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Abstract: Elliptic boundary value problems (BVPs) are widely used in various scientific and engi-
neering disciplines that involve finding solutions to elliptic partial differential equations subject
to certain boundary conditions. This article introduces a novel approach for solving elliptic BVPs
using an artificial neural network (ANN)-based radial basis function (RBF) collocation method. In
this study, the backpropagation neural network is employed, enabling learning from training data
and enhancing accuracy. The training data consist of given boundary data from exact solutions
and the radial distances between exterior fictitious sources and boundary points, which are used to
construct RBFs, such as multiquadric and inverse multiquadric RBFs. The distinctive feature of this
approach is that it avoids the discretization of the governing equation of elliptic BVPs. Consequently,
the proposed ANN-based RBF collocation method offers simplicity in solving elliptic BVPs with
only given boundary data and RBFs. To validate the model, it is applied to solve two- and three-
dimensional elliptic BVPs. The results of the study highlight the effectiveness and efficiency of the
proposed method, demonstrating its capability to deliver accurate solutions with minimal data input
for solving elliptic BVPs while relying solely on given boundary data and RBFs.

Keywords: backpropagation neural network; radial basis function; boundary value problem;
multiquadric; collocation method

MSC: 35D35; 65D12

1. Introduction

Elliptic boundary value problems (BVPs) are a class of partial differential equations
(PDEs) that arise in various fields of mathematics and physics. Elliptic BVPs can be
expressed by mathematical equations that involve partial derivatives of an unknown
function with respect to multiple independent variables. They are widely used in various
scientific and engineering fields to describe a wide range of physical phenomena. The
solution of an elliptic boundary value problem is sought in a domain, and the boundary
conditions are imposed on the boundaries of this domain [1–4].

To solve elliptic BVPs, mesh-free methods have been widely used because of the
advantages of the mesh-free characteristics [5–8]. The radial basis function (RBF) collocation
method is a meshless method that uses RBF to approximate the solution of the PDE. It
involves placing collocation points in the domain where the solution is sought. The RBFs
are centered at these nodes and used to construct the approximation to the unknown
function [9,10]. The coefficients of the basis functions are determined by enforcing the
PDE at the collocation points, and the solution is obtained by solving a system of linear
equations [11,12].

Recently, Ku et al. introduced a novel approach involving simplified RBFs that
dispense the need for shape parameters. These RBFs were developed in conjunction
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with fictitious sources strategically positioned outside the computational domain [13]. The
use of fictitious sources in collocation methods has garnered substantial attention due to
their exceptional characteristics and their extensive application in the realm of solving
PDEs [14,15]. Given the considerable interest surrounding the accuracy of various RBFs
when combined with source points in collocation methods for PDE resolution, there exists a
strong impetus to explore this topic further. Consequently, this study has chosen to employ
the simplified RBFs, which offer a promising avenue for investigation.

The backpropagation neural network is a type of ANN that is widely used for super-
vised learning tasks [16–19]. The basic idea behind the backpropagation neural network is
to train the network to learn mapping between input data and their corresponding target
outputs [20–22]. The training process involves adjusting the weights and biases of the
network in order to minimize the difference between the predicted outputs and the actual
target outputs. This is carried out by using an optimization algorithm that iteratively
updates the weights and biases based on the errors between the predicted outputs and the
target outputs [23–27].

In this article, we propose a novel ANN-based RBF collocation method for solving
elliptic BVPs. We adopt the backpropagation neural network categorized into a type of
ANN that is used to learn from the training data and improve its accuracy. The training
data consider only the given boundary data from exact solutions and the radial distance
of the RBFs between the exterior fictitious sources and boundary points. The RBFs, such
as multiquadric (MQ) and inverse multiquadric (IMQ) RBFs, are adopted to construct
the neural network for the backpropagation neural network. Unlike the conventional
RBF collocation method, the discretization of the governing equation of elliptic BVPs
can be avoided. Section 2 outlines the mathematical formulation of the ANN-based RBF
collocation method. In Section 3, we delve into a comprehensive analysis of convergence
to assess the method’s resilience and efficacy. Section 4 presents a series of inquiries into
elliptic BVPs, aiming to illustrate the method’s robustness. Finally, Section 5 summarizes
the study’s conclusions.

2. ANN-based RBF Collocation Method

Artificial neural networks (ANNs) are mathematical models inspired by the biological
neural networks in the brain, aimed at handling complex information [16–19]. Comprising
numerous interconnected units, ANNs form a complex and non-linear system capable of
expressing intricate logic and non-linear relationships.

2.1. Formulation of the Problem

The first step in using ANN-based methods to solve PDEs is to formulate the problem
as an optimization task. In the context of solving PDEs, the goal is to find the parameters of
the neural network (weights and biases) that minimize the error between the network’s
predictions and the actual solutions of the PDE at different points in the domain. For
elliptic BVPs, the unknown function depends on multiple independent variables, and the
highest-order derivatives involved are of second order. The general form of an elliptic BVP
is typically represented as:

∇2u(x) + V · ∇u(x) + F(x)u(x) = f (x), (1)

u(x) = g(x) on ∂Ω, (2)

where∇ denotes the operator of gradient; x denotes the coordinate, described as x = (x, y, z);
u(x) is the variable of interest; V is the velocity, defined as V = (Vx, Vy, Vz); F(x) and f (x)
denote the provided function; g(x) denotes the boundary conditions; and Ω is the domain
with the boundary ∂Ω.
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2.2. Preparation of the Data

Data preparation is a crucial step when using the ANN-based RBF collocation method
for solving elliptic BVPs. It involves collecting and organizing the input and output pairs
that are used to train the neural network. In this study, we proposed an ANN-based RBF
collocation method for solving elliptic BVPs. A simplified version of RBFs was introduced
by Ku et al. by eliminating the shape parameter and utilizing fictitious sources located
outside the domain [13–15]. Three simplified RBFs, specifically MQ, IMQ, and Gaussian,
without the inclusion of the shape parameter, c, are introduced for the resolution of elliptic
BVPs, as follows.

