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Abstract: The parallel processes involved in the production of refinery fuel gas, liquid petroleum
gas (LPG), propylene, and polypropylene, occurring in thirteen refinery units, are modeled by the
use of a Generalized Net (GN) apparatus. The modeling of the production of these products is
important because they affect the energy balance of petroleum refinery and the associated emissions
of greenhouse gases. For the first time, such a model is proposed and it is a continuation of the
investigations of refinery process modelling by GNs. The model contains 17 transitions, 55 places,
and 47 types of tokens, and considers the orders of fuel gas for the refinery power station, refinery
process furnaces, LPG, liquid propylene, and 6 grades of polypropylene. This model is intended to
be used as a more detailed lower-level GN model in a higher-level GN model that facilitates and
optimizes the process of decision making in the petroleum refining industry.

Keywords: generalized net; fuel gas; LPG; propylene; polypropylene; petroleum refinery
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1. Introduction

Modeling the processes of refined products production in a petroleum refinery is
a useful tool in production planning that allows for improvement in performance and
refinery profitability.

In the literature, partial models of the diverse processes taking place in the chemical
industry and in petroleum refining are made. For example, reference [1] deals with risk
assessment in the chemical industry; reference [2] investigates the integration of engineer-
ing models with planning models; reference [3] focuses on the refinery-wide planning
operations under uncertainties in product demand and price; reference [4] studies a nonlin-
ear, multiperiod, industrial refinery problem extended to a two-stage stochastic problem,
formulated as a mixed-integer nonlinear program; reference [5] employs a product tri-
section crude distillation unit model to build an accurate refinery model and determines
the optimal crude selection using two-stage stochastic programming; reference [6] formu-
lates a large-scale nonconvex mixed-integer nonlinear programming model and applies
robust optimization for the multi-period operational planning of a real-world integrated
refinery-petrochemical site in China under uncertain product demands and crude oil
price; reference [7] deals with a refinery planning model that utilizes simplified empirical
nonlinear process models with considerations for crude characteristics, product yields,
and qualities, etc.; reference [8] makes an assessment of refinery efficiency using linear
programming; references [9–14] present studies related to planning and scheduling; and
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reference [15] investigates the efficiency of the process of crude oil dewatering and desalt-
ing. Fuzzy modeling was another modeling technique employed in petroleum refining
and renewable energy systems for the selection of the optimum working situations that
produce a preferable efficiency with a very good veracity [16–29].

The approach to the modeling of the processes of manufacturing of petroleum refining
products by the use of generalized nets (GN) is original and all publications to date are
the work of the authors. To the extent that the GN is a process description tool with
at least as much power as the Turing machine, it can describe processes in more detail
than Petri nets, which are discussed, for example, in the works of Wu et al. [30–35] and
Zhang et al. [36], as well as many other tools for modeling real-world processes, e.g., linear
programming [37,38], transportation problems [39–41], neural networks [42–44], etc. For
each of these, it is shown that their functions and results of their work are representable by
a GN [45–47].

In linear programming, the algorithm is carried out step by step because it is sequen-
tial [48–52], whereas in all types of Petri nets, the processes run in parallel as in the real world.
Section 2.2 of this article states that the GN includes, as a special case, the other types of Petri
nets because of the presence of token characteristics and transition condition predicates. The
entire analytics of any means of describing a real-world process (e.g., linear programming)
can be described by the token characteristics in the GN model (see [45]), while the logic of the
modeled process is represented by the predicates of the GN.

In our earlier studies [53,54] we demonstrated that the processes of automotive gaso-
line [53] and diesel fuel production [54] in a petroleum refinery can be modeled using
generalized nets (GNs). The literature review indicates that there is a lack of models of
all the processes taking place in a petroleum refinery that are related to the production of
refined products and prepared with some mathematical instrumentation. Our aim is to
prepare, in a series of papers, the description of the refining processes leading to the pro-
duction of specific products using the GNs. The apparatus of GNs provides the capability
of easier uniting of diverse GNs models. The GNs models already produced by us [53,54]
can be transformed into the subnets of a general GN model. In the future, this will be
realized using a software product developed in the Institute of Biophysics and Biomedical
Engineering, Bulgarian Academy of Sciences.

