
Citation: Aboaoja, F.A.; Zainal, A.;

Ali, A.M.; Ghaleb, F.A.; Alsolami, F.J.;

Rassam, M.A. Dynamic Extraction of

Initial Behavior for Evasive Malware

Detection. Mathematics 2023, 11, 416.

https://doi.org/10.3390/math11020416

Academic Editors: Oliviu Matei

and Rudolf Erdei

Received: 23 November 2022

Revised: 30 December 2022

Accepted: 4 January 2023

Published: 12 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Dynamic Extraction of Initial Behavior for Evasive
Malware Detection
Faitouri A. Aboaoja 1,*, Anazida Zainal 1 , Abdullah Marish Ali 2 , Fuad A. Ghaleb 1 , Fawaz Jaber Alsolami 2

and Murad A. Rassam 3

1 Faculty of Computing, Universiti Teknologi Malaysia, Iskandar Puteri 81310, Malaysia
2 Department of Computer Science, Faculty of Computing and Information Technology,

King Abdulaziz University, Jeddah 21589, Saudi Arabia
3 Department of Information Technology, College of Computer, Qassim University,

Buraidah 51452, Saudi Arabia
* Correspondence: faitouri@graduate.utm.my

Abstract: Recently, malware has become more abundant and complex as the Internet has become more
widely used in daily services. Achieving satisfactory accuracy in malware detection is a challenging
task since malicious software exhibit non-relevant features when they change the performed behaviors
as a result of their awareness of the analysis environments. However, the existing solutions extract
features from the entire collected data offered by malware during the run time. Accordingly, the actual
malicious behaviors are hidden during the training, leading to a model trained using unrepresentative
features. To this end, this study presents a feature extraction scheme based on the proposed dynamic
initial evasion behaviors determination (DIEBD) technique to improve the performance of evasive
malware detection. To effectively represent evasion behaviors, the collected behaviors are tracked by
examining the entropy distributions of APIs-gram features using the box-whisker plot algorithm. A
feature set suggested by the DIEBD-based feature extraction scheme is used to train machine learning
algorithms to evaluate the proposed scheme. Our experiments’ outcomes on a dataset of benign
and evasive malware samples show that the proposed scheme achieved an accuracy of 0.967, false
positive rate of 0.040, and F1 of 0.975.

Keywords: malware analysis approaches; machine learning-based malware detection models; evasive
malware; feature extraction methods; box-whisker plot algorithm

MSC: 68T10

1. Introduction

Malware, i.e., malicious software, is a common term for several computer attacks.
Several malware types, e.g., Trojans, can make attacks, such as viruses, rootkits, worms,
spyware, or others [1]. Whereas the malware classes have been developed continuously, the
malware detection models sound incapable of preventing all the threats and harm caused
by malicious software. As stated by Kaspersky Labs in their report [2], there may have been
approximately 5,638,828 unique computers that have been compromised. Additionally, [3]
in 2017 reported a 36% increase in attack occurrences every day. Therefore, Cybersecurity
Ventures’ Official Annual Cybercrime estimated in their report [4] that the cost attributed
to these system attacks will be around 6 trillion US dollars in 2021.

Although, previous malware authors developed malicious software without compli-
cating their malicious code. Recent malware have been engineered to remain undetected.
Existing malware authors employ obfuscation and evasion tactics, resulting in more intel-
lective and dynamic malware which causes low detection accuracy of malware detection
models [5,6]. Investigating the deployment of approximately 45,375 malware samples,
ref. [7] declared that the usage of evasion techniques has increased by 12% among malware

Mathematics 2023, 11, 416. https://doi.org/10.3390/math11020416 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11020416
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-0022-3039
https://orcid.org/0000-0001-6676-7456
https://orcid.org/0000-0002-1468-0655
https://orcid.org/0000-0002-0396-1347
https://orcid.org/0000-0003-3558-6737
https://doi.org/10.3390/math11020416
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11020416?type=check_update&version=2

Mathematics 2023, 11, 416 2 of 23

in the last ten years, and the evasion techniques have been used by 88% of malware at the
end of 2019 utilizing new evasion techniques instead of the old ones. Subsequently, the
majority of malicious software consists of at least one evasion technique.

Many researchers have investigated different analysis approaches, including static,
dynamic, and hybrid, to extract representative features to improve the detection accuracy.
Static analysis extracts features from the malware executive files, the portable excitable
(PE) files, without running the malware samples. In contrast, dynamic analysis extracts
features from malware behavioral activities in real-time by running them in an isolated
environment [8]. Even though static analysis is safer than dynamic and can investigate
multiple execution paths, it is an insufficient approach with encrypted malware. In contrast,
dynamic analysis is less safe than static analysis due to the malware being examined in
real-time. Numerous studies [9–11] have shown that dynamic analysis is more resistant
than static analysis and provides a more trustworthy detection performance. However,
dynamic analysis is ineffective in producing all the malicious activities because its limited
time prevents execution for all the potential paths [12]. In addition, in most cases, dynamic
analysis cannot find malicious behaviors related to evasive malware that are context-aware.
A malware checks the authenticity of the execution environment before the attack [13].
Using static and dynamic data as hybrid data has been conducted by some researchers to
benefit from the advantages of both analysis approaches. Still, besides the advantages, the
hybrid analysis approach also gathers the disadvantages of both analysis approaches. Using
static and dynamic data, malware can be detected utilizing signature-based, behavioral-
based, and heuristic-based approaches. However, each one of those approaches has its
drawbacks, e.g., it is extremely difficult to detect unknown malware using the signature-
based approach [14,15], more time and resources are required in the behavioral-based
approach [16], and the heuristic-based approach is restricted to detect only malicious
behaviors that are represented in the generated rules [17].

Most of the recent research [8,18–21] developed behavioral malware detection models
to render the proposed models more effective and capable of detecting unknown malware
behaviors. However, modern malware is capable of detecting the analysis environment
and thus executes alternative legitimate behaviors [22] to conceal malicious activities. That
is to say, based on the initial exploring the environment, a malware may display legitimate
behaviors and, stop execute the malicious code or continue their activities using fewer, yet
unrepresentative functions [20,23–25]. Thus, collecting the entirety of features offered by
the malware during the run time misleads the machine learning techniques to train less ef-
fective classifiers. Even selecting the features based on frequencies, weights, or appearance
leads to creating a feature set that contains unrepresentative behaviors belonging to the
evasive malware when they identify the nature of the execution environment and perform
alternative behaviors.

In this perspective, our paper aimed at extracting the features in the initial part of
the execution time (the pre-attack stage). More specifically, we aim to determine the
border between representative and unrepresentative data in the entire data shown by the
evasive malware samples during their execution to extract only the part that contains the
representative data. To this end, this study suggests a feature extraction scheme based on
the proposed dynamic initial evasion behaviors determination (DIEBD) technique. The API
calls sequence in terms of time series data containing the API calls based on their occurrence
during the execution. To extract a feature set by which the evasion behaviors are sufficiently
represented, the entropy values of sliding windows through the API sequence are calculated
to represent the change in the API distribution and thus detect the behavioral change point
in the concerned API call sequence. The entropy value of each time window measures the
data distribution of the API calls. Consequently, the box-whisker plot algorithm is utilized
to keep track of the constructed sliding windows in each API sequence and evaluate their
entropy values to determine the sliding window where behavior starts to change. To the
best of our knowledge, the proposed (DIEBD)-based feature extraction scheme considers
the changing behavior window as an indicator of the start of the unrepresentative data,

Mathematics 2023, 11, 416 3 of 23

which may be noise, legitimate behaviors, or repeated behaviors. Finally, in the detection
stage, the state-of-the-art machine learning algorithms are trained and evaluated using
the features that are suggested by the proposed scheme. The experimental result shows
that the proposed feature extraction scheme can reinforce the developed model to detect
evasive malware effectively. The contributions of this paper are summarized as follows:

1. A feature extraction scheme based on a dynamic initial evasion behaviors determi-
nation (DIEBD) technique was proposed to extract the features by which the initial
evasion behaviors were presented by effectively identifying the boundaries between
the initial evasion behaviors and the unrepresentative behaviors in each instance.

2. A malware detection model was developed using state-of-the-art machine-learning
techniques to validate and evaluate the proposed scheme, conducting an in-depth
comparative analysis between the proposed DIEBD-based feature extraction scheme
and the recent related feature extraction schemes in terms of the obtained classification
accuracy and other detection metrics.

3. A comprehensive experimental evaluation was carried out demonstrate the improve-
ment that the DIEBD-based feature extraction scheme had made.

The rest of this paper is organized as follows: the related work is highlighted in
Section 2, while in Section 3 the evasion attack scenario is introduced. Section 4 shows
the framework used in this paper. The experimental design is presented in Section 5, and
the result analysis and discussion are addressed in Section 6. This paper is concluded in
Section 7.

2. Related Work

A few studies, such as [23,24], have concentrated on evasive malware behaviors anal-
ysis to estimate the increase in malware behaviors complexity and sophistication. While
P. Rodrigo et al. in [23] demonstrated that anti-VM evasion techniques are available in
more than 81% of the database of 4 million malware samples, ref. [24] performed static
analysis to investigate over 17,000 malware samples for the presence of evasion techniques.
It was found that both generic and sophisticated malware are increasingly employing
evasion techniques, such as anti-debugging and anti-VM. On the other hand, to examine
the dynamism of malicious behaviors, ref. [26] applied a virtual environmental condition
generator (VECG) to provide multiple environments and gather malicious behaviors un-
der various conditions. The most common behaviors were selected to generate a unique
signature for each family, with the result that their proposed model was shown to be 97%
accurate. Another study by [22] designed the cheating engine SCARECROW, which simu-
lated the common features of the analysis environments that have been observed by the
evasive malware. SCARECROW is installed on the end host machine to convert it into sim-
ilar analysis environment features in order to deceptively deactivate the evasive malware.
Since it is a heavy duty to simulate all the fingerprinting of the analysis environment at the
same time, the evaluation of SCARECROW provided an accuracy of 89%. Additionally,
malware can easily detect the existence of SCARECROW when they investigate if their
running environment reflects multiple virtual environment features from several sources
like VMware and VirtualBox.

Studies in [7,13,27] introduced a particular way to detect evasive malware through
designing and developing transparent analysis environments. Ref. [27] constructed an
indistinguishable analysis environment. They presented BareCloud, with no in-guest mon-
itoring components, as an evasive malware detection system by comparing the malware
behaviors that were obtained on the BareCloud system with the behaviors that were cap-
tured on virtual-based systems. Further, MORRIGU is designed and developed by [13]
in their work as a transparent analysis environment, which matches both automated and
human-driven analysis based on five different common evasion techniques to classify
evasive malware. Ref. [7] developed an evasion techniques analysis framework that can
analyze the executable files in four levels of instruction, APIs, sys calls, and memory access
and circumvent the malicious samples through hiding the control environments related

Mathematics 2023, 11, 416 4 of 23

artifacts for 92 evasion techniques that were collected from the published studies. To evalu-
ate the proposed analysis framework, a total of 45,375 malware samples and 516 benign
samples are collected and analyzed using the proposed framework. On the other hand,
several studies, such as [28–30], have been conducted to design and develop malware de-
tection and classification models with no regard to evasive malware by removing malware
samples capable of performing evasion techniques.

