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Abstract: A modified viscosity-type self-adaptive iterative algorithm is presented in this study,
having a strong convergence theorem for estimating the common solution to the split generalized
equilibrium problem along with the split common null point problem with multiple output sets,
subject to some reasonable control sequence restrictions. The suggested algorithm and its immediate
consequences are also discussed. The effectiveness of the proposed algorithm is finally demonstrated
through analytical examples. The findings presented in this paper will help to consolidate, extend,
and improve upon a number of recent findings in the literature.

Keywords: split generalized equilibrium problem; split common null point problem; viscosity
approximation method; self-adaptive step size

MSC: 47H10; 90C25; 47]25

1. Introduction

Suppose (H1,(-,-)) and (Hy, (-,-)) are real Hilbert spaces and || - || represents the
induced norm on #; and H;. Let K(# ¢) C Hq and D(# ¢) C H; be closed and convex
sets. Let A* : Hy — H; be the adjoint of a bounded linear operator A : 11 — Hy. In 1994,
Censor and Elfving [1] came out with the subsequent split convex feasibility problem
(SCFP): find 3* € K such that

Az* € D. 1)

The SCFP (1) was developed for the purpose of simulating particular inverse problems.
It has been discovered that the SCEP (1) is helpful in the investigation of a variety of prob-
lems, including signal processing, radiation therapy treatment planning, phase retrievals,
reconstruction of medical images, and many others; see [2,3]. Since then, various succes-
sive approximation methods for solving the SCFP (1) have been established and studied;
see [4-16]. Some commonly investigated generalizations of the SCFP (1) are multiple set split
feasibility problems (MSSEPs) [9], split common fixed point problems (SCFPPs) [17], split
variational inequality problems (SVIPs) [8], split monotone variational inclusion problems
(SMVIPs) [18,19], and split common null point problems (SCNPPs) [20-22].

In 2020, the subsequent generalization of the split feasibility problem with multiple
output sets (SFPMOS) was proposed and investigated in real Hilbert spaces by Reich
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and Tuyen [23]: they assumed H, H;, (i =1,2,---,N) are N + 1 real Hilbert spaces and
Ai: " — Hj, (i=1,2,---,N) are N bounded linear operators. They also assumed that
K CHand D; C H;, (i=1,2,---,N) are non-empty, closed, and convex sets. Assuming

N
that £ N ( n A;71(Dy)) # @, they considered the following problem: find

3 €K and Aj3*eD;, Vi=1,2,---,N. 2)

Reich and Tuyen [23] came out with the following two successive techniques to solve
the SFPMOS (2): for any two elements xp, yo € K, assume that the sequences {xy } and {yy}
are induced by

N
X1 = P [x — v Y Af (I — Pp,) Aixy], 3)
iz
N
Yirr = Cch(yie) + (1= ) P [y — vk Z Af(I—Pp,) Aiy], 4)

i=1

where I : K — K is used for a strict contraction mapping. By employing Algorithms (3)
and (4), weak and strong convergence were analyzed.

Further, Reich and Tuyen [24] investigated the following split common null point
problem with multiple output sets (SCNPPMOS) in real Hilbert spaces:

N
e Mon( n AN (MT0)) #£©, ®)
1=
where M : H — 2", M; : H; — 2Mi,and (i = 1,2,---,N) are N + 1 multi-valued

monotone operators and .A; are the same as in (2). The authors estimated the solution of (5)
by employing the following scheme: for any x( € IC, let the sequence {x; } be induced by

N .
Yk = 421 Bix [k — T A (I — Ry A,
i=

Xky1 = Gk (xx) + (1= Ci) Yk

(6)

Under certain assumptions on the control parameters, they established strong conver-
gence results. On the other hand, the theory of equilibrium problems has seen tremendous
expansion in a variety of fields throughout the pure and practical sciences, and it has
been the subject of extensive research in published works. It offers a structure that may
be applied to a variety of problems pertaining to finance, economics, network analysis,
optimization, and other areas; see, for example, [25-29].

The following split generalized equilibrium problem (SGEP) was developed by Kazmi
and Rizvi [30] and investigated in response to a wide range of works in this area: find
3* € K such that

¥1(%3) +¢1(67,3) 20, V3K, @)
and t* = A3* € D such that
o (t,4) + o (t,£) >0, VteD, 8)

where ¢, 1 : K X K — Rand ¢, ¢2 : D x D — R are real-valued nonlinear bi-functions.
If o = @2 = 0, then the SGEP (7) and (8) becomes the subsequent generalized equilibrium
problem (GEP) suggested and investigated by Cianciaruso and Marino [31]: find 3* € K in
such a way that

v ) +9G53) >0, Vzek, )
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where p : CxK — Rand ¢ : D x D — R are real-valued nonlinear bi-functions.
The GEP (9) is generic in the sense that it encompasses minimization problems, Nash
equilibrium problems in non-cooperative games, variational inequality problems, fixed
point problems, etc.; see [32]. When ¢ = 0 in the GEP (9), the GEP (9) turns into the
subsequent classical equilibrium problem (EP): find 3* € K in such a way that

