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Abstract: This paper introduces an instrumental variable Bayesian shrinkage approach specifically
designed for estimating the capital asset pricing model (CAPM) while utilizing a large number of
instruments. Our methodology incorporates horseshoe, Laplace, and factor-based shrinkage priors
to construct Bayesian estimators for CAPM, accounting for the presence of measurement errors.
Through the use of simulated data, we illustrate the potential of our approach in mitigating the bias
arising from errors-in-variables. Importantly, the conventional two-stage least squares estimation
of the CAPM beta is shown to experience bias escalation as the number of instruments increases.
In contrast, our approach effectively counters this bias, particularly in scenarios with a substantial
number of instruments. In an empirical application using real-world data, our proposed methodology
generates subtly distinct estimated CAPM beta values compared with both the ordinary least squares
and the two-stage least squares approaches. This disparity in estimations carries notable economic
implications. Furthermore, when applied to average cross-sectional asset returns, our approach
significantly enhances the explanatory power of the CAPM framework.

Keywords: Bayesian estimation; shrinkage; instrumental variables; CAPM

MSC: 62F15

1. Introduction

Many asset pricing models incorporate the return of the market portfolio as an in-
dependent variable in the estimation process. The capital asset pricing model (CAPM) is
perhaps the most renowned example of such models, owing to its theoretical simplicity
and ease of interpretation. Estimating the CAPM necessitates a proxy for the return of the
market portfolio due to the unavailability of the actual market portfolio’s data [1,2]. The
introduction of a substitute for the market portfolio return introduces an error-in-variables
(EIV) issue, which biases the estimates and complicates results interpretation. This concern
is referred to as Roll’s critique [3]. The EIV problem poses challenges in estimating the
CAPM and assessing its empirical validity, and notably impacts investment decisions [4,5]
as well as testing procedures for portfolio efficiency [6–9].

The usual econometric solution to the error-in-variables problem is to use instrumental
variables (IVs). However, it can be challenging to find ‘strong’ instruments for the market
return [10,11]. The data-rich environment of financial data sets offers many candidates for
instrumental variables, although they are usually only weakly correlated with the returns
of the market portfolio. Alternatively, in contrast to low-dimensional model settings, in
which we select a small set of instruments—imposing an ad hoc sparsity, all these many
candidates for instrumental variables may be incorporated into the model, leading to
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high-dimensional model settings. Unfortunately, conventional econometric techniques
cannot deal with high-dimensional asset pricing model settings [12].

This paper proposes an instrumental variable Bayesian shrinkage approach to esti-
mate the capital asset pricing model using a large set of instruments. Bayesian shrinkage
techniques can deal with high-dimensional models by using regularization priors. This
approach has been increasingly adopted in financial econometrics [13–16] for example. For
a comprehensive view of recent advancements in this literature, see [17–21]. Regularization
priors are particularly helpful when there are several potential instruments, as in the case of
CAPM estimation. Without these regularization priors, using many instruments generates
biased estimates [22–24]. In terms of the two-stage least squares (2SLS), for example, a large
set of instruments implies an overfitting in the first stage, because of the tendency for
the ordinary least squares (OLS) method to fit too well. Then, the second stage will be
closer to a simple OLS method, which is biased in the presence of EIVs. The regularization
priors avoid this overfitting in the first stage and, consequently, also avoid the bias in the
many instruments setting. Thus, the high-dimensional model setting combined with prior
regularization may offer a new approach to deal with Roll’s critique.

Although high-dimensional models have become increasingly popular in financial
econometrics literature, the use of high-dimensional models for instrumental variables
combined with regularization techniques is still a little-explored field. In this paper, we
estimate the capital asset pricing model using a large set of instruments and shrinkage
priors over the parameters associated with the instruments. We use the Bayesian approach
proposed by [25] to shrink unimportant instruments and compare the size of the estimated
bias with that produced by the traditional estimation methods (ordinary least squares and
two-stage least squares).

We compare our approach both in simulated data (Monte Carlo experiments) and in
observed data. In the simulation exercises, we analyze whether the shrinkage method can
help to improve the inference on the CAPM beta. In the empirical application, we use the
shrinkage approach to verify if it delivers better estimates for the CAPM beta by comparing
the beta estimates between methods. We also verify whether our proposal can help explain
the cross-section of returns by running the two-step procedure of [26].

The results indicate that the regularization over the instruments coefficient improves
the estimates of CAPM beta. In the Monte Carlo simulation analysis, we find that the
regularized Bayesian instrumental variable dramatically reduces the mean bias found with
the traditional 2SLS method. Moreover, the bias and root mean squared errors are smaller
when using the regularization technique. This evidence shows that high-dimensional
settings offer a better way to deal with the CAPM error-in-variables problem. Using many
instruments, we can find more precise and unbiased measures of CAPM stock’s beta, which
helps us to evaluate the systematic risk accurately. In addition, more accurate estimates for
betas in the first-pass time-series regression offer an adequate input for the second-pass
cross-section regression in the two-step procedure of [26].

In the empirical application, the beta estimates using our approach present a subtle
difference to OLS and 2SLS estimates, which varies across the assets. This difference in
estimated betas is economically relevant since many financial models are sensitive to beta.
To investigate further whether the difference among estimated betas is indeed relevant,
we run the second step of the Fama–MacBeth procedure for both individual stocks and
portfolios sorted by size and book-to-market. For the portfolio data, the results show that
our approach can explain around 15% of the cross-section of portfolio returns, while the
standard 2SLS method explains only 5%. For the stocks individually, the betas from our
approach can explain 3% of the cross-section of a stock’s return, compared with nearly 0%
with the standard 2SLS method.

These results shed new light on the estimation of asset pricing models with measure-
ment errors. By using high-dimensional data and proper techniques, we can attenuate the
error-in-variables problem in the estimation of systematic risk, which in turn will perform
a better job in explaining the cross-section of returns. We note that, even if the power
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of explanation of the cross-section of returns found in our empirical application is small,
compared with multifactor models, the use of many instruments and regularization priors
can improve this power with regards to unregularized approaches.

We list our main contributions below:

• Addressing Roll’s critique: the paper tackles Roll’s (1977) critique, focusing on the
application of instrumental variables approach, particularly within the context of the
capital asset pricing model (CAPM).

• Utilizing abundant instruments: leveraging the data-rich environment in finance, the
paper capitalizes on a diverse set of instruments to counteract the error-in-variables
issue inherent in the CAPM.

• Bayesian shrinkage priors for robust estimation: the introduction of shrinkage pri-
ors to the instrument-associated parameters enhances the robustness of estimation,
effectively mitigating bias arising from weak instrument correlations.

• Simulation results: through simulation exercises, the proposed methodology is shown
to reduce bias significantly in estimating CAPM beta values.

• Empirical validation: empirical application demonstrates the efficacy of the approach,
surpassing traditional OLS and 2SLS methods in certain stock cases. This difference in
estimated betas proves economically significant in various financial models.