Most of the existing studies [8,18–21,31] applied the cuckoo sandbox as a malware
analysis environment to recognize malware class characteristics using behavioral-based
malware detection models. Ref. [18] built their proposed behavioral model based on a
collection of API calls using malware and benign samples during the run time. Further,
the most commonly used APIs were categorized into groups according to the data flow
dependencies to construct sequence traces, which were then passed into the heuristic
function to generate the corresponding actions. Malware and legitimate behaviors were
represented based on binary vectors depending on the presence of each action in benign and
malicious samples. Authors in [19] collected the API calls at the user level, and system calls
at the kernel level using the cuckoo sandbox and kernel driver, respectively. Furthermore,
feature ranking was used to select the optimal feature set, which was represented using
the frequency histogram method. As a result of training and evaluating several machine
learning classifiers, random forest (RF) has achieved the best performance based on the
integrated user and kernel features.

On the other hand, based on temporal patterns, ref. [31] introduced a malware detec-
tion framework that relies on temporal abstraction and time interval techniques to discretize
the API call occurrence values and create the interval patterns, respectively. Furthermore, a
predefined threshold is used to specify the most frequent temporal patterns in each class.
To evaluate the proposed temporal pattern features, temporal probabilistic profile (TPF)
classifiers and machine learning classifiers, namely SVM, LR, and NB, are trained using
non-time-based, order-based, and temporal pattern datasets. As a result, the developed
models with temporal patterns provide the best performance.

Based on different behavioral features, API calls, network activities, and readable
strings, ref. [8] established a behavioral-based malware detection model. The string features
were extracted and selected using text mining and singular value decomposition (SVD)
techniques, respectively. Furthermore, based on the integrated feature set, ensemble-based
machine learning algorithms were trained and assessed to obtain an accuracy of 99.54%. In
addition, ref. [20] implemented a malware detection model based on the n-gram technique,
which was used to extract the dynamic API calls. Subsequently, TF-IDF is used to select
only the irrelevant n-grams that were transformed into binary vectors used later to train
the machine learning classifiers. As an outcome, the Logistic Regression (LR) classifier
seemed to have the highest accuracy of 98.4%. Moreover, ref. [21] created a dataset by
running over 20,000 samples covering eight malware families in the Cuckoo sandbox to
acquire API call sequences. During the training phase, the behaviors of each malware
family are constructed using the long-short-term memory (LSTM) algorithm. The proposed
model, according to their findings, has an accuracy range of 83.5–95.5%. In [32], the authors
examined natural languages processing techniques such as TF-IDF, paragraph vectors with
(the PV-DM Distributed Memory Model, and (PV-DBOW) Distributed bag of words by
using these techniques as vectorizers to transfer the API sequence into vectors that are fed
into machine learning algorithms for training and testing purposes. The highest accuracy
of 99% was obtained by the SVM support vector machine classifier using TF-IDF as the
vectorizer technique.

However, detecting evasive malware by comparing malware behaviors obtained
on various platforms to identify the deviation in such behaviors as evasion behaviors
leads to capturing the inefficient behaviors when the malware recognizes the nature of all
those environments, especially all the environments employing emulated or visualized
components. Additionally, this approach suffers from missing the unknown evasion
techniques that are not circumvented by those instrumented environments. Moreover,

Mathematics 2023, 11, 416 5 of 23

constructing transparent analysis environments suffered from several weaknesses, such as
malware may be capable of detecting the analysis environments in terms of user activity
conditions. Furthermore, while the transparent analysis environments are thought to be
indistinguishable, there is a chance of being recognized by malware when specific software
and hardware are examined [27]. Additionally, the transparent analysis environments are
designed and developed based on identified evasion techniques that have been known by
researchers and used when those environments modify specific parameters to trigger the
malicious behaviors to be appearing or hiding the predefined controlled environments-
related artifacts that are often looked for by evasive malware. As a result, that analysis
environment failed to trigger the extremely sophisticated malware that uses unknown
evasion techniques to exhibit its malicious activities and thus the malicious behaviors
related to the evasive malware looked unlike artifacts [13,33]. Moreover, temporal pattern-
based models suffer from high misclassification rates when they deal with malware that
performs similar legitimate behaviors. On the other hand, collecting the entire runtime
malware behaviors without considering the effect of evasion tactics, which are extensively
employed by malware to determine the nature of the execution environment, and hence
hide, change, or stop their activities, leads to capturing unrepresentative data from which
the developed model can be learned how to inaccurately detect that sophisticated malware.
By observing the problem that was mentioned, this research aims to determine the border
between representative and unrepresentative data for each evasive malware sample.

3. Evasive Malware Behaviors

To increase the potential of the weapon’s effectiveness in malicious activities, the
evasive malware benefits from achieving the evasion techniques to be capable of evading
the detection and thus identifying that they are being executed in an isolated environment
such as a cuckoo sandbox, which is distinguishable from the real machine [34]. The
malicious software looks for specific indicators using evasion techniques to recognize
that they are being analyzed. Practically, anti-analysis techniques are applied to discover
hardware characteristics related to analysis environments, installed tools, processes and
services, serial numbers or MAC addresses, and registry entries to determine whether
malware is being operated in a sandbox or not [30].

Even though the evasion techniques are utilized by few legitimate software to pro-
tect intellectual property, N. Galloro et al. in [7] remarked that the evasion techniques
that benign samples have never used are those often used by malware samples. Such
kinds of malware recognize the nature of the execution environments by checking the
system artifacts like the virtual environment processors, hardware ID, and human interac-
tions [13,35–42]. Subsequently, the evasion techniques are utilized to detect registry data,
downloaded applications or monitoring tools, processes, services, serial numbers or MAC
addresses, and memory architecture, all of which indicate that the malware is processed in
virtual environments [30].

Moreover, another strategy has been used by the evasive malware to avoid detection
when this malware waits for a specific time period before they execute the malicious activi-
ties [13]. In addition, part of the evasive malware usually waits for a particular event number,
whether keyboard or mouse, to be done through their network communication as a condi-
tion for starting their malicious behaviors; otherwise, they act benignly [13,26]. In addition,
time-based evasion techniques have been exploited by evasive malware for measuring
time-flow and CPU clock ticks to discover the existence of an analysis environment due to
most analysis tools causing a slowdown during the execution of the processes [7]. Malware
frequently uses this tactic by checking a threshold for how long a series of activities take to
be performed (e.g., invoking library functions, or making system calls) [36].

On the other side, our claim to detect the evasive malware at an early stage is built
based on the result of [43,44], whose work that showed that most of the behaviors that
appeared by malicious samples in a sandbox are observed during the first two minutes
of execution. To the best of our knowledge, evasive malware needs to apply its evasion

Mathematics 2023, 11, 416 6 of 23

techniques during execution (logically at the beginning of their executions) to determine
whether they are being executed in an analysis environment or not. As a result of the
inspection stage, the evasive malware either performs malicious activities or alternative
behaviors, such as executing as legitimate, stopping, or continuing their malicious activities
with fewer functions [20,23–25]. Therefore, the constructed API call sequences contain
consecutive different behaviors, which are the inspection behaviors at the beginning of the
execution and either malicious or alternative behaviors after the malware identifies the
execution environment execution.

Based on such an attack scenario, this study assumes that these consecutive behaviors
offer API calls that are called in different distributions. Therefore, an entropy analysis is
conducted to measure the distribution of each API call in the API call sequence. The main
idea is that the change in the entropy value means an alteration in API call distributions,
which indicates that different behavior is performed by the concerned instance. Accordingly,
our hypothesis is established to identify when the attack behavior starts to change and
considers the changing point as a border between the evasion behaviors and the next
alternative behaviors. Therefore, we propose our DIEBD-based feature extraction scheme
to collect the representative evasion behaviors from which the representative feature set is
extracted based on the execution point that reflects the change in the behavior.

In our constructed dataset, as cases for evasion behaviors, the instances with the IDs
30, 145, and 7392 opened the Bois information registry key using the NtOpenKey() API
call and read the system start-up information using the NtQueryValueKey() API call to
determine whether they were being analyzed or not because bios information, such as the
BOIS version for the virtual environments, is distinguishable. In addition, the malware
instances numbered 608, 668, and 10,331 performed the IsDebuggerPresent() call to read
the field “Being debugged” in the Process Environment Block (PEB) structure that exists
with each process, and thus recognize if the execution environment is an isolated or real
environment. Moreover, the NtDelayExecution() call was frequently achieved by malware
samples with IDs of 4 and 8119 at the beginning of their execution to attempt to stall the
execution for a long time period without showing malicious behaviors. Both instances
under IDs 197 and 7650 intermittently used the GetCurseorPos() call to estimate the reality
of mouse movement. To retrieve system information, such as the number of processor
cores, which vary between the real and analysis environments, some malware samples,
such as 86 and 152, performed the GetSystemInfo() call.

Figures 1 and 2 show, respectively, the entropy-based API call distribution for benign
and malware samples. The figures illustrate how the API calls distribution can be visualized
using the entropy values of each API call that are arranged in slide windows with a width
of 100. The axis X represents the number of the API call, while the axis Y represents the
entropy value of that API call. The labeled numbers in both figures represent the ID of
the samples whose behaviors are displayed in the figures. Figure 1 demonstrates that the
behaviors of benign samples are gradually changed between the initial and the end stages
of execution. In contrast, almost all the malware samples in Figure 2 start the execution
with behaviors that differ from their next stage execution behaviors. As a result of the
sharp change in the malware behaviors that take place suddenly, the change behavior
point (window) can be recognized. Therefore, the sharp behavior change points that are
offered by malware samples can be used as indicators to determine the boundary of the
evasive behaviors.

Mathematics 2023, 11, 416 7 of 23

Mathematics 2023, 11, x FOR PEER REVIEW 7 of 23

Figure 1. Entropy-based API call distribution of benign.

Figure 2. Entropy-based API call distribution of malware.

4. The Framework
Figure 3 shows an overview of the suggested framework. First, the evasive malware

and benign samples are executed and monitored with the help of the cuckoo sandbox, and
then JSON reports are obtained. Second, a Python module has been developed to collect
the raw data, which consists of API calls that are invoked by each evasive malware and
benign sample in the form of an APIs sequence for each sample. Third, the distribution of
data is estimated by calculating the entropy value for each window in the obtained API
sequences. Fourth, to identify the behavior-changing window as the starting point of the
alternative behaviors of evasive malware, the box-whisker plots algorithm is imple-
mented to produce a dynamic evasion behaviors dataset. Finally, machine learning clas-
sifiers are trained and tested based on the final dynamic evasion behaviors dataset to eval-
uate our proposed scheme.

Figure 1. Entropy-based API call distribution of benign.

