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Abstract: The partial correlation coefficient (Pcor) is a vital statistical tool employed across various
scientific domains to decipher intricate relationships and reveal inherent mechanisms. However,
existing methods for estimating Pcor often overlook its accurate calculation. In response, this
paper introduces a minimum residual sum of squares Pcor estimation method (MRSS), a high-
precision approach tailored for high-dimensional scenarios. Notably, the MRSS algorithm reduces
the estimation bias encountered with positive Pcor. Through simulations on high-dimensional data,
encompassing both sparse and non-sparse conditions, MRSS consistently mitigates the arithmetic
bias for positive Pcors, surpassing other algorithms discussed. For instance, for large sample sizes
(n ≥ 100) with Pcor > 0, the MRSS algorithm reduces the MSE and RMSE by about 30–70% compared
to other algorithms. The robustness and stability of the MRSS algorithm is demonstrated by the
sensitivity analysis with variance and sparsity parameters. Stocks data in China’s A-share market are
employed to showcase the MRSS methodology’s practicality.

Keywords: partial correlation; high-dimensional data; variable selection; MCP
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1. Introduction

The partial correlation coefficient (Pcor) measures the correlation between two random
variables, X and Y, after accounting for the effects of controlling variables Z, denoted
by ρXY|Z. The Pcor essentially quantifies the unique relationship between X and Y, after
removing the correlations between X and Z, and between Y and Z [1]. This correlation
coefficient provides a more thorough comprehension of the connection between variables,
untainted by the influence of confounding factors. Unlike the Pearson correlation coefficient,
which only captures the direct correlation between random variables, the Pcor enables the
identification of whether correlations stem from intermediary variables. This distinction
enhances the precision and validity of statistical analyses.

The Pcor is a fundamental statistical tool for investigating intricate relationships
and gaining a more profound comprehension of the underlying mechanisms in a variety
of scientific fields, such as psychology, biology, economics, and social sciences. When
examining genetic markers and illness outcomes, biologists used the Pcor to identify
correlations while accounting for potential confounding factors [2–4]. Marrelec et al.
utilised the partial correlation matrix to explore large-scale functional brain networks
through functional MRI [5]. In the field of economics, Pcor assists in comprehending
complex connections, including the interplay between interest rates and inflation, while
considering other variables’ influence [6]. The financial industry also employs Pcor to
interpret connections and relationships between stocks in the financial markets [7,8]. For
example, Michis proposed a wavelet procedure for estimating Pcor between stock market
returns over different time scales and implemented it for portfolio diversification [9]. Using
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partial correlations within a complex network framework, Singh et al. examined the
degree of globalisation and regionalisation of stock market linkages and how these linkages
vary across different economic or market cycles [10]. Meanwhile, the employment of the
Gaussian graphical model (GGM) technique in psychology has recently gained popularity
for defining the relationships between observed variables. This technique employs Pcors to
represent pairwise interdependencies, controlling the influence of all other variables [11–13].
In the field of geography, a correlation analysis based on the Pcor of the fractal dimension
of the variations of HZD components is implemented to study the geomagnetic field
component variations in Russian [14].

Several methodologies have been proposed over the years to estimate the Pcor in
statistical analyses. For instance, Peng et al. introduced a Pcor estimation technique that
relies on the sparsity property of the partial correlation matrix and utilises sparse regression
methods [3]. Khare et al. suggested a high-dimensional graphical model selection approach
based on the use of pseudolikelihood [15]. Kim provided an R package “ppcor” for a
fast calculation to semi-Pcor [16]. Huang et al. introduced the kernel partial correlation
coefficient as a measure of the conditional dependence between two random variables in
various topological spaces [17]. Van Aert and Goos focused on calculating the sampling
variance of Pcor [18]. Hu and Qiu proposed a statistical inference procedure for Pcor
under the high-dimensional nonparanormal model [19]. However, these methods mainly
centre around determining whether or not the partial correlation coefficient is zero, without
adequate regard for the precision of the Pcor calculation and the algorithm’s efficacy. We
analysed multiple high-dimensional algorithms and discovered notable Pcor estimation
biases, particularly for positive Pcor. Even with larger sample sizes, these biases persisted.
Motivated by these findings, our primary goal is to put forward a Pcor estimation algorithm
to increase the precision of the Pcor estimation algorithm and diminish the estimation bias
for positive Pcor values.