The use of GNs, appearing first as extensions of Petri nets [55] and their other exten-
sions and modifications, was found to be a convenient methodology to model the complex
parallel-sequential processes taking place in petroleum refinery during the production of
finished refined products. They also allow the modeling of the production processes of
different refined oil products using distinct GNs which can be further combined using
a hierarchical approach. In order to obtain a complete refined oil products production
modelling, all the processes involved in the production of all of the products are required.
In this article, we focus on the modeling of the production of fuel gas, liquefied petroleum
gas (LPG), propylene, and polypropylene, which are part of the production chain of hy-
drocarbon gas refinery, as a complement to the process modeling of automotive gasoline
and diesel fuels production in petroleum refinery using generalized nets. The aim of this
research is to investigate the process of production of hydrocarbon gas products: fuel gas,
LPG, and propylene, produced from propylene polypropylene in a petroleum refinery, and
model it using GNs.

2. Materials and Methods
2.1. Processing Scheme for Production of Fuel Gas, LPG, Propylene, and Polypropylene in a
Petroleum Refinery

The processing technological chain employed in the LUKOIL Neftohim Burgas (LNB)
refinery in order to produce the components and finished products of fuel gas, LPG,
propylene, and polypropylene, the subject of this study, is presented in Figure 1.
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Figure 1. Processing scheme of fuel gas, LPG, Propylene, and Polypropylene production in a
petroleum refinery
Note: CDU = Crude distillation unit; Ref = straight run heavy naphtha (SRHN) reformer; HDS –
hydrodesulphurization units processing naphtha and diesel streams coming primary origin (crude
distillation units) and secondary origin (fluid catalytic cracking (FCC), FCC feed hydrotreater (FC-
CPT), and H-Oil ebullated bed vacuum residue hydrocracking); AGFU = Absorption gas fractionation
unit; CGFU = Central gas fractionation unit; HDS-5 = primary and secondary diesel hydrotreating
unit 5; SAA= Sulphuric acid alkylation; FCC PPF Splitter = fluid catalytic cracking propane-propylene
fraction splitter; Polypropylene = Polypropylene production unit by polymerization of Propylene.
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Figure 1. Processing scheme of fuel gas, LPG, propylene, and polypropylene production in a
petroleum refinery. Note: CDU = Crude distillation unit; Ref = straight run heavy naphtha (SRHN)
reformer; HDS = hydrodesulphurization units processing naphtha and diesel streams of primary
origin (crude distillation units) and secondary origin (fluid catalytic cracking (FCC), FCC feed
hydrotreater (FCCPT), and H-Oil ebullated bed vacuum residue hydrocracking); AGFU = Absorption
gas fractionation unit; CGFU = Central gas fractionation unit; HDS-5 = primary and secondary
diesel hydrotreating unit 5; SAA = Sulphuric acid alkylation; FCC PPF Splitter = fluid catalytic
cracking propane-propylene fraction splitter; Polypropylene = Polypropylene production unit by
polymerization of propylene.