Simplified MQ RBF : ϕ(ri) = ri, (3)

Simplified IMQ RBF : ϕ(ri) =
1
ri

, (4)

Simplified Gaussian RBF : ϕ(ri) = e−(
ri
R )

2

, (5)

where ϕ(ri) is the simplified RBF; ri denotes the radial distance; ri =
∣∣x− xs

i

∣∣, at the ith

source point; xs
i denotes the ith source point, defined as xs

i =
(
xs

i , ys
i , zs

i
)
; and R denotes

the parameter corresponding to the maximum radial distance. The range of subscript i
is defined as i = 1, 2, ..., and similarly, the range of superscript s is defined as s = 1, 2, ....
The corresponding boundary data value using analytical solutions or simulation data are
utilized as output. For each selected collocation point, the corresponding solution value ui
is evaluated using analytical solutions. The analytical solutions employed are expressed
in functional form and are referenced from the relevant literature sources. To calculate
the field solution within the computational domain for any selected collocation point, one
simply needs to provide the coordinates of that point within the domain and then compute
the solution values by substituting these coordinates into the corresponding analytical
solutions. These pairs, including the RBF ϕ(ri) and ui, form the input–output training data
for the ANN-based RBF collocation method.

Once the RBF interpolation functions are selected, these functions could be used to
generate training data for the ANN-based RBF collocation method. The RBFs ϕ(ri) are
constituted as training data for the ANN-based RBF. The simplification of the RBFs involves
removing the shape parameter from the original RBF formulation, as shown in Table 1. In
the simplified RBF collocation method, only the boundary and source points are positioned,
as illustrated in Figure 1a, for two-dimensional domains and for three-dimensional domains,
as shown in Figure 1b. Significantly, the employment of simplified RBFs in conjunction
with exterior fictitious sources substantially enhances accuracy, particularly when tackling
the Laplace equation. Moreover, these simplified RBFs offer the advantage of simplifying
the resolution of elliptic BVPs without the necessity of determining an optimal shape
parameter [13–15]. Consequently, these simplified RBFs are adopted in the present ANN-
based RBF collocation method.

Table 1. The simplified RBFs [14].

The RBF Type Original Simplified

Gaussian ϕ(ri) = e−(
ri
c )

2

ϕ(ri) = e−(
ri
R )

2

Multiquadric (MQ) ϕ(ri) =
√

ri
2 + c2 ϕ(ri) = ri

Inverse multiquadric (IMQ) ϕ(ri) =
1√

ri
2+c2 ϕ(ri) =

1
ri

Notation: c denotes shape parameter.
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Figure 1. Location of the collocation point for the ANN-based RBF collocation method. 

 

Figure 1. Location of the collocation point for the ANN-based RBF collocation method.

Comparing to the conventional RBF collocation method, the interior, center, and
boundary points are positioned such that the interior and source points coincide at the
same locations, as illustrated in Figure 2a for two-dimensional domains and Figure 2b
for three-dimensional domains. By comparing the traditional RBF collocation method
and the proposed ANN-based RBF collocation method, we aim to gain insights into their
strengths and limitations in solving elliptic BVPs efficiently and accurately. One of the
key advantages of this approach is its ability to avoid the discretization of the governing
equation of elliptic BVPs. As a result, this method offers simplicity in solving elliptic BVPs
with only given boundary data and RBFs.
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2.3. Construction of the Neural Network Architecture

The construction of the neural network architecture involves designing an appropriate
neural network architecture that can approximate the solution of the given PDE. This
typically involves defining the input layer to represent the spatial coordinates of the
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problem, hidden layers that perform computations, and an output layer that provides the
predicted solution.

To solve an elliptic BVP as Equation (1), the process begins with the generation of
weights. These weights are combined linearly with the inputs and the bias term. Assuming
a hidden layer with N neurons, the computation for each neuron j in the hidden layer can
be described as follows:

Hj =
p

∑
i=1

[wij ϕ(ri)] + bj, (6)

where Hj denotes the weighted sum at neuron j in the hidden layer; wij denotes the weight
from the input unit ϕ(ri) from the input layer to neuron j in the hidden layer; ϕ(ri) denotes
the RBF which is the input value; bj denotes the bias term for neuron j in the hidden layer;
and p denotes the total number of inputs from the input layer. This weighted sum serves as
the input to the activation function for the neuron. The output of the activation function
represents the neuron’s final activation value. The weighted sum is the result of combining
Inputs with their respective weights and biases for a single neuron, while the hidden layer
consists of multiple neurons, each with its own weighted sum calculation and activation.

Subsequently, the combination is utilized to compute the hidden layer, as outlined in
Equation (6), in the above manner. After inputting the activations from the first hidden
layer into a specific neuron j in the subsequent hidden layers of a neural network, the data
undergo processing to generate the output layer described as follows:

Hij =
q

∑
j=1

p

∑
i=1

vij f (Hj) + bij, (7)

where Hij denotes the weighted sum at neuron i in the jth hidden layer; vij denotes the
weight associated with the activation function from the hidden layer to neuron i in the jth

hidden layer; bij denotes the bias term for neuron i in the jth hidden layer; q denotes the
number of neurons in each hidden layer; and f denotes the activation function described as
follows

f (Hj) =
eHj − e−Hj

eHj + e−Hj
. (8)

Activation functions are widely employed to facilitate diverse computations between
layers. Common activation functions include sigmoid or logistic, hyperbolic tangent (tanh),
rectified linear unit (ReLU), and Leaky ReLU [21]. In this study, the hyperbolic tangent
function (tanh) is chosen due to its demonstrated ability to yield superior results compared
to alternative activation functions.