This paper reviews current methods for estimating Pcor in high-dimensional data.
We introduce a novel minimum residual sum of squares (MRSS) Pcor estimation method
under high-dimensional conditions, aiming to mitigate the estimation bias for positive Pcor.
The algorithm’s effectiveness is validated through simulation studies under sparse and
non-sparse conditions and real data analysis on stock markets.

The sections are structured as follows: Section 2 outlines definitions and corresponding
formulae for calculating Pcor, and examines common algorithms for estimating Pcor.
Section 3 presents our Minimum Residual Sum of Squares Pcor estimation, designed to
mitigate estimation bias for positive Pcor. In Section 4, we demonstrate the effectiveness
of our proposed algorithm through simulation studies on high-dimensional data under
both sparse and non-sparse conditions. Section 5 provides an analysis of real data related
to stock markets, while Section 6 contains the conclusion.

2. Estimation for Partial Correlation Coefficient
2.1. Definition of Pcor

The classical definition of the partial correlation coefficient is defined by the correla-
tion coefficient between the regression residuals from the linear models of two variables
with the controlling variable, respectively. Let X and Y be two random variables, and
Z = [Z1, Z2, · · · , Zp] be p-dimensional controlling variables. Consider the linear regression
models of X and Y, respectively, with the controlling variable Z,

X = α0 + ∑p
i=1 αiZi + ε,

Y = β0 + ∑p
i=1 βiZi + ζ,

where ε and ζ are error terms. The partial correlation coefficient between X and Y is
conditional on Z, denoted by ρXY|Z, and defined by the correlation coefficient between the
regression residuals ε and ζ, as follows
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ρXY|Z = cor(ε, ζ) =
cov(ε, ζ)√

var(ε)
√

var(ζ)
. (1)

where cor(., .) is the correlation coefficient of two random variables; cov(., .) is the covari-
ance of two random variables; var(.) is the variance of a random variable. Let the sample
size be n. In conventional low-dimensional cases (p < n), the ordinary least squares (OLS)
is used to compute the residuals ε and ζ. Subsequently, the Pcor is computed from the
correlation coefficient of residuals. However, the OLS method is not practical for high-
dimensional cases (p > n). Regularisation methods are introduced to deal with such
cases later.

2.2. Calculation Formulae of Pcor
2.2.1. Based on Concentration Matrix

The concentration matrix can also be used to calculate Pcor. Let U1 = [X, Y],
U2 = Z = [Z1, . . . , Zp], U = [U1, U2] = [X, Y, Z] and Σ = cov(U) be the covariance matrix.
When assuming that Σ is a non-singular matrix, the concentration matrix is denoted as
Ω = (ωij)

p+2
i,j=1 = Σ−1. Consider the following linear regression,

U1 = U2b + e,

where b = (b1, b2) is the regression coefficient and e = (e1, e2) is the regression error. We
have

ê = (ê1, ê2) = U1 −U2b̂ = U1 − Û1,

where b̂ is the estimator of b and Û1 is the estimator of U1. The regression residual
ê ∼ N(0, V) is independent of Û1. The covariance matrix of ê can be computed by

cov(ê) = cov(U1) + cov(Û1)− 2cov(U1, Û1)

= Σ11 + Σ12Σ−1
22 Σ22Σ−1

22 Σ21 − 2Σ12Σ−1
22 Σ21

= Σ11 − Σ12Σ−1
22 Σ21 = Ω−1

11 .

According to the definition in Equation (1) and Ω−1
11 = 1

ω11ω22−ω12ω21

[
ω22 −ω12

−ω21 ω11

]
,

the partial correlation coefficient can be computed by

ρXY|Z = cor(ê1, ê2) =
cov(ê1, ê2)√

var(ê1)
√

var(ê2)
= − ω12
√

ω11
√

ω22
. (2)

2.2.2. Based on Additional Regression Models

Additional linear regression models are introduced to calculate the Pcor. Consider
new linear regression models of X with [Y, Z] and Y with [X, Z], respectively,

X = λ0Y + ∑p
i=1 λiZi + η, (3)

Y = γ0X + ∑p
i=1 γiZi + τ, (4)

where η and τ are regression error terms. Peng et al. [3] established the correlation be-
tween the aforementioned regression coefficients and Pcor, while verifying that formulas