• Enhanced cross-sectional portfolio analysis: the methodology extends its benefits
beyond individual stocks, aiding in cross-sectional portfolio analysis and contributing
to the understanding of cross-sectional return heterogeneity.

• General applicability: the contribution’s scope expands beyond CAPM estimation,
encompassing multifactor models and risk factor construction, offering insights into
addressing measurement errors and enhancing risk pricing methodologies.

This paper is organized as follows. Section 2 reviews the capital asset pricing model
and introduces the notation used in the paper. Section 3 explains the Bayesian estimation
and prior regularization. Section 4 presents the Monte Carlo analysis and the empirical
results of the paper. We discuss our results in Section 5. Finally, Section 6 concludes
the paper.

2. The CAPM and Measurement Errors

The seminal paper of [27] prepared the framework for the capital asset pricing model.
The author established the investor problem in terms of a trade-off between risk and return,
and defined the mean-variance efficiency concept of a portfolio allocation. This definition
states that, for a given level of return, the portfolio is mean-variance efficient if it minimizes
the variance. Refs. [1,2] worked on the results of [27] to analyze the implication for asset
pricing and developed what is called the Sharpe–Lintner CAPM, or just CAPM.

By assuming that investors possess homogeneous expectations, refs. [1,2] showed
that, in the absence of market frictions, if all investors choose an efficient portfolio, then
the market portfolio is also mean-variance efficient. In this context, the market portfolio
includes all assets in the economy, for instance, stocks, real estate, and commodities, which
makes it an unobserved variable. In practice, usual surrogates for the market portfolio
are market indexes, such as S&P500, but these indexes do not contain all assets and,
consequently, the market portfolio is observed only with errors. Despite this practical
difficulty, the efficiency of the market portfolio implies a relation between the asset risk
premium and the market risk premium:

E[Ri]− R f = βi

(
E[Rm]− R f

)
, (1)

where Ri denotes the return of asset i, R f is the return of the risk-free asset, Rm is the market
portfolio, and βi ≡ σim/σ2

m, with σim being the covariance between asset i and the market
portfolio and σ2

m is the variance of the market portfolio. Therefore, the CAPM summarized
in Equation (1) is an equilibrium result that holds for a single period.
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The relation established in Equation (1) for one period is not enough to assess the
CAPM empirically. To proceed with econometric analysis, an additional assumption is re-
quired: the returns are independent and identically distributed along time and multivariate
Gaussian. Although this hypothesis is a strong one, it possesses some benefits. First, it is
consistent with the CAPM holding for each period in time. Moreover, it is a good approxi-
mation for monthly returns [28]. Under this assumption, the CAPM may be represented by
the single index model, which is described by

Rit − R f t = γi + βi

(
Rmt − R f t

)
+ εit, εit ∼ N (0, σ2

i ). (2)

where we add a time index, t, to each variable, and γi is an intercept, representing a mean
return for the asset i not explained by the market portfolio. In Equation (2), if γi is equal to
zero, then the CAPM holds for each period in time.

The representation of the CAPM model given by Equation (2) started a testing tradition
that became known as the time series approach. To test the CAPM model empirically,
ref. [29] proposed to use time series for return of assets, for return risk-free assets, and as
a proxy to the return of the market portfolio to estimate Equation (2). The usual choice for
the risk-free asset is the US Treasure Bill and S&P500 for the return of the market portfolio.
Then, their approach suggests testing whether the estimated intercept is equal to zero,
which may be performed using a Wald test or the test proposed by [30].

Testing the CAPM using the approach of [29] is problematic once the return of the
market portfolio, Rmt, is a variable contaminated by measurement errors. The source
of measurement errors appears because the market indexes used to estimate the model
contain only a subset of assets. Moreover, even if all universe of assets are observed,
the measurement error can appear due to misspecification in the weights of assets. This
problem is known as Roll’s critique, due to [3], who argued that, once the market portfolio is
not observed, the CAPM cannot be tested. According to this author, a rejection of the CAPM
can be due to measurement errors in the return of the market portfolio. In an econometric
sense, the present problem is a case of classical measurement errors and should be treated
as such.

To put the problem in terms of classical measurement errors, let R̃mt denote the
observed return of the market portfolio. Also, denote by x∗t ≡ Rmt− R f t the excess of return
of the true market portfolio, by xt ≡ R̃mt − R f t the excess of return of the observed market
portfolio, and let ut be the measurement error, assuming that this process is independent.
The excess of the return of asset i is denoted by yit, and there is no error-in-variables in this
case. Instead of Equation (2), the model to be estimated to test the CAPM should be

yit = γi + βixt + εit, εit ∼ N (0, σ2
i ), (3)

xt = x∗t + ut, ut ∼ N (0, σ2
u). (4)

Equation (4) assumes that the measurement error is additive. If one ignores this
additive measurement error and estimates Equation (3) using least squares, then the
estimates of betas will suffer from attenuation bias and the intercept will be upward biased,
implying positive alphas, even if the CAPM holds. Thus, to deal appropriately with the
error-in-variables problem, Equations (3) and (4) must be considered to estimate and test
the CAPM model.

3. Methods and Data

The data-rich environment available in the financial data set allows us to use many in-
struments to correct the bias caused by measurement errors, even though these instruments
are possibly weak. The many instruments setting needs to be used carefully, as it can itself
be a source of bias. To overcome this inconvenience, we need a regularization step, such
as variable selection or shrink of less important parameters. Examples of regularization
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methods are least absolute shrinkage and selection operator (LASSO), ridge, elastic net, or
via Bayesian shrinkage priors, which penalize the number of covariates in some form.

In instrumental variable regression, it is interesting to use a method that jointly
estimates “two stages”, and the Bayesian approach has this advantage. The regression of
the treatment variable on the instruments and the estimation of the target variable on the
treated variable can be estimated in a single step. In this sense, the Bayesian shrinkage
priors are preferred rather than other regularization methods. In particular, the factor-
based prior proposed by [25] has the advantage of linearly combining the information in all
possibly weak instruments in such a way that, taken together, makes them stronger. In the
next subsection, we present this structure of shrinkage prior to the IV regression context.

