
Citation: Saadetoğlu, M.; Dinsev,
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Abstract: Block matrices play an important role in all branches of pure and applied mathematics. In
this paper, we study the two fundamental concepts: inverses and determinants of general n× n block
matrices. In the first part, the inverses of 2× 2 block matrices are given, where one of the blocks is
a non-singular matrix, a result which can be generalised to a block matrix of any size, by splitting
it into four blocks. The second part focuses on the determinants, which is covered in two different
methods. In the first approach, we revise a formula for the determinant of a block matrix A, with
blocks elements of R; a commutative subring of Mn×n(F). The determinants of tensor products of
two matrices are also given in this part. In the second method for computing the determinant, we
give the general formula, which would work for any block matrix, regardless of the ring or the field
under consideration. The individual formulas for determinants of 2× 2 and 3× 3 block matrices are
also produced here.
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1. Introduction

Block matrices arise in many fields of pure and applied mathematics and also applied
sciences. Since these matrices are widely used in so many different fields, it is important
to know about their algebraic properties. This paper aims to bring together the two
fundamental concepts: inverses and determinants of n× n block matrices. Exercises on
some inverse and determinant properties of block matrices can be found in standard linear
algebra textbooks. However, in this study, we discuss these two concepts with a complete
theory, hoping that it will serve as a primary reference for those interested in the subject or
would like to use these matrices in their research. There are many published works in the
literature concerning these two algebraic concepts. For example, the inverses of 2× 2 block
matrices have been studied by Lu and Shiou in [1], the determinants of these matrices have
been examined by Powell and Silvester in [2] and [3], respectively, and the generalized
inverses and ranks for 2× 2 block matrices are given in [4]. Obtaining formula for the
inverse and the determinant of a 2× 2 block matrix is crucial, as these results can always
be expanded to the block matrices of larger sizes by either splitting it into 2× 2 blocks
for the inverse case or by expressing the determinants in terms of the determinants of the
2× 2 block matrices using the cofactor expansion in the determinant case. Therefore, in
this paper, the two theories are first established for the 2× 2 block matrices.

Block matrices are used in the proofs of many critical theorems in linear algebra.
For example, the determinants of block upper triangular matrices are used to prove that
the dimension of the eigenspace corresponding to an eigenvalue λ is always less than
or equal to the algebraic multiplicity of the given λ. For a linear operator T on a finite
dimensional vector space V, and for a T-invariant subspace W of V, the proof of the theorem
stating that the characteristic polynomial of TW (T restricted to W) divides the characteristic
polynomial of T also uses the determinants of block matrices. This is an important result

Mathematics 2023, 11, 3784. https://doi.org/10.3390/math11173784 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11173784
https://doi.org/10.3390/math11173784
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://doi.org/10.3390/math11173784
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11173784?type=check_update&version=3


Mathematics 2023, 11, 3784 2 of 12

used in the proof of the famous Cayley–Hamilton theorem [5]. Last but not least, the
Jordan canonical form theory is also based on block diagonal matrices. Remember that a
linear operator T on n dimensional vector space V is invertible if and only if its standard
matrix is invertible, and in fact, the matrix for the inverse operator is just the inverse of the
standard matrix of T [5]. Therefore, the invertibility of a block matrix will give information
on the invertibility of the so-called ‘block operators’; operators whose standard matrices
are the block matrices (standard matrices are obtained by finding the images of the bases
vectors of the given vector space V under the linear operator). In functional analysis,
these linear operators can help solve integral equations (see, for example, [6], where the
block operator diagrams are used, or [7], where the strict positivity (invertibility and the
positivity) of the operators on Hilbert spaces are identified with the strict positivity of the
2× 2 block matrices). Other crucial problems under pure mathematics can also be solved
using these linear operators. Hence, our paper can help to obtain information on them via
their matrices.

