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Abstract: This article considers a new improved balanced joint progressive type-II censoring scheme
based on two different populations, where the lifetime distributions of two populations follow
the generalized inverted exponential distribution with different shape parameters but a common
scale parameter. The maximum likelihood estimates of all unknown parameters are obtained and
their asymptotic confidence intervals are constructed by the observed Fisher information matrix.
Furthermore, the existence and uniqueness of solutions are proved. In the Bayesian framework, the
common scale parameter follows an independent Gamma prior and the different shape parameters
jointly follow a Beta-Gamma prior. Based on whether the order restriction is imposed on the shape
parameters, the Bayesian estimates of all parameters concerning the squared error loss function along
with the associated highest posterior density credible intervals are derived by using the importance
sampling technique. Then, we use Monte Carlo simulations to study the performance of the various
estimators and a real dataset is discussed to illustrate all of the estimation techniques. Finally, we
seek an optimum censoring scheme through different optimality criteria.

Keywords: generalized inverted exponential distribution; maximum likelihood estimation; optimum
censoring scheme; balanced joint progressive censoring; Bayesian estimation
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1. Introduction

In real lifetime testing, progressive censoring schemes have been widely mentioned
in the statistical literature during the past couple of decades. The purpose of introducing
different progressive censoring schemes is to accelerate the experimental process and reduce
the experimental cost because a pre-fixed number of functioning units can be removed
intentionally and ensure that a certain number of failures are observed during the process of
lifetime experiments to make it more efficient. For example, in the process of life testing, the
longer lifetime or accidental damage of equipment makes it difficult for the experimenter
to collect complete lifetime data, thus affecting the experiment results. Therefore, research
on progressive censoring schemes is applied to deal with these problems. In recent years,
a great quantity of work has been done on the different progressive censoring schemes;
relevant content can be found in Ref. [1].

Nearly all conventional censoring schemes, for instance, hybrid censoring, progressive
type-I censoring, progressive first-failure censoring, etc (see Refs. [2–4]), are based on a
single population. However, to carry out comparative lifetime testing on products, which
are from two or more populations under the same survival conditions, more censoring
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schemes are proposed. For example, in the joint progressive type-II censoring scheme
(JPC), the lifetime testing of two samples from different populations will be carried out
simultaneously and when a certain number of failures are observed, the experiment is
terminated. In the background of the JPC scheme, Ref. [5] first considered the exact statis-
tical inference for two exponential populations, while Ref. [6] extended similar research
contents to k-sample exponential populations. Ref. [7] discussed the interval estimation,
which was constructed by three methods, and the conditional maximum likelihood of two
Weibull distributions. Furthermore, Ref. [8] considered the classical and Bayesian inference
when the order restriction was imposed on the scale parameters. Ref. [9] employed the
EM algorithm to calculate the maximum likelihood estimates of all parameters and the
order restriction of the shape parameters were considered in the Bayesian inference. Here,
Ref. [10] computed the Bayesian estimates of unknown parameters under the generalized
entropy loss function and discussed the criteria for obtaining the optimal censoring scheme.

Recently, Ref. [11] proposed a new censoring scheme based on two samples from
exponential distributions, which is considered to be a balanced joint progressive censoring
scheme (B-JPC). Compared with the JPC scheme, the B-JPC scheme has more advantages.
For example, at each failure, a pre-fixed number of the functioning units will be removed
from the products of two populations simultaneously, which makes the analysis process
more flexible and the calculation more simple. In practice, under different stress levels,
we use the B-JPC scheme to accelerate the life testing of products. When it comes to
an acceptable sampling scheme, this scheme is employed to make acceptance decisions
for products from different batches. Hence, we can decide on diversified products in a
single experiment. According to the B-JPC scheme, Ref. [12] proposed a new criterion that
depends on the precise joint confidence region volume of parameters to find the optimum
censoring scheme, and Ref. [13] developed the Bayesian inference under the condition
that the order restriction is imposed on scale parameters and employed precision criteria
to obtain the optimum censoring scheme. Ref. [14] used the research content discussed
by Ref. [13] for flexible prior assumptions, and different design criteria, along with the
variable neighborhood search algorithm proposed in Ref. [15], are employed to obtain
the optimum censoring scheme. Ref. [16] studied the statistical inferences for the Lindley
distribution and the optimum censoring scheme is obtained by using the Bayesian and
classical design criteria.

Compared with the generalized inverse exponential distribution under the JPC scheme,
discussed in Ref. [17], we have a flexible censoring process and consider whether the scale
parameter is known in this article. Here, we suppose that the lifetimes of experimental units
from two different populations follow a two-parameter generalized inverse exponential
distribution with different shape parameters but the same scale parameter. Furthermore,
we discuss the Bayesian inference based on the order restriction between the two shape pa-
rameters as well as the likelihood estimation of all parameters. Under these circumstances,
suppose that the same scale parameter follows a Gamma prior, and the shape parameters
jointly follow an ordered Beta-Gamma distribution. Furthermore, we compare the different
censoring schemes under precision criteria to find the optimum censoring scheme.

In order to overcome these disadvantages, which contain the non-closed form or con-
stant hazard rates of some distributions, such as the gamma and exponential distribution,
the generalized inverted exponential distribution is proposed. According to Ref. [18],
some properties and characteristics of this distribution are provided. Based on the existing
research about the hazard rate function, the shape of the generalized inverted exponential
distribution is non-monotone unimodal and it is suitable to analyze the data from the
distribution of the non-monotone failure rate function.

The rest of this article is arranged as follows. We provide the notations and brief
introduction to the B-JPC scheme in Section 2. The maximum likelihood estimations and
coverage probabilities of model parameters are discussed in Section 3. Using the observed
Fisher information matrix, the asymptotic confidence intervals of all parameters are con-
structed. Furthermore, proof of the existence and uniqueness of maximum likelihood
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estimation is provided. The order restriction on the shape parameters, the highest posterior
density credible intervals, and the Bayesian estimates of all unknown parameters concern-
ing the importance sampling method are discussed in Section 4. Section 5 contains the
simulation study and analysis results for real datasets. Then, we obtain the optimum cen-
soring scheme through five precision criteria in Section 6. Finally, we draw the conclusions
of this article in Section 7.

2. Notations, Model Description and Assumption
2.1. Notations

CI : Confidence/credible interval
IP/NIP : Informative prior/non-informative prior
AV/AL : Average estimate/length
MSE : Mean squared error
CP : Coverage percentage
BG/OBG : Beta-Gamma/Ordered Beta-Gamma
BE : Bayesian estimate
CDF : Cumulative distribution function
GIED : Generalized inverted exponential distribution
PDF : Probability density function

SELF: Squared error loss function
MLE : Maximum likelihood estimator
i.i.d. : Independent and identically distributed
k : Total count of failures
HPD : Highest posterior density
k1 : Total count of failures from population A
CS : Censoring scheme

GA(α, λ) : PDF of Gamma distribution :
fGA(x; α, λ) = λα

Γ(α) xα−1e−λx, x > 0; α, λ > 0.
k2 : Total count of failures from population B
Beta(a, b) : PDF of Beta distribution :

fBeta(y; a, b) = Γ(a+b)
Γ(a)Γ(b)ya−1(1− y)b−1, 0 < y < 1; a, b > 0.

2.2. Model Description and Assumption

We introduce the B-JPC scheme as follows: suppose a random sample of size m units is
taken from population A, while another random sample of size n is drawn from population
B. Then, the two samples will be conducted in the lifetime experiment at the same time.
During the B-JPC process, suppose only k(k < min(m, n)) failures are observed in the life
testing experiment and the censoring scheme R = (R1, R2, · · · , Rk−1) are pre-fixed positive
integers satisfying R1 + R2 + · · ·+ Rk−1 + k− 1 < min(m, n). Here, we record the time
of the first failure as W1, which is from the sample of population B. At W1, (R1 + 1) units
are removed from the m units of population A at random and R1 units are removed from
population B, whose remaining surviving units are n − 1. Next, it is assumed that the
next failure belongs to population A and we record the failure time point as W2. At W2,
R2 units are removed randomly from the m − (R1 + 1) − 1 units of population A, and
(R2 + 1) experimental units are randomly chosen to drop from the remaining n− R1 − 1
surviving units of population B simultaneously. Furthermore, when the i-th failure occurs
(i = 1, 2, . . . , k− 1), we record the time of occurrence as Wi. Ri units are dropped randomly
from one sample where the i-th failure occurs and Ri + 1 units are dropped randomly
from another sample. The experiment is continued until the k-th (from population B or A)
failure occurs, and the whole remaining surviving units from both populations A and B
are removed at the k-th failure. The experimental process of the B-JPC scheme is shown in
Figures 1 and 2.
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In this life testing experiment, (Z1, Z2, . . . , Zk) represents a series of indicator variables.
Here, when i-th failure belongs to population A, Zi = 1. Otherwise, the i-th failure belongs to
the sample of population B. Hence, the data consist of (W, Z, R) based on the B-JPC scheme.

It is assumed that the lifetimes of size m experimental units from population A, here,
the random variables X1, X2, · · · , Xm, are independently and identically distributed across
GIED with the parameters λ and α1. Then, the probability density function f (x), the
corresponding cumulative distribution function F(x), and the survival function F̄(x) are
defined as

f (x; α1, λ) = α1λ
x2 e−

λ
x

(
1− e−

λ
x

)α1−1
, x > 0; λ, α1 > 0

F(x; α1, λ) = 1−
(

1− e−
λ
x

)α1
, x > 0; λ, α1

F̄(x; α1, λ) =
(

1− e−
λ
x

)α1
, x > 0; λ, α1 > 0,

 (1)

Population A

R1 + 1

W2

R2

• • • Wk

m−∑k−1
i=1 (Ri + 1)− 1

Population B
W1

R1 R2 + 1

• • •

n−∑k−1
i=1 (Ri + 1)

Figure 1. Schematic representation of the k-th failure occurring in population A.

Population A

R1 + 1

W2

R2

• • •

m−∑k−1
i=1 (Ri + 1)

Population B
W1

R1 R2 + 1

• • •

n−∑k−1
i=1 (Ri + 1)− 1

Wk

Figure 2. Schematic representation of the k-th failure occurring in population B.
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In the same way, suppose that the lifetimes of size n units from population B, Y1, Y2,
· · · , Ym are iid GIED with parameters λ and α2. The probability density function g(y) as
well as the corresponding cumulative distribution function G(y), and the survival function
Ḡ(y) are given by

g(y; α2, λ) = α2λ
y2 e−

λ
y

(
1− e−

λ
y

)α2−1
, y > 0; λ, α2 > 0

G(y; α2, λ) = 1−
(

1− e−
λ
y

)α2

, y > 0; λ, α2 > 0

Ḡ(y; α2, λ) =

(
1− e−

λ
y

)α2

, y > 0; λ, α2 > 0


(2)

where λ, α1, and α2 are the common scale parameter and different shape parameters, where
they are both positive. Figures 3 and 4 show the PDFs and CDFs for different α and fixed λ
of GIED. According to Figure 3, we find that the PDF of GIED is nonmonotone and when λ
is fixed, the more sharp the decreases and increases in PDF are with the bigger α. As for the
CDF of the distribution in Figure 4, a smaller α results in a lower rising rate.