3.1. Bayesian Regularization Methods in IV Regression

When dealing with measurement error, instrumental variable regression may be used.
Consider the model:

xt = z′tδ + εxt , (5)

yt = γ + xtβ + εyt , t ∈ {1, · · · , n} (6)

where xt is the endogenous or treatment variable, zt is a (p× 1) vector of instruments, and
yt is the response variable, and it is supposed that[

εxt

εyt

]
∼ N

([
0
0

]
,
[

σ2
x σxy

σyx σ2
x

])
Equation (6) represents the projection of the covariate, x, onto the instrument vector,

and is the functional form used in the first stage of instrumental variable methods. Since
p may be large, some regularization on Equation (5) is necessary. The Bayesian solution
to this problem is to impose shrinkage priors on δ to shrink those parameters that have
little power to explain xt. By imposing such a prior, the usual Gibbs sampler scheme [31]
used to estimate model (5) and (6) cannot be employed. Ref. [25] developed an elliptical
slice sampler that can deal with arbitrary priors on δ, allowing us to use a shrinkage prior,
such as Laplace distribution, as well as the factor-based-prior, also developed by the same
authors. Then, it is instructive to describe the estimation for an arbitrary prior distribution
on δ. To understand the Bayesian estimation of IV regression, consider the reduced form of
Equations (5) and (6):

xt = z′tδ + νxt (7)

yt = γ + z′tδβ + νyt (8)

where νxt ≡ εxt and νyt ≡ βεxt + εy. Defining T =

[
1 0
β 1

]
implies that:

Ω ≡Cov
([

νxt

νyt

])
= TST′ =

[
σ2

x (α + β)σ2
x

(α + β)σ2
x (α + β)2σ2

x + ξ2

]
,

with α ≡ σy
σx

ρ and ξ2 ≡ (1− ρ2)σy, where ρ ≡ σxy/(σxσy). Note that the parameters to
be estimated are Θ = (σ2

x , δ, ξ2, γ, β, α). Then, conditional on the set of instruments, the
likelihood function may be written as:

f (x, y|z, Θ) = f (y|x, δ, α, β, ξ2)× f (x|z, σ2
x , δ)

= N
(

γ + xtβ + α(xt − z′tδ), ξ2
)
×N (z′tδ, σ2

x). (9)
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This decomposition of the likelihood function allows us to form a Gibbs sampler
scheme by choosing the following prior distributions:

δ ∼ arbitrary, (10)

σ2
x ∼ IG(shape = kx, scale = sx), (11)

(ξ2, γ, β, α)′ ∼ NIG
(

0, ξ2Σ−1
0 , shape =

k
2

, scale =
s
2

)
. (12)

Combining these priors with the likelihood function in Equation (9) gives us the
posterior distribution. To sample from this posterior distribution, it is possible to break it
into three full conditional posteriors to form a Gibbs sampler scheme. To explain these three
blocks, it is useful to introduce some definitions. In general, the notation with no subscript,
t, means that the variable contains all observations. For example, x ≡ (x1, x2, . . . , xn).
A particular case is the vector of instruments, zt, for which all observations are denoted by
Z since it becomes a matrix of dimension (p× n).

Define x̃ ≡ (1, x, z′δ), M ≡ Σ0 + x̃′ x̃, a ≡ k + n and b ≡ s + y′y− y′ x̃M−1 x̃′y. It is
possible to show that f (y|x, z, δ) ∝ |M|− a

2 b−
1
2 . With these definitions, we can describe each

of these blocks.

Full conditional posterior for δ|Θ, data.

Given Θ, from Equations (9) and (10), the conditional posterior is proportional to
f (x|Θ) f (y, |x, Θ)π(δ). Since we are considering an arbitrary prior for δ, this full conditional
posterior may not have a closed form, requiring alternative methods to sample it. Although
traditional Metropolis–Hastings steps can be used in this case, it scales poorly due to
the possibly high dimension and multimodality of the full conditional posterior. Instead,
ref. [25] proposed to sample it using an elliptical slice sampler, which only requires the
ability to evaluate π(δ). This algorithm is described below:

Note that the only requirement of Algorithm 1 is the ability to evaluate the prior
density, π(δ).

Algorithm 1 Elliptical slice sampler.

1: procedure SLICE SAMPLER(δ, σ2
x , x, Z, y)

2: Define δ̂ = (ZZ′)−1Zx and ∆ = δ− δ̂
3: Draw ζ ∼ N (0, σx(ZZ′)−1) and v ∼ U(0, 1)
4: Compute ` ≡ log( f (y|x, Z, δ) + log(π(δ)) + log(v)
5: Draw an angle ϕ ∼ U(0, 2π), and do Lower← ϕ− 2π and Upper← ϕ
6: Update ∆ and δ: ∆̄ = ∆ cos(ϕ) + ζ sin(ϕ) and δ̄ = δ̂ + ∆
7: while log( f (y, x, Z, δ̄)) + log(π(δ̄)) < ` do
8: If ϕ < 0, then Lower← ϕ. Else Upper← ϕ
9: Draw a new angle ϕ ∼ U(Lower,Upper)

10: Update ∆ and δ: ∆̄ = ∆ cos(ϕ) + ζ sin(ϕ) and δ̄ = δ̂ + ∆
11: δ← δ̂ + ∆̄.
12: return δ

Full conditional posterior for σ2
x |Θ, data.

Fortunately, for an inverse gamma prior on σ2
x , the full conditional posterior for σ2

x
has a closed form. Combining the likelihood f (x|Z, δ, σ2

x) with the prior given in (11), it
is possible to show that the full conditional posterior is an inverse gamma with shape
parameter kx + n and scale sx + ∑n

i=1(xt − z′tδ)
2 (see proof in Appendix A).

Full conditional posterior for (ξ2, γ, β, α)′|Θ, data.

This block also has a closed form. By using the bivariate normal properties, we can
write the likelihood in terms of the transformed variable, x̃, which follows yt|x̃t ∼ N

(
x̃tθ, ξ2).



Mathematics 2023, 11, 3776 7 of 20

Combining this likelihood with the prior give in (12), it can be shown that the full conditional
posterior (ξ2, γ, β, α)′|Θ, data follow a normal inverse gamma distribution. Specifically:

(ξ2, γ, β, α)′|Θ, data ∼ NIG
(

M−1 x̃′y, ξ2M−1, shape =
a
2

, scale =
b
2

)
.

(See Appendix A for proof).
We can use these full conditional posteriors to form a three-block Gibbs sampler, by

iteratively sampling over the blocks. This methodology is interesting because we can
choose arbitrary priors for δ, and it still works well. In particular, we can elicit several
shrinkage priors over δ, since the many instruments setting requires regularization.

3.2. Shrinkage Priors for Instruments Coefficients

There is a large range of shrinkage priors in the literature [32]. The underlying
idea of these priors is to give a higher prior probability around zero, such that, if the
parameter is not too important, it shrinks to zero. In what follows, we present some of
these priors that can be directly applied to δ = (δ1, · · · , δp). Then, we proceed with the
factor-based prior distribution.

3.2.1. Heavy-Tailed Priors

Popular choices of shrinkage priors are the Cauchy, Laplace, and horseshoe densities [33].
The horseshoe density is the stronger one, in the sense that it concentrates the high-probability
density around zero. In the same sense, the Laplace prior is strong, while the Cauchy density
is relatively weaker, although it also concentrates the density around zero, and so it also works
as a shrinkage prior. The left panel of Figure 1 depicts these three priors.

−3 −2 −1 0 1 2 3

Coefficient

0.0

0.1

0.2

0.3

0.4

0.5

D
en

si
ty

5 10 15 20 25 30

Coefficient

0.00

0.01

0.02

0.03

0.04
Horseshoe

Cauchy

Laplace

Figure 1. Three examples of shrinkage priors: horseshoe, double-exponential, and Cauchy, all of
which are centered at zero.