Thirteen refinery process units are involved in the production process of fuel gas,
LPG, propylene, and polypropylene. The amount of these vapour phase and liquid phase
hydrocarbon gaseous products extracted from the crude oil in the process of atmospheric
distillation and generated in the process units—the reformer, hydrotreating units, FCC,
and H-Oil—as a result of chemical reactions, depends on the crude oil origin and on the
operating conditions in the mentioned refinery units. For the case shown in Figure 1, the
fuel gas production amounts to 3.8% of the crude oil quantity and more than half of this
comes from the fluid catalytic cracking (51.8%). Another important contributor to fuel gas
production is H-Oil ebullated bed vacuum residue hydrocracking. Thus, the production
of fuel gas is strongly dependent on the severity of the operation conditions applied in
both of the heavy oil conversion processes, FCC and H-Oil. The main contributor to LPG
production, as evident from the data in Figure 1, is crude oil distillation. It provides 75% of
the feed for the central Gas Fractionation Unit (CGFU), where the extraction of the propane
and n-butane is carried out; their mixing forms the refined product, LPG. As apparent from
the data in Figure 1, LPG production is about four times as low as that of the production
of fuel gas. The data in Figure 1 indicates that, in the case that the amount of fuel gas is
insufficient to meet the refinery energy needs, an option exists in importing natural gas to
replenish the fuel gas availability. Depending on the market requirements, liquid propylene
can be exported as a chemical grade for polymerization propylene, or as a component of the
LPG product. Typically, six grades of polypropylene products are produced and exported
from the polypropylene unit.
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2.2. Short Remarks on Generalized Nets

GNs are an extension of the standard Petri nets [55] and the rest of their extensions
and modifications. GNs are defined in a way that is principally different from the ways of
defining other types of Petri nets (see references [45,46]).

When some of the GN components are omitted, the GN is called a reduced GN. For
the needs of the model below, we describe the modeled process as a reduced GN.

Formally, every transition (see Figure 2) is described using a seven-tuple, but for our
purposes, we use its following reduced form:

Z = 〈L′, L′′, r〉,

where:

• L′ and L′′ are finite, non-empty sets of places (the transition’s input and output
places, respectively); for the transition in Figure 1, these are L′ = {l′1, l′2, . . . , l′m} and
L′′ = {l′′1 , l′′2 , . . . , l′′n};

• r is the transition’s condition determining which tokens will pass (or transfer) from the
transition’s inputs to its outputs; it has the form of an Index Matrix (IM; see [56]):

r =

l′′1 . . . l′′j . . . l′′n
l′1
... ri,j

l′m

;

ri,j is the predicate that corresponds to the i-th input and j-th output place (1 ≤ i ≤
m, 1 ≤ j ≤ n). When its truth value is “true”, a token from the i-th input place transfers
to the j-th output place; otherwise, this is not possible.
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Figure 2. The form of a GN transition.

The formal definition of the reduced GN used in the present research has the follow-
ing form:

E = 〈A, K, X, Φ〉,
where:

• A is a set of transitions;
• K is the set of the GN’s tokens;
• X is the set of all initial characteristics which the tokens can obtain on entering the net;
• Φ is the characteristic function that assigns new characteristics to every token when it

makes the transfer from an input to an output place of a given transition.

Operations, relations, and operators are defined over GNs (see references [45,46]).
The operations defined over the GNs—“union”, “intersection”, “composition” and

“iteration” (see references [45,46])—do not exist anywhere else in Petri net theory. These
operations are useful for constructing GN models of real processes.
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For example, when we have two GN models of real processes which we know flow
in parallel, by operation union, defined over two GNs, we can construct a GN model of
both processes.

The idea of defining operators over the set of GNs in the form suggested below dates
back to 1982 (see references [45,46]). It is a proper extension of Valk’s idea from [57] for
self-modifying Petri nets, in which only the net structure can be changed.

Now, the operator aspect has an important place in the theory of GNs. Six types of
operators are defined in its framework. Every operator assigns to a given GN a new GN
with some desired properties.

The groups of operators comprise the following:

• Global operators (e.g., one of them changes the functions giving tokens characteristics);
• Local operators (e.g., one of then changes the transition condition predicates);
• Hierarchical operators (e.g., one of them replaces the GN with a whole new (sub)GN,

another—a transition of the GN with a whole new (sub)GN, and two others do the
opposite activity);

• Dynamic operators (e.g., operators that allow for the union or split of tokens)

and others.
We can mention that, for example, the colored Petri nets (see, e.g., reference [58]) can

be represented by GNs in which the tokens have, as initial and current characteristics,
the colors with which they are colored. It is important to mention that, when one token
obtains a new colour, it does not “remember” its previous color. Meanwhile, interestingly,
if modeled by a GN, the GN tokens can remember their own previous characteristics. For
this reason, they can be interpreted as individuals with their own history.