λ0 = ρXY|Z

√
ω22

ω11 , γ0 = ρXY|Z

√
ω11

ω22 , var(η) = 1
ω11 and var(τ) = 1

ω22 hold. Then, we derive

λ0γ0 = ρ2
XY|Z. Thus, the partial correlation coefficient between X and Y can be calculated

by the formula below,

ρXY|Z = λ0

√
var(τ)/var(η), (5)

= sign(λ0)
√

λ0γ0, (6)



Mathematics 2023, 11, 4311 4 of 22

where sign(·) is the sign function.
Consider linear regression models of Y with [1, Z] and Y with [1, X, Z], respectively,

Y = β0 + ∑p
i=1 βiZi + ζ,

Y = γ−1 + γ0X + ∑p
i=1 γiZi + τ,

where ζ and τ are error terms. The partial correlation coefficient can also be calculated as
follows [20]

ρXY|Z = sign(γ0)

√
var(ζ)− var(τ)

var(ζ)
. (7)

Here, we present five distinct formulae, (1), (2), (5), (6), and (7), for calculating Pcor
based on diverse regression models. Specific algorithms applicable to high-dimensional
scenarios will be presented in the following section.

2.3. Regularisation Regression for High-Dimensional Cases

Suppose we have centralised samples {xj, yj, zj1, . . . , zjp}n
j=1 i.i.d. observed from

[X, Y, Z] with Z = [Z1, . . . , Zp]. Let X = [x1, . . . , xn]T , Y = [y1, . . . , yn]T and
Z = [Z1, . . . , Zp] =(zji)n×p. We consider matrix-type linear regression models as follows,

X = ∑p
i=1 αiZi + ε, (8)

Y = ∑p
i=1 βiZi + ζ, (9)

where ε = [ε1, . . . , εn]T and ζ = [ζ1, . . . , ζn]T are error terms. If we estimate regression
coefficients α̂ = [α̂1, . . . , α̂p]T and β̂ = [β̂1, . . . , β̂p]T , then we can calculate the estimated
residuals ε̂ = X− X̂ and ζ̂ = Y− Ŷ, with X̂ = Zα̂ = ∑

p
i=1 α̂iZi and Ŷ = Zβ̂ = ∑

p
i=1 β̂iZi.

According to the definition of Pcor, we can estimate the Pcor as follows

ρ̂ =
cov(ε̂, ζ̂)√

var(ε̂)var(ζ̂)
, (10)

where cov(ε̂, ζ̂) = ∑n
j=1 (ε̂ j − ε̄)(ζ̂ j − ζ̄), var(ε̂) = ∑n

j=1 (ε̂ j − ε̄)2 and var(ζ̂) = ∑n
j=1 (ζ̂ j − ζ̄)

2

with ε̄ = 1
n ∑n

j=1 ε̂ j, ζ̄ = 1
n ∑n

j=1 ζ̂ j.
In high-dimensional (p > n) situations, the penalty function and regularisation re-

gression methods can be introduced to estimate the regression coefficients for regression
models. Regularisation regression methods address overfitting in statistical modelling by
adding a penalty to the loss function, constraining the coefficient magnitudes. Let pλ(β) be
the penalty function with a tuning parameter λ, for example, the regularisation estimate of
model (8) is given by

α̂ = arg min
α

1
n
||X− Zα||2 + pλ(α),

where the penalty pλ(α) could widely choose the Lasso penalty [21], the Ridge penalty [22],
the SCAD penalty [23], the Elastic net [24], the Fused lasso [25], the MCP penalty [26],
and other penalty functions. In this paper, the Lasso regularisation with penalty as
pλ(α) = λ||α||1 is implemented by the R-package “glmnet” [27], and the MCP with penalty
as pλ(α) =

1
t (tλ− α)+, (t > 1) is implemented by the R-package “ncvreg”.

2.4. Existing Pcor Estimation Algorithms

To investigate high-dimensional Pcor estimation methods, we present some existing
methods that are suitable for both sparse and non-sparse conditions. Combining the
advantages and disadvantages of these methods, we propose a new high-dimensional
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Pcor estimation method: MRSS—minimum residual sum of squares partial correlation
coefficient estimation algorithm.

2.4.1. Res Algorithm

The Res algorithm is primarily defined by the Pcor definition. This algorithm is
implemented as follows. First, we use the regularisation regression (Lasso and MCP)
on linear models (8) and (9) to obtain the estimated regression coefficients α̂ and β̂; then
calculate estimated residuals ε̂ = X− X̂ and ζ̂ = Y− Ŷ, with X̂ = Zα̂ and Ŷ = Zβ̂; at last,
estimate Pcor ρ̂res by formula (10).