An advantage of the horseshoe prior is that, at the same time as concentrating the
high-probability density around zero, shrinking unimportant coefficients to this point, it
also has heavy tails. The right panel of Figure 1 compares the right tails of the three priors
considered here. Notice that the tail of the horseshoe prior is above the Laplace and closer
to the Cauchy tail. This heavy tail allows the identification of parameters that are different
from zero.

In the IV regression case, we can choose one of these priors for each δj and assume
that they are independent for all i 6= j, with i, j ∈ {1, · · · , p}. Although it may work, it
neglects the covariance between the instruments. To consider the covariance between
the instruments, a more sophisticated prior is required, and this subject is discussed in
the next subsection.
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3.2.2. Factor-Based Shrinkage Prior

The idea underlying the factor-based prior, proposed by [25], is to explore the covari-
ance of instruments to extract factors that represent ‘strong’ instruments. To formalize this
intuition, consider the following decomposition of the covariance matrix of instruments:

Cov(zt) = BB′ + Ψ2, (13)

where B is a (p × k) matrix and Ψ2 is a diagonal (p × p). Despite the fact that every
covariance matrix admits this decomposition, the interest here is in the case where k << p,
where k represents the number of factors to be extracted, denoted by ft. Suppose that the
instruments, zt, and the factors, ft, are jointly normally distributed as follows:[

zt
ft

]
∼ N

([
0
0

]
,
[

BB′ + Ψ2 B
B′ Ik

])
.

This assumption implies that E[ ft|zt] = Azt =: f̂t, with A ≡ B′(BB′ + Ψ2)−1.
Now, consider the factor regression model:

xt = θ f̂t + εt, (14)

where θ is a (1× k). From Equation (14) and the definition of f̂t, it is possible to show that
δ′ = θA. However, this specification is only correct if δ lies in the row space of A; otherwise,
the model is misspecified. Then, it is necessary to extend the model to include the possibility
that δ lies in the row space of A. For that end, the specification in Equation (14) needs to be
modified to

xt = θ f̂t + ηr̂t,+εt (15)

where η is a (1× p) vector of parameter and r̂t ≡ (Ip + A+A)zt and A+ denote the Moore–
Penrose pseudo-inverse of A. In this case, it can be shown that δ′ = θA + η(Ip + A+A).

Defining δ̃′ = (θ, η), we note that δ = Hδ̃, where

H′ =
[

A
Ip + A+A

]
.

Consequently, we can rewrite (15) as xt = Hδ̃zt + εt.
Assuming we know A (and then H), this specification allows us to attribute a prior

over δ by imposing a strong shrinkage prior over δ̃. If we solve the system δ = Hδ̃, using
the theory of pseudo-inverses, we have δ̃ = H+δ + (Ip+k + H+H)ω, for an arbitrary vector
ω. With this identity, conditional on ω, we can impose a horseshoe prior, for instance, on δ̃,
and it induces a prior on δ. That is:

π(δ|ω) =
k+p

∏
j=1

{(
2π3

)− 1
2 log

(
1 +

4
δ̃2

j

)}

π(δ|ω) =
k+p

∏
j=1


(

2π3
)− 1

2 log

1 +
4{[

H+δ +
(

Ik+p − H+H
)

ω
]

j

}2


.

Following [25], we assume that ω ∼ N (0, Ik+p). Once we know ω, we can evaluate the
prior π(δ|ω), which is the only requirement of the slice sampler presented in Algorithm 1.
Then we can sample δ by inducing a prior on δ via a horseshoe prior over δ̃. Note that,
under this specification, the factor structure derived in this section is taken into account in
the prior over δ. In practice, however, the matrices B and Ψ are unknown and, consequently,
A and H are also unknown. Instead of estimating it in a Bayesian fashion, we use point
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estimates of these matrices, which are found by minimizing the trace of Cov(zt)− D, by
choosing D, subject to D be diagonal and positive definite.

Finally, for all shrinkage priors, we incorporate a global shrinkage parameter λ. Intro-
ducing this as a parameter in the model is a key feature in Bayesian regularization because
it avoids procedures like cross-validation or setting it as a fixed parameter. We sampled the
global shrinkage parameter via a Metropolis–Hastings step.

3.3. Data

To analyze whether our empirical method performs well, we start by using it in
simulated data by means of a Monte Carlo analysis. When we know the true generating
process, we can calculate error measures of the estimate (mean bias, mean absolute bias,
and root mean squared error) and compare it with alternative methodologies (for instance,
OLS, 2SLS, etc.). Besides, in the simulation exercise, we also apply the empirical method
to real financial data. To estimate the CAPM, we need asset return data, a surrogate
for the market return, and a risk-free asset. As the risk-free asset, we consider the one-
month Treasury Bill rate and take the surrogate of the market return data from Kenneth
French’s website. The returns on market return and the risk-free asset are taken from
https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/ (accessed on 31 January
2022). The returns of the stocks are based on the close price of the stocks and are taken from
Yahoo Finance. Finally, we consider the return of 277 stocks listed in the S&P500 with data
availability in the last five years. All data are daily and range from 1 January 2017 to 31
December 2021, resulting in 1260 observations.

4. Results

In this section, we describe and discuss the results of our paper. We begin by describing
the outcome of a simulation exercise, in which we compare the Bayesian regularization
discussed in the previous section with traditional ordinary least squares and two-stage
least squares estimation. Then, we present the result of the CAPM estimation for observed
data using the proposed Bayesian shrinkage approach.

4.1. Monte Carlo Analysis: Simulation Procedures

To simulate the CAPM, we consider a classical additive measurement error model, as
follows:

xt = x∗t + ut, ut ∼ N (0, σ2
u) and x∗t ∼ N (0, σ2

x), (16)

yit = βix∗t + εit, (17)

for i ∈ {1, . . . , p + 1} and t ∈ {1, . . . , n}. In Equations (16) and (17), x∗t is the true market
return, and it is assumed to be Gaussian with mean zero and variance σ2

x , ut is the Gaussian
measurement error, with mean zero and variance σ2

u , and xt is the observed market return.
The sensitivity to the market return, which is measured by βi, is assumed to be known,
and, based on these values and given the error term, εt, we construct the assets return, as
described in Equation (17). The error term, εt, is also assumed to be Gaussian, with mean
zero and variance σ2

ε .
To simulate the model, we need to calibrate the parameters (σ2

u , σ2
x , σ2

ε , βi). For βi, we
consider a linear grid between 0.3 and 1.5. Based on data of a proxy of market return, we
calibrated σx = 0.01. We calibrated one of the assets with σε = 0.001 and the other p− 1
with σε = 0.9. We use these different values for σε to create one strong instrument and
p− 1 weak instruments. A lower standard deviation creates assets that will be stronger
instruments than those with a higher standard deviation. Besides these p assets, we
consider an additional one with β = 1 and σε = 0.04, which is used as the target variable
in the CAPM estimation. Finally, we calibrate σu = 2σx to create a situation with a high
measurement error. These parameter calibrations allow us to simulate all variables of

https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/
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interest in the CAPM. We set the hyper-parameters of the remaining prior distribution
parameters to reflect a diffuse prior.