3. Main Results: A GN Model

The GN (see Figure 3) contains 17 transitions, 55 places, and 47 types of tokens that
correspond to the following feed, products, and processing units:

σ1—crude oil processed in CDU-2, t/h
σ2—crude oil processed in CDU-2, t/h
σ3—straight run naphtha processed in the catalytic reformer, t/h
σ4—naphtha and diesel fractions process in hydrotreating units, t/h
σ5—vacuum gas oil processed in fluid catalytic cracking feed hydrotreater, t/h
σ6—vacuum residue processed in H-Oil hydrocracker, t/h
σ7—butane-bytelene fraction and isobutene processed in sulphuric acid alkylation, t/h
σ8—propane-propylene fraction from fluid catalytic cracking to separate in propane,
and propylene, t/h
σ9—primary and secondary diesel to hydrotreat in HDS-5 unit, t/h
σ10—hydrotreated and H-Oil vacuum gas oil to process in fluid catalytic cracking, t/h
σ11—natural gas from importing to replenishing fuel gas in cases of high fuel gas
demand, t/h.
ρ1—crude distillation unit 2 (CDU-2)
ρ2—crude distillation unit 1 (CDU-1)
ρ3—catalytic reformer unit
ρ4—naphtha and diesel hydrotreaters
ρ5—fluid catalytic cracking feed hydrotreating unit
ρ6—H-Oil vacuum residue hydrocracking unit
ρ7—sulphuric acid alkylation unit
ρ8—fluid catalytic cracking propane-propylene splitter unit (FCC PPF splitter)
ρ9—absorption gas fractionation unit (AGFU)
ρ10—LPG intermediary reservoir to collect feed for the central gas fractionation unit
ρ11—HDS-5 diesel hydrotreating unit
ρ12—fluid catalytic cracking unit (FCC)
ρ13—central gas fractionation unit (CGFU)
ρ14—liquid petroleum gas (LPG) tank farm
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ρ15—fuel gas tank farm
α1—LPG product from CDU-2, t/h
α2—LPG product from CDU-1, t/h
α3—LPG product from naphtha reformer, t/h
α4—LPG product from AGFU, t/h
α5—CGFU feed, t/h
α6—LPG product from CGFU to feed LPG tank farm,
β—fuel gas feed for AGFU, t/h
β1—fuel gas product from CDU-2, t/h
β2—fuel gas product from CDU-1, t/h
β3—fuel gas product from naphtha reformer, t/h
β4—fuel gas product from naphtha and diesel hydrotreaters, t/h
β5—fuel gas product from FCC feed hydrotreater, t/h
β6—fuel gas product from H-Oil vacuum residue hydrocrcker, t/h
β7—propane fraction from sulphuric acid alkylation unit, t/h
β8—dry fuel gas product from AGFU, t/h
β9—dry fuel gas product from CGFU, t/h
β10—dry fuel gas product from HDS-5 unit, t/h
β11—dry fuel gas product from FCCU, t/h
γ1—propane product from FCC PPF splitter, t/h
γ2—propylene product from FCC PPF splitter to feed polypropylene unit, t/h
γ3—propylene product from FCC PPF splitter, t/h
δ1—high melting index grade 61 polypropylene product, t/h
δ2—high melting index grade 63 polypropylene product, t/h
δ3—high melting index grade 65 polypropylene product, t/h
δ4—high melting index grade 66 polypropylene product, t/h
δ5—high melting index grade 65 BOPP polypropylene product, t/h
ε1—LPG product for export, t/h
ε2—fuel gas product to feed the refinery power station, t/h
ε3—fuel gas product to feed the refinery process furnaces, t/h

Z1 = 〈{l1, l11}, {l9, l10, l11},
l9 l10 l11

l1 f alse f alse true
l11 W11,9 W11,10 true

〉,

where
W11,9 = “there is a request for LPG product from CDU-2”;
W11,10 = “there is a request for fuel gas product from CDU-2”.