0 1 2 3 4 5

0
.0

0
.6

1
.2

x

f(
x
)

α=0.3

α=0.4

α=0.8

α=1

Figure 3. Graph of the PDF of GIED for λ = 0.5.

0 1 2 3 4 5

0
.0

0
.4

0
.8

x

F
(x

)

α=0.3

α=0.4

α=0.8

α=1

Figure 4. Graph of the CDF of GIED for λ = 0.5.

3. Maximum Likelihood Estimation
3.1. Point Estimation

Based on the progressive censoring scheme R, let ω1, ω2, . . . , ωk be a B-JPC sample,
which is from population A with PDF f (.) and CDF F(.) and population B with PDF g(.)
and CDF G(.). Here, the following Algorithm 1 is applied to generate the B-JPC sample.
Under the B-JPC sample, the likelihood function L(α1, α2, λ|w, z, R) is given by
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L = c
k−1

∏
i=1

[{
f (wi)(Ḡ(wi))

Ri+1
(F̄(wi))

Ri
}zi
{

g(wi)(Ḡ(wi))
Ri (F̄(wi))

Ri+1
}1−zi

]
×
{

f (wk)(Ḡ(wk))
n−∑k−1

i=1 (Ri+1)
(F̄(wk))

m−∑k−1
i=1 (Ri+1)−1

}zk

×
{

g(wk)(F̄(wk))
m−∑k−1

i=1 (Ri+1)
(Ḡ(wk))

n−∑k−1
i=1 (Ri+1)−1

}(1−zk)

. (3)

here, c = ∏k
i=1

[(
n−∑i−1

j=1

(
Rj + 1

))
(1− zi) +

(
m−∑i−1

j=1

(
Rj + 1

))
zi

]
.

Algorithm 1: Generate the B-JPC sample from GIED.
Step 1: Given the initial values of k, m, n, R, λ, α1 and α2.

Step 2: Generate X1, · · · , Xm from GIED (λ, α1) and sort them as X(1), · · · , X(m).

Step 3: Generate Y1, · · · , Yn from GIED (λ, α2) and sort them as Y(1), · · · , Y(n).

Step 4: Calculate W1 = min(X(1), Y(1)), if X(1) ≤ Y(1), Z1 = 1, otherwise Z1 = 0.

Step 5: Calculate Wi = min(X(ηi)
, Y(ηi)

). Similarly, if X(ηi)
≤ Y(ηi)

, Zi = 1, otherwise

Zi = 0 (i = 2, 3, · · · , k), here ηi = i− 1 + ∑i−1
j=1 Rj.

Step 6: Here (W1, Z1), · · · , (Wk, Zk) are the B-JPC sample from GIED that we need.

In this case, the likelihood function of the unknown parameters (λ, α1, α2) with respect
to the observed data (w, z) is defined as

L(λ, α1, α2|w, z, R) = cαk1
1 αk2

2 λk
k

∏
i=1

1
ω2

i
e−

λ
ωi

×
k−1

∏
i=1

(
1− e−

λ
ωi

)α1Ri+α1−zi
(

1− e−
λ

ωk

)α1(m−∑k−1
i=1 (Ri+1))−zk

×
k−1

∏
i=1

(
1− e−

λ
ωi

)α2−1+zi+α2Ri
(

1− e−
λ

ωk

)α2(n−∑k−1
i=1 (Ri+1))+zk−1

. (4)

Here, k1 = ∑k
i=1 zi and A1(λ) = ∑k

i=1 zi ln
(

1− e−
λ

ωi

)
, k2 = k − k1 = ∑k

i=1(1− zi)

and A2(λ) = ∑k
i=1(1− zi) ln

(
1− e−

λ
ωi

)
.

Thus, ignoring the normalizing constant, the log-likelihood function is given by

l(λ, α1, α2|w, z, R) = k1 ln(α1) + k2 ln(α2)− 2
k

∑
i=1

ln(ωi)−
k

∑
i=1

λ

ωi
+ k ln(λ)

+
k−1

∑
i=1

(α1Ri + α1 − zi) ln
(

1− e−
λ

ωi

)

+

[
α1

(
m−

k−1

∑
i=1

(Ri + 1)

)
− zk

]
ln
(

1− e−
λ

ωk

)

+
k−1

∑
i=1

(α2 − 1 + zi + α2Ri) ln
(

1− e−
λ

ωi

)

+

[
α2

(
n−

k−1

∑
i=1

(Ri + 1)

)
+ zk − 1

]
ln
(

1− e−
λ

ωk

)
. (5)
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Then, the partial derivatives involving α1, α2, and λ are taken and equated to zero.
The calculation results are as follows:

∂l
∂λ

=
k
λ
−

k

∑
i=1

1
ωi

+
k−1

∑
i=1

(α1Ri + α1 − zi)
e−

λ
ωi 1

ωi

1− e−
λ

ωi

+

[
α1

(
m−

k−1

∑
i=1

(Ri + 1)

)
− zk

]
e−

λ
ωk 1

ωk

1− e−
λ

ωk

+
k−1

∑
i=1

(α2 − 1 + zi + α2Ri)
e−

λ
ωi 1

ωi

1− e−
λ

ωi

+

[
α2

(
n−

k−1

∑
i=1

(Ri + 1)

)
+ zk − 1

]
e−

λ
ωk 1

ωk

1− e−
λ

ωk

= 0, (6)

∂l
∂α1

=
k1

α1
+

k−1

∑
i=1

(Ri + 1) ln
(

1− e−
λ

ωi

)
+

(
m−

k−1

∑
i=1

(Ri + 1)

)
ln
(

1− e−
λ

ωk

)
= 0, (7)

∂l
∂α2

=
k2

α2
+

k−1

∑
i=1

(Ri + 1) ln
(

1− e−
λ

ωi

)
+

(
n−

k−1

∑
i=1

(Ri + 1)

)
ln
(

1− e−
λ

ωk

)
= 0. (8)

However, owing to the nonlinearity of the equations, it is hard to obtain the closed-
form solutions of the above equations; hence, the Newton–Raphson method is consid-
ered to compute the roots of equations. Here, we employ the Newton–Raphson method
to solve this problem and calculate the MLEs for unknown parameters. After solving
Equations (6)–(8), α̂1, α̂2, and λ are acquired.

Theorem 1. The uniqueness and existence of maximum likelihood estimation.
Let ξ1(λ) =

∂l
∂λ , ξ2(α1) =

∂l
∂α1

and ξ3(α2) =
∂l

∂α2
, which are defined in Equations (6)–(8).

The above functions attain unique MLEs at 0 < λ, α1, α2 < ∞ in which λ̂, α̂1 and α̂2 are the
solutions of ξ1(λ) = 0, ξ2(α1) = 0 and ξ3(α2) = 0 if k1 > 0 and k2 > 0, where k1 = ∑k

i=1 zi and
k2 = k− k1 = ∑k

i=1(1− zi).

Proof. From Equations (6)–(8)

limλ→0 ξ1(λ)→ +∞, limα1→0 ξ2(α1)→ +∞ and limα2→0 ξ3(α2)→ +∞;

limλ→∞ ξ1(λ) = −∑k
i=1

1
ωi

< 0, limα1→∞ ξ2(α1) < 0 and limα2→∞ ξ3(α2) < 0;

ξ ′1(λ) =
∂2l
∂λ2 < 0, ξ ′2(α1) =

∂2l
∂α2

1
< 0 and ξ ′3(α2) =

∂2l
∂α2

2
< 0.

Hence, ξ1(λ), ξ2(α1), and ξ3(α2) are continuous and monotonically decreasing func-
tions on (0, ∞), and they reduce from +∞ to a negative number. Therefore, we prove the
existence of MLEs of λ, α1, and α2 and show that they are unique solutions of the equation
ξ1(λ) = 0, ξ2(α1) = 0, and ξ3(α2) = 0 if k1 > 0 and k2 > 0.

3.2. Asymptotic Confidence Interval

Applying the asymptotic theory, the asymptotic confidence intervals for λ, α1, and α2
are obtained from the variance–covariance matrix, which is also regarded as the inverse
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Fisher information matrix. Supposing that θ = (λ, α1, α2), the Fisher information matrix of
the parameters θ is expressed as follows:

I(θ) = −E


∂2l(λ,α1,α2)

∂λ2
∂2l(λ,α1,α2)

∂λ∂α1

∂2l(λ,α1,α2)
∂λ∂α2

∂2l(λ,α1,α2)
∂α1∂λ

∂2l(λ,α1,α2)

∂α2
1

∂2l(λ,α1,α2)
∂α1∂α2

∂2l(λ,α1,α2)
∂α2∂λ

∂2l(λ,α1,α2)
∂α2∂α1

∂2l(λ,α1,α2)

∂α2
2

. (9)

Here,

∂2l(λ, α1, α2)

∂λ2 = − k
λ2 −

k−1

∑
i=1

(α1Ri + α1 − zi)

(
1

ωi

)2 e−
λ

ωi(
1− e−

λ
ωi

)2

−
[

α1

(
m−

k−1

∑
i=1

(Ri + 1)

)
− zk

](
1

ωk

)2 e−
λ

ωk(
1− e−

λ
ωk

)2

−
k−1

∑
i=1

(α2 − 1 + zi + α2Ri)

(
1

ωi

)2 e−
λ

ωi(
1− e−

λ
ωi

)2

−
[

α2

(
n−

k−1

∑
i=1

(Ri + 1)

)
+ zk − 1

](
1

ωk

)2 e−
λ

ωk(
1− e−

λ
ωk

)2 ,

∂2l(λ, α1, α2)

∂λ∂α1
=

∂2l(λ, α1, α2)

∂α1∂λ
=

k−1

∑
i=1

(Ri + 1)
e−

λ
ωi 1

ωi

1− e−
λ

ωi

+

(
m−

k−1

∑
i=1

(Ri + 1)

)
e−

λ
ωk 1

ωk

1− e−
λ

ωk

,

∂2l(λ, α1, α2)

∂λ∂α2
=

∂2l(λ, α1, α2)

∂α2∂λ
=

k−1

∑
i=1

(Ri + 1)
e−

λ
ωi 1

ωi

1− e−
λ

ωi

+

(
n−

k−1

∑
i=1

(Ri + 1)

)
e−

λ
ωk 1

ωk

1− e−
λ

ωk

,

∂2l(λ, α1, α2)

∂α1∂α2
=

∂2l(λ, α1, α2)

∂α2∂α1
= 0,

∂2l(λ, α1, α2)

∂α2
1

= − k1

α2
1

,
∂2l(λ, α1, α2)

∂α2
2

= − k2

α2
2

.