Many algebraic operations can be simplified by using blocks in a matrix as elements
instead of using matrices of much larger sizes. We give some references for the applications
of block matrices in applied mathematics and general sciences. However, let us remind the
reader that this is an algebraic paper, and the scope of it is not in the application direction.
Generalised inverses of block matrices are used in [8] to establish conditions for the values
of two matrix functions to be equal, intuitionistic fuzzy block matrices (generalisations of
subsets fuzzy block matrices) and their properties are studied in [9], and the solution of
linear systems using block tridiagonal coefficient matrices via the block cyclic reduction
method is used to study the roots of the characteristic polynomials of matrices in [10]. To
give more examples on applications in the numerical analysis field, incomplete block-matrix
factorisations are used to precondition the iterative methods in [11], where applications
for the solution of the Dirichlet problem of Laplace’s equation on a rectangle using the
finite difference method with classical rectangular grids are given. Moreover, in [12], an
incomplete block factorisation for symmetric positive definite block tridiagonal matrices
is given; this factorization is used to precondition the conjugate gradient method and is
applied to solve the Dirichlet boundary value problem of the heat equation on a rectangle
by developing a new difference method on a hexagonal grid.

The details on the inverse and determinant theories of block matrices are discussed in
this paper. All proofs are independently produced by the authors unless explicitly stated
and cited in this paper. For examples on the covered topics, one may refer to the Eastern
Mediterranean University MSc Thesis of the second named author [13]. The organization of
this paper is as follows: in the next section, we start by giving the preliminaries. In Section 3,
we first give formulas for the inverses of 2× 2 block diagonal and block triangular matrices;
the techniques of proofs here can be generalised to block diagonal and block triangular
matrices of higher dimensions. In the same section, we give the inverse formulas for the
2× 2 block matrices in case one of the blocks is invertible. Proofs are provided via block
Gaussian elimination and also block elementary matrices. LDU decompositions of the
given block matrix are also provided in this section. Once the inverse formula for 2× 2
block matrices is obtained, this can be generalised to n × n block matrices by diving it
into four blocks (by producing a 2× 2 block matrix). Section 4 deals with the determinant
concept in two different approaches. First, a special commutative case is revised, where
the determinants of matrices with blocks belonging to a commutative subring of a field
or a commutative ring are studied. The determinants of 2× 2 block diagonal and block
triangular matrices, together with the determinants of a general 2× 2 block matrix, are
provided. In this section, we also give a determinant formula for tensor products of two
matrices. Next, the general formula existing in the literature is presented, which works
for matrices in any ring or field. This formula can get very complex if the block matrix
has a large size. Therefore, in specific useful cases, the determinants for 2× 2, and 3× 3
block matrices are also provided. To demonstrate the p = 3 case, we also give a numerical
example and compute the determinant of a 12× 12 matrix. With this example, one can
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easily see the efficiency of the method compared to computing the determinant via a
cofactor expansion or row reduction. Finally, we conclude this paper in Section 5.

2. Preliminaries

Basic concepts are defined below; one may also refer to [14] for more details.

Definition 1. A block matrix (partitioned matrix) is a matrix having split sections referred to
as blocks or submatrices. These blocks are separated with horizontal or vertical lines. The blocks
(submatrices) of a block matrix must fit together to form a rectangle or a square shape.

Example 1. Let C =


8 6 2 −5 −9
2 5 11 8 15

13 16 4 12 29
10 7 32 6 5


We can partition this matrix in different ways. We can create a maximum of 20 different

submatrices. The maximum number of submatrices is equal to the total number of entries in this
matrix, i.e., the size of the matrix. Below, we give an example of a partition for block matrix C.

c1 =

[
8 6 2
2 5 11

]
, c2 =

[
−5 −9
8 15

]
, c3 =

[
13 16 4
10 7 32

]
, c4 =

[
12 29
6 5

]

C =

(
c1 c2
c3 c4

)
=


8 6 2 −5 −9
2 5 11 8 15
13 16 4 12 29
10 7 32 6 5


Definition 2. The block diagonal matrix is a matrix with square blocks in the main diagonal
position and zero matrices elsewhere. A block matrix is called block upper triangular/block lower
triangular if all the submatrices below/above the main diagonal are zero matrices. A matrix is called
block triangular if it is either block upper triangular or block lower triangular.

Definition 3. A block matrix is called a block identity matrix if all the off-diagonal matrices are
zero matrices.

Definition 4. A block elementary matrix is the matrix obtained from the block identity matrix by
applying only one elementary row operation.

Definition 5. Let U =

(
u11 u12
u21 u22

)
∈ M2×2(F) and let V ∈ Mn×n(F). Then, the tensor

product U ⊗ V is defined as the 2n× 2n matrix
(

u11V u12V
u21V u22V

)
. Similarly, if U ∈ Mm×m(F),

and V ∈ Mn×n(F), then the tensor product U ⊗V is the mn×mn matrix

U ⊗V =


u11V u12V · · · u1mV
u21V u22V · · · u2mV

...
. . . . . .