Token σ1 enters place l11 and unites with token ρ1 to obtain a characteristic:

“the current quantity of crude oil in CDU-2”.

In the next time-step, token ρ1 splits into three tokens—the same token ρ1 that contin-
ues to stay in place l11, α1, and β1.

The token α1 obtains a characteristic:

“current quantity of LPG product from CDU-2”

in place l9, token β1 obtains a characteristic:

“current quantity of fuel gas product from CDU-2”

in place l10, token ρ1 obtains a characteristic:

“the current quantity of crude oil in CDU-2”.
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Z2 = 〈{l2, l14}, {l12, l13, l14},
l12 l13 l14

l2 f alse f alse true
l14 W14,12 W14,13 true

〉,

where
W14,12 = “there is a request for LPG product from CDU-1”;
W14,13 = “there is a request for fuel gas product from CDU-1”.

Token σ2 enters place l14 and unites with token ρ2 to obtain a characteristic:

“the current quantity of crude oil in CDU-1”.

In the next time-step, token ρ2 splits into three tokens—the same token ρ2 that contin-
ues to stay in place l14, α2, and β2.

The token α2 obtains a characteristic:

“current quantity of LPG product from CDU-1”

in place l12, token β2 obtains a characteristic:

“current quantity of fuel gas product from CDU-1”

in place l13, token ρ2 obtains a characteristic:

“the current quantity of the crude oil in CDU-1”.

Z3 = 〈{l3, l17}, {l15, l16, l17},
l15 l16 l17

l3 f alse f alse true
l17 W17,15 W17,16 true

〉,

where
W17,15 = “there is a request for LPG product from naphtha catalytic reformer”;
W17,16 = “there is a request for fuel gas product from naphtha catalytic reformer”.

Token σ3 enters place l17 and unites with token ρ3 to obtain a characteristic:

“the current quantity of naphtha in naphtha catalytic reformer”.

In the next time-step, token ρ3 splits into three tokens—the same token ρ3 that contin-
ues to stay in place l17, α3, and β3.

The token α3 obtains a characteristic:

“current quantity of LPG product from naphtha catalytic reformer”

in place l15, token β3 obtains a characteristic:

“current quantity of fuel gas product from naphtha catalytic reformer”

in place l16, token ρ3 obtains a characteristic:

“current quantity of fuel gas product from naphtha catalytic reformer”.

Z4 = 〈{l4, l19}, {l18, l19},
l18 l19

l4 f alse true
l19 W19,18 true

〉,

where
W19,18 = “there is a request for fuel gas product from naphtha and diesel hydrotreaters”.
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Figure 3. A GN model.

Token σ4 enters place l19 and unites with token ρ4 to obtain a characteristic:

“the current quantity of naphtha and diesel in naphtha and diesel hydrotreaters”.
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In the next time-step, token ρ4 splits into two tokens—the same token ρ4 that continues
to stay in place l19 and β4.

The token β4 obtains a characteristic:

“current quantity of fuel gas product from naphtha and diesel hydrotreaters”

in place l18, token ρ4 obtains a characteristic:

“the current quantity of naphtha and diesel in naphtha and diesel hydrotreaters”.

Z5 = 〈{l5, l21}, {l20, l21},
l20 l21

l5 f alse true
l21 W21,20 true

〉,

where
W21,20 = “there is a request for fuel gas product from FCC feed hydrotreater”.

Token σ5 enters place l21 and unites with token ρ5 to obtain a characteristic:

“the current quantity of vacuum gas oil in FCC feed hydrotreater”.