For the above expressions, the expected values are not easy to obtain. Thus, in order to
obtain an approximate expected Fisher information matrix, we apply the observed Fisher
information matrix. Suppose the MLE of the parameter θ = (λ, α1, α2) is θ̂ =

(
λ̂, α̂1, α̂2

)
.

Here, the observed Fisher information matrix I
(
θ̂
)

turns out to be

I
(
θ̂
)
=


− ∂2l(λ,α1,α2)

∂λ2 − ∂2l(λ,α1,α2)
∂λ∂α1

− ∂2l(λ,α1,α2)
∂λ∂α2

− ∂2l(λ,α1,α2)
∂α1∂λ − ∂2l(λ,α1,α2)

∂α2
1

− ∂2l(λ,α1,α2)
∂α1∂α2

− ∂2l(λ,α1,α2)
∂α2∂λ − ∂2l(λ,α1,α2)

∂α2∂α1
− ∂2l(λ,α1,α2)

∂α2
2


θ=θ̂

. (10)

Furthermore, through inverting the observed Fisher information matrix, we obtain the
observed variance–covariance matrix I−1(θ̂) of MLEs

(
λ̂, α̂1, α̂2

)
, which is given by

I−1(θ̂) =

 Var
(
λ̂
)

Cov
(
λ̂, α̂1

)
Cov

(
λ̂, α̂2

)
Cov

(
α̂1, λ̂

)
Var(α̂1) Cov(α̂1, α̂2)

Cov
(
α̂2, λ̂

)
Cov(α̂2, α̂1) Var(α̂2)

. (11)
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Here, we know that the asymptotic distribution of θ̂ is N
(
θ, I−1(θ̂)). Therefore, the

100(1− γ)% ACI of the parameter θj for a significance level 0 < γ < 1 is constructed

as θ̂j ± z γ
2

√
Var(θ̂j) (j = 1, 2, 3), where z γ

2
represents the upper z γ

2
-th percentile of the

standard normal distribution. Furthermore, the coverage probabilities of parameters λ, α1
and α2 are given by

CPλ = P
[∣∣∣∣ (λ̂−λ)√

V ar(λ̂)

∣∣∣∣ ≤ zγ/2

]
, CPα1 = P

[∣∣∣∣ (α̂1−α1)√
V ar(α̂1)

∣∣∣∣ ≤ zγ/2

]
, CPα2 = P

[∣∣∣∣ (α̂2−α2)√
V ar(α̂2)

∣∣∣∣ ≤ zγ/2

]
.

4. Bayesian Estimation
4.1. Without Order Restriction of Shape Parameters

Before studying Bayesian inference, we discuss the assumptions of the unknown
parameters. Here, we assume a very flexible prior on the shape parameters. Meanwhile,
when we find that one population is superior to another in reliability, the order restriction
between shape parameters is reasonable. Hence, when the order-restricted condition is
discussed between shape parameters, a prior is considered for them. In this article, λ
is the common scale parameter, while α1 and α2 are two shape parameters. Suppose
α = α1+α2, then

α1 + α2 = α ∼ GA(b1, b2),
α1

α
∼ Beta(b3, b4),

where they are independent, and the hyper-parameters b1, b2, b3, b4 are positive numbers.
The transformation of variables method can be easily used to obtain the joint PDF of (α1, α2),
derived as follows:

π(α1, α2|b1, b2, b3, b4) =
Γ(b3 + b4)

Γ(b3)Γ(b4)Γ(b1)
b2

b1 αb3−1
1 αb4−1

2 (α1 + α2)
b1−b3−b4 e−b2(α1+α2), (12)

where 0 < α1, α2 < ∞. Then, the joint PDF (12), which is a Beta-Gamma distribution (BG),
can be expressed as BG(b1, b2, b3, b4). It is found that the bivariate BG distribution is fairly
flexible and absolutely continuous. Based on the BG distribution, the following Lemma 1 is
employed to generate samples.

Lemma 1. (X, Y)∼BG(b1, b2, b3, b4), if and only if Z = X + Y ∼ GA(b1, b2), V = X
X+Y ∼

Beta(b3, b4), and Z and V are independently distributed.

Proof. Using the transformation method of variables, the above results are easy to prove

E(α1) =
b1

b2

b3

b3 + b4
, E(α2) =

b1

b2

b4

b3 + b4
,

E
(

α2
1

)
=

b1(b1 + 1)
b2

2

b3(b3 + 1)
(b3 + b4)(b3 + b4 + 1)

, E
(

α2
2

)
=

b1(b1 + 1)
b2

2

b4(b4 + 1)
(b3 + b4)(b3 + b4 + 1)

,

E(α1, α2) =
b1(b1 + 1)

b2
2

b3b4

(b3 + b4)(b3 + b4 + 1)
, Cov(α1, α2) =

b1b3b4(b3 + b4 − b1)

b2
2(b3 + b4)

2(b3 + b4 + 1)
.

Between the two shape parameters, the Beta-Gamma prior is included in distinct
dependency structures, and the correlation between α1 and α2 is determined by the values of
b1, b3, and b4. When b3 + b4 > b1, α1 and α2 are positively correlated, while for b3 + b4 < b1,
they are negatively correlated. If b3 + b4 = b1, α1 and α2 are independent.

Owing to the flexibility and wide application of the Gamma distribution in statistical
inference, we suppose that the scale parameter

λ ∼ GA(a0, b0) = π(λ|a0, b0),
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where the hyper-parameters are a0 > 0 and b0 > 0. In addition, the scale parameter λ and
shape parameters (α1, α2) are independent.

Based on the prior assumptions discussed previously and the squared error loss
function, the Bayesian estimators are considered for all parameters of the generalized
inverted exponential distribution in this section. Then, we also obtain the associated
credible intervals under different situations. Here, the likelihood function (4) is also
denoted as

L(λ, α1, α2|w, z, R) = cαk1
1 αk2

2 λke−2 ∑k
i=1 ln(ωi)e−λ ∑k

i=1
1

ωi e(α1−1)A1(λ)e(α2−1)A2(λ)

×
k−1

∏
i=1

(
1− e−

λ
ωi

)α1Ri+α1−α1zi
(

1− e−
λ

ωk

)α1(m−∑k−1
i=1 (Ri+1)−zk)

×
k−1

∏
i=1

(
1− e−

λ
ωi

)α2zi+α2Ri
(

1− e−
λ

ωk

)α2(n−∑k−1
i=1 (Ri+1)+zk−1)

. (13)

4.1.1. Posterior Analysis: Scale Parameter λ is known

In this section, when we know the scale parameter λ and the order restriction on α1
and α2 is not considered, the Bayesian estimates and the corresponding credible intervals
are constructed. Ignoring the constants, the joint posterior distribution of parameters α1
and α2 is given by

π∗(α1, α2|λ, data) ∝ e−α1(A(λ)−A1(λ))(α1 + α2)
b1−b3−b4 e−(α1+α2)(b2−A(λ))αk1+b3−1

1 αb4+k2−1
2

×e−α2(A(λ)−A2(λ))e
∑k−1

i=1 (α1Ri+α1−α1zi) ln
(

1−e
− λ

ωi

)
+α1(m−∑k−1

i=1 (Ri+1)−zk) ln
(

1−e
− λ

ωk

)

×e
∑k−1

i=1 (α2zi+α2Ri) ln
(

1−e
− λ

ωi

)
+α2(n−∑k−1

i=1 (Ri+1)+zk−1) ln
(

1−e
− λ

ωk

)
, (14)

for 0 < α1 < α2 < ∞, where A(λ) = min(A1(λ), A2(λ)), and the A1(λ), A2(λ) are the
same as described in function (4). Therefore, π∗(α1, α2|λ, data) can also be expressed as

π∗(α1, α2|λ, data) ∝ h0(α1, α2)× π0(α1, α2|λ, data),

where

π0(α1, α2|λ, data) ∼ BG(k + b1, b2 − A(λ), k1 + b3, k2 + b4),

h0(α1, α2) = e
∑k−1

i=1 (α1Ri+α1−α1zi) ln
(

1−e
− λ

ωi

)
+α1(m−∑k−1

i=1 (Ri+1)−zk) ln
(

1−e
− λ

ωk

)

× e
∑k−1

i=1 (α2zi+α2Ri) ln
(

1−e
− λ

ωi

)
+α2(n−∑k−1

i=1 (Ri+1)−1+zk) ln
(

1−e
− λ

ωk

)
.

× e−α2(A(λ)−A2(λ))e−α1(A(λ)−A1(λ))

Therefore, we regard the Beta-Gamma prior as a conjugate prior for the known scale
parameter λ. From Lemma 1, the corresponding posterior means are the Bayesian estimates
of α1 and α2 concerning the SELF. Hence, they are directly calculated as

α̂1 = E(α1) =
b1+k

b2−A(λ)
× b3+k1

b3+b4+k and α̂2 = E(α2) =
b1+k

b2−A(λ)
× b4+k2

b3+b4+k

4.1.2. Posterior Analysis: Scale Parameter λ Is Not Known

Furthermore, we analyze the situation based on the unknown scale parameter λ.
On this condition, the joint posterior distribution of parameters λ, α1, and α2 is derived
as follows:
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π∗(λ, α1, α2|data) ∝ e−α1(A(λ)−A1(λ))(α1 + α2)
b1−b3−b4 e−(α1+α2)(b2−A(λ))αk1+b3−1

1 αb4+k2−1
2

×e−α2(A(λ)−A2(λ))e
∑k−1

i=1 (α1Ri+α1−α1zi) ln
(

1−e
− λ

ωi

)
+α1(m−∑k−1

i=1 (Ri+1)−zk) ln
(

1−e
− λ

ωk

)

×e
∑k−1

i=1 (α2zi+α2Ri) ln
(

1−e
− λ

ωi

)
+α2(n−∑k−1

i=1 (Ri+1)−1+zk) ln
(

1−e
− λ

ωk

)

×λa0+k−1e−λ
(

b0+∑k
i=1

1
ωi

)
e
−2 ∑k

i=1 ln(ωi)−∑k
i=1 ln

(
1−e

− λ
ωi

)

× 1

(b2 − A(λ))b1+k . (15)

Hence, the Bayesian estimate of g(λ, α1, α2) regarding the SELF is expressed as

E(g(λ, α1, α2)|data) =
∫ ∞

0

∫ ∞

0

∫ ∞

0
g(λ, α1, α2)π

∗(λ, α1, α2|data)dλdα1dα2. (16)

However, an explicit form of (16) may not be easy to obtain under general situations.
Therefore, the importance sampling technique (IS) is applied to obtain the Bayesian esti-
mates, and the HPD credible intervals are also constructed; these results can be acquired
as follows.