The objective of this study is to acquire an approximate solution of elliptic BVP,
denoted by the following expression:

unet =
q

∑
j=1

mj f (Hij), (9)

where unet denotes the approximate solution and mj denotes the weights of the output
layers. To regulate the accuracy of the approximate solution, a comparison is made between
the solution and the right-hand side of the given elliptic BVP as shown in Equation (1).
This comparison necessitates the partial differentiation of the unet model, as outlined in the
following manner:

∂kunet

∂xk =
q

∑
j=1

mj
∂k f (Hij)

∂xk , (10)

∂kunet

∂yk =
q

∑
j=1

mj
∂k f (Hij)

∂yk , (11)
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∂kunet

∂zk =
q

∑
j=1

mj
∂k f (Hij)

∂zk , (12)

where k = 1, 2.
Figure 3 illustrates the architecture of an ANN-based RBF neural network, with the

input feeding into the first neural network unit. The connections between nodes represent
weighted values for signal transmission. Signal processing is simulated in the neural
network by assigning a weight to each input before it enters the neural unit. These weights
collectively form the weight vector. Each node in the network corresponds to a specific
output function known as an activation function. The final output of the network is
influenced by its structural arrangement, connectivity, weights, and activation functions.
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Figure 3. Architecture of the proposed ANN-based RBF neural network.

As illustrated in Figure 3, the connections between each pair of nodes in the network
correspond to weighted values, which determine the signal transmission through the
connections. The neural network operates by simulating signal processing in this manner.
Prior to entering the neural unit, each input quantity is associated with a weight. Each node
in the network is associated with a specific output function, referred to as an activation
function. The network’s output is influenced by several factors, including the network’s
structure, connectivity, weights, and activation functions.

In this study, the backpropagation neural network is employed in the ANN-based RBF
neural network, enabling learning from training data and enhancing accuracy. The training
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data consist of given boundary data from exact solutions and the radial distances between
exterior fictitious sources and boundary points, which are used to construct RBFs, such as
MQ, IMQ, and Gaussian RBFs. The distinctive feature of this approach is that it avoids
the discretization of the governing equation of elliptic BVPs. Consequently, the proposed
ANN-based RBF collocation method offers simplicity in solving elliptic BVPs with only
given boundary data and RBFs.

2.4. Measurement the Loss Function

After the construction of the neural network, the loss function is then utilized to
measure the difference between the network’s predicted solution and the actual solution
of the PDE [28]. The mean-squared error loss is adopted for the training of the network’s
weights through error backpropagation as follows:

L =
1
M

M

∑
i=1

(unet,i − ui)
2, (13)

where M denotes the number of data points in the dataset and ui denotes the target solutions.
The above loss function captures the difference between the predicted solution and the
actual solution at each data point. In this study, the Levenberg–Marquardt algorithm is
used as an optimizer to minimize the loss function. The goal of training the neural network
using the Levenberg –Marquardt algorithm is to minimize this loss function across the
entire dataset. By updating the network’s weights and biases iteratively, the algorithm aims
to find the combination of parameters that leads to the lowest possible value of the loss
function. This iterative process precisely adjusts the network’s parameters, resulting in
predictions that exhibit a significantly improved alignment with the true solutions of the
elliptic BVPs.

2.5. Training Process

During each iteration, it updates the weights and biases to reduce the error. The
update rule for the k-th iteration is as follows:

∆w = −(J + λk H)
−1∇Lk, (14)

where w denotes the weights; J denotes the Jacobian matrix, representing the gradients of
the predicted outputs with respect to the weights and biases; H denotes the Hessian matrix,
which accounts for the curvature of the loss function; λ denotes the damping parameter,
which balances between the Levenberg and Marquardt steps; and∇Lk denotes the gradient
of the loss function at the kth iteration.

The Levenberg–Marquardt algorithm combines gradient information with the Hes-
sian matrix to update the network’s parameters. It dynamically adjusts the update step
size using a damping parameter enabling the algorithm to balance convergence speed
and stability during the optimization process. This regularization term ensures that the
optimization remains stable and avoids overshooting the optimal solution.

Based on the loss function, it serves as the guiding metric for the Levenberg–Marquardt
algorithm to iteratively adjust the neural network’s parameters in a way that minimizes
the discrepancy between the predicted and actual solutions of the elliptic BVPs. This
optimization process leads to a neural network that approximates the elliptic BVPs solution
with greater accuracy. The damping parameter helps control the step size of updates.
A larger value of the damping parameter may ensure stability, while smaller values of
the damping parameter aid in faster convergence. The algorithm iteratively updates the
weights and biases using the Levenberg–Marquardt formula and recalculates the loss. The
process continues until a stopping criterion is met, such as reaching a certain number of
iterations or achieving a sufficiently small change in the error.
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2.6. Prediction

After convergence, the neural network’s weights and biases represent the approximate
solution to the elliptic BVPs that minimizes the error between the predicted and actual
solutions. The Levenberg–Marquardt algorithm, when combined with neural networks,
facilitates solving elliptic BVPs by iteratively adjusting the network’s parameters to mini-
mize the error between the network’s predictions and the actual solutions of the elliptic
BVPs. This optimization process enables the network to learn and approximate the complex
relationships within the elliptic BVPs, leading to an accurate solution representation.

After training, the trained network is used to predict solutions at any point within
the problem domain. Input the relevant values into the network, and it could provide an
approximation of u based on what it has learned.

2.7. Accuracy and Validation

To assess the effectiveness and precision of the proposed method, this study uti-
lizes the root-mean-square error (RMSE) and the maximum absolute error (MAE) as
evaluation metrics.

RMSE =

√√√√NT

∑
i=1
|uA(xi)− uN(xi)|2/NT , (15)

MAE = |uA(xi)− uN(xi)|, (16)

where NT is the number of points used for validation, uA(xi) is the analytical solution, and
uN(xi) is numerical solutions.

The merits of the presented ANN-based RBF collocation technique for the resolution
of elliptic BVPs encompass the notable attributes of domain flexibility and proficiency in
addressing high-dimensional challenges. Capitalizing on the intrinsic meshless nature, the
proposed methodology demonstrates its efficacy by obviating the reliance on predefined
grids. This characteristic renders it particularly well suited for intricate domains charac-
terized by irregularity and intricate geometries. Furthermore, the devised ANN-based
approach exhibits a commendable capability to effectively manage problems characterized
by a multitude of input dimensions.