To evaluate the accuracy of each method, we simulate the model Nsim = 1000 times.
At each iteration, we estimate the parameters using six methods. The first one is the
traditional OLS estimator, regressing yit on xt, which is known to be inconsistent in the
presence of measurement errors. Second, we consider the 2SLS estimator, using all asset
returns but the regressand in the CAPM equation as instruments (see [10], for a similar
approach). We believe that these variables satisfy the requirement of an instrument: they
are correlated with the market return but uncorrelated with the error term in the CAPM
equation. Third, we use the limited information maximum likelihood (LIML) [34] estimator
with the same set of instruments. Although our main interest is to verify whether the
Bayesian regularization of the two-stage method can improve the inference about beta, we
include the results of the LIML estimator since it is known to be unbiased in the presence of
many instruments [35]. The LIML estimator, however, is also known to have no moments.
The modified version of LIML, due to [34], solves this drawback. Still, the modification
introduces an additional parameter that must be chosen by the econometrician. In the last
three methods, we consider the same set of instruments to estimate the model using the
Bayesian method described in Section 3. We use the horseshoe, Laplace, and factor-based
shrinkage prior distributions over δ. These estimations are referred to as the BHS, BLA,
and BFB.

We simulate and estimate the model for different numbers of assets and hence different
numbers of instruments. Specifically, we start with p = 2, and then increase it to 10, 20,
40, 80, and 160. In the estimation process, we consider the asset with β = 1. Because of
measurement error, the OLS estimator is downward biased. To assess the ability of each
estimation method to correct this bias, we use three criteria: mean bias, mean absolute bias,
and root mean of squared error (RMSE). According to these criteria, the lower its absolute
value is, the better the estimator is. Since we are in a context of measurement error, the OLS
beta estimates are downward biased. Even for the standard 2SLS method, or its regularized
versions, we cannot ensure it will be unbiased in finite samples. Thus, we consider these
three criteria to evaluate both the bias (mean bias and mean absolute bias) and the variance
(RMSE) since the RMSE is a decomposition of the squared bias and the variance. Thus, by
using these criteria, we can evaluate the bias and the efficiency of the estimators.

Table 1 summarizes the Monte Carlo results. In this table, we highlight in bold the
best estimator for the criterion and the number of instruments. The Bayesian “two-stage”
procedure with the horseshoe regularization prior (BHS) is better than the traditional 2SLS
method for all criteria and choices of p, except for the mean bias criteria and p = 2. These
results show that the regularization over the instrumental variables indeed avoids bias in
the presence of many weak instruments. The mean bias of the BHS is closer to the mean
bias of the LIML. For p = 80, it is even smaller than that of the LIML, which corrects the
many instruments bias [35]. We note that, for the other values of p 6= 80, the LIML has
a smaller mean bias. However, considering the mean bias and the root mean squared error,
which also penalizes for variance, the Bayesian approach always dominates the LIML,
except for p = 2. Thus, we conclude that the Bayesian regularization in the estimation of
the CAPM model improves the inference about the betas in two ways: decreasing the bias
and reducing the estimates’ variance.

Among the three types of regularization priors, the horseshoe outperforms the others at
least in terms of mean bias, except for p = 10. For this reason, we now focus on the horseshoe
prior in comparison with the traditional 2SLS method. In Figure 2 we present the distribution
of the BHS and 2SLS for several numbers of instruments, as well as the OLS estimates. For
small sets of instruments, say up to 20, the 2SLS bias is small and can be entirely corrected
by Bayesian regularization. When the number of instruments increases to 40 and 80, the bias
becomes greater and the Bayesian regularization still entirely corrects the bias, maintaining
the distribution of the estimates around the true CAPM beta, which is one. The bias of the
traditional 2SLS method can be explained by the tendency of the OLS, in the first stage, to
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fit too well as the number of instruments increases, see [36] p. 222. The BHS penalizes the
“first-stage” estimation, avoiding this tendency to overfitting, and hence reducing the bias (see
Figure 2). The size of the correction diminishes when we increase the number of instruments
to 160, but it is still better than 2SLS, as shown both by Figure 2 and Table 1.

Table 1. Measures for the beta estimation error, n = 1000.

OLS 2SLS LIML BHS BLA BFB
p = 2 Mean bias −0.798 −0.001 0.003 0.007 0.012 0.013

Mean abs. bias 0.798 0.633 0.117 0.117 0.119 0.119
RMSE 0.800 4.970 0.143 0.144 0.146 0.146

p = 10 Mean bias −0.799 −0.029 0.007 0.017 0.018 −0.005
Mean abs. bias 0.799 0.123 0.121 0.120 0.123 0.119
RMSE 0.801 0.154 0.151 0.151 0.155 0.149

p = 20 Mean bias −0.799 −0.066 0.012 0.021 0.023 −0.055
Mean abs. bias 0.799 0.126 0.122 0.121 0.125 0.120
RMSE 0.801 0.158 0.155 0.155 0.160 0.152

p = 40 Mean bias −0.798 −0.146 0.003 0.010 0.006 −0.166
Mean abs. bias 0.798 0.167 0.126 0.122 0.159 0.181

RMSE 0.800 0.198 0.161 0.158 0.308 0.211

p = 80 Mean bias −0.803 −0.252 0.017 0.008 −1.133 −0.320
Mean abs. bias 0.803 0.253 0.135 0.129 1.234 0.320
RMSE 0.805 0.279 0.172 0.163 1.444 0.339

p = 160 Mean bias −0.799 −0.407 0.010 −0.079 −1.149 −0.508
Mean abs. bias 0.799 0.407 0.158 0.138 1.153 0.508
RMSE 0.801 0.421 0.199 0.168 1.249 0.517

Note: We report mean bias, mean absolute bias and the root mean squared error (RMSE) of each estimator. We
highlight in bold type the best estimator for each criterion and number of instruments.

0 10 20 40 80 160

Number of instruments, p

0.0

0.2

0.4

0.6

0.8

1.0
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True β
OLS

2SLS

BHS

Figure 2. Boxplots of the estimated CAPM betas for different numbers of instruments: comparison
between Bayesian horseshoe (BHS) and two-stage least squares (2SLS). The horizontal black line
represents the true CAPM beta value, which is one.