For further development, π∗(λ, α1, α2|data) is expressed again as

π∗(λ, α1, α2|data) ∝ h0(λ, α1, α2)× π0(α1, α2|λ, data)× π1(λ|data),

where

π0(α1, α2|λ, data) ∼ BG(k + b1, b2 − A(λ), k1 + b3, k2 + b4),

π1(λ|data) ∼ GA

(
k + a0, b0 +

k

∑
i=1

1
ωi

)
,

h0(λ, α1, α2) = e−α2(A(λ)−A2(λ))e
−2 ∑k

i=1 ln(ωi)−∑k
i=1 ln

(
1−e

− λ
ωi

)
e−α1(A(λ)−A1(λ))

× e
∑k−1

i=1 (α1Ri+α1−α1zi) ln
(

1−e
− λ

ωi

)
+α1(m−∑k−1

i=1 (Ri+1)−zk) ln
(

1−e
− λ

ωk

)

× e
∑k−1

i=1 (α2zi+α2Ri) ln
(

1−e
− λ

ωi

)
+α2(n−∑k−1

i=1 (Ri+1)−1+zk) ln
(

1−e
− λ

ωk

)

× 1

(b2 − A(λ))b1+k .

Therefore, the Bayesian estimate of g(λ, α1, α2) regarding the SELF is expressed as

E(g(λ, α1, α2)|data) =

∫ ∞
0

∫ ∞
0

∫ ∞
0 g(λ, α1, α2)π0(α1, α2|λ, data)π1(λ|data)h0(λ, α1, α2)dλdα1dα2∫ ∞

0

∫ ∞
0

∫ ∞
0 π0(α1, α2|λ, data)π1(λ|data)h0(α1, α2, λ)dλdα1dα2

.

We employ the following Algorithm 2 to obtain the Bayesian estimate and correspond-
ing HPD credible interval of g(λ, α1, α2).
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Algorithm 2: The application of the importance sampling technique in Bayesian

estimates.
Step 1: Under the given observed data, generate λ from π1(λ|data).

Step 2: Generate α1 and α2 from π0(α1, α2|λ, data) for the given λ.

Step 3: Repeat step 1 and 2 M times to acquire

((λ1, α11, α21), · · · , (λM, α1M, α2M)).

Step 4: In order to calculate the Bayesian estimates of g(λ, α1, α2), the

(h01, · · · h0M)

and (g1, · · · , gM) are computed. Here,

h0i = h0(λi, α1i, α2i) and gi = g(λi, α1i, α2i).

Step 5: The approximate Bayesian estimates of g(λ, α1, α2) are given by

ˆgIS(λ, α1, α2) =
∑M

i=1 gih0i

∑M
i=1 h0i

.

Here, the Bayesian estimates of all unknown parameters λ, α1, α2 under SELF are
obtained as

α̂1 IS = ∑M
i=1 α1ih0(α1i ,λi)

∑M
i=1 h0(α1i ,λi)

, α̂2 IS = ∑M
i=1 α2ih0(α2i ,λi)

∑M
i=1 h0(α2i ,λi)

, λ̂IS = ∑M
i=1 λih0(αi ,λi)

∑M
i=1 h0(αi ,λi)

.

4.2. With Order Restriction of Shape Parameters

We suppose α2 > α1 when we consider the order restriction on the shape parameters
α1 and α2. Then, the joint prior distribution of parameters α1 and α2 is written as

π(α1, α2|b1, b2, b3, b4) =
Γ(b3 + b4)

Γ(b3)Γ(b4)Γ(b1)
b2

b1(α1 + α2)
b1−b3−b4 e−b2(α1+α2)

×
(

αb3−1
1 αb4−1

2 + αb4−1
1 αb3−1

2

)
.0 < α1 < α2 < ∞, (17)

Moreover, the joint prior (17) mentioned above is the joint PDF of
(

α(1), α(2)

)
, and the(

α(1), α(2)

)
are ordered random variables. Here,

(
α(1), α(2)

)
=

{
(α1, α2) if α1 < α2

(α2, α1) if α1 ≥ α2

and (α1, α2) follows BG (b1, b2, b3, b4). The joint prior (17) is referred to as an ordered Beta-
Gamma prior distribution, which is denoted as OBG (b1, b2, b3, b4). Simultaneously, the
common scale parameter λ follows π(α|a0, b0) defined previously, which is independent of
(α1, α2).

4.2.1. Posterior Analysis: Scale Parameter λ Is Known

In this section, the Bayesian estimate is discussed concerning the order restriction
α1 < α2. The joint posterior distribution of parameters α1 and α2 can be expressed as
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π∗(α1, α2|λ, data) ∝
(

αb3+J−1
1 αb4+J−1

2 + αb4+J−1
1 αb3+J−1

2

)
(α1 + α2)

b1−b3−b4 e−b2(α1+α2)

×e
∑k−1

i=1 (α1Ri+α1−α1zi) ln
(

1−e
− λ

ωi

)
+α1(m−∑k−1

i=1 (Ri+1)−zk) ln
(

1−e
− λ

ωk

)

×e
∑k−1

i=1 (α2zi+α2Ri) ln
(

1−e
− λ

ωi

)
+α2(n−∑k−1

i=1 (Ri+1)−1+zk) ln
(

1−e
− λ

ωk

)
×e(α1−1)A1(λ)e(α2−1)A2(λ). (18)

The function (18) is also expressed as

π∗(α1, α2|λ, data) ∝
(

αb3+J−1
1 αb4+J−1

2 + αb4+J−1
1 αb3+J−1

2

)
(α1 + α2)

b1−b3−b4 e−(α1+α2)(b2−A(λ))

×e
∑k−1

i=1 (α1Ri+α1−α1zi) ln
(

1−e
− λ

ωi

)
+α1(m−∑k−1

i=1 (Ri+1)−zk) ln
(

1−e
− λ

ωk

)

×e
∑k−1

i=1 (α2zi+α2Ri) ln
(

1−e
− λ

ωi

)
+α2(n−∑k−1

i=1 (Ri+1)−1+zk) ln
(

1−e
− λ

ωk

)
×αK1−J

1 e−α2(A(λ)−A2(λ))αK2−J
2 e−α1(A(λ)−A1(λ)),

(19)

where A(λ) = min(A1(λ), A2(λ)), and J = min(k1, k2).
Then, the joint posterior distribution of parameters α1 and α2 given in function (19) is

written as follows

π∗(α1, α2|λ, data) ∝ h0(α1, α2)× π0(α1, α2|λ, data),

where

π0(α1, α2|λ, data) ∼ OBG(b1 + 2J, b2 − A(λ), b3 + J, b4 + J),

h0(α1, α2) = e−α1(A(λ)−A1(λ))αK1−J
1 αK2−J

2 e−α2(A(λ)−A2(λ))

× e
∑k−1

i=1 (α1Ri+α1−α1zi) ln
(

1−e
− λ

ωi

)
+α1(m−∑k−1

i=1 (Ri+1)−zk) ln
(

1−e
− λ

ωk

)

× e
∑k−1

i=1 (α2zi+α2Ri) ln
(

1−e
− λ

ωi

)
+α2(n−∑k−1

i=1 (Ri+1)−1+zk) ln
(

1−e
− λ

ωk

)
.

Therefore, Algorithm A1 (see Appendix A.1 for details) is used for obtaining the
Bayesian estimates along with the CIs of the parameters α1 and α2.

4.2.2. Posterior Analysis: Scale Parameter λ Is Not Known

Based on the order restriction α1 < α2 and the unknown scale parameter λ, the
posterior distribution of all parameters α1, α2 and λ can be expressed as

π∗(λ, α1, α2|data) ∝
(

αb3+J−1
1 αb4+J−1

2 + αb4+J−1
1 αb3+J−1

2

)
(α1 + α2)

b1−b3−b4 e−b2(α1+α2)

×e
∑k−1

i=1 (α1Ri+α1−α1zi) ln
(

1−e
− λ

ωi

)
+α1(m−∑k−1

i=1 (Ri+1)−zk) ln
(

1−e
− λ

ωk

)

×e
∑k−1

i=1 (α2zi+α2Ri) ln
(

1−e
− λ

ωi

)
+α2(n−∑k−1

i=1 (Ri+1)−1+zk) ln
(

1−e
− λ

ωk

)

×e(α1−1)A1(λ)e−2 ∑k
i=1 ln(ωi)−λ ∑k

i=1
1

ωi λa0+k−1e−b0λe(α2−1)A2(λ)

× 1

(b2 − A(λ))b1+2J . (20)

Here, function (20) is rewritten as



Mathematics 2023, 11, 329 14 of 26

π∗(λ, α1, α2|data) ∝ e−(α1+α2)(b2−A(λ))(α1 + α2)
b1−b3−b4

(
αb3+J−1

1 αb4+J−1
2 + αb4+J−1

1 αb3+J−1
2

)
×αK1−J

1 αK2−J
2 e−α1(A(λ)−A1(λ))e

−2 ∑k
i=1 ln(ωi)−∑k

i=1 ln
(

1−e
− λ

ωi

)
e−α2(A(λ)−A2(λ))

×e
∑k−1

i=1 (α1Ri+α1−α1zi) ln
(

1−e
− λ

ωi

)
+α1(m−zk−∑k−1

i=1 (Ri+1)) ln
(

1−e
− λ

ωk

)

×e
∑k−1

i=1 (α2zi+α2Ri) ln
(

1−e
− λ

ωi

)
+α2(n−∑k−1

i=1 (Ri+1)+zk−1) ln
(

1−e
− λ

ωk

)

×λa0+k−1e−λ
(

b0+∑k
i=1

1
ωi

)
× 1

(b2 − A(λ))b1+2J , (21)

where A(λ) = min(A1(λ), A2(λ)) and J = min(k1, k2). According to the function (21), we
observe that the joint posterior distribution of parameters α1, α2, and λ in this situation is
given by

π∗(λ, α1, α2|data) ∝ h0(λ, α1, α2)× π0(α1, α2|λ, data)× π1(λ|data),

where

π0(α1, α2|λ, data) ∼ OBG(b1 + 2J, b2 − A(λ), b3 + J, b4 + J),

π1(λ|data) ∼ GA

(
a0 + k, b0 +

k

∑
i=1

1
ωi

)
,

h0(λ, α1, α2) = αK1−J
1 αK2−J

2 e−α1(A(λ)−A1(λ))e
−2 ∑k

i=1 ln(ωi)−∑k
i=1 ln

(
1−e

− λ
ωi

)
e−α2(A(λ)−A2(λ))

× e
∑k−1

i=1 (α1Ri+α1−α1zi) ln
(

1−e
− λ

ωi

)
+α1(m−∑k−1

i=1 (Ri+1)−zk) ln
(

1−e
− λ

ωk

)

× e
∑k−1

i=1 (α2zi+α2Ri) ln
(

1−e
− λ

ωi

)
+α2(n−∑k−1

i=1 (Ri+1)−1+zk) ln
(

1−e
− λ

ωk

)

× 1

(b2 − A(λ))b1+2J .

Then, Algorithm A2 (see Appendix A.2) is applied to obtain the Bayesian estimates
and CIs of all parameters λ, α1, and α2.