¥(3%,3) >0, VzeKk. (10)

The EP (10) was initially suggested and investigated by Blum and Oetlli [33] in 1994.
Recently, Mewomo et al. [34] introduced the split generalized equilibrium problem
with multiple output sets (SGEPMOS) as follows: find 3* € K in such a way that

3" € GEP(p,9) 1 (1 A7 (GEP(yi,90))) # ©, (1)

where GEP(1, ¢) is the solution set of the GEP (9). In order to examine null point problems
and equilibrium problems independently, a large number of iterative techniques exist. You
can find examples of these algorithms in a number of published works and on the web.
Many researchers have focused their efforts recently on developing common solutions to
the aforementioned problems; see, for example, [3,32].

Motivated by the work of [24,34] and the continuous study in this area, the following
problem is considered in this article: find 3* such that

5 e:=Mlon ( f%l AZY(M:10)) N GEP(, ¢) O ( %1 B, (GEP(y;,9)),  (12)
i= j=

where Bj tH — Hj, j =1,2,---,M are bounded linear operators. In other words,
find 3* such that 3* is a common solution of the SCNPPMOS (5) and SGEPMOS (11).
To solve the problem (12), a modified viscosity-type self-adaptive algorithm is proposed
and studied. The significance of the recommended approach is that it does not call for
any prior knowledge of the bounded linear operators’ norm. This attribute is essential for
algorithms that implement the operator norm since it is challenging to compute || A||. The
results of this study are more general than previous ones since they incorporate a number
of additional optimization problems as special cases. The method that this paper proposes
has the following characteristics, stated plainly and simply:

1.  The current literature extends the works of [24,34].

2. Our solution employs a straightforward self-adaptive step size that is determined
at each iteration by a straightforward calculation. As a result, our method does not
require prior estimation of the norm of a bounded linear operators. This characteristic
is crucial since it allows for the computation of the bounded linear operator’s norm,
which is typically exceedingly challenging to do and is necessary for algorithms whose
implementation relies on the operator norm.

2. Preliminaries

The following definitions and results are mentioned in this section, which are used in
the convergence analysis of the suggested scheme.

Assume that — and — stand for strong and weak convergence, respectively; wy, (xx), the set
of all weak cluster points of {x;} and N, is the set of natural numbers.

The mapping Px : H — K is referred to as a metric projection if each 3 € H assigns the
unique element Px3 € K and satisfies

ls—Pesll < l5—t] Vtek.
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Evidently, Px is nonexpansive. Moreover, Px x is possesses the subsequent fact:
(3— P, t—DPg3) <0, VzeH, tek. (13)

Definition 1. A mapping U : H — H is referred to as follows:
(i) A contraction, if AL € (0, 1) satisfying

[Us — Ut < LIz —tll, V3 teH. (14)

(ii)  Nonexpansive, if the inequality (14) holds with L = 1.
(iii)  ~y-cocoercive or <y-inverse strongly monotone (y-ism) if, for all 3,t € H, Iy > 0 satisfying

(6=t Us —Ut) > y|Us —Ut|?,
(iv) Firmly nonexpansive if, for any 3,t € H,
{Us —Ut,5— 1) = Uy — Ut?,
Moreover, Fix(U) represents the collection of all fixed points of I/, i.e.,
Fix(U):={3€H :U; =13}

Lemma 1 ([35]). Assume that H is a real Hilbert space. A mapping U : H — H is referred to as
firmly nonexpansive iff the compliment of U i.e., I — U is firmly nonexpansive.

The domain and the range of a multi-valued operator M : H — 2% are defined as
follows:

DOM(M) := {; € H: M(3) # @},
IMG(M) := {DOM(M) : 5 € M(3)}.
Definition 2 ([36]). Suppose that M : H — 2" is a multi-valued mapping. Then,
(i) The graph of M, denoted as G(M), can be defined by
GM) :={G,t) e HxH;te M)},
(i) M is called maximal monotone, if
(t—a,3—0b) >0, Vte M(3),ae M(b),

and the graph of no other monotone operator properly contains G(M). Evidently, a monotone
mapping M is maximal iff, for any pair, (3,t) € H x H,(t —a,3 —b) > 0 for every pair
(b,a) € G(M) implies that t € M(3).

Remark 1 ([36]). Assume that M : H — 2" is a multi-valued maximal monotone mapping. Then
RM . H — H defined as RM (3) = (I +rM)~1(3), for all 3 € H, is said to be the resolvent
operator of M, where r > 0 and 1"t is the identity operator. Note that RM is nonexpansive. It is
trivial that M~10 = Fix(RM), for all r > 0.

To accomplish our main results, we set out following significant lemmas.