2.4.2. Reg2 Algorithm

The Reg2 algorithm can more effectively remove the influence of Z in X and Y using
the new regressions below. Consider new linear regression models as follows

X = a1X̂ + a2Ŷ + η1, (11)

Y = b1X̂ + b2Ŷ + τ1, (12)

where η1 and τ1 are error terms, the estimators X̂ = ∑
p
i=1 α̂iZi and Ŷ = ∑

p
i=1 β̂iZi are

estimated by the Lasso or MCP regularisation regressions of models (8) and (9). Then,
we implement the ordinary least squares (OLS) on models (11) and (12), and denote new
estimators of X and Y by X̂Reg2 and ŶReg2. Computing new residuals η̂1 = X− X̂Reg2 and
τ̂1 = Y− ŶReg2, we finally estimate Pcor by the Reg2 algorithm as ρ̂reg2 = cor(η̂1, τ̂1).

2.4.3. Coef and Var Algorithm

The Coef and Var algorithm is generated through the introduction of novel regression
coefficients based on the Pcor definition formula (5) and (6). Consider linear regression
models as follows

X = λ0Y + ∑p
i=1 λiZi + η2, (13)

Y = γ0X + ∑p
i=1 γiZi + τ2, (14)

where η2 and τ2 are error terms. Then, we implement MCP regularisation on these
models (13) and (14) and obtain estimated first-term regression coefficients λ̂0, γ̂0 and
the estimated variance var(η̂2), var(τ̂2). Finally, we can obtain the Pcor estimate by

Coef algorithm as ρ̂coe f = sign(λ̂0)
√

λ̂0γ̂0 and the Pcor estimate by Var algorithm as

ρ̂var = λ̂0
√

var(τ̂2)/var(η̂2).

2.4.4. RSS2 Algorithm

The RSS2 algorithm is given by the residual sum of squares in formula (7). First,
we implement the MCP regularisation on model (9): Y = Zβ + ζ and estimate the resid-
ual ζ̂ and the residual sum of squares (RSS) R1 = ||ζ̂||22. Similarly, we implement the
MCP regularisation on model (14): Y = γ0X + ∑

p
i=1 γiZi + τ and estimate the first-term

regression coefficient γ̂0, the residual τ̂, and the RSS R2 = ||τ̂||22. Then, we obtain the
Pcor estimate ρ̂Y = sign(γ̂0)

√
max(0, R1 − R2)/R1. Switch the position of X and Y sim-

ilarly as the above steps. Then, we implement the MCP regularisation on model (8):
X = Zα + ε and model (13): X = λ0Y + ∑

p
i=1 λiZi + η and obtain the RSS R3 = ||ε̂||22,

R4 = ||η̂||22 and the estimated first-term coefficient λ̂0. We obtain another Pcor estimate
ρ̂X = sign(λ̂0)

√
max(0, R3 − R4)/R3. Finally, we have the estimate Pcor by RSS2 algorithm

as ρ̂rss2 = (ρ̂X + ρ̂Y)/2.
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3. Minimum Residual Sum of Squares Pcor Estimation Algorithm
3.1. Motivation

From the comprehensive simulations in this paper, it is evident that the Pcor estimation
methods discussed exhibit significant bias. This bias becomes more pronounced as the true
Pcor increases, especially when the Pcor is positive. Therefore, further research is necessary
to address this estimation bias in positive Pcor scenarios. While each algorithm has its
merits, the Reg2 algorithm performs notably well when Pcor is below approximately 0.5.
In contrast, the Coef and Var algorithm stands out with minimal bias when Pcor exceeds
roughly 0.5. Our goal is to develop a method that synergises the strengths of both the Reg2
and Var algorithms.

The models introduced in the Reg2 algorithm, (11) and (12), can be represented as,

X = a1X̂ + a2 ∑p
i=1 β̂iZi + η1, (15)

Y = b2Ŷ + b1 ∑p
i=1 α̂iZi + τ1, (16)

When compared to models (13) and (14) from the Coef and Var algorithm, it is evident
that the residuals η1 and η2 share commonalities. Both provide insights into the information
in X after the exclusion of Y and Z effects in some sense. Similarly, τ1 and τ2 capture the
essence of Y after removing for X and Z influences. If we choose a ηi and τi with a smaller
residual sum of squares, then this will lead to a better estimation for the corresponding
regression models. A reduced residual sum of squares in the corresponding regression
models signifies enhanced precision in eliminating controlling variables effects, leading to
a more accurate Pcor estimator. Guided by the objective of minimising the residual sum
of squares, we introduce a novel algorithm for high-dimensional Pcor estimation in the
subsequent subsection.