4.3. HPD Credible Interval

In this section, the generated importance samples are applied to construct the high-
est posterior density CIs of α1, α2, and λ. We arrange α1(1) < · · · < α1(M) and α2(1) <
· · · < α2(M) as the ordered value of αi1, αi2, · · · , αiM (i = 1, 2). Then, employing the algo-
rithm provided in [19], the 100× (1− γ)% HPD credible intervals for 0 < γ < 1 of the
parameters λ, α1 and α2 are obtained as

(
λ(j), λ(j+[(1−γ)M])

)
,
(

α1(j), α1(j+[(1−γ)M])

)
and(

α2(j), α2(j+[(1−γ)M])

)
, where j satisfies that

λ(j+[M(1−γ)]) − λ(j) = min
1≤i≤Mγ

(
λ(i+[M(1−γ)]) − λ(i)

)
, j = 1, 2, . . . , M,

α1(j+[M(1−γ)]) − α1(j) = min
1≤i≤Mγ

(
α1(i+[M(1−γ)]) − α1(i)

)
, j = 1, 2, . . . , M,

α2(j+[M(1−γ)]) − α2(j) = min
1≤i≤Mγ

(
α2(i+[M(1−γ)]) − α2(i)

)
, j = 1, 2, . . . , M,

where [y] is the integer part of y.
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5. Simulation Study and Data Analysis
5.1. Simulation Study

We conduct some simulation experiments to analyze the effects and performance
of various estimators in this section. B-JPC samples are obtained from the combinations
of various sample sizes, effective sample sizes, different true values of all parameters
(λ, α1, α2), and censoring schemes (m, n, k) for GIED (λ, α1, α2). Here, the R software is
employed for all the calculations. Based on the true values of all parameters, we consider
the same scale parameter λ = 0.5 and the different shape parameters (α1, α2) are taken as
(0.4, 0.8) and (0.4, 0.3). Here, the shape parameters jointly follow a Beta-Gamma prior and
the scale parameter follows a Gamma prior; these parameters are proposed to compute
Bayesian estimates concerning SELF.

In the process of Bayesian estimation, a simulation study is first performed based
on the informative priors (IP). Here, in order to match the true expected values of the
two different populations with their prior expectations, the hyper-parameters are selected
as (b1, b2, b3, b4, a0, b0) = (1.3, 1, 1.3, 2, 0.25, 0.5) and (1.4, 2, 2.6, 2, 0.25, 0.5). Meanwhile, for
the non-informative prior (NIP), the hyper-parameters are chosen as b1 = b2 = b3 = b4 =
a0 = b0 = 10−5, which are close to zero to avoid improper posterior density. Here, the
notation R =

(
3, 2, 2(5)

)
means R1 = 3, R2 = 2, R3 = R4 = · · · = R7 = 2.

Based on the various B-JPC censoring schemes, the MLEs and Bayesian estimates
of all parameters are discussed. The whole process is repeated 1000 times for each case
of MLEs, and we obtain the average estimates (AV), variance estimates, and associated
mean squared errors (MSE). Here, the corresponding results are recorded in Tables 1 and 2.
Moreover, the standard errors are computed by squaring the root of the variance estimates.
In Tables 3 and 4, we also record the average lengths (AL) of 95% asymptotic CIs and the
corresponding 95% coverage percentages (CP) of all parameters based on 1000 samples.
In different cases of Bayesian estimation, when the order-restricted condition between
two shape parameters is discussed, the average values of the Bayesian estimates (BE)
and corresponding MSEs both for the NIP and IP are recorded in Tables 5 and 6, and the
above processes are repeated 1000 times. According to the importance sampling procedure,
Tables 7 and 8 present the ALs and CPs of 95% HPD credible intervals, and the value of M
in the importance sampling procedure is 1000.

Table 1. MSEs and AVs of the MLEs of the model parameters with λ = 0.5, α1 = 0.4, α2 = 0.8 based on
different CSs.

λ̂ α̂1 α̂2

Censoring Scheme AV MSE Variance AV MSE Variance AV MSE Variance
Estimate Estimate Estimate

k = 8, R = (2, 2(6)) 0.573 0.040 0.035 0.272 0.070 0.053 0.572 0.218 0.166
k = 8, R = (2(4), 3, 2(2)) 0.588 0.049 0.041 0.287 0.111 0.099 0.635 0.455 0.427
k = 8, R = (2(7)) 0.580 0.044 0.038 0.285 0.072 0.059 0.596 0.404 0.362
k = 8, R = (3, 2, 2(5)) 0.612 0.057 0.044 0.303 0.084 0.075 0.702 0.433 0.423
k = 8, R = (5, 4, 1(5)) 0.658 0.071 0.046 0.373 0.131 0.130 0.904 0.562 0.551
k = 8, R = (2(5), 3, 4) 0.610 0.055 0.043 0.314 0.108 0.101 0.675 0.360 0.345
k = 10, R = (7, 1(8)) 0.712 0.098 0.053 0.445 0.125 0.123 1.106 1.386 1.292
k = 10, R = (2(5), 2, 1(3)) 0.667 0.072 0.044 0.353 0.066 0.064 0.790 0.362 0.361
k = 10, R = (2(6), 1(3)) 0.663 0.073 0.046 0.352 0.078 0.076 0.792 0.441 0.440
k = 10, R = (4(2), 1(7)) 0.714 0.098 0.051 0.426 0.113 0.112 1.018 0.583 0.536
k = 10, R = (5, 3, 1(7)) 0.719 0.097 0.049 0.435 0.132 0.130 1.055 0.639 0.574
k = 10, R = (2(7), 1(2)) 0.757 0.143 0.077 0.483 0.126 0.119 0.424 0.132 0.117

Abbreviations: AV—average estimate. MSE—mean square error.

From Tables 1 and 5, it is observed that the MSEs and standard error of all parameters
increase with the increase in effective sample size k. Compared with MLEs, the performance
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of the Bayesian estimators is better concerning MSEs. Here, in terms of MSEs, the Bayesian
estimators also perform better for IP than NIP, as expected. However, when the order
restriction is discussed between two shape parameters, the Bayesian estimation of α1 and
α2 under order restriction is slightly better.

From Tables 3 and 8, we also observe that the average lengths of 95% asymptotic CIs
are longer than those of the 95% HPD credible intervals in most cases. Furthermore, with
respect to coverage percentage, the performance of the HPD credible intervals is better for
IP than NIP, and the above two HPD credible intervals with order restriction perform better
than that without order restriction.

Table 2. MSEs and AVs of the MLEs of the model parameters with λ = 0.5, α1 = 0.4, and α2 = 0.3
based on different CSs.

λ̂ α̂1 α̂2

Censoring Scheme AV MSE Variance AV MSE Variance AV MSE Variance
Estimate Estimate Estimate

k = 8, R = (2, 2(6)) 0.629 0.084 0.067 0.350 0.080 0.078 0.304 0.113 0.113
k = 8, R = (2(4), 3, 2(2)) 0.657 0.098 0.073 0.377 0.083 0.083 0.318 0.073 0.072
k = 8, R = (2(7)) 0.634 0.086 0.068 0.362 0.090 0.089 0.304 0.092 0.092
k = 8, R = (3, 2, 2(5)) 0.671 0.103 0.074 0.393 0.104 0.104 0.328 0.073 0.073
k = 8, R = (5, 4, 1(5)) 0.732 0.136 0.083 0.477 0.189 0.183 0.395 0.132 0.123
k = 8, R = (2(5), 3, 4) 0.669 0.107 0.078 0.391 0.081 0.081 0.340 0.101 0.099
k = 10, R = (7, 1(8)) 0.810 0.190 0.094 0.592 0.226 0.189 0.511 0.243 0.198
k = 10, R = (2(5), 2, 1(3)) 0.726 0.124 0.073 0.448 0.073 0.071 0.390 0.103 0.094
k = 10, R = (2(6), 1(3)) 0.739 0.134 0.077 0.447 0.068 0.066 0.393 0.088 0.077
k = 10, R = (4(2), 1(7)) 0.801 0.183 0.092 0.554 0.173 0.150 0.476 0.180 0.149
k = 10, R = (5, 3, 1(7)) 0.792 0.169 0.083 0.541 0.138 0.118 0.462 0.153 0.126
k = 10, R = (2(7), 1(2)) 0.757 0.143 0.077 0.483 0.126 0.119 0.424 0.132 0.117

Abbreviations: AV—average estimate; MSE—mean square error.

Table 3. CPs and ALs of 95% asymptotic confidence intervals of the model parameters with λ = 0.5,
α1 = 0.4, and α2 = 0.8 based on different CSs.

λ̂ α̂1 α̂2

AL CP AL CP AL CP

k = 8, R = (2, 2(6)) 0.902 98.6% 0.834 68.3% 1.680 71.6%
k = 8, R = (2(4), 3, 2(2)) 0.905 98.7% 0.873 72.8% 1.705 71.4%
k = 8, R = (2(7)) 0.885 97.9% 0.835 68.2% 1.524 68.8%
k = 8, R = (3, 2, 2(5)) 0.923 98.6% 0.913 74.0% 1.837 75.7%
k = 8, R = (5, 4, 1(5)) 0.954 97.4% 1.262 83.2% 2.670 88.1%
k = 8, R = (2(5), 3, 4) 0.925 98.3% 0.961 73.2% 1.898 75.0%
k = 10, R = (7, 1(8)) 0.937 96.2% 1.205 86.1% 2.746 92.6%
k = 10, R = (2(5), 2, 1(3)) 0.886 98.4% 0.901 79.2% 1.817 83.8%
k = 10, R = (2(6), 1(3)) 0.900 97.1% 0.940 82.6% 1.880 83.0%
k = 10, R = (4(2), 1(7)) 0.939 96.5% 1.116 86.0% 2.578 92.4%
k = 10, R = (5, 3, 1(7)) 0.943 95.8% 1.215 88.4% 2.675 93.0%
k = 10, R = (2(7), 1(2)) 0.937 96.7% 1.044 86.0% 2.276 87.8%
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Table 4. CPs and ALs of 95% asymptotic confidence intervals of the model parameters with λ = 0.5,
α1 = 0.4, and α2 = 0.3 based on different CSs.

λ̂ α̂1 α̂2

AL CP AL CP AL CP

k = 8, R = (2, 2(6)) 1.021 97.9% 0.966 81.0% 0.877 85.4%
k = 8, R = (2(4), 3, 2(2)) 1.029 98.0% 0.948 83.3% 0.872 85.4%
k = 8, R = (2(7)) 1.022 98.6% 0.944 83.0% 0.849 85.5%
k = 8, R = (3, 2, 2(5)) 1.055 98.9% 0.977 86.2% 0.908 88.6%
k = 8, R = (5, 4, 1(5)) 1.107 98.5% 1.237 91.6% 1.124 91.2%
k = 8, R = (2(5), 3, 4) 1.040 98.2% 0.957 86.5% 0.940 86.9%
k = 10, R = (7, 1(8)) 1.082 94.9% 1.322 96.8% 1.314 96.0%
k = 10, R = (2(5), 2, 1(3)) 1.031 96.9% 1.071 93.0% 1.046 94.3%
k = 10, R = (2(6), 1(3)) 1.024 96.1% 1.014 93.6% 0.980 92.9%
k = 10, R = (4(2), 1(7)) 1.093 95.0% 1.235 95.3% 1.216 95.9%
k = 10, R = (5, 3, 1(7)) 1.104 94.7% 1.243 96.4% 1.239 96.8%
k = 10, R = (2(7), 1(2)) 1.077 95.1% 1.106 94.8% 1.148 94.6%

Table 5. MSEs and BEs of the Bayesian estimates of the model parameters with λ = 0.5, α1 = 0.4, and
α2 = 0.3 based on the importance sampling procedure and different CSs.