Mathematics 2023, 11, x FOR PEER REVIEW 7 of 23

Figure 1. Entropy-based API call distribution of benign.

Figure 2. Entropy-based API call distribution of malware.

4. The Framework
Figure 3 shows an overview of the suggested framework. First, the evasive malware

and benign samples are executed and monitored with the help of the cuckoo sandbox, and
then JSON reports are obtained. Second, a Python module has been developed to collect
the raw data, which consists of API calls that are invoked by each evasive malware and
benign sample in the form of an APIs sequence for each sample. Third, the distribution of
data is estimated by calculating the entropy value for each window in the obtained API
sequences. Fourth, to identify the behavior-changing window as the starting point of the
alternative behaviors of evasive malware, the box-whisker plots algorithm is imple-
mented to produce a dynamic evasion behaviors dataset. Finally, machine learning clas-
sifiers are trained and tested based on the final dynamic evasion behaviors dataset to eval-
uate our proposed scheme.

Figure 2. Entropy-based API call distribution of malware.

4. The Framework

Figure 3 shows an overview of the suggested framework. First, the evasive malware
and benign samples are executed and monitored with the help of the cuckoo sandbox, and
then JSON reports are obtained. Second, a Python module has been developed to collect
the raw data, which consists of API calls that are invoked by each evasive malware and
benign sample in the form of an APIs sequence for each sample. Third, the distribution of
data is estimated by calculating the entropy value for each window in the obtained API
sequences. Fourth, to identify the behavior-changing window as the starting point of the
alternative behaviors of evasive malware, the box-whisker plots algorithm is implemented
to produce a dynamic evasion behaviors dataset. Finally, machine learning classifiers are
trained and tested based on the final dynamic evasion behaviors dataset to evaluate our
proposed scheme.

Mathematics 2023, 11, 416 8 of 23
Mathematics 2023, 11, x FOR PEER REVIEW 8 of 23

Figure 3. An overview of the framework.

4.1. Raw Data Collection
The API calls and their parameters are written and arranged according to their occur

time in the form of JSON files by running the evasive malware and benign samples one
by one in the cuckoo sandbox, which is a widely used simulator and analysis tool in the
malware detection community [45–48]. Consequently, a python language module is de-
veloped and applied to generate an evasive malware dataset comprising the sample IDs
and the corresponding API sequence that is organized depending on the time of occur-
rence of each API call during the run time of that executable file, resulting in Coma sepa-
rated value (CSV) file as a database holding the sequences of API calls that are invoked
by each evasive malware and benign sample. We picked API call sequences as malicious
attributes because the order in which they are called reveals how malware interacts with
an operating system, such as file IO, registry read/write, and so on [32]. Behavioral data
generated from the dynamic analysis could have both representative data where the mal-
ware still examines the execution environment and unrepresentative data when the mal-
ware already recognizes the existence of the analysis environment.

Figure 3. An overview of the framework.

4.1. Raw Data Collection

The API calls and their parameters are written and arranged according to their occur
time in the form of JSON files by running the evasive malware and benign samples one
by one in the cuckoo sandbox, which is a widely used simulator and analysis tool in
the malware detection community [45–48]. Consequently, a python language module is
developed and applied to generate an evasive malware dataset comprising the sample IDs
and the corresponding API sequence that is organized depending on the time of occurrence
of each API call during the run time of that executable file, resulting in Coma separated
value (CSV) file as a database holding the sequences of API calls that are invoked by each
evasive malware and benign sample. We picked API call sequences as malicious attributes
because the order in which they are called reveals how malware interacts with an operating
system, such as file IO, registry read/write, and so on [32]. Behavioral data generated
from the dynamic analysis could have both representative data where the malware still
examines the execution environment and unrepresentative data when the malware already
recognizes the existence of the analysis environment.

4.2. Data Pre-Processing

The data pre-processing stage contains two steps: calculating the window-based
entropy values and capturing the representative behaviors based on the changes in the

Mathematics 2023, 11, 416 9 of 23

behaviors at each behavior sequence, which are considered as boundaries separating the
evasion behaviors from the unrepresentative behaviors executed after the concerned in-
stances recognize the nature of the execution environment. The collected data appear to
contain both representative and non-representative data since evasive malware perform
real behaviors as long as they do not recognize the characteristics of the execution environ-
ment, and alternative behaviors are performed when they determine that their execution
environment is an analysis environment and then regenerate their behaviors to be similar
to legitimate behaviors [8,12,18], or stop running by repeating some operations to consume
the time, and provide noisy behaviors [49–51]. As a result, determining the boundary
between the representative and the unrepresentative data directly is problematic.

4.2.1. Sliding Window-Based Entropy

We assume that there is a variation between the distribution of the API calls that
appeared in the representative data part (evasion behaviors) and those that appeared in the
unrepresentative data part (alternative behaviors). The entropy values have been calculated
to represent the changes that potentially occur in the sequential data distributions [8,52,53].
Such studies inspire us to divide each API call sequence into API windows with a width of
100 to create a sequence of windows for each instance, where each window contains the
same number of API calls n = 100 and the step that represents the distance between the
current window and the next window equals 50, which produce overlapping windows
sequence. We found in our experiments that the larger window sizes are insufficient for the
short sequences. Furthermore, smaller window sizes may be more sensitive than larger
window sizes to recognize the periods at which behavior changes. Consequently, using
the entropy library from Python language, the entropy value of each window is calculated
utilizing the following Equation (1):

H(x) = −∑n
i=1 p(i).logp(i) (1)

where H(x) represents the measured entropy value, p(i) indicates the proportion of ith API
in the series of API windows that represent the API sequence of a specific sample, n is the
total number of API call in each API sequence. The entropy distribution calculation process
is shown in Figure 4.

4.2.2. Change Detection-Based Behavioral

Temporal analysis of the windows sequence is performed in the second step by
tracking the deviation of the entropy values that are calculated for each window. The box-
whisker plot algorithm is used to examine the variation in entropy values for the windows
in the generated sequence to find the window that displays the behavior-changing point
from which the evasive malware starts to perform another behavior different from the
previous behaviors, so our assumption considers the gained detection point as a boundary
between the evasion behaviors by which the evasive malware try to know the nature of the
environment and the next behavior of that instance after the environment investigation
step. The box-whisker plot is a non-parametric quantitative technique for presenting time
series data elements without knowing their internal representation or distribution [54]. The
box-whisker plot evaluates each window according to that window’s generated temporal
summary components. The created box-whisker-plot temporal summary for each window
contains the four components, which are the median (µk), the entire quartile range (IQR),
the upper limit (UL), and the lower limit (LL). As a result, Equation (2) can be used to
describe the sequential summary of each window.

TSk(i) =

µk = (Q1 + Q3)/2
IQR = (Q3−Q1)

UL = Q3 + (K ∗ IQR)
LL = Q3− (K ∗ IQR)

(2)

Mathematics 2023, 11, 416 10 of 23

where Q1 and Q3 represent the first and third quartile, respectively, K refers to a constant
value, and TS denotes the temporal score of the received ith windows sequence from the
sample k. Therefore, by comparing the entropy value of each window to the upper and
lower limit (UL, LL), the algorithm can identify if the received entropy is still in or out
of the determined entropy range of the previously created windows sequence, and thus
move to the next window in case the current entropy value still includes the entire entropy
range of the previously obtained windows, or stop at this window to be the last window in
the created API calls list in case the entropy value is out of the range of the entire entropy
range, and then cut out the API call sequence from the point at which the changing entropy
value is appearing in.

Mathematics 2023, 11, x FOR PEER REVIEW 10 of 23

Figure 4. Entropy distribution representation.

4.2.2. Change Detection-Based Behavioral
Temporal analysis of the windows sequence is performed in the second step by track-

ing the deviation of the entropy values that are calculated for each window. The box-
whisker plot algorithm is used to examine the variation in entropy values for the windows
in the generated sequence to find the window that displays the behavior-changing point
from which the evasive malware starts to perform another behavior different from the
previous behaviors, so our assumption considers the gained detection point as a boundary
between the evasion behaviors by which the evasive malware try to know the nature of
the environment and the next behavior of that instance after the environment investiga-
tion step. The box-whisker plot is a non-parametric quantitative technique for presenting
time series data elements without knowing their internal representation or distribution
[54]. The box-whisker plot evaluates each window according to that window’s generated
temporal summary components. The created box-whisker-plot temporal summary for

Figure 4. Entropy distribution representation.

Mathematics 2023, 11, 416 11 of 23

4.3. Feature Extraction and Representation

The n-gram technique has been proposed by several studies [55–58] for extracting
sub-text features with length N from the original string. In our study, we extract 2-g from
the API sequences of each evasive malware and benign sample in our database. We picked
the n-gram-based API sequence feature because malware must call multiple API calls
rather than a single API call to execute their damage [47]. Therefore, the corresponding
n-gram-based API sequence features must be valuable in understanding and modelling
malicious behavior.

In addition to converting the received text data into numerical data, which is a suitable
form to be fed into machine learning techniques, the term frequency-inverse document
frequency (TF-IDF) technique has been implemented in our feature extraction and repre-
sentation stage [21]. TF-IDF works based on the basic concept that a text that occurs in
almost all the executable files is not a useful determiner, so it must acquire less weight than
one that occurs in a few files [59]. Weight-based vector with length of 1150, which provides
the best performance, is generated to represent the extracted behaviors of each sample.
This study determined the size of 2 for the n-gram technique because the total number
of the generated features is sharply increased when the n-gram size is increased [47,53]
and thus, more processing time is required. Therefore, a high dimensionality of the feature
set is the main cause behind developing an overfitting model [60,61]. This paper used
2-g rather than 1- as both are small sizes of n-gram because there are dependencies when
neighboring API calls [62]. These dependencies can create a semantic relationship between
the consecutive API calls when taking the sub-sequences of API calls as features instead of
considering each feature as an independent feature.

We compute the TF-IDF for each developed text feature (n-gram) utilizing the follow-
ing mathematical equation:

TF− IDF = TF(i, j)× DF(i) (3)

where TF − IDF represents the computed weight of each 2-g-based feature, TF(i, j) and
IDF(i) are calculated using Equations (4) and (5), respectively.

TF(i, j) =
n(i, j)

∑k(k, j)
(4)

where TF(i, j) is the recurrence of each 2-g-based feature i in 2-g sequence j, n(i, j) indicates
how many times the 2-g-based feature i appears in 2-g sequence j, and ∑ k (k, j) represents
the number of the 2-g-based features in 2-g sequence j. Consequently, IDF is calculated
using Equation (5).

IDF(i) = log2
|D|

|{j : i ε j|j ε D}| (5)

where IDF(i) describes how much the 2-g-based feature i is uncommon in all the 2-g
sequences, and D represents the number of all the 2-g sequences. |{j: i ∈ j|j ∈ D}| means
the number of 2-g sequences that consist of the 2-g-based feature i. As a result, an initial
evasion behaviors dataset has been generated to contain the vectors by which the API call
sequence-based 2-g features are represented using the corresponding weight values in each
evasive malware and benign sample.