...
um1V um2V · · · ummV

.

3. Inverses of Block Matrices
3.1. Inverses of Block Diagonal and Block Triangular Matrices

In this first section, we start by giving the inverses of 2× 2 block diagonal and block
triangular matrices. The same techniques of the proofs can be applied to the block diagonal
and block triangular matrices of larger sizes.
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Proposition 1. If D =

(
D11 0

0 D22

)
is a block diagonal matrix with square and invertible blocks

Dii, for i ∈ {1, 2}, then D is invertible, and the inverse of D is given via

D−1 =

(
D−1

11 0
0 D−1

22

)
.

Proof. One can easily observe that the multiplication of the two matrices will produce the
block identity matrix. The Gauss elimination method is another way to see the result.

Proposition 2. If U =

(
U11 U12

0 U22

)
is a block upper triangular matrix with square and invertible

main blocks Uii, for i ∈ {1, 2}, then U is invertible and the inverse is given by

U−1 =

(
U−1

11 −U−1
11 U12U−1

22
0 U−1

22

)
.

Proof. Using the block Gauss Elimination, we obtain(
U11 U12 I 0

0 U22 0 I

)
R1 → U−1

11 R1

(
I U−1

11 U12 U−1
11 0

0 U22 0 I

)
R2 → U−1

22 R2

(
I U−1

11 U12 U−1
11 0

0 I 0 U−1
22

)
R1 → −U−1

11 U12R2 + R1

(
I 0 U−1

11 −U−1
11 U12U−1

22
0 I 0 U−1

22

)

UU−1 =

(
U11 U12

0 U22

)(
U−1

11 −U−1
11 U12U−1

22
0 U−1

22

)
=

(
I 0
0 I

)
.

Similarly, we provide the inverse of the 2× 2 lower triangular matrix below; the idea
of the proof works in a very similar manner to the proof of Proposition 2.

Proposition 3. If L =

(
L11 0
L21 L22

)
is a block lower triangular matrix with square and invertible

main blocks Lii, for i ∈ {1, 2}, then L is invertible and the inverse is given via

L−1 =

(
L−1

11 0
−L−1

22 L21L−1
11 L−1

22

)
.

3.2. Inverses of 2× 2 Block Matrices

Assume that A is a 2× 2 non-singular square block matrix A =

(
T E
M N

)
, and its

inverse is A−1 =

(
P Q
R S

)
. Let T, E, M, and N be the partitioned matrices in A, with

sizes k×m, k× n, l ×m, l × n (with k + l = m + n), and P, Q, R, and S be the submatrices
in A−1 with sizes m× k, m× l, n× k, and n× l, respectively, for the multiplications to be
compatible. We can verify A−1; here, we consider the following two cases. The case where
all the blocks are square matrices (i.e., if k = m = n = l) is discussed in Remark 1.

• Square matrices in diagonal positions in A and A−1, implying k = m and l = n.
• Square matrices in anti-diagonal positions of A and A−1 implying k = n and m = l.

The following two theorems deal with the first case where matrices in the diagonal
positions are all square.

Theorem 1. Let T be non-singular. Then, A−1 exists if and only if the matrix N −MT−1E is
invertible and
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A−1 =

(
T−1 + T−1E(N −MT−1E)−1MT−1 −T−1E(N −MT−1E)−1

−(N −MT−1E)−1MT−1 (N −MT−1E)−1

)
.

Proof. First, we use the block Gauss elimination on block matrix A. The Gauss elimination
method on the block matrices is not as straightforward as the one on standard matrices
without blocks. At each stage of performing an elementary row operation, one must check
that the sizes of the matrices are compatible.(

T E I 0
M N 0 I

)
R1 → T−1R1

(
I T−1E T−1 0

M N 0 I

)
R2 → −MR1 + R2

(
I T−1E T−1 0
0 N −MT−1E −MT−1 I

)
R2 → (N −MT−1E)−1R2

(
I T−1E T−1 0
0 I −(N −MT−1E)−1MT−1 (N −MT−1E)−1

)
R1 → (−T−1E)R2 +R1

(
I 0 T−1 + T−1E(N −MT−1E)−1MT−1 −T−1E(N −MT−1E)−1

0 I −(N −MT−1E)−1MT−1 (N −MT−1E)−1

)
.

