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Abstract: So many real life problems ranging from medicine, agriculture, biology and finance are
modelled by nonlinear systems. In this case, a chaotic nonlinear system is considered and, as opposed
to solving Linear Matrix Inequality (LMI), which is the usual approach but cumbersome, a completely
different approach was used. In some other cases, the computation of singular value of matrix was
used but the method in this study needs not such. In addition, most models, if not all, concentrate on
finding a control matrix J under some sufficient conditions. The problem is that only one such matrix
J is provided. In reality, the actual control quantity may have a little deviation from the theoretical
J. Hence, the study in this paper provides a set of infinite uncertain matrices Jα which are able to
adapt to control the system under uncertain conditions. It turns out that this new method controls
the system in shorter time with less computational complexities.

Keywords: uncertain control matrices; impulsive control; deviation matrices

MSC: 34A37; 93C42; 15B15

1. Introduction, Motivation and Model Formulation

Impulses occur and their controls have been studied in many systems such as mechan-
ical, electrical, nanoelectrical and biological systems, just to mention a few. This area of
research has kindled the interest of many researchers because of its wide applications in the
field of communication, system management, artificial intelligence and robotics which are
the seeming future of research in modern day science and technology. Some of the existing
chaotic systems which researchers have tried to control are Lorenz’s system [1], Chua’s
system [2], Chen’s system [3] and Rössler’s system among others. These were done via
different methods.

The methods that have been used in controlling chaotic systems differ from one
researcher to the other. Feng et al. in [4] used a combination of memristive neural network
and some delay method to develop a quantized intermittent control method which is an
extension of the existing intermittent control methods. This was considered more effective
in that it would save resources, control cost and information being transmitted among
others. A very similar work is in [5].

In 1965, the authors of [6] introduced mathematics of uncertainties which has also
influenced the ideas of many researchers in control theory. Nowadays, there are many
research works in the area fuzzy control theory. While more attention will be given to
impulsive control with time windows, for more diverse thoughts on impulsive control
or fuzzy impulsive control, or control with uncertainties, readers can refer to In 1965 [6]
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introduced mathematics of uncertainties which has also influenced the ideas of many
researchers [7] in control theory. Nowadays, there are many researches in the area fuzzy
control theory. While more attention will be given to impulsive control with time windows,
for more diverse thoughts on impulsive control or fuzzy impulsive control, or control with
uncertainties, readers can refer to [8–24]. Usually, a nonlinear impulsive control system
whose impulses occur within time windows [nTc, (n + 1)Tc) as in [25] is

ẋ(t)= Bx(t) + h(x(t)), nTc ≤ t < πn
x(t) = x(t−) + Jx(t−), t = nTc + πn
ẋ(t)= Bx(t) + h(x(t)), nTc + πn < t < (n + 1)Tc

(1)

in which case, x(t) ∈ IRn, is a vector representing the state of the system, Tc is the period
within which control takes place, B ∈ IRn×n is a matrix which has the system information,
h : IRn −→ IRn satisfies that the value of h at zero is zero, t− represents the left limit of time
and the control matrix is J ∈ IRn×n is added anytime within [nTc, (n + 1)Tc).

But Feng [26], in 2016, considered impulsive systems which has multiple jumps
within time windows. The magnitude of these jumps are unknown. Then, impulses are
periodically introduced to control the system. Via Linear Matrix Inequalities (LMIs) [27], the
stability criterion for these sort of systems were obtained. The results obtained were used
to control the Chua’s oscillator.

In 2017, Feng et al. [28] used a simpler method, some inequality and matrix analysis,
rather avoiding LMI, and obtained another sufficient conditions for the stability of nonlinear
systems with impulsive time windows. In 2019, [25] also established that the control matrix
J in [26,28] needs not be certain in the real sense but can be such that J ≤ µI, for a real
constant µ.