Lemma 2 ([37]). Assume that M : D(M) C H — 2" is a multi-valued monotone mapping.
Then, subsequent assertions hold:

(i) Foreachj € R(I" + 1 M)NR(I" +1r,M), 11 > 17 >0,

Is = RE311 < 2/l = RY311-
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(ii)  For every number r > 0 and for every point 3, € R(I™ + rM), we have:
(I M)z — (I r Mt 53— 1) > [T+ r M)z — (I + r M2
(iii) If M~10 # @, then for each 3* € M~10and 3 € (I +r M),
IRMs =517 < lls —&" 117 — lls = RM31%

Lemma 3 ([38] (Demiclosedness principle)). Let IC # ¢) C H be a closed convex set. Let U
be a nonexpansive mapping from H. to itself with Fix(U) # @. Then, (I" — U) is demiclosed,
i.e., whenever {x;} is a sequence in H such that x, — 3 € H and (I" —U)x, — t implies
(I —U); =t

Lemma 4 ([39]). Forall 3,t € H and { € [0, 1], the subsequent hold:

@ 20,t) = Nall> + N> = 1l — tlI> = lls — tlI* = [l3l1* — [I1t]I*

@) fa+t* < [3l1* +2(t 5+ 1)

(i) [|1g5+ (1=t = Zlls1* + (1 = DIt = 21 = D)l — 1>

Lemma 5 ([35]). Let a,b,c € Hand {, B,y € [0, 1] satisfy L + B+ v = 1. Then,
1Ga+ Bo +e|l> = Zllall> + BlI6lI> + ¢l
— Blla— bl = Brllc—b[> = Zyllc —al*

Lemma 6 ([40]). Consider {si}, {{x} and {cy} to be sequences such that sy > 0 and s;. € R for
allk € N, gy € (0, 1) forall k € N, satisfying Y. {y = oo and ¢x € R forall k € N. Assume that
k=1

Skt < (1= C)sk + Qrer, V20,
if limsup cx, < 0 for every subsequence {s, } of {sx} comply with the condition:
S—r00

liminf(s —s5.) >0,
minf(sy, 41 — sg,) >

then lim s, = 0.
k—o0

To deal with the split generalized equilibrium problem, it is assumed that the real-
valued bi-functions ¢, ¢ : K x K — R satisfy the subsequent assumptions:

Assumption 1 ([41]). Let ¢ : K x I — R be a real-valued bi-function comply with the subsequent
presumptions:

(i) ¢(,3) >0, forally € K;
(ii)  For any pair 3,t € K,

¥t +9(ts) <O;
(iii) For any triplet 3,¢,s € K,

limsupy (ts + (1 )3, 1) < ¢(5, 1); (15)
e
(iv)  For any fixed point 3 € K, the map t — (3, t) is convex and lower semi-continuous.

Let ¢ : K x K — R such that:

(@) 9(3,3) > 0, forall 3 € K;

(b) For any fixed point t € K, the map 3 — (3, t) is upper semi-continuous;

(c) For any fixed point 3 € K, the map t — ¢(3,t) is convex and lower semi-continuous;
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(d) For any fixed point s > 0 and any 3 € K, there exists a non-empty closed, convex, and bounded
subset Q of Hq and 3 € KN Q such that

P o)+ (=532 S0, VIEK\Q 16)

The subsequent assertions are true given these presumptions:

Lemma 7 ([41]). Assume that the real-valued bi-functions 1, @1 : K x K — R satisfythe
conditions of Assumptions 1. Suppose that, for any s > 0 and any point 3 € H,, 3z € K such that

1,L11(z,t)—i—(pl(z,t)—l—%(t—z,z—g)20, Vte K.

Lemma 8 ([1]). Assume that the real-valued bi-functions 1, ¢1 : I x K — R satisfythe condi-

tions of Assumption 1. For any s > 0 and any point x € H,, define lepl’(m) : Hy — K in the
subsequent manner:

ngl’(m(g): {zGIC:lpl(z,t)—l—q)l(z,t)—i-1<f—Z,Z—3> 20, VtEIC}. (17)

Then, the subsequent assertions hold:

@i Q" is non-empty as a set and single-valued as a map;

i) QW is firmly nonexpansive, i.e.,
1" () = QI < (@) — Q0,5 -1 Vs te My

(i) Fix(QW#V) = GEP(y1, 91);
(iv) GEP(y1, ¢1) is closed and convex.

3. Main Result

This section presents the suggested algorithm and provides an analysis of its conver-
gence.