3.2. MRSS Algorithm and Its Implementation

We propose a novel Minimum Residual Sum of Squares partial correlation coefficient
estimation algorithm, denoted by MRSS. This algorithm aims to diminish the estimation
bias for positive Pcor values under high-dimensional situations. Our MRSS algorithm
amalgamates the strengths of the Reg2, Coef, and Var algorithms, effectively curtailing bias
in Pcor estimation.

Define RSSX = ‖ηk‖2
2 and RSSY = ‖τk‖2

2 as the residual sum of squares of X after
removing the effects of X and Z, and the residual sum of squares of Y after removing the
effects of X and Z, respectively. The tuning parameter k is chosen by minimising the sum of
squares of the residuals, so as to remove more associated effects and ensure a more efficient
Pcor estimator. For k = 1, the pair (η1, τ1) represents the residuals from the Reg2 algorithm’
models (11) and (12). For k = 2, (η2, τ2) corresponds to the residuals from the Coef and Var
algorithms’ models (13) and (14). Then, the residuals estimated by the MRSS algorithm
satisfy the minimum residual sum of squares of both X and Y for a more efficient Pcor
estimator as follows

ηmrss = arg min
k=1,2

RSSX = arg min
k=1,2

‖ηk‖2
2,

τmrss = arg min
k=1,2

RSSY = arg min
k=1,2

‖τk‖2
2.

(17)

The Pcor estimated by MRSS is then given by

ρmrss = cor(ηmrss, τmrss)Ik=1 + λ0

√
var(τmrss)/var(ηmrss)Ik=2 (18)

where I is the indicator function and λ0 is the primary regression coefficient in model (13).
If k = 1, then ρmrss is estimated following the idea of Reg2 algorithm; if k = 2, then ρmrss is
estimated following the idea of the Coef and Var algorithm. If the two k estimates in (17)
differ, the more stable Reg2 algorithm is preferred, setting k = 1 in (18). Given that MRSS
integrates two existing algorithms, its convergence should align with their rates.
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During the implementation of the MRSS algorithm (Algorithm 1), the Coef and Var
algorithm often misestimates Pcor as 0 or±1 when the true Pcor is close to 0 or±1, affecting
the algorithms’ precision. To address this, we incorporate a discriminative condition in
the MRSS pseudo-code. If the estimated Pcor ρ̂coe f or ρ̂var is zero or ±1, the Coef and Var
algorithm is deemed unreliable, and the Reg2 algorithm’s estimate is adopted.

Algorithm 1: MRSS algorithm
Data: (X, Y, Z) with the dimension (n, p)
Result: Pcor estimate ρ̂mrss

1 Implement MCP regularisation on models (8) and (9), and obtain X̂ and Ŷ;
2 Implement ordinary least squares (OLS) on models (11) and (12), and obtain X̂Reg2

and ŶReg2 with residuals η̂1 = X− X̂Reg2 and τ̂1 = Y− ŶReg2. Calculate the RSS
by RSSX1 = ‖η̂1‖2

2 and RSSY1 = ‖τ̂1‖2
2;

3 Implement MCP regularisation on models (13) and (14), obtain estimated
coefficients λ̂0, γ̂0 and residuals η̂2, τ̂2. Calculate RSS by RSSX2 = ‖η̂2‖2

2,
RSSY2 = ‖τ̂2‖2

2;

4 Estimate the Coef Pcor by ρ̂coe f = sign(λ̂0)
√

λ̂0γ̂0 and the Var Pcor by

ρ̂var = λ̂0
√

var(τ̂2)/var(η̂2);
5 if ρ̂coe f = 0 or ρ̂var = 0 or ±1 then
6 Estimate Pcor by ρ̂mrss = cov(η̂1, τ̂1);
7 else if RSSX2 ≤ RSSX1 and RSSY2 ≤ RSSY1 then
8 Estimate Pcor by ρ̂mrss = λ̂0

√
var(τ̂2)/var(η̂2) ;