Furthermore, a significant advantage lies in its capacity to perform robust interpolation
within the training data range and extend its capabilities through extrapolation beyond
the confines of the training data. This adaptability contributes to its versatility and wide-
ranging applicability. In essence, the utilization of meshless methods underpinned by
ANNs involves the training of neural network models to directly approximate solutions for
continuous problems, circumventing the reliance on grid-based discretization strategies.

3. Validation Example

To evaluate accuracy, comparative analysis of three distinct RBF collocation methods
for solving elliptic BVPs is conducted. The two-dimensional Laplace equation is expressed
as Equation (1), where A = B = f (x) = 0. The boundary of the computational domain is
specified as follows:

∂Ω = {(x, y)|x = ρ(θ) cos θ, y = ρ(θ) sin θ },
ρ(θ) = 0.4[esin(θ) sin4(4θ) + ecos(θ) cos4(4θ)

]
, 0 ≤ θ ≤ 2π

. (17)

The analytical solution [13] is adopted for boundary conditions as follows:

u(x, y) = cos(x) cosh(y) + sin(x)sinh(y). (18)

In this study, we employ the conventional and simplified RBFs coupled with the
MQ, IMQ, and Gaussian collocation methods to address the problem. In the conventional
RBF collocation method, source points are distributed throughout the domain, as shown
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in Figure 4a. The configuration of interior, source, and boundary points ensures that
the location of the interior points align perfectly with those of the source points. In the
conventional RBF approach, a combined total of 342 inner points, 238 source points, and
120 boundary points are incorporated.
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Alternatively, the ANN-based RBF collocation method adopts a different approach. We
only need to position the boundary and source points, as depicted in Figure 4b. The source
points are treated as fictitious centers distributed randomly throughout the exterior domain,
as illustrated in Figure 4b. The use of exterior source points is governed by following
parametric equations, allowing for greater flexibility and versatility in addressing a wide
range of practical problems. The positions of the exterior source points are determined
as follows:

∂Ωs =
{
(xs

j , ys
j )
∣∣∣xs

j = ηρs
j (θ

s
j ) cos θs

j , ys
j = ηρs

j (θ
s
j ) sin θs

j

}
, (19)

where η represents the dilation factor, and ρs
j and θs

j represents the radius and angle of

the source point, respectively, defined as ρs
j (θ

s
j ) = 2× [ 1/3

√
cos(10 θs

j ) +
√

2− sin2(10 θs
j )],

0 ≤ θs
j ≤ 2π. η is 7. A total of 238 source points and 120 boundary points are used in the

ANN-based RBF.
In the ANN-based RBF, the dataset division into training, testing, and validation

subsets in a proportion of 70% for training, 15% for testing, and 15% for validation. The
proposed ANN-based RBF architecture encompassed three hidden layers. The Levenberg–
Marquardt optimization technique was utilized for updating weight and bias values during
network training, owing to its efficacy. Notably, the Levenberg–Marquardt function is
recognized for its speed and minimal memory requirements compared to other algorithms.
During the training process, several parameters governed the optimization. Training
occurred over a maximum of 1000 epochs. The performance goal was set to 0, indicating
a desire for optimal performance. A threshold of six validation failures was set as the
maximum allowable value. The minimum acceptable performance gradient was established
at 10−7. The initial value of the damping parameter (mu) was initialized at 10−3. A decrease
factor of 0.1 and an increase factor of 10 were employed for updating mu. Finally, the upper
bound for mu was capped at 1010.
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The model’s performance was assessed using the mean-squared error as an evalua-
tion metric. The validation results indicate that the mean-squared error achieved by the
ANN-based RBF utilizing MQ, IMQ, and Gaussian functions was 10−9, 10−10, and 10−7,
respectively, by the 1000th epoch. The training data’s correlation coefficient remained
consistently at 1 for the training, validation, and testing datasets. This correlation coef-
ficient of 1 signifies a robust alignment between the exact solution and the predictions
produced by the proposed model. This strong correlation is visually demonstrated in
Figure 5. These findings collectively confirm the effectiveness of the proposed ANN-based
RBF in accurately addressing the Laplace equation within a two-dimensional context.
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To facilitate comparison, the RMSE and MAE metrics are employed to assess the
accuracy of the computed outcomes. Subsequently, a thorough analysis of accuracy among
different RBFs is conducted. The outcomes of this analysis are summarized in Table 2, which
contrasts the RMSE values attained through both conventional RBF and the proposed ANN-
based RBF approaches. As listed in Table 2, all variations of the ANN-based RBF method—
utilizing MQ, IMQ, and Gaussian RBFs in conjunction with exterior fictitious sources—yield
notably precise outcomes. Specifically, the proposed ANN-based RBF employing MQ, IMQ,
and Gaussian RBFs, while employing exterior source points, demonstrate commendable
accuracy, boasting RMSE values to the order of 10−6, 10−5, and 10−3, respectively.

The outcomes reveal that the ANN-based RBF collocation method with exterior fic-
titious sources can effectively address this two-dimensional Laplace problem with re-
markable accuracy, as depicted in Figure 6. Most importantly, the distinctive feature of
the proposed ANN-based RBF is that it avoids the discretization of the governing equa-
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tion. Consequently, the proposed ANN-based RBF collocation method offers simplicity in
solving elliptic BVPs with only given boundary data and RBFs.

Table 2. Comparative results for the validation example.