Without Order Restriction With Order Restriction

IP NIP IP NIP

Censoring Scheme Parameter BE MSE BE MSE BE MSE BE MSE

k = 8, R = (2, 2(6)) λ 0.575 0.045 0.485 0.034 0.565 0.039 0.533 0.043
α1 0.370 0.023 0.374 0.050 0.337 0.022 0.311 0.040
α2 0.289 0.018 0.302 0.053 0.265 0.019 0.277 0.036

k = 8, R = (2(4), 3, 2(2)) λ 0.580 0.047 0.494 0.040 0.594 0.044 0.541 0.038
α1 0.378 0.027 0.387 0.056 0.356 0.023 0.324 0.043
α2 0.298 0.019 0.300 0.059 0.286 0.018 0.279 0.042

k = 8, R = (2(7)) λ 0.576 0.044 0.494 0.039 0.595 0.049 0.530 0.045
α1 0.386 0.024 0.377 0.054 0.349 0.027 0.324 0.046
α2 0.303 0.020 0.313 0.056 0.286 0.018 0.276 0.036

k = 8, R = (3, 2, 2(5)) λ 0.565 0.045 0.518 0.040 0.617 0.056 0.536 0.037
α1 0.377 0.030 0.410 0.104 0.365 0.020 0.355 0.043
α2 0.290 0.020 0.318 0.051 0.280 0.016 0.283 0.036

k = 8, R = (5, 4, 1(5)) λ 0.631 0.071 0.539 0.038 0.653 0.070 0.604 0.058
α1 0.417 0.027 0.433 0.065 0.407 0.029 0.424 0.077
α2 0.337 0.029 0.339 0.084 0.305 0.016 0.347 0.065

k = 8, R = (2(5), 3, 4) λ 0.576 0.058 0.518 0.037 0.600 0.053 0.534 0.039
α1 0.389 0.023 0.368 0.048 0.354 0.022 0.337 0.041
α2 0.306 0.024 0.333 0.071 0.299 0.024 0.290 0.052

k = 10, R = (7, 1(8)) λ 0.666 0.071 0.673 0.085 0.699 0.084 0.722 0.106
α1 0.487 0.035 0.559 0.116 0.467 0.030 0.527 0.087
α2 0.403 0.044 0.370 0.071 0.385 0.033 0.452 0.118

k = 10, R = (2(5), 2, 1(3)) λ 0.641 0.056 0.629 0.064 0.658 0.064 0.642 0.072
α1 0.419 0.022 0.466 0.068 0.408 0.021 0.397 0.033
α2 0.337 0.018 0.370 0.071 0.320 0.018 0.362 0.086

k = 10, R = (2(6), 1(3)) λ 0.649 0.069 0.597 0.053 0.662 0.072 0.648 0.073
α1 0.443 0.028 0.452 0.062 0.413 0.026 0.432 0.060
α2 0.345 0.024 0.409 0.096 0.332 0.025 0.386 0.061

k = 10, R = (4(2), 1(7)) λ 0.683 0.075 0.669 0.083 0.680 0.072 0.707 0.098
α1 0.472 0.047 0.492 0.084 0.449 0.026 0.507 0.086
α2 0.372 0.387 0.427 0.095 0.354 0.026 0.431 0.088
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Table 5. Cont.

Without Order Restriction With Order Restriction

IP NIP IP NIP

Censoring Scheme Parameter BE MSE BE MSE BE MSE BE MSE

k = 10, R = (5, 3, 1(7)) λ 0.705 0.096 0.688 0.096 0.679 0.096 0.710 0.102
α1 0.465 0.037 0.567 0.131 0.455 0.032 0.489 0.099
α2 0.387 0.038 0.450 0.129 0.377 0.032 0.452 0.127

k = 10, R = (2(7), 1(2)) λ 0.674 0.082 0.629 0.064 0.670 0.070 0.674 0.090
α1 0.457 0.036 0.501 0.084 0.416 0.019 0.469 0.067
α2 0.369 0.034 0.415 0.091 0.353 0.021 0.408 0.102

Table 6. MSEs and BEs of the Bayesian estimates of the model parameters with λ = 0.5, α1 = 0.4, and
α2 = 0.8 based on the importance sampling procedure and different CSs.

Without Order Restriction With Order Restriction

IP NIP IP NIP

Censoring Scheme Parameter BE MSE BE MSE BE MSE BE MSE

k = 8, R = (2, 2(6)) λ 0.480 0.026 0.437 0.028 0.527 0.027 0.464 0.025
α1 0.322 0.059 0.253 0.078 0.275 0.044 0.253 0.056
α2 0.604 0.122 0.571 0.222 0.543 0.118 0.428 0.201

k = 8, R = (2(4), 3, 2(2)) λ 0.500 0.021 0.433 0.028 0.525 0.021 0.471 0.021
α1 0.324 0.054 0.235 0.059 0.305 0.039 0.263 0.068
α2 0.646 0.145 0.588 0.137 0.579 0.117 0.507 0.185

k = 8, R = (2(7)) λ 0.503 0.025 0.413 0.032 0.520 0.030 0.455 0.024
α1 0.320 0.049 0.257 0.081 0.283 0.040 0.232 0.070
α2 0.640 0.127 0.524 0.193 0.573 0.191 0.461 0.199

k = 8, R = (3, 2, 2(5)) λ 0.513 0.027 0.446 0.023 0.525 0.020 0.490 0.030
α1 0.310 0.052 0.243 0.065 0.291 0.038 0.290 0.078
α2 0.643 0.123 0.615 0.195 0.579 0.117 0.550 0.352

k = 8, R = (5, 4, 1(5)) λ 0.548 0.029 0.487 0.025 0.565 0.029 0.531 0.032
α1 0.342 0.050 0.277 0.098 0.325 0.046 0.298 0.069
α2 0.791 0.166 0.829 0.399 0.697 0.089 0.665 0.205

k = 8, R = (2(5), 3, 4) λ 0.506 0.027 0.452 0.027 0.537 0.025 0.475 0.026
α1 0.331 0.052 0.262 0.072 0.275 0.042 0.254 0.061
α2 0.641 0.134 0.615 0.175 0.591 0.099 0.529 0.198

k = 10, R = (7, 1(8)) λ 0.604 0.036 0.554 0.030 0.613 0.042 0.566 0.029
α1 0.428 0.078 0.353 0.101 0.400 0.047 0.356 0.064
α2 0.903 0.139 0.937 0.323 0.832 0.086 0.768 0.151

k = 10, R = (2(5), 2, 1(3)) λ 0.582 0.038 0.521 0.024 0.570 0.032 0.549 0.025
α1 0.371 0.047 0.310 0.061 0.344 0.032 0.330 0.050
α2 0.755 0.101 0.711 0.157 0.628 0.088 0.611 0.145

k = 10, R = (2(6), 1(3)) λ 0.583 0.036 0.536 0.030 0.598 0.036 0.551 0.032
α1 0.331 0.039 0.324 0.063 0.339 0.037 0.308 0.050
α2 0.777 0.121 0.725 0.186 0.653 0.082 0.621 0.162

k = 10, R = (4(2), 1(7)) λ 0.626 0.045 0.585 0.038 0.605 0.037 0.589 0.039
α1 0.398 0.060 0.352 0.079 0.385 0.042 0.366 0.062
α2 0.916 0.202 0.951 0.351 0.777 0.092 0.792 0.206

k = 10, R = (5, 3, 1(7)) λ 0.595 0.031 0.569 0.033 0.630 0.050 0.600 0.046
α1 0.388 0.047 0.337 0.073 0.388 0.045 0.353 0.053
α2 0.873 0.168 0.890 0.241 0.803 0.101 0.804 0.188

k = 10, R = (2(7), 1(2)) λ 0.582 0.032 0.556 0.031 0.602 0.035 0.595 0.046
α1 0.369 0.040 0.343 0.074 0.363 0.044 0.348 0.068
α2 0.767 0.112 0.794 0.178 0.709 0.084 0.696 0.169
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Therefore, by comparing the Bayesian estimators and MLEs, we observe that the per-
formance of the Bayesian estimators concerning NIP is better than that of MLEs. Therefore,
when there is no prior information imposed on all parameters and the order-restricted
condition is considered for different shape parameters, we recommend employing the
Bayesian estimators with NIP in this case and obtaining the corresponding CIs for the NIP.
Furthermore, if there is some prior knowledge of all unknown parameters, we give priority
to the IP.

Table 7. CPs and ALs of 95% HPD credible interval of the model parameters with λ = 0.5, α1 = 0.4,
and α2 = 0.8 based on different CSs.

Without Order Restriction With Order Restriction

IP NIP IP NIP

Censoring Scheme Parameter AL CP AL CP AL CP AL CP

k = 8, R = (2, 2(6)) λ 0.382 77.6% 0.370 70.0% 0.453 88.6% 0.448 80.1%
α1 0.437 61.6% 0.351 42.8% 0.483 68.7% 0.435 56.7%
α2 0.806 65.3% 0.802 61.0% 0.771 57.9% 0.750 52.0%

k = 8, R = (2(4), 3, 2(2)) λ 0.394 76.9% 0.345 63.0% 0.469 90.3% 0.470 85.1%
α1 0.445 62.4% 0.373 46.4% 0.493 67.4% 0.470 62.7%
α2 0.785 61.0% 0.726 52.2% 0.846 67.1% 0.862 61.6%

k = 8, R = (2(7)) λ 0.361 74.2% 0.358 62.3% 0.477 91.2% 0.448 76.8%
α1 0.415 54.6% 0.363 45.0% 0.496 70.3% 0.433 57.9%
α2 0.712 58.4% 0.782 59.2% 0.790 64.3% 0.781 56.5%

k = 8, R = (3, 2, 2(5)) λ 0.401 80.2% 0.394 74.1% 0.478 87.7% 0.484 84.3%
α1 0.465 60.8% 0.364 44.6% 0.524 73.0% 0.509 61.7%
α2 0.861 70.0% 0.873 63.3% 0.836 65.3% 0.858 60.2%

k = 8, R = (5, 4, 1(5)) λ 0.434 84.5% 0.429 80.0% 0.509 92.3% 0.489 88.2%
α1 0.521 73.6% 0.492 53.9% 0.608 75.5% 0.606 71.5%
α2 1.025 81.4% 1.143 71.5% 0.995 85.2% 1.048 72.3%