9 else
10 Estimate Pcor by ρ̂mrss = cov(η̂1, τ̂1);
11 end

The proposed MRSS algorithm selects the most suitable residuals by minimising RSS
and removing the impact of control variables to optimise the estimation of residuals in the
regression model. As such, the estimated Pcor generated by the MRSS algorithm combines
the advantages of both algorithms, resulting in a more accurate estimate. Notably, our
MRSS algorithm effectively addresses the Pcor estimation bias in cases where Pcor ≥ 0.
For instance, when the Coef and Var algorithms estimate Pcor as 0 for true Pcor near
0, the MRSS algorithm utilises the minimum RSS principle to select the Reg2 algorithm,
which performs better in the vicinity of Pcor = 0, and thereby efficiently avoids such
misestimations. Around Pcor = 0.5, the MRSS algorithm employs the minimum RSS
principle to determine the more accurate method between Reg2 and Var for exact selection.
This selection conforms to the minimum RSS principle, where the regression model and
accompanying residuals are selected to provide optimal estimation accuracy, leading to a
more precise Pcor estimate. When Pcor lies close to 1, the Reg2 algorithm’s estimates are
typically lower with a high RSSs. Thereafter, the MRSS method selects the Var algorithm
with small RSSs, which performs better based on the minimum RSS principle. In essence,
the MRSS method amalgamates the merits of the Reg2 and Var algorithms. By reducing the
sum of squares of the residuals, MRSS can choose the algorithm with a smaller estimation
error for Pcor ≥ 0, which allows for the proficient regulation of the estimation bias of Pcor.

4. Simulation
4.1. Data Generation

To study the estimation efficiency of Pcor estimation algorithms under high-dimensional
conditions, we generate n centralised samples {xj, yj, zj1, . . . , zjp}n

j=1 i.i.d from [X, Y, Z] with

Z = [Z1, . . . , Zp]. Let X = [x1, . . . , xn]T , Y = [y1, . . . , yn]T and Z = [Z1, . . . , Zp] = (zji)n×p.
Initially, we produce n controlling samples {Zi}

p
i=1 independently and identically by
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Zi = 0.5u + ei

where u = [u1, . . . , un]T and ei = [e1i, . . . , eni]
T with uj and eji generated independently

from the normal distribution N(0, σ2) with variance σ2 for i = 1, . . . , p. The samples X and
Y are then generated by

X =
p

∑
i=1

αiZi + ε, and Y =
p

∑
i=1

βiZi + ζ,

where ε = [ε1, . . . , εn]T and ζ = [ζ1, . . . , ζn]T with ζ j =
ωε j+ηj√

1+ω2 and ε j, ηj drawn i.i.d. from

N(0, σ2). The Pearson correlation of ε and ζ gives the partial correlation coefficient Pcor
ρXY|Z = ω√

1−ω2 . Notably, there is a one-to-one mapping between the true Pcor and the ω
parameter.

Since our MRSS algorithm and the Reg2 algorithm perform essentially the same for
Pcor < 0, our simulation focuses on real Pcor values in the range [0, 1], an interval prone
to significant biases with existing methods. Let the true partial correlation coefficient
vary as Pcor = 0, 0.05, 0.1, . . . , 0.95 with the sample size n = 50, 100, . . . , 400, the con-
trolling variable size p = 200, 500, 1000, 2000, 4000 and the normal distribution variance
σ2 = 1, 10, 40. For each n, p combination, we estimate the partial correlation coefficient for
200 replications using the aforementioned estimation algorithms. We use the software R
(4.3.1) for our simulation.

Recognising that both sparse and non-sparse conditions are prevalent in real-world
applications [3,28], we present examples under both conditions. To ensure comparability
between the examples, the initial l coefficients of α and β are fixed under both conditions,
where we select the high-correlated numbers of controlling variables as l = 6, 10, 14. For
non-sparse examples, the coefficients of α and β asymptotically converge to 0 at varying
rates, with coefficients beyond the (l + 1)-th starting at 0.05, which is significantly smaller
than the initial l coefficients.

• Example 1: under sparse conditions
Let the coefficients α and β be non-zero for the initial l elements and zero for the rest
as follows

α = −β = (−0.1,−0.2, . . . ,− l
20 , 0.1, 0.2, . . . , l

20 , 0, ..., 0).
• Example 2: under non-sparse conditions

Let the coefficients α and β be the same as Example 1 for the initial l elements with a
convergence rate of O(1/2p) for the remaining elements as follows

α = −β = (−0.1,−0.2, . . . , l
20 , r

2l/2+1 , r
2l/2+2 , . . . , r

2p/2 ,− r
2l/2+1 , . . . ,− r

2p/2 ),
where r is a tuning parameter to make the (l + 1)-th element close to 0.05.