Another way of proving this inverse is via realising that A can be written as a product
of four block elementary matrices. Note that

A =

(
T E
M N

)
=

(
T 0
0 I

)(
I 0

M I

)(
I 0
0 N −MT−1E

)(
I T−1E
0 I

)
.

In Section 3.1, the inverses of these block elementaries can easily be computed, which

would give a second way of proving the theorem. Also, note that
(

T 0
0 I

)(
I 0

M I

)
=(

T 0
M I

)
, which would give the LDU decomposition of the matrix A above.

Theorem 2. Let N be non-singular. Then, A−1 exists if and only if the matrix T − EN−1M is
invertible, and

A−1 =

(
(T − EN−1M)−1 −(T − EN−1M)−1EN−1

−N−1M(T − EN−1M)−1 N−1 + N−1M(T − EN−1M)−1EN−1

)
.

Proof. Again, by using block Gauss elimination method, we obtain(
T E I 0
M N 0 I

)
R2 → N−1R2

(
T E I 0

N−1M I 0 N−1

)
R1 → −ER2 + R1

(
T − EN−1M 0 I −EN−1

N−1M I 0 N−1

)
R1 → (T − EN−1M)−1R1

(
I 0 (T − EN−1M)−1 −(T − EN−1M)−1EN−1

N−1M I 0 N−1

)

R2 → −(N−1M)R1 + R2(
I 0 (T − EN−1M)−1 −(T − EN−1M)−1EN−1

0 I −N−1M(T − EN−1M)−1 N−1 + N−1M(T − EN−1M)−1EN−1

)
.
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As we illustrated above, we next express A as a product of four block elementary
matrices. These block elementary matrices can be observed by applying the inverses of the
elementary row operations to the block identity matrix. Note that

A =

(
T E
M N

)
=

(
I 0
0 N

)(
I E
0 I

)(
T − EN−1M 0

0 I

)(
I 0

N−1M I

)
.

From this equation, it is also very straightforward to observe A−1. As we did above in
the proof of Theorem 1, the two elementary matrices on the left can be multiplied to give a
lower triangular matrix, which produces the LDU decomposition of the given matrix A.

If the square blocks are now in the anti-diagonal positions of A and A−1, a small trick
can be applied to move these square blocks to the diagonal positions. Assume that J is a
matrix with 1’s in the reverse diagonal position and 0’s elsewhere. Then, AJ reverses the
order of columns of A, and JA reverses the order of rows of A.

AJ =
(

T E
M N

)(
0 J
J 0

)
=

(
EJ TJ
NJ MJ

)
.

Note that J(AJ)−1 = A−1. Therefore, Theorems 1 and 2 can be used to obtain the
inverse formulas for the 2× 2 block matrices when the square matrices are in the anti-
diagonal positions.

Remark 1. Note that inverse formulas in Theorems 1 and 2 are equivalent, if T and N are both
non-singular. Also note that if we have square matrices in all positions of A and A−1, that is to
say, if k = m = n = l, then Theorems 1 and 2 and also the remaining two theorems coming from
square matrices in anti-diagonal positions of A, must coincide and produce the same inverse formula,
depending, of course, on the invertibility of the square blocks. This technique will always work by
splitting a block matrix of any size into four blocks and using theorems above by considering the
positions of the square blocks.

Remark 2. The inverses of the diagonal and triangular matrices in Section 3.1 can also be computed
using Theorems 1 and 2.

4. Determinants of Block Matrices
4.1. The Commutative Case

The set of all n× n matrices with entries from a field forms a ring with unity but not a
field, as multiplicative inverses of elements may not exist. Therefore, 2× 2 block matrix
A, with entries as the matrices of sizes n× n can be thought of as having a size of 2× 2
in the ring of matrices but of a size of 2n× 2n in the considered field. For a 2× 2 matrix,

T =

(
a b
c d

)
, det(A) = ad− bc. For the same formula to make sense for the 2× 2 block

matrix T =

(
A B
C D

)
, (each block an element of Mn×n(F), where F will denote the field

under consideration), we cannot just use any subring R of Mn×n(F), but we would need
a commutative one for the expressions AD− BC, AD− CB, DA− BC, DA− CB to be all
equivalent. As it is in [3], we will use the notation detR T to take the determinant in this
commutative subring, where elements are considered as matrices, and the notation detF T,
where the determinant is taken in the usual way with elements in a field, like the field of
real numbers or complex numbers. Therefore, note that detR T, here, will not be a scalar,
but it will be a matrix over F. We state the main result of this section below; for proof,
please refer to [3].