The limitation of this method is that it can produce only one matrix J which cannot
precisely be in real life. There is need to see how far can deviation from J be under which
the system can still be controlled. Hence, (1) is adjusted as

ẋ(t)= Bx(t) + h(x(t)), nTc ≤ t ≤ nTc + πn
x(t) = x(t−) + Jαx(t−), t = nTc + πn, α ∈ [0, 1)
ẋ(t)= Bx(t) + h(x(t)), nTc + πn < t(n + 1)Tc,

(2)

where Jα = (1− α)J for α ∈ [0, 1) and J = µI, which gives infinitely many Jα’s, that are
deviations from J by some degrees and still keep the system controlled. When α = 0, the
system becomes (1) and when α ∈ (0, 1), there are many options of useful control matrices
which can be adopted depending on the need of the situation. Onasanya et al. [29] in 2021
attempted to obtain the set of deviation matrices but using the method of solving LMI
which is more cumbersome.

The model in (1) is such that, within the time window [nTc, (n + 1)Tc), a certain
impulse J can be introduced to control the chaos. Unfortunately, in real life, it is not always
possible to get such certain quantity J; it can rather be a little less or more. However, the
model in (2) has accommodated this possible uncertainties in the input of J as Jα and has
given the degree of freedom within which deviation can be allowed from J.

However, in this paper, using some inequalities without necessarily doing much
matrix analysis as in [28] or solving LMI as in [26,28,29], another sufficient conditions were
obtained and the stability criterion for (2) were obtained.

In order to do this, let L = diag(l1, l2, · · · , ln) be a diagonal matrix which is positive
definite such that ||h(x)||2 ≤ xT Lx. Let πn ∈ [nTc, (n + 1)Tc], where n = 0, 1, 2, · · · . The
goal is to find a set of matrices {Jα} which controls the system (2). In addition, in this
paper, the set of changeable matrices {Jα} have been obtained to control the system (2) and
this control method is more flexible and can easily adapt to uncertainties in the system.
It has developed a model that can respond more suitably to the uncertain nature of the
control impulse.
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The structure of the paper is as follows: Section 2 is the main result; Section 3 contains
the simulations of numerical examples; Section 4 contains the comparison of the results
with those in [28]; Section 5 is the conclusion. Please note that ≈ and / are respectively
approximate and less or equal to in the fuzzy sense and λi and λu are minimum and
maximum eigenvalues respectively throughout this paper.

Meanwhile, the following lemma is of importance.

2. Preliminaries

Lemma 1 ([25]). Let u, v ∈ IRn and ε > 0. Then

2uTv ≤ εuTu +
1
ε

vTv.

3. Main Results

Theorem 1. Let there be w > 0, ε > 0, δ > 0 and a matrix Q ∈ IRn×n (symmetric, positive
definite) and the set {λα}, in which case every λα has a corresponding control matrix Jα, such that

(i) w2

4 I − 2(BTB+ L) > 0;
(ii) wTc + ln λα < 0, for every α ∈ [0, 1),

where

λα =
λu[(I + Jα)TQ(I + Jα)]

λi(Q)

with

Q =
1√

ε
[(

w2

4ε
− δ)I − 2

ε
(QTQ + L)]

1
2 +

w
2ε

I,

then (2) is exponentially stable for every α ∈ [0, 1).

Proof. Let
w2

4
I − 2(BTB+ L) > 0,

then,
w2

4ε
I − 2

ε
(BTB+ L) > 0.

Thus , there is a δ > 0 that guarantees

(
w2

4ε
− δ)I − 2

ε
(BTB+ L) ≥ 0.

Letting

X = [(
w2

4ε
− δ)I − 2

ε
(BTB+ L)]

1
2 ≥ 0

and
Q =

1√
ε
X+

w
2ε

I > 0, X =
√

εQ− w
2
√

ε
I

then

X2 = (
w2

4ε
− δ)I − 2

ε
(BTB+ L) ≥ 0

and

X2 ≤ w2

4ε
I − 2

ε
(BTB+ L).

Hence,

(
√

εQ− w
2
√

ε
I)2 ≤ w2

4ε
I − 2

ε
(BTB+ L),
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from whence
εQ2 +

2
ε
(BTB+ L)− wQ ≤ 0.

