain users’ facial features, sound, and visited locations. All these details are what users
do not want to disclose to others. Under these criteria, touch sensors will not be considered
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because they not only collect users’ fingerprints but also record their touch behaviors
on the device. (3) The sensors need to be environment-neutral. For example, in noisy
environments, the microphone is not effective, and in strong light, the usability of cameras
is affected.
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To effectively balance the relation among security (i.e., the system’s underlying API
interface can be safely used on non-rooted smartphones), privacy (i.e., the data collection
does not require any privacy-related permission), and usability (i.e., any third-party ap-
plication can be called to achieve device-level protection), we collect the raw data with
accelerometer sensors, gyroscope sensors, and gravity sensors and conduct a large num-
ber of experimental comparisons to eventually achieve user privacy-neutral trustworthy
authentication. Although the gravity sensor is a software-based sensor that utilizes ac-
celerometer and gyroscope sensor data for processing, it can record the absolute position of
the user when they use the mobile device, which is regarded as an important feature of
user authentication.

We implicitly collect the above three types of motion sensor data when users use their
mobile phone. Firstly, when a user opens a mobile phone application (representing a user
behavior feature), we collect the smartphone’s accelerometer, gyroscope, and gravity sensor
X, Y, and Z axes’ values as raw time sequence signal data. Inspired by [8], the following
two scenarios can trigger the data collection: (1) the screen of the smartphone is lit up and
(2) the foreground application of the smartphone is switched. This can greatly improve
the security of mobile devices because the authentication starts no matter when users
operate their mobile devices or open a particular application. In the real world, when the
application starts, the ideal duration of data collection is generally 2–4 s, and its frequency
is 50 Hz. Setting the collection duration t (2 s ≤ t ≤ 4 s) in advance, we obtain effective
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user behaviors. If the time when users use their phone is less than t (in second), that is, the
screen is turned off in the collection, the collection is terminated. In this paper, we set t to
3 s.

3.3. Sensory Signal with 2D Coding Conversion

Numerous advanced techniques [11–19] for signal processing, including time-frequency
diagrams and histograms, have been developed to transform 1D time-series signals into
2D matrix features. S-transform (ST) is used to create a time-frequency representation of
signals. ST outperforms the Short-time Fourier Transform (STFT) since the window in
ST is adaptively wider in the time domain at lower frequencies and narrower at higher
frequencies, and it provides excellent frequency localization at low frequencies and good
time localization at higher frequencies. Inspired by [14,28], ST is introduced as a means of
2D signal encoding. This enables deep learning models to extract complex time-frequency
features and achieve a high accuracy classification for different users.

Using a localized Gaussian window, both movable and scalable, we implement ST
from the time domain to two-dimensional frequency translation domains and then to
Fourier frequency domains. Then, we obtain the amplitude-frequency-time spectrum and
phase-frequency-time spectrum, which are useful for defining local spectral characteristics
of a sensory signal. The phase information incorporation in ST makes it an excellent
candidate for sensor-based mobile user authentication. The continuous ST is defined in
Equation (1), where the function h(t) is a continuous wavelet transform (CWT) with a
specific mother wavelet multiplied by the phase factor. The mother wavelet is a waveform
primarily used as a basis for the CWT. It provides the oscillatory properties necessary to
analyze signals with varying frequency content at different time scales. Here, we use Morlet
wavelet as the mother wavelet.

S(τ, f ) =
∫ +∞

−∞
h(t)

| f |√
2π

e−
(τ−t)2 f 2

2 e−i2π f t
dt (1)

Since the signal is obtained in discrete time series with a sampling interval T, let
f correspond to n/NT and τ correspond to jT, the discrete ST can be represented as in
Equation (2).

S[jT, n
NT ] =

M−1
∑

m=0
H[m+n

NT ]e−
2π2m2

n2 e
i2πmj

N , n 6= 0

S[jT, 0] =
M−1
∑

m=0
H[ m

NT ], n = 0
(2)

Here, n ranges from 0 to N−1, where N represents the sampling number. The range
of j is from 0 to 1. ST and produces a complex matrix known as the S-matrix, with rows
representing time and columns representing frequency. Put it another way, each column
represents a local spectrum at a specific time. Frequency-time contours are then visually
obtained from the S-matrix. It is important to note that the original elements of the S-matrix
are complex exponentials. To visually represent frequency-time amplitude, we have to
calculate and process the magnitude of each S-matrix element.