k = 8, R = (2(5), 3, 4) λ 0.397 80.4% 0.373 71.1% 0.468 86.2% 0.475 82.2%
α1 0.464 67.7% 0.394 48.8% 0.521 71.5% 0.513 65.2%
α2 0.878 70.0% 0.831 59.8% 0.815 66.1% 0.913 61.1%

k = 10, R = (7, 1(8)) λ 0.481 87.3% 0.465 90.3% 0.506 90.3% 0.488 86.4%
α1 0.663 84.0% 0.605 69.5% 0.652 87.6% 0.697 79.7%
α2 1.250 89.0% 1.438 86.6% 1.083 92.6% 1.180 85.3%

k = 10, R = (2(5), 2, 1(3)) λ 0.463 88.6% 0.417 80.6% 0.500 88.0% 0.509 87.2%
α1 0.527 76.5% 0.454 59.9% 0.534 82.9% 0.578 69.3%
α2 0.971 79.5% 0.977 70.1% 0.886 78.6% 0.965 75.2%

k = 10, R = (2(6), 1(3)) λ 0.442 89.9% 0.429 81.2% 0.489 88.6% 0.498 92.0%
α1 0.510 73.7% 0.505 60.7% 0.543 77.8% 0.546 74.7%
α2 0.928 77.4% 0.900 66.8% 0.884 82.2% 0.944 77.4%

k = 10, R = (4(2), 1(7)) λ 0.475 87.3% 0.463 86.9% 0.505 95.0% 0.514 90.1%
α1 0.618 78.6% 0.618 67.8% 0.606 84.6% 0.696 79.5%
α2 1.186 88.0% 1.318 81.9% 0.986 89.3% 1.154 83.7%

k = 10, R = (5, 3, 1(7)) λ 0.472 89.0% 0.457 88.1% 0.490 89.0% 0.515 92.0%
α1 0.578 83.6% 0.576 71.5% 0.619 81.6% 0.632 78.5%
α2 1.149 86.0% 1.398 85.4% 1.009 84.9% 1.137 86.5%

k = 10, R = (2(7), 1(2)) λ 0.463 88.6% 0.443 82.2% 0.502 89.3% 0.511 91.0%
α1 0.535 79.1% 0.526 67.4% 0.601 84.9% 0.603 74.3%
α2 0.980 80.5% 1.138 76.5% 0.941 80.9% 1.013 76.7%
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Table 8. CPs and ALs of 95% HPD credible interval of the model parameters with λ = 0.5, α1 = 0.4,
and α2 = 0.3 based on different CSs.

Without Order Restriction With Order Restriction

IP NIP IP NIP

Censoring Scheme Parameter AL CP AL CP AL CP AL CP

k = 8, R = (2, 2(6)) λ 0.493 78.3% 0.397 69.7% 0.623 90.7% 0.545 87.9%
α1 0.470 78.3% 0.458 66.2% 0.515 87.7% 0.543 72.1%
α2 0.414 80.7% 0.397 65.5% 0.450 86.3% 0.507 78.3%

k = 8, R = (2(4), 3, 2(2)) λ 0.503 82.2% 0.406 71.5% 0.611 89.6% 0.567 85.6%
α1 0.467 84.6% 0.465 64.9% 0.520 86.6% 0.566 77.5%
α2 0.413 81.9% 0.407 64.9% 0.467 90.0% 0.501 78.2%

k = 8, R = (2(7)) λ 0.500 84.2% 0.394 70.8% 0.621 90.3% 0.557 86.2%
α1 0.474 84.5% 0.433 72.2% 0.517 86.3% 0.520 77.3%
α2 0.411 85.2% 0.392 65.6% 0.450 85.3% 0.459 70.9%

k = 8, R = (3, 2, 2(5)) λ 0.541 84.9% 0.459 75.4% 0.654 92.0% 0.572 90.5%
α1 0.515 83.2% 0.542 72.7% 0.569 87.3% 0.561 77.5%
α2 0.442 85.3% 0.449 68.7% 0.472 90.3% 0.512 79.6%

k = 8, R = (5, 4, 1(5)) λ 0.583 89.0% 0.513 76.0% 0.687 93.0% 0.635 91.2%
α1 0.574 92.0% 0.659 77.0% 0.594 92.0% 0.693 82.5%
α2 0.489 90.7% 0.564 66.9% 0.555 92.0% 0.660 89.5%

k = 8, R = (2(5), 3, 4) λ 0.583 85.7% 0.417 75.6% 0.614 90.6% 0.578 87.1%
α1 0.500 85.3% 0.472 71.8% 0.539 87.3% 0.578 80.0%
α2 0.455 84.0% 0.456 69.3% 0.482 88.6% 0.546 80.7%

k = 10, R = (7, 1(8)) λ 0.666 86.7% 0.575 78.3% 0.718 84.3% 0.652 80.8%
α1 0.647 92.3% 0.797 86.3% 0.698 96.7% 0.826 89.9%
α2 0.605 93.0% 0.758 79.0% 0.633 94.0% 0.808 84.2%

k = 10, R = (2(5), 2, 1(3)) λ 0.566 83.6% 0.527 81.5% 0.660 91.3% 0.623 87.6%
α1 0.537 93.3% 0.605 81.5% 0.580 94.0% 0.663 87.0%
α2 0.490 93.3% 0.563 74.0% 0.539 96.3% 0.612 89.3%

k = 10, R = (2(6), 1(3)) λ 0.576 81.3% 0.500 80.0% 0.676 86.7% 0.635 86.2%
α1 0.521 90.0% 0.614 79.3% 0.577 97.0% 0.661 88.2%
α2 0.494 89.0% 0.569 72.3% 0.523 93.7% 0.650 87.6%

k = 10, R = (4(2), 1(7)) λ 0.645 85.3% 0.547 79.9% 0.716 86.7% 0.683 81.8%
α1 0.611 95.0% 0.711 84.3% 0.665 96.7% 0.767 89.9%
α2 0.583 90.0% 0.671 74.6% 0.607 95.3% 0.735 87.5%

k = 10, R = (5, 3, 1(7)) λ 0.642 80.7% 0.556 80.8% 0.714 88.0% 0.682 81.5%
α1 0.653 93.7% 0.698 83.8% 0.660 97.7% 0.736 91.6%
α2 0.573 91.0% 0.629 82.1% 0.619 94.3% 0.728 89.9%

k = 10, R = (2(7), 1(2)) λ 0.581 85.6% 0.513 80.4% 0.666 89.0% 0.648 83.1%
α1 0.563 91.9% 0.628 84.5% 0.584 94.3% 0.699 87.5%
α2 0.523 90.6% 0.627 73.3% 0.563 94.0% 0.705 88.1%

5.2. Real Data Analysis

In order to illustrate whether these different methods work well in practice, we
consider real datasets in this section. Here, the real datasets represent the breaking strength
of jute fiber and can be obtained from Ref. [9]. Dataset 1 and dataset 2 show the breaking
strength of jute fiber, where the gauge lengths are 10 mm and 20 mm. These data are
presented below.

Dataset 1 (10 mm):
43.93, 50.16, 101.15, 123.06, 108.94, 151.48, 163.40, 141.38, 177.25, 212.13, 183.16, 257.44,
291.27, 303.90, 262.90, 353.24, 323.83, 376.42, 422.11, 506.60, 383.43, 530.55, 671.49, 590.48,
693.73, 637.66, 727.23, 700.74, 704.66, 778.17.

Dataset 2 (20 mm):
36.75, 45.58, 71.46, 48.01, 99.72, 83.55, 116.99, 119.86, 113.85, 145.96, 166.49, 187.85, 200.16,
187.13, 284.64, 244.53, 350.7, 375.81, 456.6, 419.02, 578.62, 581.60, 585.57, 547.44, 594.29,
688.16, 662.66, 756.70, 707.36, 765.14.
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According to [9], we divide the real data by 1000 without affecting the inference
process, and fit a two-parameter GIED for each dataset. Using the Kolmogorov–Smirnov
(K-S) distance between the fitted distributions and empirical distribution functions, as well
as the corresponding p-values for both datasets, we illustrate the fitting results. Then, the
MLEs of all parameters and the above results are recorded in Table 9. To check whether
real datasets have equal scale parameters, supposing H0: λ1 = λ2, the likelihood-ratio test
is performed, and the associated p-value is obtained as 0.937. Therefore, we confirm the
null hypothesis. Based on the assumption, the MLE of the scale parameter is computed as
0.195 and the MLEs of the shape parameters are calculated as 1.394 and 1.270 for dataset 1
and 2, respectively.

Table 9. The K-S distance and MLEs of the two datasets.

MLEs with Complete Samples

Dataset α̂ λ̂ K-S Distance p Value

Dataset 1 1.353 0.188 0.162 0.367
Dataset 2 1.841 0.293 0.141 0.536

For the above datasets, we generate three balanced joint censored samples based on
the three different censoring schemes. The third column of Table 10 represents the B-JPC
samples, while the second column shows various censoring schemes. We compute the
Bayesian estimates and the maximum likelihood estimates of all parameters in the above
three cases. For MLEs, the estimated values of unknown parameters and the corresponding
95% CIs are recorded. For Bayesian inference, owing to the lack of prior information
on parameters, the non-informative prior is employed to estimate all parameters, and
the corresponding 95% HPD credible intervals are also constructed. Here, they are also
discussed in the case of whether the shape parameters have order restriction. In the process
of the importance sampling procedure, the value of M is taken as 1000. These results are
listed in Table 11.

Table 10. Three B-JPC samples from the breaking strength of jute fiber based on different CSs.

(m, n, k) Scheme Balanced Joint Progressive Type-II Censored Samples

(30, 30, 10) R1 = (9, 1(8)) 36.75, 145.96, 187.13, 200.16, 284.64, 375.81, 422.11, 530.55, 585.57, 662.66
R2 = (2(5), 3, 2(3)) 36.75, 48.01, 99.72, 119.86, 187.13, 244.53, 383.43, 530.55, 594.29, 704.66

R3 = (6, 7, 1(7)) 36.75, 113.85, 244.53, 350.70, 383.43, 506.60, 581.60, 594.29, 688.16, 727.23

Table 11. The Bayesian estimates and MLEs of the parameters under order restriction and without
order restriction with the real dataset.