In the next time-step, token ρ5 splits into two tokens—the same token ρ5 that continues
to stay in place l21 and β5.

The token β5 obtains a characteristic:

“current quantity of fuel gas product in FCC feed hydrotreater”

in place l20, token ρ5 obtains a characteristic:

“the current quantity of vacuum gas oil in FCC feed hydrotreater”.

Z6 = 〈{l6, l23}, {l22, l23},
l22 l23

l6 f alse true
l23 W23,22 true

〉,

where
W23,22 = “there is a request for fuel gas product from H-Oil unit”.

Token σ6 enters place l23 and unites with token ρ6 to obtain a characteristic:

“the current quantity of vacuum residue in H-Oil unit”.

In the next time-step, token ρ6 splits into two tokens—the same token ρ6 that continues
to stay in place l23 and β6.

The token β6 obtains a characteristic:

“the current quantity of fuel gas product from H-Oil unit”

in place l22, token ρ6 obtains a characteristic:

“the current quantity of vacuum residue in H-Oil unit”.

Z7 = 〈{l7, l25}, {l24, l25},
l24 l25

l7 f alse true
l25 W25,24 true

〉,

where
W25,24 = “there is a request for propane fraction product from sulphuric acid alkyla-
tion unit”.
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Token σ7 enters place l25 and unites with token ρ7 to obtain a characteristic:

“the current quantity of butane-butylene fraction and iso butane in sulphuric acid

alkylation unit”.

In the next time-step, token ρ7 splits into two tokens—the same token ρ7 that continues
to stay in place l25 and β7.

The token β7 obtains a characteristic:

“current quantity of propane fraction product in sulphuric acid alkylation unit”

in place l24, token ρ7 obtains a characteristic:

“the current quantity of butane-butylene fraction and iso butane in sulphuric acid

alkylation unit”.

Z8 = 〈{l8, l29}, {l26, l27, l28, l29},
l26 l27 l28 l29

l8 f alse true
l29 W29,26 W29,27 W29,28 true

〉,

where
W29,26 = “there is a request for propane product from FCC PPF splitter for LPG produc-
tion”;
W29,27 = “there is a request for propylene for polymerization from FCC PPF splitter”;
W29,28 = “there is a request for propylene product from FCC PPF splitter for export”.

Token σ8 enters place l29 and unites with token ρ8 to obtain a characteristic:

“the current quantity of FCC PPF in FCC PPF splitter”.

In the next time-step, token ρ8 splits into four tokens—the same token ρ8 that continues
to stay in place l29 and tokens γ1, γ2, γ3.

The tokens γ1, γ2, γ3 obtain characteristics:

“current quantity of propane product in FCC PPF splitter”

in place l26,

“current quantity of propylene product for polymerization in FCC PPF splitter”

in place l27,

“current quantity of propylene product for export in FCC PPF splitter”

in place l28, respectively. Token ρ8 obtains a characteristic:

“the current quantity of FCC PPF in FCC PPF splitter”.

Z9 = 〈{l10, l13, l16, l18, l20, l22, l24, l28}, {l30},

l30
l10 true
l13 true
l16 true
l18 true
l20 true
l22 true
l24 true
l28 true

〉.
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All β-tokens unite in place l30, with one token β with a characteristic:

“current quantity of fuel gas, feed for the AGFU”.

Z10 = 〈{l28}, {l31, l32, l33, l34, l35},
l31 l32 l33 l34 l35

l28 W28,31 W28,32 W28,33 W28,34 W28,35
〉,

where
W27,31 = “there is a request for high melting index grade 61 polypropylene product from
polypropylene unit”;
W27,32 = “there is a request for high melting index grade 63 polypropylene product from
polypropylene unit”;
W27,33 = “there is a request for high melting index grade 65 polypropylene product from
polypropylene unit”;
W27,34 = “there is a request for high melting index grade 66 polypropylene product from
polypropylene unit”;
W27,35 = “there is a request for high melting index grade 66 BOPP polypropylene product
from polypropylene unit”.