4.4. The Detection

As we are interested in developing a malware detection model with a high detection
rate, this study introduced a machine learning-based malware detection model instead of a
deep learning-based model because deep learning requires a huge amount of training data
to train an effective model and provide a satisfactory detection rate, while machine learning
needs a smaller amount of training data to train a sufficient model by which an acceptable
detection rate can be achieved [56,63,64]. This paper used machine learning algorithms

Mathematics 2023, 11, 416 12 of 23

across the classifier types that have been widely applied in the literature, such as K-nearest
neighbor (KNN), regression trees (CART), naive bayes (NB), support vector machine (SVM),
artificial neural network (ANN), random forest (RF), logistic regression (LR), and extreme
gradient boosting (XGBoost). To evaluate the proposed DIEBD-based feature extraction
scheme, machine learning classifiers are evaluated using the K fold cross-validation method
with K = 10 utilizing 40% of the dataset which is randomly reserved for testing purposes as
unseen samples, while the remaining 60% of the created dataset has been used to train the
selected machine learning models.

5. Experimental Design

The procedure for evaluating the suggested model is discussed in this section. We
review how the experimental environment is set up, describing the dataset that is used and
the performance metrics that were employed.

5.1. Experiment Environment Setup

The Cuckoo sandbox 2.0.7 is used to build up a dynamic analysis environment on the
Ubuntu 18.04 host machine to record malicious and benign executable file behaviors in
real-time. Sandboxes are solutions that malware analysts and researchers typically employ
to perform dynamic analysis [65–67]. The virtual box was used in conjunction with Cuckoo
sandbox tools to create an isolated, supervised, and simulated environment for malware
analysis. The sandbox infrastructure is set up according to the instructions in [68]. To
enable command and control (C & C) communication and prohibit the propagation of
malicious behavior during the analysis, a virtual box with a host-only adapter has been
employed. The experiments were performed on the guest machine, which is Windows 7
Professional SP1. Several software and applications, including Microsoft Office, Google
Chrome, Adobe Acrobat Reader, and Mozilla Firefox, were loaded on the guest machine
to establish a simulated testing environment. In the internal storage of the guest machine,
user-like directories were also created in various places. Malware and benign samples are
executed on the virtual machine one by one for a predetermined time period. Consequently,
when the malware or benign sample finishes its execution, or the experiment reaches the
end of its time, the JSON behavioral report corresponding to that instance is generated and
saved on the host machine, whereas the virtual machine is restored to the cleaned state. As
a result, to execute all the candidate malware and benign executable files, two folders are
created to contain the collected JSON reports of malware and benign files separately. The
experiments of this study are carried out on ubuntu 18.04 with Intel(R) Core(TM) i7-4790
CPU @3.60 GHz and RAM of 16.0 GB.

5.2. The Dataset

Obtaining a representative dataset was a difficult task because most researchers never
grant access to their datasets and our concentration on evasive malware with the unavail-
ability of the public dataset of evasive malware [13]. Our dataset consists of API call
sequences representing the behaviors of 7208 evasive malware collected from [7] and [69]
as well as 3848 benign samples collected from [70] and the freshly installed Windows 7
operating system. This dataset is created by executing all the evasive malware samples in
the constructed analysis environment described in Section 5.1. Table 1 shows the evasive
malware types and benign samples.

Mathematics 2023, 11, 416 13 of 23

Table 1. Evasive malware types and benign files.

Class Evasion Techniques Number Source

malware

Hardware id-based evasion 82 [69]
Bios-based evasion 6 [69]

Processor feature-based evasion 134 [69]
Exception-based evasion 197 [69]

Timing-based evasion 689 [69]
Wait for keyboard 3 [69]

Not available 6096 [7]
Malware Total Number 7208

Benign 2000 Win7
Benign 1848 [70]

Benign Total Number 3848

5.3. Performance Measures

The performance of the proposed DIEBD-based feature extraction scheme has been
evaluated using the common metrics used by the researchers, which include False positive
rate (FP), False negative rate (FN), detection accuracy (ACC), detection rate (DR), precision
(P), and F-measures (F1). Furthermore, FP represents the ratio of benign labelled as malware,
while FN indicates the percentage of malware classified as benign [71]. While the accuracy
(ACC) measures the proportion of successfully detected samples using Equation (6), the
detection rate (DR) computes the fraction of malicious samples that are correctly classified
using Equation (7) [72]. In addition, the Precision (P) measures the ratio of malware samples
that are predicted as malware among all the malware and benign samples that are predicted
as malware using Equation (8). F-measure (F1) totalizes the mean value of precision and
detection rate using Equation (9) [72].

ACC =
TP + TN

Tp + TN + FP + FN
(6)

DR =
TP

TP + FN
(7)

P =
TP

TP + FP
(8)

F1 =
2 ∗ Precision ∗ Recall

Precision + Recall
(9)

6. Results Analysis and Discussion

Two stages were carried out to assess the efficacy of the proposed DIEBD-based feature
extraction scheme. Because the K values of the whisker-box plot can impact the detection
performance, several K values including (0.5, 1.0, 1.5, 2.0) were investigated in order to
emphasize the impact of the K value on the proposed scheme performances. Accordingly,
first, based on the K values, four subsets of the datasets, each with a different length of
features vector, were extracted. The best K value was identified by using the datasets
which are created utilizing different K values to train and test the classifiers. Each machine
learning classifiers, including KNN, CART, NB, SVM, ANN, RF, LR, and XGBoost, were
trained using the four subsets of datasets separately utilizing 60% of each dataset, while the
remaining 40% of each created dataset is used to evaluate the selected classifiers through
10-cross validation method. Second, for the comparison with the related work models
which use the entire data without cutting the API call sequences when the behaviors are
changed to train the developed classifiers, the dataset which contains API call sequences
with all the invoked API calls are used to train and evaluate the same machine learning
classifiers. Figure 5 shows the 10-cross validation-based training and test phases.

Mathematics 2023, 11, 416 14 of 23

Mathematics 2023, 11, x FOR PEER REVIEW 14 of 23

6. Results Analysis and Discussion
Two stages were carried out to assess the efficacy of the proposed DIEBD-based fea-

ture extraction scheme. Because the K values of the whisker-box plot can impact the de-
tection performance, several K values including (0.5, 1.0, 1.5, 2.0) were investigated in or-
der to emphasize the impact of the K value on the proposed scheme performances. Ac-
cordingly, first, based on the K values, four subsets of the datasets, each with a different
length of features vector, were extracted. The best K value was identified by using the
datasets which are created utilizing different K values to train and test the classifiers. Each
machine learning classifiers, including KNN, CART, NB, SVM, ANN, RF, LR, and
XGBoost, were trained using the four subsets of datasets separately utilizing 60% of each
dataset, while the remaining 40% of each created dataset is used to evaluate the selected
classifiers through 10-cross validation method. Second, for the comparison with the re-
lated work models which use the entire data without cutting the API call sequences when
the behaviors are changed to train the developed classifiers, the dataset which contains
API call sequences with all the invoked API calls are used to train and evaluate the same
machine learning classifiers. Figure 5 shows the 10-cross validation-based training and
test phases.

Figure 5. 10-Fold cross validation.

6.1. Selecting the K Value
The experimental outcomes of the suggested DIEBD-based feature extraction scheme

with multiple K values of 0.5, 1.0, 1.5, and 2.0 are summarized in Tables 2–5, utilizing the
measurement metrics that are explained in Section 5.3. By taking the highest results that
are carried out by the XGboost classifier as a guideline, these tables show that the lowest
detection performances are performed by the XGBoost classifier when K = 1.5 and 2.0,
while the developed XGBoost has achieved the highest performance when k = 1. In partic-
ular, the tables reveal that the outcomes with k = 1.5 and k = 2.0 provided the poorest
accuracy, F1, and detection rate, while k = 1 performs the greatest detection accuracy, F1,
and detection rate. Similarly, the total value of FPR and FNR cases is increased to reach
the highest values, 0.072 and 0.030, respectively, when K = 1.5, and decreased to 0.040 and

Figure 5. 10-Fold cross validation.

6.1. Selecting the K Value

The experimental outcomes of the suggested DIEBD-based feature extraction scheme
with multiple K values of 0.5, 1.0, 1.5, and 2.0 are summarized in Tables 2–5, utilizing the
measurement metrics that are explained in Section 5.3. By taking the highest results that
are carried out by the XGboost classifier as a guideline, these tables show that the lowest
detection performances are performed by the XGBoost classifier when K = 1.5 and 2.0, while
the developed XGBoost has achieved the highest performance when k = 1. In particular, the
tables reveal that the outcomes with k = 1.5 and k = 2.0 provided the poorest accuracy, F1,
and detection rate, while k = 1 performs the greatest detection accuracy, F1, and detection
rate. Similarly, the total value of FPR and FNR cases is increased to reach the highest values,
0.072 and 0.030, respectively, when K = 1.5, and decreased to 0.040 and 0.029 with k = 1.
More specifically, the accuracy value started high at around 0.96 when K = 0.5 and K = 1.0,
while the accuracy rate decreased when K = 1.5 and K = 2.0. However, the highest accuracy
value is provided when k = 1.0. Likewise, the F1 value reached around 0.97 with K = 0.5
and K = 1.0 but decreased to about 0.96 when K = 1.5 and K = 2.0. Furthermore, the results
of the experiments show that the proposed scheme carried out a similar detection rate with
around 0.97 when K = 0.5, 1.0, and 1.5. Nevertheless, when K = 2.0, the detection rate is
reduced to around 0.96. In connection with the precision, the highest precision of 0.978 is
achieved when K = 1.0, whereas the minimum precision of 0.961 is provided with K = 1.5.

Mathematics 2023, 11, 416 15 of 23

Table 2. Accuracy (ACC), Detection Ratel (DR), Precision (P), F-measure (F1), False positive rate
(FPR), and False negative rate (FNR) for the proposed models with k = 0.5.

Classifier Accuracy Detection
Rate Precision F1 FPR FNR

KNN 0.915 0.924 0.945 0.934 0.101 0.076
CART 0.936 0.948 0.954 0.951 0.086 0.052

NB 0.759 0.671 0.945 0.785 0.074 0.329
SVM 0.952 0.964 0.962 0.963 0.071 0.036
ANN 0.962 0.970 0.972 0.971 0.053 0.030

RF 0.952 0.972 0.955 0.964 0.086 0.028
LR 0.929 0.954 0.939 0.946 0.118 0.046

XGBoost 0.962 0.974 0.967 0.971 0.062 0.026

Table 3. Accuracy (ACC), Detection rate (DR), Precision (P), F-measure (F1), False positive rate (FPR),
and False negative rate (FNR) for the proposed models with k = 1.0.