Let K(# ¢) and K;(# ¢) be closed convex subsets of real Hilbert spaces H and
Hi(j = 1,2,--- , M), respectively. Suppose that the linear operators B; : H — H; are
bounded. Let ¢,¢ : KX K — R, ¢, ¢; : K; x K; — R be bi-functions comply with
Assumption 1, and fori = 1,2,---, N, the linear operators A; : H — H; are bounded.
Let M : H — 2", M; : H; — 2"i be multi-valued maximal monotone operators and
h : H — H an L-contraction mapping. Suppose the solution set () is non-empty. Let
{2k}, {9k}, {mx} be sequences in (0, 1) and, for k > 0, {0;x} and {¢;x} are positive real
sequences foreachi=1,2,--- ,Nand j=1,2,---, M. Let {x; } be the sequences induced
by Algorithm 1:
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Algorithm 1: Modified viscosity-type self-adaptive iterative algorithm.

Step 0. Take any xp € H; assume
Ho=H, Ao=Bo =1, po =, Mo =M, ¢y = ¢;letk = 0.
Step 1. Compute

N
Vi =Y Big[xx — Tip A (I — RrAi;l{i)Aixk}/
i

Step 2. Compute
A H; (¥, )
ze =) vkl — ApBi (17 = Qs ) Biw],
j=0

Step 3. Compute
X1 = Crh(xg) + Opxp + prze, Yk > 1.

Update step sizes T;x and Ay as:

(17— Ry A2
| A (I — Ry ) A |2 + 6
, (¥,9)
(17— Q") By |12

1B (1% — Q) B2 + g

Tik = Pik

Ak = Xjk

Setk =k +1, go to Step 1.

Following hypotheses are necessary tools to analyze the convergence.

Assumption 2. (i) klim k=0, Y Cx=o00,and (i + O + px = 1, yy € [a1,a2] C (0, 1);
—co k=1

(i) mini—1,... N{infy{rix}} =7 > 0;maxi—g1,.. N{sup;{Oix}} = K1 < o0;
(iii) s; > O0forallj=1,2,--- ,M;maxj—q;1,.. m{sSup{@jx}} = Ko < o0;

N
(iv) {Bix} C [a3,a4] C (0, 1) suchthat ¥ B;y = 1foreachk >0, {p;x} C [as,a6] C (0, 2);
i=1

M
@) {7k} Claz,as] C (0, 1) such that '} yjx =1 foreachk >0, {xjx} C [ag,a10] C (0, 2).
j=1

Lemma 9. The sequences induced by Algorithm 1 are bounded.

Proof. Let 3 € (); we obtain A;3 = Ri?’/l"(Aig) foralli =0,1,---,N. The convexity of || - ||2
yields

N
Iy =31 = || X2 Bk [ — T Ar (17 = RYD) A ] — 5
i=0

N
<Y Bikxk — TR AT (T — Rf:,/kli)Aixk -3~ (18)
i
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From Lemma 2 (ii), we obtain
, M;
[k — T AF (17— Ry ) A — 31
, M;
=[xk — 3lI% + Tl AF (I — Ry A2
= 20 (A7 (17 = Ry ) A, 3 = 3)
. M;
= [k =311 + Gl AF (17 = Ri) A2
. M;
— 21 (1% — Ry ) Aixe, A — Aiz)
. M;
= [k = 311> + Gl AF (17 = Ri) A2
. M; : M;
- 21—1,k<(17—l’ - Rr,v,k )Aixk - (IHI - Rri,k )Aiél Aixk - A13>
, M;
<l = 3l1* + A (1 (1% - Rird ) Aixel* + 6
, M;
= 27| (17 = Ry ) Aixe |2
. M; 4
(17 = Ry ) Aixi |
= [lxk — 301> — pix(2 — pig) yn - (19)
[ A; (IH = Ry ) Aix || + 6i
From (18) and (19), we attain
N (1% — R A
v = 3117 < llxe =301 = Y Bikoi k(2 — pij) g7 - (20)
i=0 [ AF (I — Ry ) Aixie |1 + 0k
Since 3 € ), we have Bj;, = Qg;ﬁj'('oj))ng, foreachj=0,1,--- , M. Similarly,
; (¥j.9)) 4
M (1% — Qs Byl
Iz = 3l1% < llye — 317 = Y vijexin (2 — xix) " Ty .@
j=0 1B; (1" = Q5" ) Bjykl1> + @k
Taking (20) into consideration, we acquire
N (1% — Ry A
12 = 311> < llxe — 301> = Y Bikoie(2 — pix) -
= A7 (1% = Ri?) A2 + 6
; (¥j.9))
M 1% — QY By
=Y vikxik(2 = xjk) ) : (22)
= 1817 — Q) By + gy
It follows from Assumption 2 (ii)—(v) that
Iz = 3117 < [l — 31| (23)

Further, by applying (23), we obtain

k1 = 31l = 10k (xx) + Oxx + pxzi — 3l
< Cillh(xk) = 31l + Oxllxx — 3l + prcllz — 3l
< Cillh(xx) —h(3) | + Cllh(3) — 3l + Okllxx — 3l + pallxx — 3l
< GkLllxx = 3]l + (0 + p) lxx — 511 + G lln(3) — 3l
< (1= (1 = L)) lxx =31l + Ckllih(s) — 3l