RMSE MAE
Conventional

RBF
ANN-Based

RBF
Conventional

RBF
ANN-Based

RBF

MQ 1.30 × 10–8

(c = 1.30)
8.21 × 10–6

(without c)
1.16 × 10–4

(c = 1.30)
1.52 × 10–4

(without c)

IMQ 1.81 × 10–8

(c = 1.25)
2.60 × 10–5

(without c)
1.89 × 10–4

(c = 1.25)
8.80 × 10–5

(without c)

Gaussian 1.53 × 10–7

(c = 0.40)
9.79 × 10–3

(without c)
5.32 × 10–4

(c = 0.40)
1.17 × 10–2

(without c)
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4. Application Examples
4.1. Example 1: Two-Dimensional Poisson Equation

The two-dimensional Poisson equation is expressed in Equation (1), in which
f (x) = −[x cos(y) + y sin(x)], and A = B = 0. The boundary is described as follows:

∂Ω = {(x, y)|x = ρ(θ) cos θ, y = ρ(θ) sin θ },
ρ(θ) = 0.4[esin(θ) sin2(3θ) + ecos(θ) cos2(3θ)

]
, 0 ≤ θ ≤ 2π

. (20)

The boundary condition is enforced by employing the analytical solution [29] as follows:

u(x, y) = x cos(y) + y sin(x). (21)

In this research, we apply both the ANN-based RBF and traditional RBF approaches
in conjunction with the MQ, IMQ, and Gaussian collocation techniques to tackle the issue
at hand. In the conventional RBF collocation method, source points are scattered across the
domain, as illustrated in Figure 7a. The organization of the source, interior, and boundary
points ensures that the positions of the interior points align precisely with those of the
source points. In this configuration, we employ a total of 120 boundary points, 120 source
points, and 120 interior points.
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On the other hand, the ANN-based RBF collocation method follows a distinct ap-
proach. Here, we focus solely on positioning the boundary and source points, as shown
in Figure 7b. The source points are distributed randomly in the exterior domain, as il-
lustrated in Figure 7b. The placement of these exterior source points is determined by
parametric equations, providing enhanced flexibility and adaptability for addressing a
wide array of real-world problems. The precise location of these exterior source points is
defined by Equation (19), resulting in a configuration consisting of 120 source points and
120 boundary points.

The dataset for the ANN-based RBF is partitioned into distinct subsets for training,
testing, and validation. These subsets are allocated in proportions of 70%, 15%, and 15%,
respectively. The ANN-based RBF architecture comprised three hidden layers. The training
process was facilitated by the Levenberg–Marquardt algorithm, and the evaluation of
model performance was executed through the calculation of the mean-squared error. The
results unveiled that the mean-squared error of validation performance reached 10−4 by the
91st epoch. Moreover, the correlation coefficients for the training, validation, and testing
datasets stood uniformly at 0.99. This remarkably high correlation coefficient underscores
a robust correspondence between the exact solution and the predictions of the proposed
model. Conclusively, these outcomes affirm the efficacy of the proposed ANN-based RBF
in effectively tackling the two-dimensional Poisson equation.

For the purpose of comparison, the RMSE and MAE metrics are employed to assess
the precision of the computed outcomes. Comparisons are detailed in Table 3, which
presents a contrast between the RMSE values obtained from conventional RBF and the
proposed ANN-based RBF. All variations of the ANN-based RBF approach, encompassing
MQ, IMQ, and Gaussian RBFs while employing exterior source points, yield outcomes
of notable accuracy. To elaborate further, the ANN-based RBF collocation method with
simplified MQ, IMQ, and Gaussian RBFs, when integrated with exterior fictitious sources,
offers precise results, characterized by RMSE values to the order of 10−5, 10−5, and 10−2,
respectively. These outcomes collectively underscore the efficacy of employing the ANN-
based RBF, complemented by exterior source points, in achieving accurate solutions for the
two-dimensional Poisson problem. This is visibly corroborated by the results illustrated in
Figure 8.
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Table 3. Results for the two-dimensional Poisson equation.

RMSE MAE
Conventional

RBF ANN-Based RBF Conventional
RBF ANN-Based RBF

MQ 5.31 × 10–8

(c = 1.40)
2.83 × 10–5

(without c)
1.17 × 10–5

(c = 1.40)
6.28 × 10–5

(without c)

IMQ 4.50 × 10–8

(c = 2.10)
5.21 × 10–5

(without c)
7.93 × 10–6

(c = 2.10)
8.80 × 10–5

(without c)

Gaussian 3.35 × 10–8

(c = 0.40)
4.28 × 10–2

(without c)
3.92 × 10–5

(c = 0.40)
2.66 × 10–1

(without c)
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4.2. Example 2: Two-Dimensional Modified Helmholtz Equation

The two-dimensional modified Helmholtz equation is utilized as Equation (1), where
A = f (x) = 0, B = −λ2, and λ2 = 2. The object boundary is defined as:

∂Ω = {(x, y)|x = ρ(θ) cos θ, y = ρ(θ) sin θ },

ρ(θ) =

√
cos(2θ)

√
1.1− sin2(2θ), 0 ≤ θ ≤ 2π

. (22)

The boundary data are provided adopting the following analytical solution [29]:

u(x, y) = e
λ(x+30.5y)

2 . (23)

In this investigation, we deploy both the ANN-based RBF and conventional RBFs,
alongside the MQ, IMQ and Gaussian collocation methods, to tackle the problem at hand.
In the conventional RBF collocation method, source points are distributed throughout the
domain, as illustrated in Figure 9a. The arrangement encompasses interior, source, and
boundary points, with the positions of interior points aligning precisely with those of the
fictitious sources. A distribution includes 180 boundary points, 120 interior points, and
249 source points.