Due to the non-stationary and non-Gaussian characteristics of sensory signals, the SVD
algorithm is utilized to denoise signals and enhance user micro features. An m × m matrix
A can be formulated as: A = U∑ VT , where U = [u1, u2, . . . , um], and V = [v1, v2, . . . , vm]
are orthogonal matrices. The column vectors of matrices U and V refer to the orthonormal
eigenvectors of matrices AAT and ATA, respectively. The diagonal matrix ∑ arranges the
singular values in descending order, which is designated as ∑= [diag(σ1, σ2, . . . , σl), 0],
where l = min(m, n) and σ1 ≥ σ2 ≥, . . . ,≥ σl .

From the aforementioned analysis, it is evident that how to select a suitable SV order
is imperative for SVD-based denoising. Therefore, to attain SVD adaptive decomposition,
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this paper adopts the maximum SV mean method to determine a reasonable SV order. The
SV mean is defined by Equation (3) below:

Zi =
αi−1 − αi+1

2
(3)

where Zi is the i-th SV mean. k = arg(maxZi) is the best SV order. αi represents the i-th SV
in the sorted descending sequence of singular values obtained from the SVD algorithm for
a given signal. The maximum SV mean can originate from the uncorrelation of the fault
component αi−1 and noise disturbance component αi+1 in the signal. Thus, the maximum
mean value can be regarded as a demarcation point between the fault component and noise
disturbance component. Ultimately, the S-matrix A is reconstructed and represented as B if
we only preserve the first k SVs.

3.4. Label Correction with TS Tri-Training

In previous research, training data labels are often assumed to be perfectly tagged
without any noise. However, in reality, a vast majority of labeled samples are imperfect
due to various factors in the training phase. Moreover, manual labeling incurs significant
time and labor costs. To address this, we use an automatic and general algorithm named
Teacher–Student (TS) tri-training to mitigate label noise. TS tri-training ensures classifier
differentiation by training differential data subsets extracted from the original dataset. As a
result, the algorithm can recognize and correct noisy labeled samples.

TS tri-training involves the following steps: First, the original dataset I (a 10-day
dataset, as will be described in Section 4) is partitioned into three sub-sets; a labeled dataset
L, which may contain mislabeled data, an unlabeled dataset U, and a verification dataset V.
Then, we assume that when a user starts using the mobile phone in the initial period, we
regard the user as the owner. Accordingly, the data in the first two days belongs to L, while
the data in the next six days—which may have been mislabeled—is placed in U. Finally,
the data in the last two days, representing the user’s own test data, are put in V.

Through Bootstrap Sampling on dataset L, we obtain three labeled training subsets
Lc, Ll, and Ln, of which each is 1/3 of the total L. Then, three classifiers, Cd, Cl, and Cn,
stem from the above three subsets, respectively. Pseudo-labeled samples in the form of
“minority obeying majority” [29] are then generated by using these classifiers. Specifically,
if Cd and Cl predict an unlabeled sample s is positive with a probability greater than the
confidence coefficient τt, and Cn predicts it is negative with a probability less than τs, then
Cd and Cl are regarded as teachers, and Cn as a student. Finally, as a pseudo-labeled
positive sample, s is provided to Cn for learning. If the two teacher classifiers make the
same prediction for the same unlabeled sample, this sample is considered as one with a
higher label confidence and then added to the labeled training set of the third classifier
after being labeled. The “minority obeying majority” [29] aims to eliminate classification
errors. Though noise exists within the labeling process, it can be offset to some extent
given the large number of samples utilized in this study. The intersection of Lc, Ll, and
Ln is then taken as the final labeled training dataset L′. We choose binary classification
because it can better distinguish whether the device is used by its owner. According to the
tri-training based image classification methods [30], classifiers of Decision Tree, Support
Vector Machine, and K-Nearest Neighbors require a certain proportion of counterexamples.
Strategic sampling [8] is adopted to extract the most representative counterexample data
samples from the massive data of other people. We set τt = 0.8 and τs = 0.2 through
fine-tuning.