< max{ka =3l W}
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Continuing the process, we acquire

| IIh(a)—zll}'

I =l < maxf s 51, T2

As a result, both the sequence {x; } and the sequences {yx} and {z;} are bounded. O

The operator P o h can be easily understood to be a contraction. Consequently,
a unique point 3* € ) is proven to exist by the Banach contraction theorem such that
3" = P o h(3*). The description of the projection implies

(h(3*)—3", x—3") <0, VxeQ. (24)

Lemma 10. Suppose that {x;} is a sequence induced by Algorithm 1, and let 3 € Q. Then,
under Assumption 1 and Assumption 2 (i)—(v), the subsequent inequality meets, for all k > 1,

o] om0
= ><” b =] -
3 (17 —RM ) A |4
|:; lkplk Plk) ||A;‘(I7"z ~ rilk )Al.ka2 " ei,k
3 1% — Q) By

Z ]k?(]k2 X]k) ] e
= 185 (1% — Q) B2 + g

Proof. Let 3 € (). Applying to Lemma 4 (ii) and (22), we achieve

k1 — 3117 = [1Gkh(xe) + S + pczie — 3117

< 10k (k= 3) + pez = ) 1* + 28k (i (xk) = 3, xe41 — 3)

< S llk = 3117 + pellzk = 3117 + 28kl xk — 3 [l zi — 51l
+ 20k (h(xk) — h(3), Xkr1 —3) + 20k (h(3) — 3, X1 —3)

< &llxic = 3117 + pllze — 3112 + G (11xe — 3112 + 1z — 5117
+ 20k L(xg — 3, X1 — 3) + 20k (3) — 3, Xkr1 —3)

= 0k (0 + ) 1k — 3117 + pac (e + 810 126 — 3117 + 28k L1k — 3l [ x641 — 3]
+20k(h(3) — 3, Xkr1—3)

<8 (1= i) llak = 3117 + (1 = Gi) 1z — 3117 + 28k L1k — 3 1641 = 3]
+20k(h(3) — 3, Xke1—3)

<01 =G llk — 3117 + (1 = G |1k — 317

Hu%—RM»AmW
HA?(IHZ - 7’i/k )-’41'xk||2 + 6k
1% — Q) By
— Y Yikxik(2 = xik) )
=0 185 (1% — Q) B2 + g

+ GeL (Il = 5117 + llxisa = 311%) + 22k (1(3) = 3, 241 — 5)

N
=Y Bikpix(2— pix)
i=0
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= (& + ) (1 = Zi) e — 311> + CeLllxe — 3117 — (1 = )

N (1M — RN A |4
{ Y Bikoik(2 = pix)
i=0

rlk

|| AF (1Hi — r,,k D Aixg]|2 + 6
1% — QL) By
1B:(1% — Q) B2 + gy
+ Ok L[| x1 — 3117 + 2k (R (3) — 3, Xks1 — 3)
= ((1 — 0+ @kL) Ik = 301> + Gk Lll i1 — 3117 + 22k (B (3) — 3, Xk41 — 3)
(% — Ry) Al |
| A; (17 — Rﬁi)v‘lixk||2 +0;k

M
+ Y viaxin(2— xjx)
=0

— k(1= k) [Zﬁl k0i k(2 — Pik)

; (i) 4
M (1% — Qs ") Byl
+ ) VX2 = Xjk) l,;, :
=0 HB]*( Qs 97) Byk||2+fl’]k
Consequently,
(1—20 + Gf + GL)
Ik — 312 < (k_ gkL) I = 5IF + s (h05) =5, 1 =)
_ (1= , (1% — R A |
(1*€L Eﬁzkpzk Pz,k) HA?(IHI,_ o’ )Axk”2+91k
M 1% — Q) By
+ Y vixik(2— xjk) T )
=0 187 (I = Q5" ) Biyill* + @)k
_ -2+ 4d) G 26k

L2 Sk o 2 B
(1 _ ékL) ”xk 3” + (1 — ékL) ||xk 3” ( é, L) <h( ) 3, Xk+1 3>
(1% — RM ) A ||
JAS (1% — R A2 + 03

. N

, (¥j.9))
M (17— Qs ])Bj]/k||4
+ 2 VikXGk(2 = Xj) W00 }
=0 IIB]*( = Qs )Biyll* + @k

20,(1—1L) 200(1-L) [ &M 1
< (1= i U [ b s ) 5 e )

(1% = R A |4
A (1% = R Aixi] |2 + 0
17— Q) By 4 }
1By (17 — Qs(;-pj'q)j))Bﬂ/kH2 + @k

- (1(1€ L [Zﬁzkpzk pi,k)

M
+ Y vixik(2 = xjk)
=0

where M := sup{||x; — 3||* : k > 1}. Hence, the proof is complete. [

The strong convergence for the suggested scheme is presented as follows:

Theorem 1. Assume that Assumption 1, Assumption 2 (i)—(v) are true and the sequence {x} is
induced by Algorithm 1. Then x; — % € Q, where £ = P o h(X%).
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Proof. Let £ = P o h(%), and thanks to Lemma 10, we acquire

s = #1P < (1= 2= Yy g O ML

g ) — % 3 - 9], 5)

Next, we prove that klim |xx — £|| — 0. By invoking Lemma 6, it remains to prove
— 00

that limsup(h(%) — %, x¢,+1 — £) < 0 for every subsequence {||xx, — %[/} of {|xx — %[}
5—00

complying with
liminf(|x;, 1 — 2] — [lx,, — ) > 0. (26)
Presume that the subsequence {||x;, — %[/} of {||x; — %[/} satisfies (26). Then,
timinf (41 — £ — [l x;, — )

= Hminf[({]xx 41 = 2] = [Jxk, = ) (i1 = 2+ [l = £1)]

> 0. (27)
Again, from Lemma 10, we have

(1% — R Ay ||
A (17— R Ay |12 + 0,
205 (1 - )) 2 2
<|1-F-F"—F—< qu*f — || Xk, — X
(1= e = 21— a =1

20k, (1=L) [ M 1 o
(1k— L) [z(i_i) Ta-D (h(%) — %, Xpi1 — R) |

By using (27) along with Assumption 2 (i), we have

m Z 181 ks i, kS pirks)

e, (1= k) Zﬁ D (2 pie) (1% — R Ay ||
a1\ iks 1kS ik
(1-&l) £ A7 (1% = R Aii |2 + i,
—0, as s — oo.
By Assumption 2 (iv), we have
i — MY A |14
It i ) A | 50, as s— o, (28)

[| A (I1Hi — Rm JAXk 17+ 6k,

foreachi=0,1,---,N. Given that the operator A; and the sequence {x;_} are bounded
and the resolvent operators R%é are nonexpansive, then it follows that

M,
Ly 1= maxizgs,.. v {sup, { |47 (1% = R A [P} } < oo
Thus, from Assumption 2 (ii), it follows that

. M;
(1% — R A || Jla M-R

ik DA |4
1A (1% — Ry Ay |12 + 6,5, L1+ K

(29)
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Combining (28) and (29), we deduce that

lim ||(1% — Ry Axy | =0, ¥i=0,1,--,N. (30)

S—00

By similar arguments, from Lemma 10, Assumption 2 (i),(iv), and (27), we obtain that

, (¥.9;)
1% — Q") By |14
1B (1% — Q) By |12 + g,

—0, as s— oo, (31)

forallj=0,1,---, M. As aresult of the boundedness of the operator B;, the nonexpansivity
of the resolvent operators Qg;/}j i)

that

, and the boundedness of the sequence {y;_}, it follows
i , s i AWPN e 2
Ly :=maxj,1,..., M4 supgq [|B; (1" = Qs/""") Bjyy | < 0.
Thus, from Assumption 2 (iii), it follows that

0% - QB 1t 1% - @ B

o =z (32)
181" — Q) By |12 + g, fatha
Combining (31) and (32), we deduce that
lim || (1% — QB =0, ¥j=01,---, M. (33)

Further, we obtain from the definition of the sequence {y; } that

Nk, — x|l =

7

1

N
, M;
Bik Tk Af (1M = Ry ) Aixy,
=0

Applying (30) together with Assumption 2 (iv), it follows from the last inequality that
lim {lyk, — x,[| = 0. (34)

Furthermore, from the definition of the sequence {z; } and (33) together with Assump-
tion 2 (v), we obtain

lim |z, =y, || = 0. (35)
It follows from (34) and (35) that
. B <1 B . B
Bim {lx, =z || < lim [, =y, || + lim flye, — 2]
=0.

Consequently, by applying Assumption 2 (i), we have

Bim [l g — x| < Jim G [ (xk,) = x|+ Him O [, — x| 4 lim [z, — x|

=0. (36)

To conclude the proof, we must demonstrate that wy (x) C Q. It is given that the
sequence {x;} is bounded; hence, wy (xy) is non-empty. Let us take an arbitrary element
¥ € wy(xk). Then, one can have a subsequence {xi } of {x;} satisfying x,, — % as
s — oo. From (34), yx, — X. Since the operators A;, i = 0,1,2,---, N, are linear and



Mathematics 2023, 11, 4175 13 of 18

bounded. It follows that A;x;, — A;X. Thus, with the help of Lemma 3 and (30), we can
. N

conclude that A;x € Fix(RM),i =0,1,---,N. Hence, A;x € N M:'0; that is, A;x € Q.
ir i=

Furthermore, from (34), y;, — . Since, j = 0,1,--- , M, B]- are bounded linear operators,

then Bjy,, — B;x. Invoking Lemma 3 and (33), we acquire B;x € Fix(Qg;Pj i )) for all
j =01,---,M; that is B]-JE € Q. In light of this, we obtain ¥ € (), which suggests
wyw(xg) € Q.