In contrast, the ANN-based RBF collocation method takes a distinct approach. Here,
we focus on positioning the boundary and source points, as illustrated in Figure 9b. These
source points are treated as fictitious centers, deliberately scattered in a random pattern
across the exterior domain, as shown in Figure 9b. This approach leverages parametric
equations, enhancing the method’s adaptability and flexibility to tackle a broad spectrum
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of real-world problems. The specific location of these exterior source points is expressed by
Equation (19). In total, there are 249 source points and 180 boundary points.
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Within the framework of the ANN-based RBF approach, we partitioned our dataset
into three subsets: training, testing, and verification, distributing them in a proportion of
70%, 15%, and 15%, respectively. Our proposed ANN-based RBF architecture incorporated
three hidden layers to capture complex relationships within the data. The training process
was executed using the Levenberg–Marquardt optimization algorithm, a powerful tool for
enhancing neural network performance. Our model’s effectiveness was assessed through
the mean-squared error, a metric that quantifies the accuracy of our predictions. The results
obtained show that the validation performance of mean-squared error is 10−12 at epoch
1000. The training data consistently yielded a correlation coefficient of 1 for the training,
validation, and testing datasets, underscoring the strong alignment between the proposed
model’s predictions and the exact solutions. These results affirm the effectiveness of our
ANN-based RBF approach in effectively tackling the two-dimensional Laplace equation.

To evaluate the accuracy of our computed results, we employed two key metrics,
namely the RMSE and the MAE. A thorough comparison was conducted between three
RBF variants: the conventional RBF and our proposed ANN-based RBF utilizing the MQ,
IMQ, and Gaussian RBFs, in conjunction with exterior fictitious sources. The RMSE results
are detailed in Table 4, highlighting the noteworthy accuracy achieved by our ANN-based
RBF collocation method across all RBF types. Specifically, the simplified MQ, IMQ, and
Gaussian RBFs using the exterior source points demonstrated their ability to yield precise
outcomes, with RMSE values to the order of 10−5, 10−5, and 10−2, respectively. These
findings underscore the effectiveness of our ANN-based RBF approach, particularly when
coupled with exterior fictitious sources, in delivering high-precision solutions for the
two-dimensional Helmholtz problem, as illustrated in Figure 10.
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Table 4. Results for the two-dimensional modified Helmholtz equation.

RMSE MAE
Conventional

RBF
ANN-Based

RBF
Conventional

RBF
ANN-Based

RBF

MQ 1.48 × 10–4

(c = 0.60)
1.93 × 10–3

(without c)
4.50 × 10–3

(c = 0.60)
1.90 × 10–3

(without c)

IMQ 1.48 × 10–4

(c = 0.70)
6.06 × 10–4

(without c)
4.38 × 10–3

(c = 0.70)
2.05 × 10–3

(without c)

Gaussian 1.48 × 10–4

(c = 3.80)
3.50 × 10–1

(without c)
4.26 × 10–3

(c = 3.80)
4.26 × 10–3

(without c)
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4.3. Example 3: Three-Dimensional Laplace Problem

The domain for the three-dimensional Laplace problem is characterized by a com-
plex and irregular boundary, as depicted in Figure 11. Within this intricate domain,
the three-dimensional elliptic BVPs is mathematically described by Equation (1), where
Ax = Ay = Az = B = f (x, y, z) = 0. The spherical parametric equation is denoted
as follows:

∂Ω = {(x, y, z)|x = ρ(θ) cos θ, y = ρ(θ) sin φ sin θ, z = ρ(θ) cos φ sin θ },

ρ(θ) =

[
cos(4θ) +

√
4 + sin2(4 θ

)]1/4
.

(24)

For this three-dimensional problem, the Dirichlet boundary conditions are enforced
by applying the following analytical solution [14]

u(x, y, z) =
1√

x2 + y2 + z2
. (25)

Two different RBFs coupled with the MQ, IMQ, and Gaussian collocation methods are
employed to address the problem at hand. In the conventional RBF collocation method,
source points are uniformly distributed within the domain. The arrangement of the interior,
source, and boundary points is such that the positions of the interior points perfectly
align with those of the source points. In this configuration, a total of 900 source points,
576 interior points, and 325 boundary points are strategically positioned.
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Alternatively, the ANN-based RBF collocation method adopts a different approach.
We only need to position the boundary and source points. The source points are treated as
fictitious centers dispersed randomly throughout the exterior domain. The use of exterior
fictitious sources is governed by parametric equations, allowing for greater flexibility and
versatility in addressing a wide range of practical problems.

The three-dimensional fictitious boundary is denoted as follows:
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{
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where ρs
j (θ

s
j ) = η ×

{
[ 1

8 sin(9 θs
j ) sin(10 φs

j ) + 0.5]
}

, 0 ≤ θs
j ≤ 2π, and φs

j denotes the
azimuth angle of the source points. η is 5. A total of 900 source points and a total of
325 boundary points are used in the ANN-based RBF.

In the ANN-based RBF approach, the dataset was partitioned into distinct training,
testing, and validation subsets, distributed in a ratio of 70% for training, 15% for testing, and
15% for validation. The proposed ANN-based RBF architecture comprised three hidden
layers. The training process leveraged the Levenberg–Marquardt function, and the model’s
performance evaluation was carried out using the mean-squared error. The outcomes reveal
that by the 118th epoch, the validation performance, as assessed through the mean-squared
error, reached an impressively low value of 10−18. Furthermore, the correlation coefficients
for the training, validation, and testing datasets consistently yielded a value of 1. This
exceptional correlation coefficient underscores the robust alignment between the exact
solution and the predictions rendered by the proposed model. The results firmly establish
the capacity of the proposed ANN-based RBF to effectively address the three-dimensional
Laplace equation, emphasizing its proficiency and accuracy.

To facilitate comparative analysis, the RMSE and MAE metrics are employed to
rigorously assess the precision of the computed outcomes. Subsequently, an in-depth
evaluation of accuracy across three distinct RBFs ensues. The outcomes of this comparison
are succinctly summarized in Table 5, presenting the RMSE and MAE values derived from
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conventional RBF and the proposed ANN-based RBF collocation method. Table 5 reveals
that all variations of the ANN-based RBF collocation method, incorporating MQ, IMQ,
and Gaussian RBFs while adopting exterior source points, yield commendably accurate
outcomes. Specifically, the ANN-based RBF collocation method, when bolstered by exterior
source points, yield highly accurate results, characterized by RMSE values of 10−7, 10−6,
and 10−5, respectively.

Table 5. Results for the three-dimensional Laplace equation.