Token γ2 splits into five tokens δ1, . . . , δ5 that obtain characteristics:

“current quantity of high melting index grade 61 polypropylene product from

polypropylene”

in place l31,

“current quantity of high melting index grade 63 polypropylene product from

polypropylene”

in place l32,

“current quantity of high melting index grade 65 polypropylene product from

polypropylene”

in place l33,

“current quantity of high melting index grade 66 polypropylene product from

polypropylene”

in place l34,

“current quantity of high melting index grade 65 BOPP polypropylene product from

polypropylene unit”

in place l35, respectively.

Z11 = 〈{l30, l38}, {l36, l37, l38},
l36 l37 l38

l30 f alse f alse true
l38 W38,36 W36,37 true

〉,

where
W38,36 = “there is a request for LPG product from AGFU”;
W38,37 = “there is a request for fuel gas product from AGFU”.

Token β enters place l38 and unites with token ρ9 to obtain a characteristic:

“the current quantity of fuel gas feed in AGFU”.
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In the next time-step, token ρ9 splits into three tokens—the same token ρ9 that contin-
ues to stay in place l38 and tokens α4 and β8.

The token α4 obtains a characteristic:

“the current quantity of LPG product from AGFU”

in place l36, token β8 obtains a characteristic:

“current quantity of fuel gas product from AGFU”

in place l37.

Z12 = 〈{l9, l12, l15, l36, l42}, {l41, l42},

l41 l41
l9 f alse true
l12 f alse true
l15 f alse true
l36 f alse true
l42 true true

〉.

All α-tokens (α1, α2, α3, α4) unite in place l42 with token ρ10 and obtain the characteristic:

“current quantity of LPG feed stored in a reservoir for the CGFU”.

In the next time-step, the token ρ10 splits into two tokens—the same token ρ10 that
continues to stay in place l42 and token α5 that enters place l41 with a characteristic:

“current quantity of LPG feed for the CGFU”.

Z13 = 〈{l39, l44}, {l43, l44},
l43 l44

l39 f alse true
l44 W44,43 true

〉,

where
W44,43 = “there is a request for fuel gas product from HDS-5 unit”.

Token σ9 enters place l44 and unites with token ρ11 to obtains a characteristic:

“the current quantity of primary and secondary diesel—feed for the HDS-5 unit”.

In the next time-step, the token ρ11 splits into two tokens—the same token ρ11 that
continues to stay in place l44 with a characteristic:

“current quantity of primary and secondary diesel—feed for the HDS-5 unit”

and token β10 that enters place l43 with a characteristic:

“current quantity of dry fuel gas product in HDS-5 unit”.

Z14 = 〈{l40, l46}, {l45, l46},
l45 l46

l40 f alse true
l46 W46,45 true

〉,

where
W46,45 = “there is a request for fuel gas product from FCCU”.

Token σ10 enters place l46 and unites with token ρ12 to obtain a characteristic:

“the current quantity of hydrotreated vacuum gas oil-feed for the FCCU”.
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In the next time-step, the token ρ12 splits into two tokens—the same token ρ12 that
continues to stay in place l46 with a characteristic:

“current quantity of hydrotreated vacuum gas oil—feed for the FCCU”

and token β11 that enters place l45 with a characteristic

“current quantity of dry fuel gas product in FCCU”.

Z15 = 〈{l41, l49}, {l47, l48, l49},
l47 l48 l49

l41 f alse f alse true
l49 W49,47 W49,48 true

〉,

where
W49,47 = “there is a request for LPG product from CGFU”;
W49,48 = “there is a request for fuel gas product from CGFU”.

Token α5 enters place l49 and unites with token ρ13 to obtain a characteristic:

“the current quantity of LPG feed in CGFU”.