Classifier Accuracy Detection
Rate Precision F1 FPR FNR

KNN 0.890 0.888 0.941 0.914 0.105 0.112
CART 0.932 0.937 0.958 0.947 0.078 0.063

NB 0.792 0.728 0.939 0.821 0.089 0.272
SVM 0.943 0.948 0.964 0.956 0.066 0.052
ANN 0.957 0.963 0.970 0.967 0.055 0.037

RF 0.947 0.962 0.957 0.959 0.082 0.038
LR 0.922 0.944 0.937 0.940 0.120 0.056

XGBoost 0.967 0.971 0.978 0.975 0.040 0.029

Table 4. Accuracy (ACC), Detection Rate (DR), Precision (P), F-measure (F1), False positive rate (FPR),
and False negative rate (FNR) for the proposed models with k = 1.5.

Classifier Accuracy Detection
Rate Precision F1 FPR FNR

KNN 0.877 0.884 0.922 0.903 0.134 0.116
CART 0.924 0.944 0.938 0.941 0.112 0.056

NB 0.766 0.707 0.910 0.795 0.126 0.293
SVM 0.924 0.937 0.945 0.941 0.098 0.063
ANN 0.952 0.962 0.963 0.962 0.067 0.038

RF 0.932 0.961 0.935 0.948 0.120 0.039
LR 0.912 0.944 0.921 0.932 0.146 0.056

XGBoost 0.955 0.970 0.961 0.965 0.072 0.030

Table 5. Accuracy (ACC), Detection Rate (DR), Precision (P), F-measure (F1), False positive rate (FPR),
and False negative rate (FNR) for the proposed models with k = 2.0.

Classifier Accuracy Detection
Rate Precision F1 FPR FNR

KNN 0.876 0.866 0.941 0.902 0.104 0.134
CART 0.916 0.928 0.944 0.936 0.106 0.072

NB 0.777 0.723 0.922 0.810 0.118 0.277
SVM 0.920 0.919 0.958 0.938 0.077 0.081
ANN 0.948 0.958 0.962 0.960 0.072 0.042

RF 0.929 0.949 0.944 0.946 0.109 0.051
LR 0.908 0.923 0.937 0.930 0.120 0.077

XGBoost 0.958 0.967 0.969 0.968 0.060 0.033

Figure 6 shows the performance comparison between KNN, CART, NB, SVM, ANN,
RF, LR, and XGboost classifiers in terms of accuracy with various K values (0.5, 1.0, 1.5, and

Mathematics 2023, 11, 416 16 of 23

2.0). It shows that the KNN, CART, SVM, ANN, RF, and LR classifiers presented higher
accuracy with K = 0.5 than when K = 1.0. However, the highest accuracy of 0.967 is achieved
by the XGboost classifier when K = 1.0. In contrast, the accuracy rates of the proposed
classifiers are decreased when the K value is increased to 1.5 or 2.0. Figure 6 concludes
that the most suitable K value to improve the detection accuracy is 1.0. This is because the
assigned K value impacts the entropy values range between the lower and upper limits
by modifying the lower and upper limit values. Furthermore, as long as the K value is
bigger, the lower limit is decreased, and the upper limit is increased. Therefore, the chance
of adding more features to the features set is increased due to the entropy values that are
related to these new features being inside the range between the lower and upper limits.

Mathematics 2023, 11, x FOR PEER REVIEW 16 of 23

Table 5. Accuracy (ACC), Detection Rate (DR), Precision (P), F-measure (F1), False positive rate
(FPR), and False negative rate (FNR) for the proposed models with k = 2.0.

Classifier Accuracy Detection Rate Precision F1 FPR FNR
KNN 0.876 0.866 0.941 0.902 0.104 0.134
CART 0.916 0.928 0.944 0.936 0.106 0.072

NB 0.777 0.723 0.922 0.810 0.118 0.277
SVM 0.920 0.919 0.958 0.938 0.077 0.081
ANN 0.948 0.958 0.962 0.960 0.072 0.042

RF 0.929 0.949 0.944 0.946 0.109 0.051
LR 0.908 0.923 0.937 0.930 0.120 0.077

XGBoost 0.958 0.967 0.969 0.968 0.060 0.033

Figure 6 shows the performance comparison between KNN, CART, NB, SVM, ANN,
RF, LR, and XGboost classifiers in terms of accuracy with various K values (0.5, 1.0, 1.5,
and 2.0). It shows that the KNN, CART, SVM, ANN, RF, and LR classifiers presented
higher accuracy with K = 0.5 than when K = 1.0. However, the highest accuracy of 0.967 is
achieved by the XGboost classifier when K = 1.0. In contrast, the accuracy rates of the pro-
posed classifiers are decreased when the K value is increased to 1.5 or 2.0. Figure 6 con-
cludes that the most suitable K value to improve the detection accuracy is 1.0. This is be-
cause the assigned K value impacts the entropy values range between the lower and upper
limits by modifying the lower and upper limit values. Furthermore, as long as the K value
is bigger, the lower limit is decreased, and the upper limit is increased. Therefore, the
chance of adding more features to the features set is increased due to the entropy values
that are related to these new features being inside the range between the lower and upper
limits.

Figure 6. The comparison between the used classifiers in terms of the accuracy with various K values
(0.5, 1.0, 1.5, and 2.0).

Figure 6. The comparison between the used classifiers in terms of the accuracy with various K values
(0.5, 1.0, 1.5, and 2.0).

To the best of our knowledge, the proposed DIEBD-based feature extraction scheme
transacts with the data offered by the evasive malware. Thus, this comparison derives that
increasing the entropy values range between the lower and upper limits by raising the
K value until K = 1.0 has improved the detection accuracy rate because the classifiers have
been trained based on features by which the evasive behaviors are accurately represented
since the dynamic break decision is made in the most appropriate change behavior point
(timely break decision).

However, when K = 1.5 or 2.0, the entropy values of extra data have been included
since the entropy values range between lower and upper limits accepts them. As a result,
the entropy values range is more than enough; these extra data may not represent evasive
behaviors. Otherwise, it can represent the alternative behaviors that appeared after the
evasive malware already knew the nature of the environment. With K = 1.5 or 2.0, the correct
change behavior point cannot be located accurately, leading to more non-discriminatory
data. Therefore, unrepresentative features are extracted when a late decision is made
(late-break decision).

Mathematics 2023, 11, 416 17 of 23

6.2. The Comparison with Existing Work

We perform comparison experiments between our proposed scheme and state-of-the-
art feature extraction methods using the several assessment metrics specified in Section 5.3.
We employ machine learning techniques with API call-based n-gram features as our baseline
methods. In [20,31,32], the features have been extracted from the whole collected data,
which is exhibited by malware samples during the runtime without considering the impact
of evasion techniques and the unrepresentative data that belong to the evasive malware
when they recognize the analysis environment.

The authors in [31] collected the API calls that were invoked by malware and benign
samples during the run time. Therefore, the n-gram technique was employed to extract the
features from the API sequences. To represent the extracted features, the TF-IDF technique
was utilized. Finally, machine learning classifiers were trained and evaluated using TF-
IDF-based features. Ref. [20] used an occurrence times threshold of 500 to select the most
frequent API call-based n-gram features. Ref. [31] extracted the frequent temporal patterns
that were used to train and evaluate machine learning classifiers. Using our created dataset
and our candidate machine learning algorithms, we implemented their methods to compare
the performance of our proposed DIEBD-based feature extraction scheme with their feature
extraction methods.

Figures 7–10 show the performance of machine learning techniques that are trained
and evaluated based on the features extracted using the proposed scheme and the related
work feature extraction schemes in terms of accuracy, F-measure, FPR, and FNR, respec-
tively. Figures 7 and 8 show that most of the developed models, e.g., KNN, CART, SVM,
ANN, RF, LF, and XGBoost, that are trained based on the features set extracted from the
proposed scheme outperformed the accuracies and F-measures of related work feature
extraction schemes. Even though the NB model that learned how to distinguish the evasive
behaviors utilizing the [32] approach achieved higher accuracy and F-measure, the training
phase consumed a long period of time due to the high dimensionality of the dataset.

Mathematics 2023, 11, x FOR PEER REVIEW 18 of 23

Figure 7. The comparison of the Detection Accuracy between the proposed DIEBD-based scheme
and the related work-based schemes.

Figure 8. The comparison of the F-measure between the proposed DIEBD-based scheme
and the related work-based schemes.

Figure 9. The comparison of the FPRs between the proposed DIEBD-based scheme and the related
work-based schemes.

0.600

0.700

0.800

0.900

1.000

KNN CART NB SVM ANN RF LR XGBoost

Ac
cu

ra
cy

classifiers

Chart Title
Accuracy (proposed scheme) - k=1 Accuracy- (Ali et al., 2020)
Acc-(Tran et al., 2017) Acc-(Finder et. al, 2022)

0.600

0.700

0.800

0.900

1.000

KNN CART NB SVM ANN RF LR XGBoost

F-
m

ea
su

re

Classifiers

Chart Title
F-measure(proposed scheme) - k=1 F-measure- (Ali et al., 2020)
F-Measure (Tran et al., 2017) F-Measure (Finder et. al, 2022)

0.000
0.050
0.100
0.150
0.200

KNN CART NB SVM ANN RF LR XGBoost

FP
R

Classifiers

Chart Title
FPR (proposed scheme) - k=1 FPR- (Ali et al., 2020)
FPR-(Tran et al., 2017) FPR-(Finder et. al, 2022)

Figure 7. The comparison of the Detection Accuracy between the proposed DIEBD-based scheme
and the related work-based schemes.

Mathematics 2023, 11, 416 18 of 23

Mathematics 2023, 11, x FOR PEER REVIEW 18 of 23

Figure 7. The comparison of the Detection Accuracy between the proposed DIEBD-based scheme
and the related work-based schemes.

Figure 8. The comparison of the F-measure between the proposed DIEBD-based scheme
and the related work-based schemes.

Figure 9. The comparison of the FPRs between the proposed DIEBD-based scheme and the related
work-based schemes.

0.600

0.700

0.800

0.900

1.000

KNN CART NB SVM ANN RF LR XGBoost

Ac
cu

ra
cy

classifiers

Chart Title
Accuracy (proposed scheme) - k=1 Accuracy- (Ali et al., 2020)
Acc-(Tran et al., 2017) Acc-(Finder et. al, 2022)

0.600

0.700

0.800

0.900

1.000

KNN CART NB SVM ANN RF LR XGBoost

F-
m

ea
su

re

Classifiers

Chart Title
F-measure(proposed scheme) - k=1 F-measure- (Ali et al., 2020)
F-Measure (Tran et al., 2017) F-Measure (Finder et. al, 2022)

0.000
0.050
0.100
0.150
0.200

KNN CART NB SVM ANN RF LR XGBoost

FP
R

Classifiers

Chart Title
FPR (proposed scheme) - k=1 FPR- (Ali et al., 2020)
FPR-(Tran et al., 2017) FPR-(Finder et. al, 2022)

Figure 8. The comparison of the F-measure between the proposed DIEBD-based scheme and the
related work-based schemes.

Mathematics 2023, 11, x FOR PEER REVIEW 18 of 23

Figure 7. The comparison of the Detection Accuracy between the proposed DIEBD-based scheme
and the related work-based schemes.