Furthermore, consider the Lyapunov function

Vp(x(t)) = xTQx. (3)

By Lemma 1 and Equation (3) it can be shown that, for [nTc, nTc + πn],

V̇p(x(t)) = 2xTQ(Bx + h(x))

≤ εxTQ2x +
1
ε
(Bx + h(x))T(Bx + h(x))

= xT(εQ2 +
2
ε
(BTB+ L))x

= xT(εQ2 +
2
ε
(BTB+ L))x− wxTQx + wxTQx

≤ xT(εQ2 +
2
ε
(BTB+ L)− wQ)x

+ wVp(x(t))

≤ wVp(x(t)).

(4)

Hence,
Vp(x(t)) ≤ Vp(x(nTc))ew(t−nTc). (5)

In addition, if nTc + πn < t ≤ (n + 1)Tc,

V̇p(x(t)) ≤ wVp(x(t)). (6)

Then,

Vp(x(t)) ≤ Vp(x(nTc + πn))ew(t−nTc−πn). (7)

If t = nTc + πn, then the uncertain matrix Jα = (1− α)µI = µα I is used for control. From
the Lyapunov function in (3),

Vp(x(t)) /
λu[(I + Jα)TQ(I + Jα)]

λi(Q)
Vp(x(t−))

= λαVp(x(t−)).
(8)

From (8), with nTc + πn ≤ t < (n + 1)Tc, it can be obtained that

Vp(x(nTc + πn)) ≤ λαVp(x(nTc + πn)
−) (9)

and substituting (9) into (7) the following is obtained:

Vp(x(t)) / λαVp(x((nTc + πn)
−))ew(t−nTc−πn). (10)

The principle of mathematical induction will be used on n, for nTc + πn ≤ t < (n + 1)Tc.
The following can be obtained for n = 0:

(i) In (5) for 0 ≤ t < π0, then
Vp(x(t)) ≤ Vp(x(0))ewt. (11)

(ii) From π0 ≤ t < Tc, (10) and (11),

Vp(x(t)) / λαVp(x(π−0 ))ew(t−π0)

/ λαVp(x(0))ewt.
(12)
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The following can be obtained for n = 1:

(i) In (5) and (12), [Tc, Tc + π1) and

Vp(x(t)) ≤ Vp(x(Tc))ew(t−Tc)

/ λαVp(x(0))ewt.
(13)

(ii) From [Tc + π1, 2Tc), (10) and (13),

Vp(x(t)) / λαVp(x((Tc + π1)
−))ew(t−Tc−π1)

/ λ2
αVp(x(0))ewt.

(14)

The following can be obtained for n = 2:

(i) In (5) and (14), [2Tc, 2Tc + π2) and

Vp(x(t)) ≤ Vp(x(2Tc))ew(t−2Tc)

/ λ2
αVp(x(0))ewt.

(15)

(ii) From [2Tc + π2, 3Tc), (10) and (15),

Vp(x(t)) / λαVp(x((2Tc + π2)
−))ew(t−2Tc−π2)

/ λ3
αVp(x(0))ewt.

(16)

The following can be obtained for n = s:

(i) For [sTc, sTc + πs) it can be obtained that

Vp(x(t)) / λs
αVp(x(0))ewt. (17)

(ii) For [sTc + πs, (s + 1)Tc),

Vp(x(t)) / λαVp(x((2Tc + π2)
−))ew(t−2Tc−π2)

/ λ
(s+1)
α Vp(x(0))ewt.

(18)

Then, from (17) for [sTc, sTc + πs),

Vp(x(t)) / Vp(x(0))es(wTc+ln λα). (19)

In addition, from (18) for sTc + πs < t ≤ (s + 1)Tc,

Vp(x(t)) / Vp(x(0))e(s+1)(wTc+ln λα). (20)

Obviously, since for every α in (19) and (20) wTc + ln λα < 0, then as t→ ∞,

lim
t→∞

Vp(x(t)) = 0.