RMSE MAE
Conventional

RBF
ANN-Based RBF

Conventional
RBF

ANN-Based RBF

MQ 1.91 × 10–9

(c = 1)
8.46 × 10–7

(without c)
2.17 × 10–8

(c = 1)
1.40 × 10–7

(without c)

IMQ 2.32 × 10–8

(c = 1.30)
6.11 × 10–6

(without c)
5.32 × 10–7

(c = 1.30)
8.45 × 10–7

(without c)

Gaussian
4.00 × 10–9

(c = 6.70)
5.24 × 10–5

(without c)
1.46 × 10–8

(c = 6.70)
2.33 × 10–4

(without c)

The outcomes also serve to illustrate that the aforementioned simplified RBFs, aug-
mented by exterior fictitious sources, are adeptly suited for resolving the intricacies of
this three-dimensional Laplace problem with exceptional precision, as shown in Figure 12.
Notably, the proposed ANN-based RBF collocation method’s characteristic lies in its ability
to sidestep the discretization of the governing equation. This distinctive attribute under-
scores the inherent simplicity of the proposed ANN-based RBF collocation methodology,
which effectively addresses elliptic BVPs through the utilization of provided boundary
data and RBFs.
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5. Conclusions

A novel approach for solving elliptic boundary value problems using an artificial-
neural-network-based radial basis function collocation method is presented. The backprop-
agation neural network is employed, enabling learning from training data and enhancing
accuracy. The principles of the proposed approach are thoroughly discussed, highlighting
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its conceptual foundations. Notable discoveries resulting from this study are summarized
as follows.

1. Discovering an appropriate shape parameter in RBFs for solving BVPs has consistently
posed significant challenges, often requiring arduous efforts. In this investigation, we
introduce an innovative approach—an ANN-based RBF collocation method that elimi-
nates the need to explicitly determine the shape parameter. The proposed ANN-based
RBFs offer distinct benefits, including uncomplicated mathematical formulations,
enhanced accuracy, and straightforward implementation.

2. Within the framework of the proposed ANN-based RBF collocation method, the
training dataset comprises provided boundary data derived from accurate solutions
and the radial distances spanning from exterior fictitious sources to boundary points.
These distances play a pivotal role in constructing RBFs, such as multiquadric and
inverse multiquadric RBFs. A distinctive advantage of the proposed ANN-based
RBFs is its deliberate avoidance of discretizing the governing equation. This unique
approach results in the proposed ANN-based RBF collocation method offering an
uncomplicated path to addressing elliptic BVPs, requiring solely the input of boundary
data and the chosen RBFs.

3. The validation outcomes the proposed ANN-based RBF collocation method exemplify
the remarkable performance of our approach across three simplified RBFs. Particu-
larly noteworthy is its proficiency in solving Laplace-type equations across both two
and three dimensions. Results demonstrate the effectiveness and efficiency of our
proposed method, illustrating its capacity to yield precise solutions with minimal data
input for addressing elliptic BVPs. Notably, the method hinges exclusively on given
boundary data and the chosen RBFs. Further investigations are recommended to delve
into the method’s characteristics when employed to solve various types of partial
differential equations. Such studies would enable a comprehensive understanding of
the approach’s adaptability and versatility across different problem domains.

Author Contributions: Conceptualization, editing, and supervision, C.-Y.K.; methodology, investiga-
tion, and writing the original draft, C.-Y.L. All authors have read and agreed to the published version
of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Research data are available on request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Shirvany, Y.; Hayati, M.; Moradian, R. Multilayer perceptron neural networks with novel unsupervised training method for

numerical solution of the partial differential equations. Appl. Soft Comput. 2009, 9, 20–29. [CrossRef]
2. Hummel, F. Boundary value problems of elliptic and parabolic type with boundary data of negative regularity. J. Evol. Equ. 2021,

21, 1945–2007. [CrossRef]
3. Tabouche, N.; Berhail, A.; Matar, M.M.; Alzabut, J.; Selvam, A.G.M.; Vignesh, D. Existence and stability analysis of solution for

Mathieu fractional differential equations with applications on some physical phenomena. Iran. J. Sci. Technol. Trans. A Sci. 2021,
45, 973–982. [CrossRef]

4. Hoffmann, H.; Wald, A.; Nguyen, T.T.N. Parameter identification for elliptic boundary value problems: An abstract framework
and applications. Inverse Probl. 2022, 38, 075005. [CrossRef]

5. Dehghan, M.; Haghjoo-Saniji, M. The local radial point interpolation meshless method for solving Maxwell equations. Eng.
Comput. 2017, 33, 897–918. [CrossRef]

6. Ku, C.Y.; Xiao, J.E.; Liu, C.Y.; Lin, D.G. On solving elliptic boundary value problems using a meshless method with radial
polynomials. Math. Comput. Simul. 2021, 185, 153–173. [CrossRef]

7. Liu, C.S.; Wang, F. A meshless method for solving the nonlinear inverse Cauchy problem of elliptic type equation in a doubly-
connected domain. Comput. Math. Appl. 2018, 76, 1837–1852. [CrossRef]

8. Liu, Y.; Wang, L.; Zhou, Y.; Yang, F. A stabilized collocation method based on the efficient gradient reproducing kernel
approximations for the boundary value problems. Eng. Anal. Bound. Elem. 2021, 132, 446–459. [CrossRef]

9. Dehghan, M.; Shirzadi, M. Numerical solution of stochastic elliptic partial differential equations using the meshless method of
radial basis functions. Eng. Anal. Bound. Elem. 2015, 50, 291–303. [CrossRef]

https://doi.org/10.1016/j.asoc.2008.02.003
https://doi.org/10.1007/s00028-020-00664-0
https://doi.org/10.1007/s40995-021-01076-6
https://doi.org/10.1088/1361-6420/ac6d02
https://doi.org/10.1007/s00366-017-0505-2
https://doi.org/10.1016/j.matcom.2020.12.012
https://doi.org/10.1016/j.camwa.2018.07.032
https://doi.org/10.1016/j.enganabound.2021.08.010
https://doi.org/10.1016/j.enganabound.2014.08.013