Theorem 3. For a given field F, let R be a commutative subring of Mn×n(F), and let T ∈
Mp×p(R). Then,
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detFT = detF(detRT).

Below, we start with the determinants of 2 × 2 block matrices, where each block
is an element of Mn×n(F). First, we consider the block diagonal block upper/lower
triangular matrices.

Proposition 4. Given T =

(
M 0
0 N

)
, a block diagonal matrix, detF T = detF(MN) =

detF MdetF N.

Proof. This can be proved via induction on the size of the matrix M in the top left corner.
Here, n = 1 case can be observed immediately. Next, the cofactor expansion is applied in
the first row or column, and we assume that the results holds for the n− 1 case to prove
the general n× n case. Actually, the same proof will apply when the block matrices on
the main diagonal position are of different sizes. For details of the proofs, please refer
to [13].

The similar inductive proofs can be used to prove the following, where one needs to
use cofactor expansion along rows for lower triangular block matrices and along columns
for upper triangular block matrices.

Proposition 5. If T =

(
M 0
R N

)
, or T =

(
M P
0 N

)
, then detF T = detF(MN) =

detF MdetF N.

Proposition 6. If T =

(
M P
R N

)
, and if at least one of the blocks M, P, R, N is a zero matrix,

then detFT = detF(MN − PR).

Proof. Propositions 4 and 5 show the cases where the off-diagonal matrices are the
zero matrices. If one or both of the main diagonal matrices are zero, then we use the
following approach:(

I −I
0 I

)(
I 0
I I

)(
I −I
0 I

)(
M P
R N

)
=

(
−R −N
M P

)
,

giving detF

(
M P
R N

)
= detF

(
−R −N
M P

)
. Hence,

detF

(
M P
R 0

)
= detF

(
−R 0
M P

)
= detF(−R)detF(P) = detF

(
−R −N

0 P

)
detF

(
0 P
R N

)
.

Morover, (
M 0
−I N

)(
I N
0 I

)
=

(
M MN
−I 0

)
proving also the multiplicative property detF(MN) = detF MdetF N for matrices.

We give the following a more general result, where the proof can be found in [3]
and involves working not in a particular field (or ring) F but instead in the polynomial
ring F[x].

Theorem 4. Given T =

(
M P
R N

)
, where M, P, R, N are n× n matrices, with coefficients in a

field, and RN = NR,
detFT = detF(MN − PR).
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Remark 3. Given T =

(
M P
R N

)
, where M, P, R, N are n× n matrices, with coefficients in a

field, and N is invertible, note that
∣∣∣∣M P

R N

∣∣∣∣ = det
(

MN − PN−1RN
)
. The result can be seen

from the following matrix equation.(
M P
R N

)(
I 0

−N−1R I

)
=

(
M− PN−1R P

0 N

)
.

Remark 4. For a matrix U ∈ M2×2(F) and V ∈ Mn×n(F),

detF(U ⊗V) = detF((u11V)(u22V)− (u12V)(u21V))

= detF

(
(u11u22 − u12u21)V2

)
= detF

(
(detFU)V2

)
= (detFU)n(detFV)2

Following from the remark above, we generalise the results for the determinant of the
tensor product of two matrices as follows:

Proposition 7. Let U ∈ Mm×m(F) and V ∈ Mn×n(F). Then,

det(U ⊗V) = (detFU)n(detFV)m.