Corollary 1. Given positive constant w and the set {µα} such that

(i) w2

4 I − 2(BTB+ L) > 0;
(ii) wTc + 2 ln(1 + µα) < 0, for every α,

then system (2) has exponential stability.
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Proof. Set Jα = µα I, where µα = (1− α)µ and J = µI. It is known that

λα =
λu[(I + Jα)TQ(I + Jα)]

λi(Q)
(21)

=
(1 + µα)2λu(Q)

λi(Q)
(22)

≥ (1 + µα)
2 (23)

Without loss of generality, choose

λα = (1 + µα)
2.

Since
wTc + 2 ln(1 + µα) < 0,

then
wTc + ln λα < 0.

Hence, the proof is complete.

Remark 1. Consider the control matrix J = µI and the uncertain matrix Jα = (1− α)J =
(1− α)µI = µα I, the matrix J with the set of matrix Jα satisfy J ≤ Jα for all α. Hence, it can be
said that the result in this paper generalises the work of [9,10].

4. Numerical Examples and Simulations

Example 1. Lorenz’s system [1] is
ẋ1 = −µx1 + µx2
ẋ2 = νx1 − x2 − x1x3
ẋ3 = x1x2 −ωx3

(24)

Then, (24) is now

ẋ = Bx + h(x),

where x = [x1, x2, x3]
T and

B =

−10 10 0
28 −1 0
0 0 − 8

3

,

and µ = 10 ν = 28, ω = 8
3 and d = 20.

This system is chaotic at x0 = [5, 1,−3]T as shown in Figures 1 and 2.

-10

40

0

10

20

20 30

30

z

20

40

y

0

50

10

x

60

0-20
-10

-40 -20

Figure 1. The chaos diagram of Lorenz’s system at initial condition x0 = [5, 1,−3]T .
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Set L = diag(0, 400, 400), ε = 1, Tc = 0.0026 and w = 90. It can be shown that

BTB+ L =

 884 −128 0
−128 501 0

0 0 407.1111


In addition, set

J = (
t + 1

t
) ∗ diag(−0.2,−0.2,−0.2)

and
Jα = (1− α) ∗ ( t + 1

t
) ∗ diag(−0.2,−0.2,−0.2).

To be precise, at α = 0, J0 = J, in which case λ0 = 0.6400 and control is guaranteed at
α ∈ [0, 0.444).

0 20 40 60 80 100

-20

0

20

x

0 20 40 60 80 100

-20

0

20

y

0 20 40 60 80 100

t

0

20

40

z

Figure 2. The chaos diagram of Lorenz’s system at initial condition x0 = [5, 1,−3]T .

So, at α = 0.4, J0.4 = 0.6 ∗ ( t+1
t ) ∗ diag(−0.2,−0.2,−0.2), in which case λ0.4 = 0.7744,

and the response curve is in Figure 3.

0 0.05 0.1 0.15

time
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1
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z(t)

Figure 3. System of Lorenz after control at α = 0.4.

Example 2. Chua’s system [30] is
ẋ1 = µ(x2 − x1 − u(x1))
ẋ2 = x1 − x2 − x3
ẋ3 = −$x2

(25)
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where
u(x1) = κx1 + 0.5(ε−κ)(|x1 + 1| − |x1 − 1|), ε < κ < 0.

Then, (25) is

ẋ = Bx + h(x),

where x = [x1, x2, x3]
T and

B =

-µ-µκ µ 0
1 −1 1
0 −$ 0

 =

−2.2362 9.2156 0
1 −1 1
0 −15.9946 0

,

µ = 9.2156, $ = 15.9946, ε = −1.24905,κ = −0.75735, ε = 1, w = 80 and Tc = 0.0018.

||h(x)||2 ≤ µ2(ε−κ)2,

set L = diag(µ2(ε−κ)2, 0, 0) = (20.5328, 0, 0).

This system is chaotic at x0 = [5, 1,−3]T as shown in Figures 4 and 5.

-2
10

10

5
5

-1

xz

0
0

-5-5

0y

-10-10

1

2

Figure 4. The chaos diagram of Chua’s system at initial condition x0 = [5, 1,−3]T .
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y

0 50 100 150 200 250 300

t

-10

0

10

z

Figure 5. The chaos diagram of Chua’s system at initial condition x0 = [5, 1,−3]T .