Censoring Scheme R1 R2 R3

α̂1 ML 0.4743 (0.0145, 0.9341) 0.2962 (0.0126, 0.5799) 0.4613 (−0.0046, 0.9271)
α̂2 ML 0.1186 (−0.0644, 0.3015) 0.1270 (−0.0360, 0.2900) 0.1977 (−0.0639, 0.4593)
λ̂ML 0.2111 (0.0429, 0.3794) 0.1389 (0.0302,0.2477) 0.2362 (0.0584, 0.4141)
α̂1 I 0.1070 (0.0144, 0.2559) 0.1957 (0.1049, 0.4601) 0.2104 (0.1029, 0.5959)
α̂2 I 0.1670 (0.1122, 0.3040) 0.1395 (0.1041, 0.1705) 0.2300 (0.0976, 0.2960)
λ̂I 0.3970 (0.2175, 0.7283) 0.7115 (0.3430, 0.9272) 0.6056 (0.3183, 0.8765)
α̂1 I I 0.1189 (0.0031, 0.3083) 0.1198 (0.0386, 0.2851) 0.1785 (0.0225, 0.4332)
α̂2 I I 0.1980 (0.0721, 0.3211) 0.1223 (0.0573, 0.1819) 0.2077 (0.0586, 0.3309)
λ̂I I 0.4587 (0.1031, 0.9138) 0.2704 (0.0359, 0.4962) 0.4088 (0.1311, 0.7794)

Notes: α̂1 I , α̂2 I , and λ̂I—Bayesian estimates without order restriction; α̂1 I I , α̂2 I I , and λ̂I I—Bayesian estimates
under order restriction.
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6. Optimum Censoring Scheme

Here, we discuss the optimal censoring schemes with given values of (m, n, k). In
the previous sections, the process of the interval and point estimation of all parameters
based on the B-JPC samples of the GIED was discussed. Furthermore, many methods are
considered to solve the problem of selecting an optimum censoring scheme (OCS), which
can be found in the literature; for example, see Refs. [20,21]. Here, we use the following
classical optimal criteria to obtain the OCS in the case of B-JPC schemes:

Criterion 1: Through this criterion, we obtain the minimum value of the determinant
of the inverse of the observed Fisher information matrix I−1(θ̂) for the maximum likelihood
estimates of all parameters, where θ̂ =

(
λ̂, α̂1, α̂2

)
.

Criterion 2: This criterion is based on the minimization of the trace of the matrix
I−1(θ̂) (the definition is the same as above) of all parameters.

Criterion 3: According to this criterion, we can obtain the minimum of the greatest
eigenvalue of the matrix I−1(θ̂) of the MLEs of all parameters.

Criterion 4: This criterion is based on the maximization of the trace of the observed
Fisher information matrix I

(
θ̂
)
.

Criterion 5: This criterion is based on some specific choices of a quantile “q”. For a
fixed weight 0 ≤ ω ≤ 1, Criterion 5 is given by

C5(q) = w Var
(

ln T̂q,1

)
+ (1− w)Var

(
ln T̂q,2

)
In this criterion, the qth quantile points of the two generalized inverted exponential

distributions are

Tq,1 = −λ/ ln
(

1− (1− q)1/α1
)

, Tq,2 = −λ/ ln
(

1− (1− q)1/α2
)

Hence, the logarithmic forms of the qth quantile of the two generalized inverted
exponential distributions are calculated as

ln Tq,1 = ln
[

−λ
ln(1−(1−q)1/α1)

]
, ln Tq,2 = ln

[
−λ

ln(1−(1−q)1/α2)

]
,

where 0 < q < 1. Here, we denote V1 =
(

∂ ln Tq,1
∂λ ,

∂ ln Tq,1
∂α1

)
and V2 =

(
∂ ln Tq,2

∂λ ,
∂ ln Tq,2

∂α2

)
, and

then Var
(

ln T̂q,1

)
and Var

(
ln T̂q,2

)
can be approximated by the delta method as follows:

var
(
ln Tq,1

)
= V 1 I−1(β1)V T

1 , var
(
ln Tq,2

)
= V 2 I−1(β2)V T

2 .

For further development, I−1(β1) and I−1(β2) can be given as follows:

I−1(β1) =

[
I11 I12
I21 I22

]
and I−1(β2) =

[
I11 I13
I31 I33

]
and

∂ ln Tq,k
∂αk

= (1−q)
1

αk ln(1−q)(
−1+(1+q)

1
αk

)
αk

2 ln
(

1−(1−q)
1

αk

) ,
∂ ln Tq,k

∂λ = 1
λ , (k = 1, 2).

Based on the criteria discussed above, we illustrate the content of the optimum cen-
soring scheme, employing the real datasets related to gauge lengths of 10 mm and 20 mm,
which are described in the previous section. For Criterion 5, the ω and q are taken as 0.5
and 0.05. Then, the values of the greatest eigenvalue

(
I−1(θ̂)

)
, trace

(
I−1(θ̂)

)
, det

(
I−1(θ̂)

)
,

and trace
(

I(θ̂)
)
, as well as C5, are recorded in Table 12. According to Table 12, we conclude

that censoring scheme 2 is the optimal scheme in terms of criteria 1, 2, 3, and 4. Furthermore,
scheme 3 is the optimal scheme for criterion 5 at ω = 0.5.
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Table 12. Selection of optimum censoring scheme based on different criteria.

Censoring Scheme Criterion 1 Criterion 2 Criterion 3 Criterion 4 Criterion 5

R1 = (9, 1(8)) 1.456742 × 10−6 0.07111649 0.05996095 475.8505 0.1896620
R2 = (2(5), 3, 2(3)) 2.072309 × 10−7 0.02329576 0.05948553 902.4102 0.1402625
R3 = (6, 7, 1(7)) 3.260692 × 10−6 0.08255037 0.06397661 380.0584 0.1001845

7. Conclusions

Throughout this article, the analysis of the B-JPC scheme for different populations
is considered. Suppose that the lifetime distributions of the products from two different
populations follow a GIED with different shape parameters but the same scale parameter.
Here, the MLEs of parameters along with the corresponding 95% confidence intervals
are obtained, and the existence and uniqueness of MLEs are proved. Assuming that the
shape parameters jointly follow an ordered Beta-Gamma prior and the common scale
parameter follows a Gamma prior, the Bayesian estimates are derived by importance
sampling technique and the corresponding 95% HPD credible intervals are also constructed.
The above prior assumptions are commonly used in the statistical inference process and
the order restriction inference between the different shape parameters is considered.

Through a considerable amount of simulation study, we find that the performance
of Bayesian estimators of the IP is significantly superior to that concerning NIP for point
estimation based on the MSE and average estimate. Then, the performance of Bayesian
estimators concerning NIP performs better than that of MLEs with respect to MSE and
standard error. In terms of coverage percentage, the credible intervals for the IP are better
than those of the NIP. However, the MLEs have longer ALs and higher CPs of CIs than those
of the other two methods. It is also observed that if there is an order restriction considered
for two shape parameters, we suggest employing it, because the inference result of this
method is much better than that of other methods. Finally, we set some precision criteria
to compare the various censoring schemes and obtain an optimum censoring scheme. In
this paper, it is found in the derivation that when the order restriction of parameters is
considered in the classical framework, the form of the function is complex and it is difficult
to prove the existence and uniqueness of MLEs. On the contrary, the above content is
easier to calculate in the Bayesian framework. Of course, all inference processes can be
extended to a classical framework in future research, and there is more work to be done in
that direction.
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Appendix A

Appendix A.1. When the Scale Parameter λ Is Known

Based on the known scale parameter λ, the joint posterior distribution of parameters
α1 and α2 is obtained as (19). Here, the HPD credible intervals along with the Bayesian
estimates can be derived by the importance sampling technique, and we can employ
Algorithm A1 to achieve the above purposes.
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Algorithm A1: The application of the importance sampling technique in

Bayesian estimates and HPD credible intervals for known λ.
Step 1: Under the given data, α1 and α2 are generated from π0(α1, α2|λ, data).

Step 2: Repeat step 1 and 2 M times to acquire ((α11, α21), · · · , (α1M, α2M)).

Step 3: To acquire Bayesian estimates about g(α1, α2), we calculate (h01, · · · h0M)

and

(g1, · · · , gM). Here, h0i = h0(α1i, α2i) and gi = g(α1i, α2i).

Step 4: The approximate Bayesian estimate about g(α1, α2) is given by

ˆgIS(α1, α2) =
∑M

i=1 gih0i

∑M
i=1 h0i

.

Step 5: To obtain the 100× (1− γ)% CIs of α1 and α2, arrange α1(1) < · · · < α1(M)

and

α2(1) < · · · < α2(M) are the ordered value of αi1, αi2, · · · , αiM (i = 1, 2).

The

100× (1− γ)% HPD credible intervals of α1, α2 for a significance

0 < γ < 1 are

constructed as
(

α1(j), α1(j+[M(1−γ)])

)
,
(

α2(j), α2(j+[M(1−γ)])

)
, where j

satisfies that

α1(j+[M(1−γ)]) − α1(j) = min
1≤i≤Mγ

(
α1(i+[M(1−γ)]) − α1(i)

)
; j = 1, 2, . . . , M

α2(j+[M(1−γ)]) − α2(j) = min
1≤i≤Mγ

(
α2(i+[M(1−γ)]) − α2(i)

)
; j = 1, 2, . . . , M

where [y] is the integer part of y.

Appendix A.2. When the Scale Parameter λ Is Not Known

Based on the unknown scale parameter λ, we express the joint posterior distribution
of λ, α1, and α2 as (21). Furthermore, the HPD credible intervals along with the Bayesian
estimates are derived by the importance sampling technique, where Algorithm A2 is
employed to achieve the above purposes.
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Algorithm A2: The application of the importance sampling technique in

Bayesian estimates and HPD credible intervals for unknown λ.
Step 1: Under the observed given data, λ is generated from π1(λ|data).

Step 2: Based on the known λ, the α1 and α2 are obtained from π0(α1, α2|λ, data).

Step 3: Repeat step 1 and 2 M times to acquire

((λ1, α11, α21), · · · , (λM, α1M, α2M)).

Step 4: To acquire the Bayesian estimate about g(λ, α1, α2), the (h01, · · · h0M) and

(g1, · · · , gM) are calculated. Here h0i = h0(λi, α1i, α2i) and gi = g(λi, α1i, α2i).

Step 5: The approximate Bayesian estimate about g(λ, α1, α2) is given by

ˆgIS(λ, α1, α2) =
∑M

i=1 gih0i

∑M
i=1 h0i

.

Step 6: To obtain the 100× (1− γ)% CIs of all parameters λ, α1 and α2, arrange

α1(1) < · · · < α1(M) and α2(1) < · · · < α2(M) be the ordered value of αi1,

αi2, · · · ,
αiM (i = 1, 2). Where the 100× (1− γ)% HPD credible intervals of

parameters

λ, α1 and α2 for 0 < γ < 1 are given by
(

λ(j), λ(j+[M(1−γ)])

)
,(

α1(j), α1(j+[M(1−γ)])

)
and

(
α2(j), α2(j+[M(1−γ)])

)
, here j satisfies that

λ(j+[M(1−γ)]) − λ(j) = min
1≤i≤Mγ

(
λ(i+[M(1−γ)]) − λ(i)

)
; j = 1, 2, . . . , M

α1(j+[M(1−γ)]) − α1(j) = min
1≤i≤Mγ

(
α1(i+[M(1−γ)]) − α1(i)

)
; j = 1, 2, . . . , M

α2(j+[M(1−γ)]) − α2(j) = min
1≤i≤Mγ

(
α2(i+[M(1−γ)]) − α2(i)

)
; j = 1, 2, . . . , M

where [y] is the integer part of y.
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