Proof. We can prove the result via induction on m; the size of the matrix U. If m = 1, then
U is 1× 1, and U ⊗V = [u11V] with detF(u11V) = (u11)

ndetF(V). Next, we assume that
result holds for the case m− 1 and try to prove it for case m.

detR(U ⊗V) = u11V
[
detR(U11

m−1 ⊗V)
]
− u12V

[
detR(U12

m−1 ⊗V)
]
+ · · ·+

(−1)m+1u1mV
[
detR(U1m

m−1 ⊗V)
]

= u11V
(
(detFU11

m−1)V
m−1

)
− u12V

(
(detFU12

m−1)V
m−1

)
+ · · ·+

(−1)m+1u1mV
(
(detFU1m

m−1)V
m−1

)
= (detFU)Vm

where Uij
m−1 denotes the square matrix of size m− 1, when the ith row and jth column are

deleted from U. Next, using Theorem 3, we obtain

detF(U ⊗V) = detF(detR(U ⊗V)) = detF((detFU)Vm)

= (detFU)n(detFVm) = (detFU)n(detFV)m.

4.2. The General Case

In this section, we give a general formula for the determinant of an m×m block matrix,
a result due to [2].

Theorem 5. Given a (np)× (np) block M, divided into p2 blocks each of them of size n× n,
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M =


M11 M12 · · · M1p
M21 M22 · · · M2p

...
... · · ·

...
Mp1 Mp2 · · · Mpp


the determinant of M is given via

det(M) =
p

∏
k=1

det
(

α
p−k
kk

)
,

where the α matrices are defined as

α
(0)
ij = Mij

α
(k)
ij = Mij − σT

i,p−k+1M̃−1
k mp−k+1,j k ≥ 1

where the vectors σT
ij , mij are σT

ij = (Mij, Mi,j+1, · · · , Mip) and mij = (Mij, Mi+1,j, · · · , Mpj)
T .

Here, M̃k matrix is given via

M̃k =


Mp−k+1,p−k+1 Mp−k+1,p−k+2 · · · Mp−k+1,p
Mp−k+2,p−k+1 Mp−k+2,p−k+2 · · · Mp−k+2,p

...
... · · ·

...
Mp,p−k+1 Mp,p−k+2 · · · Mp,p

.

Next, we will give the determinant formulas for the cases p = 2 and p = 3. Con-
sequently, we will show that the formula for p = 2 case coincides with the formula in
Remark 3 of the previous section.

1. The case where block matrix M has four blocks (i.e., p = 2).

In this case, M =

(
M11 M12
M21 M22

)
with det(M) = ∏2

k=1 det
(

α2−k
kk

)
= det

(
α1

11
)

det
(
α0

22
)
.

Here, α0
22 = M22 and α1

11 = M11 − σT
12M−1

22 m21 = M11 −M12M−1
22 M21, giving

det(M) = det
(

α1
11

)
det
(

α0
22

)
= det

(
M11 −M12M−1

22 M21

)
det(M22)

= det
(

M11M22 −M12M−1
22 M21M22

)
which is the formula stated in the previous section in Remark 3.

2. The case where block matrix M has nine blocks (i.e., p = 3).

For this case, M =

M11 M12 M13
M21 M22 M23
M31 M32 M33

, with det(M) = ∏3
k=1 det

(
α3−k

kk

)
= det

(
α2

11
)

det
(
α1

22
)

det
(
α0

33
)
.

Here, α0
33 = M33, α1

22 = M22 − σT
23M̃−1

1 m32, and α2
11 = M11 − σT

12M̃−1
2 m21.

det(M) = det
(

α2
11

)
det
(

α1
22

)
det
(

α0
33

)
= det

[
M11 −

(
M12 M13

)(M22 M23
M32 M33

)−1(M21
M31

)]
× det

(
M22 −M23M−1

33 M32

)
det(M33). (1)
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Using Theorem 2 for the inverse of the 2× 2 block matrix and after some simplification,
we obtain the following formulae.

det(M) =

[
det
(

M11 −M13M−1
33 M31

)
−
(

M12 −M13M−1
33 M32

)(
M22 −M23M−1

33 M32

)−1(
M21 −M23M−1

33 M31

)]
× det

(
M22 −M23M−1

33 M32

)
det(M33).

Example 2. Given the following matrix Q, we compute |Q| using the formula (1) for the determi-
nant of the 3× 3 block matrix given above.