This is an important limitation that affects estimators based on regularization/selection
structures in the high-dimensional setting. Although the shrinkage framework is effective
in reducing model complexity, the Bayesian shrinkage estimators, and their frequentist
competitors, strike a balance between bias and variance. As the number of variables
increases, the penalty imposed on the coefficients may lead to bias in the estimates. This
bias arises from the tendency of shrinkage estimators to force some coefficients towards zero,
even if they are truly non-zero. This trade-off becomes more pronounced when dealing with
a large number of variables, potentially leading to underestimation of the true relationships.
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As discussed in [37,38], the assumption for the validity of shrinkage estimators, whether in
a frequentist or Bayesian context, is that the true number of statistically relevant variables
in the final model must be less than the sample size. Thus, variable selection methods in
a context of sparsity allow starting from a number of possible covariates greater or much
greater than the number of observations, but the final number of variables included in
the final specification must be smaller than the sample size. Theoretical conditions for
the consistency of the selection procedure (the Oracle properties) for Bayesian estimators
based on shrinkage priors are discussed in [37] (see Theorems 1–5), but are difficult to be
evaluated in empirical models due to dependence on quantities not observed. Another
important point is that, with more variables, the computational burden of performing
Bayesian estimation increases substantially, and this point is especially important due to
the fact that we are using MCMC estimators to estimate the hyperparameters of the models,
and, in situations of high dimensionality, problems of convergence of chains can become
worse, also affecting the properties of the estimators in finite samples. In Appendix A, we
present a robustness check, in which we change some parameters of the simulated CAPM.

4.2. Empirical Application

This section uses the Bayesian regularization procedure to estimate the CAPM using
observed data and compare it with the traditional 2SLS, LIML, and OLS estimators of
the CAPM beta. We estimate the model for 277 stocks listed in the S&P500 index. The
instruments for each model consist of all other stock returns listed in the S&P500, except
the one used in the CAPM target equation. The original set contains 365 stocks for the
period between January 2017 and December 2021, but we exclude 88 stocks with a correla-
tion above 0.7. This exclusion is needed to avoid numerical approximation errors in the
inversion of ZZ′, a requirement of Algorithm 1. All data are daily and range from January
2017 to December 2021, totaling 1260 observations.

The posterior distribution for the CAPM beta was similar for the factor-based prior
and Laplace prior (BFB and BLA, respectively, see Figure A1 in Appendix A). This result
indicates that, for these stocks, these two priors perform equally. The reason why the
factor-based shrinkage prior cannot do a better job than the straight horseshoe prior may
be related to the covariance structure of the instruments. Indeed, the eigenvalues of the
covariance matrix decay drastically from the first to the second eigenvalues and then
decline slowly. The covariance of the minimized trace (the Cov(zt) − D discussed in
Section 3.2.2) presents a similar behavior (see Figure A2 in Appendix A). Thus, we cannot
isolate “commonalities” and, hence, the prior information is unable to help in the shrinkage
of parameters. The horseshoe prior presents a subtly different result, compared with BLA
and BFB (see Figure A1 in Appendix A). We focus on the horseshoe prior because of its
better performance in the simulation exercise.

When comparing the Bayesian IV (BIV) estimates with the OLS and 2SLS estimates,
we find different results across the stocks. While the Bayesian IV delivers greater betas
than the other methods for some stocks, there is also a group of stocks whose BIV estimates
are less than (or very similar to) the unregularized estimates. On one hand, a beta greater
than the OLS is a better estimate, since the OLS is downward biased in the presence of the
EIV. On the other hand, the appearance of betas smaller than the OLS may reflect another
hypothesis that may be failing in the model, such as omitted variables.

Figure 3 shows two examples of stocks where BIV delivers a greater beta than the
other estimators. The stocks are Nvidia (NVDAO) and AMD, which are enterprises from
the technology sector and present the highest return in our data set. Since they possess the
high returns we expected, according to the CAPM theory, they hold a higher systematic
risk and, consequently, a higher beta.

For both the Nvidia and AMD stock, the 2SLS and OLS estimates are similar, though
the 2SLS is slightly smaller. It is an expected result since, when the number of the instru-
ments is large (as in this case, p = 277) relative to the number of observations (n = 1260),
the 2SLS estimates tend to the OLS estimates.In the extreme case, where p = n, the two
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estimators are equivalent. In addition, since the market return contains a measurement
error, we know that the OLS estimates are downward biased and, consequently, so are
the 2SLS estimates.
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Figure 3. Posterior distribution of the CAPM beta estimated by the Bayesian instrumental variable
with the horseshoe prior for three assets: (a) Nvidia and (b) AMD. The figure also presents the mean
of the posterior distribution and the OLS and 2SLS estimates.

The Bayesian approach, in turn, delivers a greater CAPM beta for the two stocks,
considering the posterior mean as a point estimation (see black line in Figure 3). For
Nvidia stock, while β̂OLS = 1.61 and β̂2SLS = 1.57 the posterior mean of beta is 1.68, using
the horseshoe prior. For AMD stock, while β̂OLS = 1.49 and β̂2SLS = 1.44, the posterior
mean of beta is 1.68. Although we do not know the true beta in this case, we know that
OLS is downward biased, which puts our approach in a better position. Even though the
difference between the BIV and 2SLS beta estimates is not too stark, these discrepancies in
the estimated beta may have drastic implications for finance practitioners. As noted by [6],
some analysis in finance, such as valuation, is very sensitive to the estimated beta. In
valuation procedures, small differences in beta estimation lead to relevant changes in the
final value, as cash flows are discounted using the estimated beta for an infinite sequence
of future values. Thus, the many instruments approach with shrinkage priors can offer
a better way to conduct such financial analysis.

The above discussion only considers two stocks with the highest return of the analyzed
data set. We extend this analysis to include all 277 stocks and, hence, consider all the
differences among the different estimators. To do so, we analyze how the estimated betas
of each estimator can explain the heterogeneity in the cross-section return by running
the second-pass regression of the two-pass procedure proposed by [26]. The idea of the
second-pass regression is to regress the cross-section of the returns against the betas. Thus,
we can verify how much of the cross-sectional variation in the returns is explained by the
betas. Specifically, we follow an approach similar to [39], regressing:

R̄i = λ0 + λ1 β̂i + ui (18)

where R̄i ≡ ∑n
t=0 Rit.

The second-pass regression also suffers from the EIV problem because β̂i carries the
error estimation from the first pass (the time-series regression). As argued in the simulation
exercise, our approach can improve the estimation of the betas both in terms of bias and
variance. Thus, a more efficient estimate and possibly bias correction can improve the
estimation of the second pass, alleviating its EIV problem. Traditionally, the two-pass
procedure is performed by grouping the stock in portfolios to avoid the EIV in the second
pass. Grouping stocks in portfolios has some shortcomings. See [40] for a discussion. Since
our approach improves the estimation in the first step, we consider the two-pass procedure
for stocks instead of for portfolios. We also consider, however, the analysis for portfolios to
allow some comparison with previous literature.
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Figure 4 plots the results of the second-pass regression using the betas from 2SLS and
from BHS. In this figure, the horizontal axis measures the realized return and the vertical
axis measures the fitted return obtained from the regression (18). If the CAPM fitted the
data perfectly, all points should lie exactly in the 45-degree line. The CAPM, however, has
been challenging in explaining the cross-section return. In part (a) of Figure 4, we observe
that the return of the market portfolio can explain little of the cross-section variation of
stock returns when we use the betas from 2SLS (R2 = 0%). Using the betas from the BHS,
in part (b) of Figure 4, we can observe an increase in the explanation of cross-section return,
with an R2 = 3%. This power of explanation is still low compared with alternative models
in the literature, such as multifactor models, but it represents some improvement in the
explanation of heterogeneity of cross-section return by the market factor.
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Figure 4. Realized versus fitted stocks return: (a) fitted return obtained from 2SLS betas estimates;
and (b) fitted return obtained from BHS.