Because {xy, } is bounded, so we have a subsequence {x;_, } of {xy, } satisfying x;  — %
and

lim (h(%) — %, x,, — £) = limsup(h(%) — £, x;, — %).
I=o0 00

In the light of £ = P o (%), inequalities (24) and (36) yields

limsup {h(2) — £, ;.1 — ) = lim sup((£) ~ 2, xp41 — xi.)
S—00 S—r00

<0. (37)

With the help of Lemma 6 to (25) and using (37), along with the fact that klim =0,
— 00

we conclude that lim ||x; — £|| = 0, as required. O
k—o0

4. Consequences
Herein, some direct consequences of the proposed algorithm are listed.

If we set [*i = R%{‘ fori =0,1,---, N, then the following scheme will be obtained.
The following corollary can be derived by implementing Algorithm 2.

Algorithm 2: Modified viscosity-type self-adaptive iterative algorithm for the
SGEPMOS.
Step 0. Take any xo € H; assume Ho = H, By = I", Yo = ¢, po = ¢; letk = 0.
Step 1. Compute

M
2= Y Vik[xe — A (17 — Qs;p] " Bixy],
=0

Step 2. Compute
Xey1 = Qe (xe) + Oexpe + ez, V= 1.
Update step size A as:
(% = Q) By
Ajk = Xk «(TH; (¥j.9) 2 '
18 (1% — QP ) Biyy 2 + 9y

Setk =k +1, go to Step 1.
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Corollary 1. Suppose that Assumption 1 and Assumption 2 (i)—(iii)—(v) hold. Then, x — % €
N

GEP(y, ) N ( n A-Y(GEP(y;, 9:))) # @, where £ = P o h(%).
1=

If we set [ = Qﬁff ) forj=0,1,---, M, then we get the succeeding algorithm.

Algorithm 3: Modified viscosity-type self-adaptive iterative algorithm for the
SCNPPMOS.
Step 0. Take any xq € H; assume Hg = H, Ag = "', My = M;letk = 0.
Step 1. Compute

N
vk =Y Bix[xk — Tip A (1M — Rf,.’/]if)/lixk},
i=0

Step 2. Compute
Xp1 = Ceh(xg) + Sk + Py, Yk > 1.
Update step size T; x as:

, M,
{T ) (I — Ry ) A |12

ik = Pik — ,
”A;’F(IHI B Rri,k’>Aika2 + Gi,k

Setk =k+1, go to Step 1.

Corollary 2. Suppose that Assumptions 2 (i)—(ii)—(iv) hold. Let a sequence {xy} be induced by
N

Algorithm 3, then x;, — £ € M~10N ( n A7H(M10)) # @, where £ = P o h(%).
1=

5. Analytical Discussion
For better understanding of how our suggested approaches can be put into practice,
we provide some examples in this section.
. 3 1 1
For Al hm 1 leth(3) = 5 = — = ——— = 1-6 —
or Algorithm 1, we let h(3) 3 Ck a0k £ 1’ Ok T 141 i Ok — Cr,
fori,j = 0,1,2 and let si =s =051y =r =05, Bix = Yik = 3 forall i,j,k > 0.

5 .
Moreover, we consider p; = 1.25, 0;; = 1, Xik = 1.5, and @ik = ﬁj' foralli,j,k > 0.

Matlab Version R2021a on an Asus Core i5 8th Gen Laptop with an NVIDIA 1650 Geforce
GTX graphics card was utilized for all numerical calculations. We plot the error versus
iteration graphs using several initial points that were selected at random. We terminated
the computation if ||x;q — x;|| < 107°.

Example 1. (Finite-dimensional) Let H, H,;, Hj= R2 fori,j =0,1,2, with H = Hg. Define
M = Mg :R> = R?, My : R? = R? and M, : R? = R?, respectively, by

8 0 30 10
Mo(a)—{o 2}5, M1(3)—[0 6}5, ansz(z)—{o Jz,forallzeRz-

Furthermore, We define the mappings F = 1o : R — R2, ¢; : R> — R? and ¢, : R? — R?,
respectively, by P (3,t) = —332 + 5t + 2, Py (3,t) = —45% + 3t + 3 and P, (3, ) = —52 + 2t +
535t — 53t2, for each 3,t € R2. Furthermore, for i = 0,1,2, let the mappings ¢ = @g : R* x R? —
R?, ¢1 : R2 x R? — R? and ¢, : R? x R? — R?, be defined by ¢(3,t) = 5> — 3t, ¢1(3,t) =
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23(3 —t), and @(3,t) = 5 — 23, for each 3,t € R?. Let A;, Bj : R? — R? be defined by

Ai(3) = i—?— 1/ and B;(3) = j—f—il' respectively, for all i, j,3 € R?. Evidently, we have (0, 0) € Q.