It can be shown that

BTB+ L =

 26.5332 −21.6076 1
−21.6076 341.7545 −1

1 −1 1


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In addition, set

J = (
t + 1

t
) ∗ diag(−0.28,−0.28,−0.28)

and
Jα = (1− α) ∗ ( t + 1

t
) ∗ diag(−0.28,−0.28,−0.28).

To be precise, at α = 0, J0 = J, in which case λ0 = 0.5184 and control of this is guaranteed
at α ∈ [0, 0.75).

So, at α = 0.75, J0.75 = 0.25 ∗ ( t+1
t ) ∗ diag(−0.28,−0.28,−0.28), in which case λ0.75 =

0.8649, and the response curve is in Figure 6.
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s
u

lt

x(t)

y(t)

z(t)

Figure 6. System of Chua after control at α = 0.75.

Example 3. Rössler’s system [28] is
ẋ1 = −x2 − x3
ẋ2 = x1 + ax2
ẋ3 = bx1 − cx3 + x1x3

(26)

Then, (26) can also be expressed as

ẋ = Bx + h(x),

where x = [x1, x2, x3]
T and

B =

 0 −1 −1
1 0.34 0

0.4 0 −4.5

,

and d = 20, a = 0.34, c = 4.5 and b = 0.4.

This system is chaotic at x0 = [−1, 3,−2]T as shown in Figures 7 and 8.
Set L = diag(0, 0, 400), ε = 1, Tc = 0.002 and w = 60. It can be shown that

BTB+ L =

 1.16 0.34 −1.8
0.34 1.1156 1
−1.8 1 421.25


In addition, set

J = (
t + 1

t
) ∗ diag(−0.16,−0.16,−0.16)

and
Jα = (1− α) ∗ ( t + 1

t
) ∗ diag(−0.16,−0.16,−0.16).
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To be precise, at α = 0, J0 = J, in which case λ0 = 0.7056 and control is guaranteed at
α ∈ [0, 0.63).

-5

10

0

5

5
15

10z
15

0 10

y

20

5

x

-5

25

0
-10

-5

-15 -10

Figure 7. The chaos diagram of Rössler’s system at initial condition x0 = [−1, 3,−2]T .
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Figure 8. The chaos diagram of Rössler’s system at initial condition x0 = [−1, 3,−2]T .

Also, at α = 0.2, J0.2 = 0.8 ∗ ( t+1
t ) ∗ diag(−0.16,−0.16,−0.16), in which case λ0.2 =

0.7604, and the response curve is in Figure 9.
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Figure 9. Rössler’s System after control at α = 0.6.

5. Comparison of Results

Comparing the results of the method in [28] and this paper, one can carefully observe
that the control method in this paper saves time in that all of them were achieved in far less
than 0.2 unit of time as opposed to what obtains in [28]. As a matter of fact, the control time



Mathematics 2023, 11, 421 11 of 12

for the Lorenz’s , Chua’s and Rössler’s systems dropped by about 25%, and can even be
less depending on the choice of α, compared to the control time in [28]. In addition, there
are infinitely many J ∈ {Jα}α∈[0,1). One limitation of this method may be the choice of
appropriate α. The good thing, however, is that the system does not introduce conservatism
as Jα is time-varying.

6. Conclusions

The set of changeable matrices {Jα} have been obtained to control the system (2) rather
than one control matrix J. The possibility of infinite choices of control matrices makes this
control method more flexible and realistic. Besides that this method is more flexible, it can
easily adapt to errors due to uncertainties in the system. Instead of using the LMI and
computation of maximum singular value of matrix (I + J), the results were obtained by
employing simple inequalities. The result of the simulation shows that this method is less
cumbersome and less time consuming. In other words, this new approach is less rigorous,
requires less time, basic computational skills and minimal MATLAB programming code.
This paper has developed a model that can respond more suitably to the uncertain nature
of the control impulse. As a matter of fact, for every α, there is a control.
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