We can interpret this result as a “possible improvement in the measure”. Using many
instruments and regularization techniques, we can deal directly with the EIV of the return
on the market portfolio, alleviating the problems caused by the EIV. In a certain sense, our
approach deals with the critique of [3]: even though we cannot measure the return on the
market portfolio exactly, we can use a data-rich environment to treat the mismeasured
variable. The shrinkage approach makes it possible to downplay the significance of unim-
portant instruments and use all the relevant information in the data. This better use of the
data allows for a better estimate of the betas in the first step; hence, the second step can
explain a higher variation of the cross-section return.

To illustrate the argument above, we highlight in Figure 4 the points representing the
AMD and Nvidia stocks. Notice that these two stocks present the highest realized return
among all stocks. They are, however, distant from the 45-degree line. For a given estimate
of λ0 and λ1 > 0, a higher Nvidia or AMD beta would increase its fitted return, bringing
the points of these stocks closer to the 45-degree line. We note, however, that different
values of βi would affect the estimates of λj, j = 0, 1. We also note that, in our case, the
estimated λ0 and λ1 are positive, both for betas from 2SLS and betas from BHS, with the
latter being greater than the former. As shown in Figure 3, the point BHS estimate of the
CAPM beta is greater than the 2SLS, which brings the points closer to the 45-degree line
and increases the R2.

We also analyze the two-pass procedure using portfolios instead of stocks. Specifically,
we consider the 25 Fama–French portfolios, sorted by size and book-to-market, to run the
two-step procedure of the [26], as in the case of the stocks presented above. The portfolio
data range from 1963-Q3 to 2019-Q4. Following [10,39], we use the data in quarterly
frequency. Figure 5 presents the fitted return versus the realized return of the 25 portfolios.
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Comparing the results using the betas from 2SLS in part (a) with the results using BHS
in part (b) of Figure 5, we again observe an increase in the R2. That is, using the betas
from the BHS increases the percentage of variation in the portfolio returns explained by the
market beta.
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Figure 5. Realized versus fitted portfolio return: (a) fitted return obtained from 2SLS betas estimates;
and (b) fitted return obtained from BHS.

A large body of literature has documented the CAPM’s incapability to explain the
heterogeneity of cross-section average return [41,42]. By using methods that ignore the
EIV problems, such as OLS, or instrumental variables without regularization techniques
and high-dimensional settings, previous literature has reported that the CAPM can explain
around only 1% of the variation in the cross-section return of 25 Fama–French portfo-
lios [10,39]. In contrast, by exploring the high-dimensional settings in instrumental vari-
ables, our approach shows that the CAPM betas can explain 15% of the variation in the
return of 25 Fama–French portfolios.

These findings provide fresh insight into the estimate of asset pricing models with
measurement errors. We can lessen the error-in-variables problem in the assessment of
systematic risk, which in turn will better explain the cross-section of returns, by employing
high-dimensional data and appropriate approaches. Although the power of explanation
of the cross-section of returns reported in our empirical application is modest compared
with multifactor models, we emphasize that the inclusion of several instruments and regu-
larization priors may increase this power relative to unregularized techniques. Therefore,
using a variety of instruments with regularization priors can be beneficial in other contexts
as well, particularly in asset pricing models that incorporate variables with significant
measurement errors, such as macroeconomic variables.

5. Discussion

This study enhances CAPM estimation by introducing Bayesian regularization for
a large number of instrumental variables in the presence of measurement errors. Results
highlight significant improvements in estimating CAPM beta values using shrinkage priors
for instrument coefficients. Simulation and empirical tests provide supportive evidence
for our approach. In a Monte Carlo simulation analysis, the results show a remarkable
reduction in mean bias when utilizing the regularized Bayesian instrumental variable ap-
proach, particularly in contrast to traditional 2SLS estimation. Furthermore, the introduced
regularization technique results in smaller bias and root mean squared errors, indicative of
its effectiveness in high-dimensional settings to address the error-in-variables challenge
within the CAPM. The empirical application reinforces the significance of the approach.
Notably, the estimated CAPM beta values exhibit subtle deviations compared with OLS
and 2SLS estimates, with variations discernible across different assets. This distinction in
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estimated betas holds substantial economic relevance, especially considering the sensitivity
of numerous financial models to beta values.

Expanding on the empirical context, the study delves into the second step of the
Fama–Macbeth procedure, focusing on both individual stocks and portfolios sorted by
size and book-to-market ratios. The results highlight the pronounced explanatory power
of the proposed approach. In the case of portfolio data, the introduced methodology
effectively accounts for approximately 15% of the cross-sectional variation in portfolio
returns, a significant improvement over the standard 2SLS method, which explains only
5%. Similarly, for individual stocks, the CAPM beta estimates derived from the proposed
approach contribute to explaining 3% of the cross-section of stock returns, a notable advance
from the nearly 0% explanatory power offered by the standard 2SLS method.

The key element in our findings is to enhance the information set available for estima-
tion. Asset pricing models are complex due to measurement errors in their components.
However, the abundant data environment offers a solution by introducing more informa-
tion into the model. Bayesian regularization instrumental variables serve as the mechanism
for unveiling this relevant information, mitigating the impact of mismeasurement.

An important comment about the contribution of our work is its general application in
more general contexts than CAPM estimation. Note that the same estimation methodology
can be applied in the context of multifactor risk models, especially in the construction
of risk factors based on asset sorting using characteristics such as the so-called Fama–
French factors [42]. These factors are built by ordering the assets based on observable
characteristics, and then building the risk factors based on quantile separation. Note that in
this procedure there are several possible sources of measurement risk, such as the frequency
of reordering based on the observed characteristic, the choice of quantile level for separating
the portfolios, etc. These ad hoc choices can introduce a component of measurement error
in the construction of these risk factors, as discussed, for example, in [40,43].

6. Conclusions

Our research offers a significant advancement in the estimation of asset pricing models
that suffer from the EIV problem. We present a novel approach that addresses the EIV issue
within the capital asset pricing model (CAPM) by utilizing a large set of instruments and
incorporating shrinkage priors. This method overcomes the challenge of weak instrument
correlation with the endogenous market return, providing more robust estimates and
mitigating potential bias. Thus, by using our approach, one can find a better estimate for
the systematic risk of an asset, measured by the betas, and also better explain the cross-
section variation in expected return. Our research not only addresses CAPM estimation
but also opens up avenues for improving risk pricing methodologies in more complex
multifactor contexts by considering and mitigating the impact of measurement errors.