We gather information such as the iterations and time of execution with the considered
terminating scale and randomly selected initial points for Example 1 to manifest the
efficiency of Algorithm 1 in Table 1.

Table 1. Numerical results of Algorithm 1 for Example 1.

Iterations Initial Points Error Tolerance CPU Time
41 (0.78,1.25) 1.0000 x 10~ 0.031250
36 (3.78, 1.25) 1.0000 x 10~ 0.015625
37 4,2) 1.0000 x 10~ 0.015625
72 (-1,-5) 1.0000 x 10~® 0.046875

In Figure 1, errors with regards to the number of iterations are plotted for randomly
chosen different initial points for Example 1.

¥ X ‘(o 78, 1.25)
% x,=(0.78, 1.

i Ii‘:*‘k* °

1020 .-""’m.:******* == X, = (3.78, 1.25) i

by otk * Xp=(1,5)
By ke
-ﬁﬁ‘% b8 T o x,=(4,2)
4 'ﬁ** *x * ok
107 E Sakx ke =
‘lqﬁg *y FK e e
Sagty ******
. q, 5 * ¥y *****
] . .qqu**** Kok he Tk g
&5 107¢= %“-uj**m oot =S
pS * ]
Rag Frs, .
Ay ¥4
8 K ***
10°F EE, *y 3
An *y
o ***
F <g Tk *
-10L a *y
10 % "EJ:‘,E : *%%
X
| I I | | | S
10 20 30 40 50 60 70

Number of Iterations

Figure 1. Error analysis of Algorithm 1 for Example 1.

Example 2. (Infinite dimensional) Let H, H,;, Hj= Ir fori,j =0,1,2, with H = Ho, where

lZ = {3 = (31/32/' Cc o dmy ')/ dm € R: Z |3m|2 < OO}

m=1
Define (-,-) : I x I = R by (3,t) = Zlgmtm, where 3 = {3m}o_1, t = {tm}5_4 € b,
m=

o 1/2
and induced norm || - ||z : I, — I by ||3]|2 = ( Y |3m2> forall 5 = {3m}S_, € . For
m=1

. . 3
i=0,1,2, define M; : I = I, by M; = M such that M(3) = ngor all 3 = {3m}o_q € b

Define the mappings A; : 1o — I by A;(3) = (%, %, %, cee, Z’Zm, o) forally = {3m}o_q € 1o,
. " 1 h t3 {
and Af <1y = by AT = (5050 g

for j = 0,1,2, define the mappings B; : I — I by Bj(3) = (%,%,%,u' ,%ﬂ,- -+ ) for all
Hh ot t
5= {omYp_y €byand B 11, = L by B (1) = (515253 ) forall = {tu}i_ €

) forall t = {t,,}57_; € lp. Furthermore,
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ly. We define the mappings j : I X Iy — Iy by ¢; = F such that ¢(5,t) = —32 + ¢ for all
5= {smlm—1, t = {tm}p—1 € Lo, and @; = 0 for each j = 0. It is easy to see that (0, 0) € Q.

Table 2 represents the iterations and execution time with randomly the chosen initial
points and terminating scale of Algorithm 1 for Example 2.

Table 2. Numerical results of Algorithm 1 for Example 2.

Iterations Initial Points Error Tolerance CPU Time
67 2,1,%,--) 1.0000 x 10° 0.046875
69 (4,-2,1,---) 1.0000 x 10~° 0.046875
68 (=3,2,-%,) 1.0000 x 10~° 0.046875
71 6,1,%,--) 1.0000 x 10~° 0.046875

In Figure 2, errors with regards to the number of iterations are plotted for randomly
chosen different initial points for Example 2.

10° 308 : ‘ E
*h s o Xg=(4,2,1,.) k

‘k*:iﬁiii % X, = (-3,3/5,-3/25,...)

K i‘ﬁiﬁgi ...... Xo = (2,1,1/2,...)
'&'g%ﬁg
: ey
104 kL i gi%ﬁ#ﬁgﬁ E
ngﬁ%
7
FEE ]
106k i i ‘ ‘ \ \ gi%‘ﬁ 4
10 20 30 40 50 60

Number of Iterations

Figure 2. Error analysis of Algorithm 1 for Example 2.

6. Conclusions

This paper introduced a novel modified viscosity-type self-adaptive scheme to ad-
dress SCNPPMOS and SGEPMOS. We rigorously proved strong convergence theorems,
discussed the practical implications, and provided analytical examples that highlight the
algorithm’s effectiveness. Our work not only contributes to the theoretical foundations of
split problems, but also offers valuable tools for practitioners in fields such as optimization,
signal processing, and machine learning. By consolidating and extending recent findings,
our research advances the state-of-the-art in solving complex split problems. Future re-
search may explore further enhancements and applications of this algorithm, pushing the
boundaries of knowledge and practical problem-solving in this domain.
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