Mathematics 2023, 11, 3935 19 of 19

10. Jankowska, M.A.; Karageorghis, A. Variable shape parameter Kansa RBF method for the solution of nonlinear boundary value
problems. Eng. Anal. Bound. Elem. 2019, 103, 32–40. [CrossRef]

11. Gorbachenko, V.I.; Zhukov, M.V.E. Solving boundary value problems of mathematical physics using radial basis function
networks. Comput. Math. Math. Phys. 2017, 57, 145–155. [CrossRef]

12. Karageorghis, A. A time–efficient variable shape parameter Kansa–radial basis function method for the solution of nonlinear
boundary value problems. Appl. Math. Comput. 2022, 413, 126613. [CrossRef]

13. Ku, C.Y.; Liu, C.Y.; Xiao, J.E.; Hsu, S.M. Multiquadrics without the shape parameter for solving partial differential equations.
Symmetry 2020, 12, 1813. [CrossRef]

14. Liu, C.Y.; Ku, C.Y. A simplified radial basis function method with exterior fictitious sources for elliptic boundary value problems.
Mathematics 2022, 10, 1622. [CrossRef]

15. Ku, C.Y.; Liu, C.Y.; Xiao, J.E.; Hsu, S.M.; Yeih, W. A collocation method with space–time radial polynomials for inverse heat
conduction problems. Eng. Anal. Bound. Elem. 2021, 122, 117–131. [CrossRef]

16. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016.
17. Nourani, V.; Mousavi, S.; Dabrowska, D.; Sadikoglu, F. Conjunction of radial basis function interpolator and artificial intelligence

models for time-space modeling of contaminant transport in porous media. J. Hydrol. 2017, 548, 569–587. [CrossRef]
18. Nourani, V.; Babakhani, A. Integration of artificial neural networks with radial basis function interpolation in earthfill dam

seepage modeling. J. Comput. Civ. Eng. 2013, 27, 183–195. [CrossRef]
19. Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature 1986, 323, 533–536.

[CrossRef]
20. Palade, V.; Petrov, M.S.; Todorov, T.D. Neural network approach for solving nonlocal boundary value problems. Neural Comput.

Appl. 2020, 32, 14153–14171. [CrossRef]
21. Pratama, D.A.; Bakar, M.A.; Ismail, N.B. ANN-based methods for solving partial differential equations: A survey. Arab J. Basic

Appl. Sci. 2022, 29, 233–248. [CrossRef]
22. Ku, C.Y.; Liu, C.Y. Modeling of land subsidence using GIS-based artificial neural network in Yunlin County, Taiwan. Sci. Rep.

2023, 13, 4090. [CrossRef] [PubMed]
23. Mall, S.; Chakraverty, S. Single layer Chebyshev neural network model for solving elliptic partial differential equations. Neural

Process. Lett. 2017, 45, 825–840. [CrossRef]
24. Ruthotto, L.; Haber, E. Deep neural networks motivated by partial differential equations. J. Math. Imaging Vis. 2020, 62, 352–364.

[CrossRef]
25. Sun, Y.; Zhang, L.; Schaeffer, H. NeuPDE: Neural network based ordinary and partial differential equations for modeling

time-dependent data. In Mathematical and Scientific Machine Learning; PMLR: London, UK, 2020; pp. 352–372.
26. Dong, S.; Li, Z. Local extreme learning machines and domain decomposition for solving linear and nonlinear partial differential

equations. Comput. Methods Appl. Mech. Eng. 2021, 387, 114129. [CrossRef]
27. Guo, H.; Zhuang, X.; Chen, P.; Alajlan, N.; Rabczuk, T. Analysis of three-dimensional potential problems in non-homogeneous

media with physics-informed deep collocation method using material transfer learning and sensitivity analysis. Eng. Comput.
2022, 38, 5423–5444. [CrossRef]

28. De Jesús Rubio, J. Stability analysis of the modified Levenberg–Marquardt algorithm for the artificial neural network training.
IEEE Trans. Neural Netw. Learn. Syst. 2020, 32, 3510–3524. [CrossRef]

29. Liu, C.Y.; Ku, C.Y.; Hong, L.D.; Hsu, S.M. Infinitely smooth polyharmonic RBF collocation method for numerical solution of
elliptic PDEs. Mathematics 2021, 9, 1535. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.enganabound.2019.02.005
https://doi.org/10.1134/S0965542517010079
https://doi.org/10.1016/j.amc.2021.126613
https://doi.org/10.3390/sym12111813
https://doi.org/10.3390/math10101622
https://doi.org/10.1016/j.enganabound.2020.10.014
https://doi.org/10.1016/j.jhydrol.2017.03.036
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000200
https://doi.org/10.1038/323533a0
https://doi.org/10.1007/s00521-020-04810-0
https://doi.org/10.1080/25765299.2022.2104224
https://doi.org/10.1038/s41598-023-31390-5
https://www.ncbi.nlm.nih.gov/pubmed/36906692
https://doi.org/10.1007/s11063-016-9551-9
https://doi.org/10.1007/s10851-019-00903-1
https://doi.org/10.1016/j.cma.2021.114129
https://doi.org/10.1007/s00366-022-01633-6
https://doi.org/10.1109/TNNLS.2020.3015200
https://doi.org/10.3390/math9131535

	Introduction 
	ANN-based RBF Collocation Method 
	Formulation of the Problem 
	Preparation of the Data 
	Construction of the Neural Network Architecture 
	Measurement the Loss Function 
	Training Process 
	Prediction 
	Accuracy and Validation 

	Validation Example 
	Application Examples 
	Example 1: Two-Dimensional Poisson Equation 
	Example 2: Two-Dimensional Modified Helmholtz Equation 
	Example 3: Three-Dimensional Laplace Problem 

	Conclusions 
	References