3.5. Convolutional Neural Networks Construction

In order to achieve sensor-based mobile user authentication, we use a Convolutional
Neural Network (CNN) structure that comprises an input layer, two convolutional layers
(CL1, CL2), followed by max pooling layers (MP1, MP2), two fully connected layers (FCL),
and an output layer as a classifier. A detailed account is presented in Table 1.
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Table 1. Structure of CNN model.

Layer Input Shape Structure Output Shape

Input 9 × 150 - 9 × 100 × 150
CL1 9 × 100 × 150 20@(2 × 3) 20@(24 × 148)
MP1 20@(24 × 148) 2 × 4 20@(12 × 37)
CL2 50@(12 × 37) 50@(3 × 8) 50@(10 × 30)
MP2 50@(10 × 30) 2 × 6 50@(5 × 5)
FC 750 × 1 256 × 1 256 × 1

Output 256 × 1 2 × 1 2 × 1

Input Layer. We collect nine time signals (i.e., X, Y, and Z axes’ values from accelerom-
eter, gyroscope, and gravity sensor as raw time sequence signal data) as the input (9 × 150).
Then, an ST/SVD matrix is created (totally 9 × 100 × 150). As mentioned in Section 3.3,
the optimal S-matrix is obtained and used as an input for the CNN model. The input
layer, unlike traditional RGB images, is solely connected with a matrix derived from 2D
encoding features. Moreover, it should be noted that the original elements of the S-matrix
are complex exponential. Thus, computing the magnitude of each element is necessary for
further processing the visualization of frequency-time amplitude.

Convolutional Layers. Two-dimensional convolutional operations are carried out
across these layers, where local features are transformed into global ones. Their main
purpose is to achieve weight sharing, and then improve the efficiency and feasibility of
the model. In this paper, the stride is set to 1. The sizes of the convolutional kernels in
the Convolutional Layer1 (CL1) and the Convolutional Layer2 (CL2) are 2 × 3 and 3 × 8,
respectively. The number of kernels in CL1 is 20, while in CL2, it is 50. The activation
function is ReLU.

Max-Pooling Layers. Max-pooling layers down-sample vital and invariant information.
These layers aim to reduce training time and avoid overfitting. The sizes of the Max-Pooling
Layer 1 (MP1) and the Max-Pooling Layer 2 (MP2) are 2 × 4 and 2 × 6, respectively.

Fully Connected Layers. These layers aim to flatten the learned features into a single
vector. The size of the Fully Connected Layer (FCL) is 256 × 1.

Output Layer. The output layer serves as a classification vector via a softmax function
(loss function), and the optimizer is Adam.

4. Experimental Evaluations

This section mainly focuses on testing the performance and accuracy of the mobile
user authentication method based on feature enhancement and semi-supervised learning.
In the experimental environment, we use a server based on Ubuntu 20.04, equipped with
an Intel(R) Intel Xeon E5 CPU and 128 GB memory.

4.1. Dataset

The dataset consists of two parts. The first part (dataset I) is from a well-known
domestic Internet company, with 1513 volunteers aged from 20 to 60. With the users’
permission, the dynamic data are collected as authentication data when they use their
phones in complex environments. The data are from different users in an unsupervised
manner and contain a large number of potential noisy labels. In the two scenarios triggering
the data collection in Section 3.2, the built-in acceleration sensor, the gyroscope sensor,
and the gravity sensor of the mobile devices capture relevant sensor signals at a rate of
50 Hz. The collection lasts for 10 days, and we obtain a total of 283,006,659 pieces of valid
datum, with an average of 187,050 pieces per user. Dataset I is randomly divided into three
groups. For each volunteer, 60% data are used for training, 20% are for validation, and
20% are for testing (to ensure the generalizability of the experimental results, all tests are
cross-validated 10 times). The second part (dataset II) comes from 20 volunteers in our
laboratory, aged between 20 and 60 in a supervised environment. The collection lasts for
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10 days, and a total of 600,000 pieces of valid datum are collected. Dataset II is mainly used
to test the label denoising algorithm.