Q =



17 −8 5 7 13 −6 −112 99 −5 2 11 9
5 6 11 14 17 21 20 18 13 12 11 10
−15 18 13 16 19 −16 −18 17 13 15 10 17
−2 6 2 13 8 5 17 17 6 2 6 3
18 13 12 16 48 59 21 24 −9 −7 −8 −5
13 14 15 17 21 26 42 38 66 75 21 23
66 8 14 63 21 12 13 15 2 3 14 −18
11 12 15 21 29 49 12 7 8 4 17 12
9 13 −3 −8 17 0 6 60 25 −47 18 88
11 −11 −15 −17 −19 21 25 46 68 111 200 300
22 99 13 −2 −4 5 6 −13 48 54 −22 19
68 57 43 21 −30 18 −17 5 4 8 16 −77



det(Q) = det




17 −8 5 7
5 6 11 14
−15 18 13 16
−2 6 2 13

−


13 −6 −112 99 −5 2 11 9
17 21 20 18 13 12 11 10
19 −16 −18 17 13 15 10 17
8 5 17 17 6 2 6 3



×



48 59 21 24 −9 −7 −8 −5
21 26 42 38 66 75 21 23
21 12 13 15 2 3 14 −18
29 49 12 7 8 4 17 12
17 0 6 60 25 −47 18 88
−19 21 25 46 68 111 200 300
−4 5 6 −13 48 54 −22 19
−30 18 −17 5 4 8 16 −77



−1

18 13 12 16
13 14 15 17
66 8 14 63
11 12 15 21
9 13 −3 −8

11 −11 −15 −17
22 99 13 −2
68 57 43 21





× det




48 59 21 24
21 26 42 38
21 12 13 15
29 49 12 7

−

−9 −7 −8 −5
66 75 21 23
2 3 14 −18
8 4 17 12




25 −47 18 88
68 111 200 300
48 54 −22 19
4 8 16 −77


−1


17 0 6 60
−19 21 25 46
−4 5 6 −13
−30 18 −17 5


det


25 −47 18 88
68 111 200 300
48 54 −22 19
4 8 16 −77

.

= det



− 8520955680187479000
4929589651966029 − 1126457584638170000

743587934033933 − 273662877051219300
862678189094055 − 3530125478975506400

4140855307651465
36997056045380410

646058923814921
400610683041534400
6503176130099903

22861318028117330
1415657388865285

202741742474135070
5935162528718627

− 3672798715419834400
7127435775330321 − 559492619875135600

1461681164862663 − 102251346484461950
1484882453193817 − 128902948192672940

477283645669441
187543771792049950
2147154680763521

271347873020412600
2683943350954401

9304801959579688
505212866062005

313280250781215300
5591548647821669
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×det



14491339
334067

21039726
334067

6712187
334067

9636843
334067

2055547786
43762777

457642245
87525554

3744329823
87525554

1546420078
43762777

1413707764
43762777

209967912
43762777

818862735
43762777

422234741
43762777

1508549149
43762777

3855574845
87525554

1157667791
87525554 − 126678038

43762777


det


25 −47 18 88
68 111 200 300
48 54 −22 19
4 8 16 −77

.

= (4.430505045192262× 1021/445000051556509)(−2.5689046090548023× 1021/4677548208506851)(87525554)
= −3.906057144336905× 1035/816170407800069.

Here, we can use Theorem 2 to find the inverse of the 8× 8 matrix (or the 2× 2 block matrix, with blocks
of size 4× 4) in the formula above. Note that one would need to calculate determinants of 11 matrices (because
of the single 0 in matrix Q), of size 11× 11, to be able to compute this determinant via cofactor expansion.

5. Conclusions

This paper aims to serve as a primary reference for block matrices, where the two
important concepts, determinants and inverses, are discussed in detail. The inverse for-
mulas for the 2× 2 block matrices are given, where one of the four blocks is an invertible
matrix. This method could be generalised to block matrices of larger sizes by splitting it
into four blocks. On the other hand, the determinant properties of block matrices are also
studied; here, we use two main approaches from the literature. First of all, the determinant
formula for a block matrix with entries (blocks) belonging to a commutative subring of
Mn×n(F) is given. However, as matrix multiplication is not always commutative, this
formula unfortunately does not work in many cases. Therefore, in the last part of this paper,
we revise the general formulas from the literature for the determinant of any given n× n
block matrix. These formulas also use (as the size of the block matrices gets bigger) inverse
formulas for the block matrices. The determinant formula for the tensor product of two
matrices is also provided. As we have stated in the introduction, the applications of these
matrices arise in many fields; we plan to look into that in our future work.
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