Figure 8. The comparison of the F-measure between the proposed DIEBD-based scheme
and the related work-based schemes.

Figure 9. The comparison of the FPRs between the proposed DIEBD-based scheme and the related
work-based schemes.

0.600

0.700

0.800

0.900

1.000

KNN CART NB SVM ANN RF LR XGBoost

Ac
cu

ra
cy

classifiers

Chart Title
Accuracy (proposed scheme) - k=1 Accuracy- (Ali et al., 2020)
Acc-(Tran et al., 2017) Acc-(Finder et. al, 2022)

0.600

0.700

0.800

0.900

1.000

KNN CART NB SVM ANN RF LR XGBoost

F-
m

ea
su

re

Classifiers

Chart Title
F-measure(proposed scheme) - k=1 F-measure- (Ali et al., 2020)
F-Measure (Tran et al., 2017) F-Measure (Finder et. al, 2022)

0.000
0.050
0.100
0.150
0.200

KNN CART NB SVM ANN RF LR XGBoost

FP
R

Classifiers

Chart Title
FPR (proposed scheme) - k=1 FPR- (Ali et al., 2020)
FPR-(Tran et al., 2017) FPR-(Finder et. al, 2022)

Figure 9. The comparison of the FPRs between the proposed DIEBD-based scheme and the related
work-based schemes.

Mathematics 2023, 11, x FOR PEER REVIEW 19 of 23

Figure 10. The comparison of the FNRs between the proposed DIEBD-based scheme and the related
work-based schemes.

The results in Figures 7–10 imply that the proposed DIEBD technique could collect
the evasive behaviors more carefully and avoid collecting the unrepresentative behaviors
offered by such malware when they recognize that they are being executed in an analysis
environment. This is because the proposed DIEBD measures the degree of the behavior
change by comparing the entropy value of the current slide window in the windows se-
quence with the entropy value range of the previous slide windows to determine the be-
havior-changing window and avoid moving to the next slide window based on the fact
that told, such malware change their behaviors when they realize that they are being an-
alyzed.

Figures 9 and 10 illustrate that most of the proposed scheme-based models provide
FPRs and FNRs lower than those provided by the models developed based on related
work feature extraction schemes. XGBoost, ANN, and SVM achieved the lowest FPRs that
ranged between 0.040 and 0.066. The comparison between FNRs of the proposed scheme-
based models and the related work schemes-based models can be described as follows:
The FNR of the proposed scheme-based models ranged between 0.029 for the XGBoost
model and 0.272 for NB model, while the related work schemes-based models provided
FNR ranged between 0.044 and 0.473. This suggests that the proposed DIEBD-based fea-
ture extraction scheme avoids extracting the alternative behaviors exhibited by such mal-
ware to mimic the legitimate behaviors when they know that they are executed in an anal-
ysis environment. Consequently, the proposed scheme-based models are prevented from
learning those behaviors as malicious behaviors during the training phase, and thus the
proposed scheme-based models discriminate them more accurately. However, the ability
of the proposed scheme to distinguish between evasion behaviors achieved by malware
for malicious purposes and evasion behaviors performed by benign for legitimate pur-
poses (FPR) was worse than the ability of the proposed scheme to avoid learning the
mimic legitimate behaviors performed by malware as malicious behaviors (FNR).

To the best of our knowledge, assigning the K value of 1.0 provides more ability for
the proposed scheme to represent the evasion behavior characteristics of the evasive mal-
ware than the other K values. This is because the classifiers have been trained based on
features by which the evasion behaviors are accurately represented. These behaviors are
learned after separating them from the unrepresentative behaviors, which can be mimics
of benign behaviors, noisy behaviors, or repeated behaviors that can be included when
increasing the value of K. In contrast, gathering the entire set of behaviors provided by
malicious software during execution time results in the development of ineffective models
that learn to mimic legitimate behaviors as malicious activities since they are expressed
by malware, and thus suffer from high FPR and low accuracy.

0.000

0.200

0.400

0.600

KNN CART NB SVM ANN RF LR XGBoost

FN
R

Classifiers

Chart Title
FNR (proposed scheme) - k=1 FNR- (Ali et al., 2020)
FNR- (Tran et al., 2017) FNR- (Finder et. al, 2022)

Figure 10. The comparison of the FNRs between the proposed DIEBD-based scheme and the related
work-based schemes.

Mathematics 2023, 11, 416 19 of 23

The results in Figures 7–10 imply that the proposed DIEBD technique could collect
the evasive behaviors more carefully and avoid collecting the unrepresentative behav-
iors offered by such malware when they recognize that they are being executed in an
analysis environment. This is because the proposed DIEBD measures the degree of the
behavior change by comparing the entropy value of the current slide window in the win-
dows sequence with the entropy value range of the previous slide windows to determine
the behavior-changing window and avoid moving to the next slide window based on
the fact that told, such malware change their behaviors when they realize that they are
being analyzed.

Figures 9 and 10 illustrate that most of the proposed scheme-based models provide
FPRs and FNRs lower than those provided by the models developed based on related
work feature extraction schemes. XGBoost, ANN, and SVM achieved the lowest FPRs
that ranged between 0.040 and 0.066. The comparison between FNRs of the proposed
scheme-based models and the related work schemes-based models can be described as
follows: The FNR of the proposed scheme-based models ranged between 0.029 for the
XGBoost model and 0.272 for NB model, while the related work schemes-based models
provided FNR ranged between 0.044 and 0.473. This suggests that the proposed DIEBD-
based feature extraction scheme avoids extracting the alternative behaviors exhibited by
such malware to mimic the legitimate behaviors when they know that they are executed in
an analysis environment. Consequently, the proposed scheme-based models are prevented
from learning those behaviors as malicious behaviors during the training phase, and thus
the proposed scheme-based models discriminate them more accurately. However, the
ability of the proposed scheme to distinguish between evasion behaviors achieved by
malware for malicious purposes and evasion behaviors performed by benign for legitimate
purposes (FPR) was worse than the ability of the proposed scheme to avoid learning the
mimic legitimate behaviors performed by malware as malicious behaviors (FNR).

To the best of our knowledge, assigning the K value of 1.0 provides more ability for the
proposed scheme to represent the evasion behavior characteristics of the evasive malware
than the other K values. This is because the classifiers have been trained based on features
by which the evasion behaviors are accurately represented. These behaviors are learned
after separating them from the unrepresentative behaviors, which can be mimics of benign
behaviors, noisy behaviors, or repeated behaviors that can be included when increasing the
value of K. In contrast, gathering the entire set of behaviors provided by malicious software
during execution time results in the development of ineffective models that learn to mimic
legitimate behaviors as malicious activities since they are expressed by malware, and thus
suffer from high FPR and low accuracy.

7. Conclusions

The advanced development in malware analysis has made the malware authors more
serious about equipping the malware with forward defense mechanisms, such as evasion
techniques, to avoid being analyzed and detected. In this paper, a feature extraction
scheme based on dynamic initial evasion behaviors was proposed. Particularly, this paper
concerned the feature extraction phase using the approach often neglected by the existing
feature extraction schemes. In contrast to the previous solutions, the suggested feature
extraction scheme identified the boundary of the representative evasion behaviors using
the proposed dynamic initial evasion behavior determination (DIEBD) technique. Our
feature extraction scheme used this technique to ensure that only the representative evasion
behaviors were targeted to be collected by computing the entropy value of each window in
the API sequence of each sample. Furthermore, the box-whisker plot algorithm was utilized
to measure the entropy value variations to determine the change behavior point which was
used as an indicator to avoid collecting unrepresentative data. The comparison between the
proposed scheme and the existing work showed that the proposed scheme achieved higher
classification performance than the existing work’s feature extraction schemes. The results
gained by the proposed scheme using the Xgboost classifier were 0.967, 0.040, 0.971, 0.978,

Mathematics 2023, 11, 416 20 of 23

and 0.975 which outperformed the obtained results using the feature extraction scheme of
the related work with Xgboost, i.e., 0.953, 0.051, 0.956, 0.972, and 0.964 for accuracy, false
positive rate, detection rate, precision, and F1, respectively. As future work, this study
needs to be extended to involve malicious software that is able to perform the evasion
behaviors without calling API calls. In addition, the proposed scheme has a limitation of
observing only partial evasion behaviors, and it is incapable to obtain the evasion behaviors
when malware achieves them later. Another future work direction can be formed by further
investigation to distinguish between evasion behaviors that are applied for legitimate and
malicious purposes.

Author Contributions: Conceptualization, F.A.A. and A.Z.; methodology, F.A.G. and M.A.R.; valida-
tion, F.A.G.; analysis, F.A.A.; investigation, F.A.A. and A.Z.; software, F.A.A. and F.A.G.; resources,
F.J.A. and A.M.A.; writing—original draft preparation, F.A.A.; writing—review and editing, A.Z.,
F.A.G. and A.M.A.; visualization, F.A.A.; supervision, A.Z., F.A.G. and M.A.R.; data curation, F.J.A.
and A.M.A.; project administration, F.J.A. and A.M.A.; funding acquisition, A.M.A. and F.A.G. All
authors have read and agreed to the published version of the manuscript.

Funding: This research work was funded by Institutional Fund Projects under grant no. (IFPIP-550-
611-1442) from the Ministry of Education and King Abdulaziz University, DSR, Jeddah, Saudi Arabia.

Data Availability Statement: Not applicable.

Acknowledgments: This research work was funded by Institutional Fund Projects under grant no.
(IFPIP-550-611-1442). Therefore, the authors gratefully acknowledge technical and financial support
from the Ministry of Education and King Abdulaziz University, DSR, Jeddah, Saudi Arabia.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Singh, A.; Handa, A.; Kumar, N.; Shukla, S.K. Malware classification using image representation. In Lecture Notes in Computer

Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Berlin/Heidelberg,
Germany, 2019; Volume 11527, pp. 75–92. [CrossRef]

2. Kaspersky Security. Kaspersky Security Bulletin. Available online: https://go.kaspersky.com/rs/802-IJN-240/images/KSB_
statistics_2018_eng_final.pdf (accessed on 25 August 2022).

3. H. Sciences. Internet security Threat Report 2017. 2017. Available online: https://docs.broadcom.com/doc/istr-22-2017-en
(accessed on 12 August 2022).

4. Morgan, S. Cybercrime Damages $6 Trillion By 2021. 2017. Available online: https://cybersecurityventures.com/
hackerpocalypse-cybercrime-report-2016/ (accessed on 18 August 2022).