During the label correction, classifiers such as Decision Tree, Support Vector Machine,
and K-Nearest Neighbors are utilized to partition the labeled dataset into training and test
sets at a ratio of 4:1 in the model training. The ratio of positive to negative samples is kept
at 1:5, which is the same with that in the testing.

In the hybrid CNN-based training phase, the labeled dataset L’ is divided into the
training and test sets, at a ratio of 4:1 as well. As in the label correction, the ratio of positive
to negative samples is maintained at 1:5 as well.

For all datasets, data collection occurs at a frequency of 50 Hz, and each data collection
lasts for 3 s. We use the International Mobile Equipment Identity (IMEI) to identify each
user’s ID and distinguish them on the server side.

4.2. Evaluation Metrics

We employ the following four metrics to evaluate the efficacy and accuracy of the
model: True Positive (TP), which denotes the number of owners who have been identified
correctly as the owners; False Positive (FP), which signifies the number of non-owners who
have been misidentified as the owners; True Negative (TN), which indicates the number of
non-owners who have been identified correctly as the non-owners; and False Negative (FN),
which represents the number of owners who have been misidentified as the non-owners.
In terms of classification accuracy, the following indicators are listed:

The authentication rate of the owner (sensitivity) is:

TPR =
TP

TP + FN
(4)

The authentication rate of non-owner (specificity) is:

TNR =
TN

FP + TN
(5)

The total accuracy is:

Accuracy =
TP + TN

TP + FP + TN + FN
(6)

4.3. Performance of ST-SVD on Sensory Signals

To assess the efficiency of ST-SVD, we compared traditional ST and generalized ST [31].
We analyzed sensory signals from acceleration sensors of two different users (randomly
selected from our dataset) to illustrate the superiority of ST-SVD. Figures 2 and 3 compare
the original sensory signals, the matrix obtained from adopting generalized ST, the matrix
obtained from adopting traditional ST, and the matrix obtained from adopting ST-SVD
(our proposed method). Time-frequency diagrams obtained from generalized ST are poor
in extracting features, whereas traditional ST is sensitive to background noise. ST-SVD
depicts clearer user patterns excellently, revealing the sensitivity of sensor-based mobile
user authentication. ST-SVD accurately captures users’ subtle behavioral differences (i.e.,
user micro features).

From Figures 2 and 3, it can be concluded that ST-SVD exhibits energy concentration
superior to traditional S-transform and Generalized S-transform (the X-axis represents the
second t(s)). Additionally, ST-SVD obtains a more distinct essential characteristic, location,
in user usage patterns. ST extracts multi-resolution features of sensory signals, and SVD
plays a significant role in S-matrix reconstruction, which enhances user micro features in
time-frequency diagrams.
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4.4. Overall Accuracy on Large-Scale Dataset

Figure 4 displays the classifying performance of training, validation, and test data
on dataset I with overall accuracy. It shows that all of them have a consistent and in-
creasing convergence trend with the increase of epochs (the X-axis represents the epoch).
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Notably, the accuracy of the test dataset reaches 96.32% on the 36th epoch. As mentioned,
Convolutional Neural Networks (CNNs) are inspired by biological feedforward Artificial
Neural Networks (ANNs) and closely resemble the mammalian visual cortex. This enables
classifiers to achieve high-precision diagnoses through learning specific patterns. The
average training latency for 1513 users is approximately 4825 s.
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Comparing TPR, TNR, accuracy of the method with and that without tri-training,
Table 2 presents the average classification results of 10 cross-validations on 1513 users.
“With TS tri-training” means the noisy labels have been removed, and vice versa.

Table 2. Average classification results with tri-training and without tri-training.