These conclusions contribute to the literature that works on the solution of the critique
of [3], in particular the strand of literature that uses the instrumental variable. The data-
rich environment available in finance offers a wide range of instruments to solve the EIV
present in the capital asset pricing model. These instruments, however, are usually weakly
correlated with the endogenous market return, and using too many instruments may induce
bias. Our approach mitigates this induced bias by shrinking unimportant instruments
toward zero, which allows using all the available information efficiently.

Future research can extend the results of this work in at least three ways. First, the
natural extension of our findings lies in the realm of risk pricing for multifactor models,
where the presence of contamination by measurement errors can lead to biased estimates
of risk premia. The second way is to generalize the model presented here to consider the
joint estimation of all beta assets. This generalization can be a way to increase the efficiency
of the estimates since it will consider the covariance of all stock returns in the estimation.
Finally, a limited information Bayesian approach may be designed to also include prior
regularization, in an analogous manner, as presented here.
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Appendix A

Appendix A.1. Full Conditional Posterior

First full conditional posterior σ2
x |δ, β, α, ξ2

From Equation (5) we know that

f (xt|zt, δ, σ2
x) = N (z′tδ, σ2

x),

which represents the likelihood. It implies that the density of x ≡ (x1, . . . , xn)′, given
z ≡ (z1, . . . , zn)′, is:

f (x|z, δ, σ2
x) ∝ (σ2

x)
− n

2 exp
{
− 1

2σ2
x
(x− z′δ)′(x− z′δ)

}
.

Consider the inverse gamma prior with an sx/2 scale parameter and kx/2, it follows
that the conditional posterior is:

π(σx|x, y, Z, δ) ∝ (σ2
x)
−kx−n−2

2 exp

{
− 1

2σ2
x

[
sx +

n

∑
i=1

(xt − z′tδ)
2

]}
,

which is the kernel of an inverse gamma.

Second full conditional posterior δ|σ2
x , α, β, ξ2

Use the elliptical slice sampler for this parameter, described in Algorithm 1.

Third full conditional posterior (γ, β, α, ξ2)|δ, σ2
x , α, β, ξ2

To simplify the notation, define θ ≡ (γ, β, α)′, which is a (3 × 1) vector. From
Equations (5) and (6) and using the bivariate normal properties, we can find the con-
ditional distribution εyt |εxt ∼ N

(
α(xt − z′tδ), ξ2), where α ≡ ρ

σy
σx

, ξ2 ≡ (1 − ρ2)σ2
y

and note that εxt = xt − z′tδ. Then, from Equation (6), we can conclude that yt|xt ∼
N
(
γ + xtβ + α(xt − z′tδ), ξ2).

Define x̃t ≡ (1, xt, xt − z′tδ),which is a (1× 3). It will be useful to consider n× 3 matrix
of observation: x̃ = (x̃′1, . . . , x̃′n)′. Thus, we can write yt|xt ∼ N

(
x̃tθ, ξ2). The conditional

likelihood will be:

f (y|x, Z, · · · ) ∝ (ξ2)−
n
2 exp

{
− 1

2ξ2 (y
′y− y′ x̃θ − θ′ x̃′y− θ′ x̃′ x̃θ)

}
Combining this likelihood with the normal inverse gamma prior:

π(θ, ξ2|ξ2) ∼ NIG
(

0, ξ2Σ−1
0 , shape =

k
2

, scale =
s
2

)

https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/
https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/
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and defining a ≡ k + n and M = Σ0 + x̃′ x̃ allows us to find the third full conditional
posterior:

π(θ, ξ2|y, x, Z, σ2
x , δ) = NIG

(
M−1 x̃′y, ξ2M−1, shape =

a
2

, scale =
b
2

)
where b ≡ s + y′y− y′ x̃M−1 x̃′y.

Appendix A.2. Robustness Check

We also consider alternative calibration in the simulation exercise. Besides the results
present in the main text, we also consider a context in which the numbers of weak instruments
and strong instruments are always equal, that is, half of the instruments are strong, and half
are weak. Specifically, we set the standard deviation of half of the assets to σi = 0.01 and the
other half to σi = 0.04. We also consider a less intense measurement error, setting the standard
deviation of measurement error to σu = 0.9σx. The calibration of the other parameters is the
same as described in the main text. Table A1 presents the results for this setting.

Table A1. Measures for the beta estimation error, n = 1000, with an equal number of weak and strong
instruments.

OLS 2SLS LIML BHS BLASSO BFBS
p = 2 Mean bias −0.449 1.009 0.008 0.022 0.018 0.019

Mean abs. bias 0.449 2.000 0.230 0.236 0.235 0.236
RMSE 0.458 28.312 0.288 0.297 0.295 0.296

p = 10 Mean bias −0.452 −0.024 −0.008 −0.011 −0.017 −0.019
Mean abs. bias 0.452 0.154 0.150 0.149 0.148 0.148
RMSE 0.462 0.196 0.188 0.187 0.185 0.185

p = 20 Mean bias −0.445 −0.013 0.009 0.001 −0.011 −0.014
Mean abs. bias 0.445 0.124 0.125 0.123 0.120 0.120
RMSE 0.455 0.158 0.158 0.156 0.154 0.154

p = 40 Mean bias −0.449 −0.044 −0.006 −0.022 −0.044 −0.053
Mean abs. bias 0.449 0.121 0.118 0.117 0.118 0.120
RMSE 0.458 0.152 0.151 0.147 0.149 0.150

p = 80 Mean bias −0.445 −0.070 −0.004 −0.042 −0.084 −0.105
Mean abs. bias 0.445 0.115 0.109 0.106 0.117 0.128
RMSE 0.454 0.145 0.137 0.134 0.148 0.159

p = 160 Mean bias −0.450 −0.120 0.000 −0.114 −0.179 −0.221
Mean abs. bias 0.450 0.143 0.113 0.136 0.184 0.222
RMSE 0.460 0.171 0.142 0.163 0.209 0.244

Note: We report mean bias, mean absolute bias, and root mean squared error (RMSE) of each estimator. We
highlight in bold type the best estimator for each criterion and number of instruments.

From Table A1, we can notice that the Bayesian horseshoe approach dominates the
2SLS for all criteria and choices of p, in line with the results in the main text. Also, except for
p = 2, the horseshoe prior performs better than the other regularization priors in terms of
mean bias. In this setting, however, the improvement of the Bayesian horseshoe in relation
to the unregularized 2SLS is attenuated as the number of instruments increases.

The results of this configuration show that, in situations where regularity in the
construction of the instruments is met, in the sense that the instruments present a greater
correlation with the covariate measured with error, the gains from the use of estimators
based on shrinkage priors is reduced. These results are expected since in this configura-
tion it is desirable that the shrinkage power be less effective due to the need to maintain
a greater number of instruments in the first stage of the estimation. In the limit situation
where all instruments are strong, it is expected that all instruments are selected, and, in
this situation, the differences between the 2SLS estimators and the Bayesian estimators
are reduced.
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Appendix A.3. Additional Bayesian Estimation Results
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Figure A1. Posterior distributions of beta for the three different types of priors for NVIDIA stock.
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