5. Sahay, S.K.; Sharma, A.; Rathore, H. Evolution of Malware and Its Detection Techniques. In Advances in Intelligent Systems and
Computing; Springer: Singapore, 2020; Volume 933, pp. 139–150. [CrossRef]

6. Jang, S.; Li, S.; Sung, Y. FastText-Based Local Feature Visualization Algorithm for Merged Image-Based Malware Classification
Framework for Cyber Security and Cyber Defense. Mathematics 2020, 8, 460. [CrossRef]

7. Galloro, N.; Polino, M.; Carminati, M.; Continella, A.; Zanero, S. A Systematical and longitudinal study of evasive behaviors in
windows malware. Comput. Secur. 2021, 113, 102550. [CrossRef]

8. Singh, J.; Singh, J. Detection of malicious software by analyzing the behavioral artifacts using machine learning algorithms. Inf.
Softw. Technol. 2020, 121, 106273. [CrossRef]

9. Yoo, S.; Kim, S.; Kim, S.; Kang, B.B. AI-HydRa: Advanced hybrid approach using random forest and deep learning for malware
classification. Inf. Sci. 2020, 546, 420–435. [CrossRef]

10. Shijo, P.V.; Salim, A. Integrated Static and Dynamic Analysis for Malware Detection. Procedia Comput. Sci. 2015, 46, 804–811. [CrossRef]
11. Darshan, S.L.S.; Jaidhar, C.D. Windows malware detection system based on LSVC recommended hybrid features. J. Comput. Virol.

Hacking Tech. 2018, 15, 127–146. [CrossRef]
12. Sihwail, R.; Omar, K.; Ariffin, K.A.Z.; Al Afghani, S. Malware Detection Approach Based on Artifacts in Memory Image and

Dynamic Analysis. Appl. Sci. 2019, 9, 3680. [CrossRef]
13. Mills, A.; Legg, P. Investigating Anti-Evasion Malware Triggers Using Automated Sandbox Reconfiguration Techniques. J. Cyber-

secur. Priv. 2020, 1, 19–39. [CrossRef]
14. Jha, S.; Prashar, D.; Long, H.V.; Taniar, D. Recurrent neural network for detecting malware. Comput. Secur. 2020, 99, 102037. [CrossRef]
15. Lin, W.-C.; Yeh, Y.-R. Efficient Malware Classification by Binary Sequences with One-Dimensional Convolutional Neural

Networks. Mathematics 2022, 10, 608. [CrossRef]
16. Noor, M.; Abbas, H.; Bin Shahid, W. Countering cyber threats for industrial applications: An automated approach for malware

evasion detection and analysis. J. Netw. Comput. Appl. 2018, 103, 249–261. [CrossRef]

http://doi.org/10.1007/978-3-030-20951-3_6
https://go.kaspersky.com/rs/802-IJN-240/images/KSB_statistics_2018_eng_final.pdf
https://go.kaspersky.com/rs/802-IJN-240/images/KSB_statistics_2018_eng_final.pdf
https://docs.broadcom.com/doc/istr-22-2017-en
https://cybersecurityventures.com/hackerpocalypse-cybercrime-report-2016/
https://cybersecurityventures.com/hackerpocalypse-cybercrime-report-2016/
http://doi.org/10.1007/978-981-13-7166-0_14
http://doi.org/10.3390/math8030460
http://doi.org/10.1016/j.cose.2021.102550
http://doi.org/10.1016/j.infsof.2020.106273
http://doi.org/10.1016/j.ins.2020.08.082
http://doi.org/10.1016/j.procs.2015.02.149
http://doi.org/10.1007/s11416-018-0327-9
http://doi.org/10.3390/app9183680
http://doi.org/10.3390/jcp1010003
http://doi.org/10.1016/j.cose.2020.102037
http://doi.org/10.3390/math10040608
http://doi.org/10.1016/j.jnca.2017.10.004

Mathematics 2023, 11, 416 21 of 23

17. Caviglione, L.; Choras, M.; Corona, I.; Janicki, A.; Mazurczyk, W.; Pawlicki, M.; Wasielewska, K. Tight Arms Race: Overview of
Current Malware Threats and Trends in Their Detection. IEEE Access 2020, 9, 5371–5396. [CrossRef]

18. Galal, H.S.; Mahdy, Y.B.; Atiea, M.A. Behavior-based features model for malware detection. J. Comput. Virol. Hacking Tech. 2015,
12, 59–67. [CrossRef]

19. Nunes, M.; Burnap, P.; Rana, O.; Reinecke, P.; Lloyd, K. Getting to the root of the problem: A detailed comparison of kernel and
user level data for dynamic malware analysis. J. Inf. Secur. Appl. 2019, 48, 102365. [CrossRef]

20. Ali, M.; Shiaeles, S.; Bendiab, G.; Ghita, B. MALGRA: Machine Learning and N-Gram Malware Feature Extraction and Detection
System. Electronics 2020, 9, 1777. [CrossRef]

21. Catak, F.O.; Yazı, A.F.; Elezaj, O.; Ahmed, J. Deep learning based Sequential model for malware analysis using Windows exe API
Calls. PeerJ Comput. Sci. 2020, 6, e285. [CrossRef]

22. Zhang, J.; Gu, Z.; Jang, J.; Kirat, D.; Stoecklin, M.; Shu, X.; Huang, H. Scarecrow: Deactivating Evasive Malware via Its Own
Evasive Logic. In Proceedings of the 50th Annual IEEE/IFIP International Conference on Dependable Systems and Networks,
Valencia, Spain, 29 June–2 July 2020; pp. 76–87. [CrossRef]

23. Branco, R.; Barbosa, G.N.; Drimel, P. Scientific But Not Academical Overview of Malware Anti-Debugging, Anti-Disassembly
and Anti-VM Technologies. J. Chem. Inf. Model. 2012, 53, 1689–1699. [CrossRef]

24. Chen, P.; Huygens, C.; Desmet, L.; Joosen, W. Advanced or Not? A Comparative Study of the Use of Anti-Debugging and
Anti-VM Techniques in Generic and Targeted Malware. In IFIP Advances in Information and Communication Technology; Springer:
Berlin/Heidelberg, Germany, 2016; Volume 471, pp. 323–336.

25. Ali, M.; Shiaeles, S.; Papadaki, M.; Ghita, B.V. Agent-based Vs Agent-less Sandbox for Dynamic Behavioral Analysis. In
Proceedings of the 2018 Global Information Infrastructure and Networking Symposium, GIIS 2018, Thessaloniki, Greece,
23–25 October 2018. [CrossRef]

26. Alaeiyan, M.; Parsa, S.; Conti, M. Analysis and classification of context-based malware behavior. Comput. Commun. 2019,
136, 76–90. [CrossRef]

27. Kirat, D.; Vigna, G.; Kruegel, C.; Vigna, G.; Kruegel, C. BareCloud: Bare-Metal Analysis-Based Evasive Malware Detection. In Proceedings
of the 23rd USENIX Security Symposium, San Diego, CA, USA, 20–22 August 2014. Available online: https://www.usenix.org/
system/files/conference/usenixsecurity14/sec14-paper-kirat.pdf (accessed on 2 September 2022).

28. Banin, S.; Dyrkolbotn, G.O. Multinomial malware classification via low-level features. Digit. Investig. 2018, 26, S107–S117. [CrossRef]
29. Banin, S.; Shalaginov, A.; Franke, K. Memory access patterns for malware detection. Nor. Nor. Inf. 2016, 96–107. Available online:

http://hdl.handle.net/11250/2455297 (accessed on 5 September 2022).
30. Denzer, T.; Shalaginov, A.; Dyrkolbotn, G.O. Intelligent Windows Malware Type Detection based on Multiple Sources of Dynamic

Characteristics. Nis. J. 2019, 12, 1–16.
31. Finder, I.; Sheetrit, E.; Nissim, N. Time-interval temporal patterns can beat and explain the malware. Knowl.-Based Syst. 2022,

241, 108266. [CrossRef]
32. Tran, T.K.; Sato, H. NLP-based approaches for malware classification from API sequences. In Proceedings of the 2017 21st Asia Pacific

Symposium on Intelligent and Evolutionary Systems (IES), Hanoi, Vietnam, 15–17 November 2017; pp. 101–105. [CrossRef]
33. Aboaoja, F.A.; Zainal, A.; Ghaleb, F.A.; Al-Rimy, B.A.S.; Eisa, T.A.E.; Elnour, A.A.H. Malware Detection Issues, Challenges, and

Future Directions: A Survey. Appl. Sci. 2022, 12, 8482. [CrossRef]
34. Veerappan, C.S.; Keong, P.L.K.; Tang, Z.; Tan, F.; Veerappan, C.S.; Keong, P.L.K.; Tang, Z.; Tan, F. Taxonomy on malware evasion

countermeasures techniques. In Proceedings of the 2018 IEEE 4th World Forum on Internet of Things (WF-IoT), Singapore,
5–8 February 2018; Volume 2018, pp. 558–563. [CrossRef]

35. Or-Meir, O.; Nissim, N.; Elovici, Y.; Rokach, L. Dynamic Malware Analysis in the Modern Era—A State of the Art Survey. ACM
Comput. Surv. 2019, 52, 1–48. [CrossRef]

36. Bulazel, A.; Yener, B. A survey on automated dynamic malware analysis evasion and counter-evasion: PC, Mobile, and Web. In
ACM International Conference Proceeding Series; ACM: New York, NY, USA, 2017. [CrossRef]

37. Afianian, A.; Niksefat, S.; Sadeghiyan, B. Malware Dynamic Analysis Evasion Techniques: A Survey. ACM Comput. Surv. 2019,
52, 1–28. [CrossRef]

38. Lau, B.; Svajcer, V. Measuring virtual machine detection in malware using DSD tracer. J. Comput. Virol. 2008, 6, 181–195. [CrossRef]
39. Miramirkhani, N.; Appini, M.P.; Nikiforakis, N.; Polychronakis, M. Spotless Sandboxes: Evading Malware Analysis Systems

Using Wear-and-Tear Artifacts. In Proceedings of the IEEE Symposium on Security and Privacy, San Jose, CA, USA, 22–24 May
2017; pp. 1009–1024. [CrossRef]

40. O’Ree, A.; Obaidat, M.S. A dynamic malware analyzer against virtual machine aware malicious software. Secur. Commun. Netw.
2012, 5, 422–437.

41. Singh, J.; Singh, J. Challenges of Malware Analysis: Obfuscation Techniques. Int. J. Inf. Secur. Sci. 2018, 7, 100–110. Available
online: http://www.ijiss.org (accessed on 16 September 2022).

42. Ehteshamifar, S.; Barresi, A.; Gross, T.R.; Pradel, M. Easy to Fool? Testing the Anti-Evasion Capabilities of PDF Malware Scanners.
Available online: http://arxiv.org/abs/1901.05674 (accessed on 3 August 2022).