Method/Index TPR TNR Accuracy F1-Score

With TS tri-training 74.56% 98.13% 96.32% 0.9514
Without TS tri-training 72.22% 92.68% 92.89% 0.9159

As shown in Table 2, we can see that with TS tri-training, the average TPR, TNR, and
accuracy increase from 72.22%, 92.68%, and 92.89% to 74.56%, 98.13%, and 96.32%, respec-
tively, that is, eliminating noisy labels can significantly improve the final authentication. In
practice, it is common that the number of positive samples (interactions from the autho-
rized device owner) is much larger than the number of negative samples. This is because
the authorized device owner primarily interacts with the device. However, a significant
number of negative samples can accurately depict the usage pattern of the non-owners.
This can prevent brute-force attacks from bypassing the authentication. To this end, in the
training stage, the ratio of the number of samples by the owner to that by the non-owner is
1:5 to record the non-owners’ behavior [7,9]. In Table 2 we find that the trained classifier
can accurately represent mobile phone usage patterns of non-owners (TNR) but may miss
some of the owners’ usage patterns (TPR). As TN is often more critical than TP, this paper
proposes to increase TN when we configure the authentication parameters. In practice,
we can adjust the classification threshold for different purposes. For example, we can set
a high threshold for a high security application to prevent owners’ mobile devices from
malicious use.

In addition, this paper employs large-scale datasets to evaluate the proposed classifi-
cation method. Table 3 shows the accuracy comparison of our proposed method and other
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state-of-the-art methods [7,9–12,26,27]. We find our ST-SVD+CNN achieves higher accu-
racy. It is noteworthy that the binary-class SVM we use for training is similar to CNN+SVM
(binary-class) [10]. However, our ST-SVD+CNN and CNN+SVM (binary-class) [10] out-
perform SVM (binary-class) [7] in feature extraction, because the latter manually extracts
signs. Additionally, combining ST-SVD with CNN leads to better results compared with
only using CNN, as shown in [10]. This is because transforming time-series signals into
2D time-frequency images through ST-SVD is more appropriate for CNN-based feature
extraction.

Table 3. Comparison of our work and other related work.

Classifier TPR TNR Accuracy F1-Score

ST-SVD+CNN (Ours) 74.56% 98.13% 96.32% 0.9514
LSTM [9] 74.35% 97.60% 95.58% 0.9420

CNN+SVM(binary-class) [10] 74.26% 97.31% 95.01% 0.9375
SVM(binary-class) [7] 73.59% 96.42% 94.67% 0.9304

HMM [12] 71.74% 91.98% 90.54% 0.8896
Random forest [27] 72.38% 93.95% 92.36% 0.9132

DTW [26] 66.18% 89.60% 86.49% 0.8472
SVM(one-class) [11] 66.25% 89.64% 86.51% 0.8490

4.5. Performance on Noisy Labels Elimination

To validate the effectiveness of the proposed TS tri-training algorithm, we conducted
experiments on dataset II with different noisy ratios. Specifically, we added noise to dataset
II, which is a clean labeled dataset. The dataset contains 600,000 data samples, with a
4:1 split for training and testing. The ratio of the noisy labeled training set is set to 5%,
15%, 25%, 35%, and 45%, which means there are 24,000, 72,000, 120,000, 168,000, and
216,000 noisy labeled samples used for training, respectively.

We applied TS tri-training to reduce the number of noisy labels. Table 4 presents the
performance of eliminating noisy labels. The experimental results show that the original
training noisy ratio of 5%, 15%, 25%, 35%, and 45% is reduced to 0.35%, 0.68%, 1.82%,
4.53%, and 18.22%, respectively. It indicates that after TS tri-training, the remaining number
of noisy labels in the training set is 1682, 3264, 7836, 21,744, and 87,456, respectively, and
the accuracy reaches to above 94% at the noisy label ratio of 5%, 15%, 25%, and 35%,
respectively, but not at the ratio of 45%. The reason is that the dataset at the noisy ratio
of 45% is almost equivalent to a randomly labeled one, and it is unsuitable for training.
Nevertheless, even under such difficult scenario, TS tri-training still shows an improvement.

Table 4. The overall accuracy before/after noisy labels elimination.