In the next time-step, token ρ13 splits into three tokens—the same token ρ13 that
continues to stay in place l49 and tokens α6 and β9.

The token α6 obtains a characteristic:

“current quantity of LPG product from CGFU”

in place l47, token β9 obtains a characteristic:

“current quantity of fuel gas product from CGFU”

in place l48.

Z16 = 〈{l26, l47, l52}, {l51, l52},
l51 l52

l26 f alse true
l47 f alse true
l46 true true

〉.

Tokens α6 and γ2 enter place l52 and unite with token ρ14 to obtain a characteristic:

“the current quantity of LPG in LPG tank farm for export”.

In the next time-step, the token ρ42 splits into two tokens—the same token ρ14 and
token ε1 that enters place l51 with a characteristic:

“the current quantity of LPG sent for export”.

Z17 = 〈{l37, l43, l45, l48, l50, l55}, {l53, l54, l55},

l53 l54 l55
l37 f alse f alse true
l43 f alse f alse true
l45 f alse f alse true
l48 f alse f alse true
l50 f alse f alse true
l55 W55,53 W55,54 f alse

〉,

where
W55,53 = “there is a request for fuel gas product for the refinery power station”;
W55,54 = “there is a request for fuel gas product for the refinery process furnaces”.
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Tokens β8, β9, σ9, σ10, σ11 enter place l55 and unite with token ρ15 to obtain a characteristic:

“current quantity of fuel gas”.

The token ρ15 splits into three tokens—the same token ρ15 that continues to stay in
place l55 and tokens ε2 and ε3.

The token ε2 obtains a characteristic:

“current quantity of fuel gas product for the refinery power station”

in place l53, token ε3 obtains a characteristic:

“current quantity of fuel gas product for the refinery process furnaces”

in place l54.

4. Discussion

The production of fuel gas, LPG, propylene, and polypropylene in a refinery is a
complex parallel process involving many process units, which may deliver a variable
amount of these oil refining products depending on the crude slate processed, the activity
and selectivity of the catalyst employed, and the operating conditions in the process
units. This complex process was found to be capable of modeling using generalized
nets. The developed GN model can be used for the synchronization and optimization
of these processes with the aim of finding and implementing the economically optimal
mode of refinery operation. This is achieved by the presence of time parameters in GN
and by the presence of token characteristics, which enable the collection of the whole
information of the refinery processes; decisions about process optimization and, if necessary,
process reorganization, should be made on this basis. For example, if a process unit
is unexpectedly shut down due to an emergency, this would include how to organize
the process performance in such a case. However, this will be discussed in our next
article. Moreover, this model could enable the assessment of the efficiency of adding new
process units into the refinery processing scheme before their construction. This paper is a
continuation of a series of papers by the authors in which GN models of the production
of automotive gasoline [53] and diesel [54] in a refinery are described. Modeling the
processes of heavy oil products in a refinery using GN is the next study already submitted
for publication. Then, a higher-level GN model could be created that encompasses the
more detailed, already developed lower-level GN models. Based on the higher-level GN
model that encompasses the more detailed lower-level GN models, the decision making
process in petroleum refinery can be facilitated and optimized. The program realization of
the higher-level GN model will be available on the internet and, as such, its vulnerability
to stealthy attacks should be considered, as described in references [59,60].

5. Conclusions

The process of producing gaseous products in a petroleum refinery, such as fuel gas,
propane-butane, and propylene, which can be exported as a final finished product or
used as a raw material for polypropylene production, is a complex parallel process that
is difficult to model using linear and even dynamic programming. The difficulty comes
from the inability to reflect the logic of the cause and effect relationships therein which, as
stated above, are easily interpreted by transition condition predicates. A visual means of
representing the real processes are UML diagrams which, in reference [61], are shown to be
representable by GN. This paper presents a GN model for the production of fuel gas, LPG,
propylene, and polypropylene in a petroleum refinery, and a separate paper will discuss
the software implemented with GN and the results of the present model.
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