43. Küchler, A.; Mantovani, A.; Han, Y.; Bilge, L.; Balzarotti, D. Does Every Second Count? Time-Based Evolution of Malware Behavior in
Sandboxes. In Proceedings of the 2021 Network and Distributed System Security Symposium, virtually, 21–25 February 2021. Available
online: https://www.ndss-symposium.org/wp-content/uploads/ndss2021_4C-5_24475_paper.pdf (accessed on 8 August 2022).

http://doi.org/10.1109/ACCESS.2020.3048319
http://doi.org/10.1007/s11416-015-0244-0
http://doi.org/10.1016/j.jisa.2019.102365
http://doi.org/10.3390/electronics9111777
http://doi.org/10.7717/peerj-cs.285
http://doi.org/10.1109/DSN48063.2020.00027
http://doi.org/10.1088/1751-8113/44/8/085201
http://doi.org/10.1109/GIIS.2018.8635598
http://doi.org/10.1016/j.comcom.2019.01.003
https://www.usenix.org/system/files/conference/usenixsecurity14/sec14-paper-kirat.pdf
https://www.usenix.org/system/files/conference/usenixsecurity14/sec14-paper-kirat.pdf
http://doi.org/10.1016/j.diin.2018.04.019
http://hdl.handle.net/11250/2455297
http://doi.org/10.1016/j.knosys.2022.108266
http://doi.org/10.1109/IESYS.2017.8233569
http://doi.org/10.3390/app12178482
http://doi.org/10.1109/WF-IoT.2018.8355202
http://doi.org/10.1145/3329786
http://doi.org/10.1145/3150376.3150378
http://doi.org/10.1145/3365001
http://doi.org/10.1007/s11416-008-0096-y
http://doi.org/10.1109/SP.2017.42
http://www.ijiss.org
http://arxiv.org/abs/1901.05674
https://www.ndss-symposium.org/wp-content/uploads/ndss2021_4C-5_24475_paper.pdf

Mathematics 2023, 11, 416 22 of 23

44. Kim, M.; Cho, H.; Hyun, J.; Member, Y.I. Large-Scale Analysis on Anti-Analysis Techniques in Real-World Malware. IEEE Access
2022, 10, 75802–75815. [CrossRef]

45. Zhou, J.; Hirose, M.; Kakizaki, Y.; Inomata, A. Evaluation to Classify Ransomware Variants Based on Correlations between APIs.
In Proceedings of the 6th International Conference on Information Systems Security and Privacy, Valletta, Malta, 25–27 February
2020; pp. 465–472. [CrossRef]

46. Al-Rimy, B.A.S.; Maarof, M.A.; Shaid, S.Z.M. Crypto-ransomware early detection model using novel incremental bagging with
enhanced semi-random subspace selection. Futur. Gener. Comput. Syst. 2019, 101, 476–491. [CrossRef]

47. Pektaş, A.; Acarman, T. Classification of malware families based on runtime behaviors. J. Inf. Secur. Appl. 2017, 37, 91–100. [CrossRef]
48. Hwang, J.; Kim, J.; Lee, S.; Kim, K. Two-Stage Ransomware Detection Using Dynamic Analysis and Machine Learning Techniques.

Wirel. Pers. Commun. 2020, 112, 2597–2609. [CrossRef]
49. Du, D.; Sun, Y.; Ma, Y.; Xiao, F. A Novel Approach to Detect Malware Variants Based on Classified Behaviors. IEEE Access 2019,

7, 81770–81782. [CrossRef]
50. Oyama, Y. Trends of anti-analysis operations of malwares observed in API call logs. J. Comput. Virol. Hacking Tech. 2017, 14, 69–85. [CrossRef]
51. Oyama, Y. Investigation of the Diverse Sleep Behavior of Malware. J. Inf. Process. 2018, 26, 461–476. [CrossRef]
52. Ling, Y.T.; Sani, N.F.M.; Abdullah, M.T.; Hamid, N.A.W.A. Nonnegative matrix factorization and metamorphic malware detection.

J. Comput. Virol. Hacking Tech. 2019, 15, 195–208. [CrossRef]
53. Pektaş, A.; Acarman, T. Malware classification based on API calls and behaviour analysis. IET Inf. Secur. 2018, 12, 107–117. [CrossRef]
54. Ghaleb, F.A.; Maarof, M.A.; Zainal, A.; Rassam, M.A.; Saeed, F.; Alsaedi, M. Context-aware data-centric misbehaviour detection

scheme for vehicular ad hoc networks using sequential analysis of the temporal and spatial correlation of the consistency between
the cooperative awareness messages. Veh. Commun. 2019, 20, 100186. [CrossRef]

55. Li, X.; Qiu, K.; Qian, C.; Zhao, G. An Adversarial Machine Learning Method Based on OpCode N-grams Feature in Malware
Detection. In Proceedings of the 2020 IEEE Fifth International Conference on Data Science in Cyberspace (DSC), Hong Kong,
China, 27–30 July 2020; pp. 380–387. [CrossRef]

56. Zhang, H.; Xiao, X.; Mercaldo, F.; Ni, S.; Martinelli, F.; Sangaiah, A.K. Classification of ransomware families with machine learning
based onN-gram of opcodes. Futur. Gener. Comput. Syst. 2018, 90, 211–221. [CrossRef]

57. Fuyong, Z.; Tiezhu, Z. Malware Detection and Classification Based on N-Grams Attribute Similarity. In Proceedings of the
2017 IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference on
Embedded and Ubiquitous Computing (EUC), Guangzhou, China, 21–24 July 2017; Volume 1, pp. 793–796. [CrossRef]

58. Yang, L.; Liu, J. TuningMalconv: Malware Detection with Not Just Raw Bytes. IEEE Access 2020, 8, 140915–140922. [CrossRef]
59. Zhang, W.; Yoshida, T.; Tang, X. A comparative study of TF*IDF, LSI and multi-words for text classification. Expert Syst. Appl.

2011, 38, 2758–2765. [CrossRef]
60. Al-Hashmi, A.A.; Ghaleb, F.A.; Al-Marghilani, A.; Yahya, A.E.; Ebad, S.A.; Muhammad Saqib, M.S.; Darem, A.A. Deep-Ensemble

and Multifaceted Behavioral Malware Variant Detection Model. IEEE Access 2022, 10, 42762–42777. [CrossRef]
61. Chen, P.-H.; Zafar, H.; Galperin-Aizenberg, M.; Cook, T. Integrating Natural Language Processing and Machine Learning

Algorithms to Categorize Oncologic Response in Radiology Reports. J. Digit. Imaging 2017, 31, 178–184. [CrossRef] [PubMed]
62. Zhang, J. Clement: Machine learning methods for malware recognition based on semantic behaviours. In Proceedings of the 2020

International Conference on Computer Information and Big Data Applications, CIBDA 2020, Guiyang, China, 17–19 April 2020;
pp. 233–236. [CrossRef]

63. Kumar, H.; Chawla, N.; Mukhopadhyay, S. Towards Improving the Trustworthiness of Hardware based Malware Detector using
Online Uncertainty Estimation. arXiv 2021, arXiv:2103.11519. Available online: http://arxiv.org/abs/2103.11519 (accessed on
13 August 2022).

64. Chauhan, N.K.; Singh, K. A review on conventional machine learning vs deep learning. In Proceedings of the 2018 International
Conference on Computing, Power and Communication Technologies, GUCON 2018, Greater Noida, India, 28–29 September 2018;
pp. 347–352. [CrossRef]

65. Sun, Y.; Bashir, A.K.; Tariq, U.; Xiao, F. Effective malware detection scheme based on classified behavior graph in IIoT. Ad. Hoc.
Netw. 2021, 120, 102558. [CrossRef]

66. Usman, N.; Usman, S.; Khan, F.; Jan, M.A.; Sajid, A.; Alazab, M.; Watters, P. Intelligent Dynamic Malware Detection using
Machine Learning in IP Reputation for Forensics Data Analytics. Futur. Gener. Comput. Syst. 2021, 118, 124–141. [CrossRef]

67. García, D.E.; DeCastro-García, N. Optimal feature configuration for dynamic malware detection. Comput. Secur. 2021, 105, 102250. [CrossRef]
68. Revision, C.F. «Docs» Installation, Cuckoo Foundation Revision a665d2a6. 2022. Available online: https://cuckoo.readthedocs.

io/en/latest/installati (accessed on 16 August 2022).
69. Kirat, D.; Vigna, G. MalGene: Automatic extraction of malware analysis evasion signature. In Proceedings of the 22nd ACM SIGSAC

Conference on Computer and Communications Security, Los Angeles, CA, USA, 7–11 November 2022; pp. 769–780. [CrossRef]
70. Wei, C.; Li, Q.; Guo, D.; Meng, X. Toward Identifying APT Malware through API System Calls. Secur. Commun. Netw. 2021,

2021, 1–14. [CrossRef]

http://doi.org/10.1109/ACCESS.2022.3190978
http://doi.org/10.5220/0008959904650472
http://doi.org/10.1016/j.future.2019.06.005
http://doi.org/10.1016/j.jisa.2017.10.005
http://doi.org/10.1007/s11277-020-07166-9
http://doi.org/10.1109/ACCESS.2019.2924331
http://doi.org/10.1007/s11416-017-0290-x
http://doi.org/10.2197/ipsjjip.26.461
http://doi.org/10.1007/s11416-019-00331-0
http://doi.org/10.1049/iet-ifs.2017.0430
http://doi.org/10.1016/j.vehcom.2019.100186
http://doi.org/10.1109/DSC50466.2020.00066
http://doi.org/10.1016/j.future.2018.07.052
http://doi.org/10.1109/CSE-EUC.2017.157
http://doi.org/10.1109/ACCESS.2020.3014245
http://doi.org/10.1016/j.eswa.2010.08.066
http://doi.org/10.1109/ACCESS.2022.3168794
http://doi.org/10.1007/s10278-017-0027-x
http://www.ncbi.nlm.nih.gov/pubmed/29079959
http://doi.org/10.1109/CIBDA50819.2020.00059
http://arxiv.org/abs/2103.11519
http://doi.org/10.1109/GUCON.2018.8675097
http://doi.org/10.1016/j.adhoc.2021.102558
http://doi.org/10.1016/j.future.2021.01.004
http://doi.org/10.1016/j.cose.2021.102250
https://cuckoo.readthedocs.io/en/latest/installati
https://cuckoo.readthedocs.io/en/latest/installati
http://doi.org/10.1145/2810103.2813642
http://doi.org/10.1155/2021/8077220

Mathematics 2023, 11, 416 23 of 23

71. Darshan, S.L.S.; Jaidhar, C.D. An empirical study to estimate the stability of random forest classifier on the hybrid features
recommended by filter based feature selection technique. Int. J. Mach. Learn. Cybern. 2019, 11, 339–358. [CrossRef]

72. Rostamy, A.A.A.; Khosroanjom, D.; Niknafs, A.; Rostamy, A.A. Fuzzy AHP models for the evaluation of IT capability, data quality,
knowledge management systems implementation and data security dimensions. Int. J. Oper. Res. 2015, 22, 194. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1007/s13042-019-00978-7
http://doi.org/10.1504/IJOR.2015.067344

	Introduction
	Related Work
	Evasive Malware Behaviors
	The Framework
	Raw Data Collection
	Data Pre-Processing
	Sliding Window-Based Entropy
	Change Detection-Based Behavioral

	Feature Extraction and Representation
	The Detection

	Experimental Design
	Experiment Environment Setup
	The Dataset
	Performance Measures

	Results Analysis and Discussion
	Selecting the K Value
	The Comparison with Existing Work

	Conclusions
	References