Before TS Tri-Training

# of Training Set 480,000 480,000 480,000 480,000 480,000
Noisy Label Ratios 5% 15% 25% 35% 45%

False Labels in Training Set 24,000 72,000 120,000 168,000 216,000

After TS tri-training

# of Training Set 480,000 480,000 480,000 480,000 480,000
Noisy Label Ratios 0.35% 0.68% 1.82% 4.53% 18.22%

False Labels in Training Set 1682 3264 7836 21,744 87,456

User Authentication Result(Before TS tri-training)

Accuracy 93.85% 84.25% 76.37% 68.30% 53.09%

User Authentication Result (After TS tri-training)

Accuracy 96.28% 96.12% 95.25% 94.03% 81.42%
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4.6. Evaluation of Computational Cost

The experiment was conducted on a server equipped with an Intel Xeon E5 CPU,
GeForce RTX 3090 Ti, and 128 G memory running Ubuntu 20.04. The average training
latency for our CNN model was 30.54 s per training procedure with GPU acceleration. For
TS tri-training semi-supervised learning, the average latency of each training procedure
was 99.28 s. It should be noted that once the model is trained, it can be deployed to the
client side for real-time verification. Therefore, clients are more concerned about their cost.

On the client side, Android is equipped with TensorFlow to perform authentication.
To monitor the battery consumption, CPU usage, and memory usage, we employed the
well-known Android performance testing tool, Emmagee [31]. Table 5 summarizes the
obtained results.

Table 5. The overhead on three different devices.

Phone
Model

Battery
Consumption

(mAh)

Data Collection Authentication

CPU
(%)

Memory
(MB)

CPU
(%)

Memory
(MB)

Samsung S20 105.22/4000 1.20 11.05 6.38 69.38

Vivo Xplay 6 110.50/4080 1.22 11.12 6.21 65.26

M18 119.25/3400 1.25 11.09 6.46 72.64

To evaluate battery consumption, we asked a participant to use the client app for three
hours, which includes the time for both data collection and offline authentication. Our
application required less than 0.4% of battery in one hour. During offline authentication,
CPU and memory usage on three different smartphones were slightly higher than those
in data collection and ST-SVD. This is because in the real-time authentication, additional
model tasks inevitably occur.

We also evaluated the latency of offline authentication when performing data collec-
tion, ST-SVD, and decision procedures 100 times on Samsung S20. The results are presented
in Table 6, which shows that the entire process can be completed within 3230.60 ms. The
latency introduced by steps other than data collection is negligible. Overall, the overhead
on the client side fully met the requirement of real-world scenarios.

Table 6. Client Authentication Time on Samsung S20.

Procedure Average Time (ms)

Data collection 3003.12
ST-SVD 199.58

Authentication 27.90
Overall 3230.60

4.7. Anti-Attack Capability Assessment

The security of sensor-based gait authentication has consistently been a concern of
both the industry and academic communities. Previous studies [8,10] investigated its
resilience to attacks, particularly mimicry attacks where an attacker observes a user’s usage
manner and imitates their authentic gestures and actions.

To launch a mimicry attack, we selected 20 individuals from dataset II and selected
one individual as the victim in turns. First, we trained a classifier for the authorized device
owner by fingerprinting their usage manner (each victim had 9240 samples for the model
training). We then asked the remaining 19 individuals to imitate the victim’s pattern one-
by-one (100 times for each person, with each participant generating 30 samples per run).
These samples were checked against the classifier, and we calculated the percentage of
samples correctly labeled as other users. Our method was able to thwart imitation attacks
with a probability of over 99.20%, even higher than the TNR (98.13% in Table 2) on the large
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dataset. This may be attributed to the fact that our ST-SVD and CNN models represented
the contextual content (e.g., the owner users’ inherent usage patterns) of time series data.
In this way it is difficult to bypass via imitation. Similar results have been reported in [7,9].

5. Conclusions

In this paper, we proposed a real-time authentication method for mobile users in
complex environments, i.e., ST-SVD. To extract subtle user features, deal with label noise,
and improve the authentication accuracy in real world, we combined S-transform and
singular value decomposition to transform time-series signals into 2D time-frequency
images, utilized T-S tri-training to reduce label noise in the training phrase, and inputted
the well-labeled samples into a CNN model to obtain a set of robust parameters for user
authentication finally. Moreover, we validated the effectiveness and the high tolerance for
label noise of our system through large-scale real-world data. It can meet the requirements
of generality, efficiency, and usability jointly in mobile user authentication. Our future
work will consider reducing the size of the dataset and improving the generalization of
authentication.
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