• Example 3: under non-sparse conditions
Let the coefficients α and β be the same as Example 1 for the initial l elements with a
convergence rate of O(1/p) for the remaining elements as follows,

α = −β = (−0.1,−0.2, . . . , l
20 , r

l/2+1 , r
l/2+2 , . . . , r

p/2 ,− r
l/2+1 , . . . ,− r

p/2 ),
where r is a tuning parameter to make the (l + 1)-th element close to 0.05.

• Example 4: under non-sparse conditions
Let the coefficients α and β be the same as Example 1 for the initial l elements with a
convergence rate of O(1/

√
p) for the remaining elements as follows,

α = −β = (−0.1,−0.2, . . . , l
20 , r√

l/2+1
, r√

l/2+2
, . . . , r√

p/2
,− r√

l/2+1
, . . . ,− r√

p/2
),

where r is a tuning parameter to make the (l + 1)-th element close to 0.05.
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4.2. Simulation Results
4.2.1. By MSE and RMSE

We will assess the efficacy of the Pcor estimation algorithms using the mean square
error (MSE) and root mean square error (RMSE) indices as follows. These evaluation indica-
tors may indicate the performance of Pcor estimation algorithms from various perspectives.

MSE(ρ0) =
1
R

R

∑
i=1

(ρ̂(i) − ρ0)
2, and RMSE(ρ0) =

√√√√ 1
R

R

∑
i=1

(ρ̂(i) − ρ0)2,

where ρ0 is the true Pcor, and ρ̂(i) is the estimated Pcor in the (i)-th replication of R = 200
replications.

Table 1 displays the mean of MSE and RMSE (×102) for the estimated Pcors of the true
Pcor = 0, 0.05, . . . , 0.95 with l = 10, σ2 = 1, n = 50, 100, 200, 400 and
p = 200, 500, 1000, 2000, 4000 across Examples 1–4 using various methods. Tables A1
and A2, which consider the means of MSE and RMSE (×102) for the estimated Pcors for
high correlation controlling variables number l = 6, 14, can be found in the Appendix.

Table 1. The mean of MSE (×102) and RMSE (×102) for estimated Pcors of real Pcor = 0, 0.05, . . . , 0.95
with l = 10, σ2 = 1, n = 50, 100, 200, 400 and p = 200, 500, 1000, 2000, 4000 in Examples 1–4.

MSE (×102) RMSE (×102)

Example 1 Lasso MCP Lasso MCP

n p Res Reg2 Res Reg2 Coef Var RSS2 MRSS Res Reg2 Res Reg2 Coef Var RSS2 MRSS

50
200 36.7 21.7 37.6 27.4 34.6 35.4 34.6 27.1 59.2 44.4 59.9 50.8 55.2 56.3 55.6 50.5
500 46.8 29.6 47.2 36.0 34.4 35.3 36.4 35.5 66.9 51.9 67.2 58.2 54.9 56.0 57.3 57.5

1000 51.4 33.0 50.7 39.3 34.1 34.8 36.6 38.8 70.2 54.8 69.7 60.8 54.3 55.3 57.5 60.3

100
500 22.1 11.7 15.2 9.5 24.2 21.5 14.0 7.7 45.9 32.4 38.1 29.9 47.9 46.0 35.5 27.3

1000 29.6 16.1 22.4 13.9 32.5 30.0 22.6 13.4 53.1 37.8 46.1 36.1 54.5 53.5 45.2 35.4
2000 36.1 19.7 29.6 18.4 35.0 34.3 29.4 18.2 58.8 41.7 53.2 41.5 56.1 56.3 51.1 41.3

200
500 6.6 3.1 1.7 1.5 2.4 2.6 1.8 0.7 25.1 17.3 12.8 12.1 12.7 13.3 11.5 7.6

1000 9.6 5.2 2.5 2.2 3.8 4.3 2.4 0.9 30.2 22.1 15.6 14.5 16.4 17.1 13.1 8.9
2000 13.0 7.9 3.6 3.1 6.0 6.6 3.3 1.4 35.3 27.0 18.6 17.3 21.0 21.5 15.3 10.5

400
1000 2.7 1.3 0.5 0.5 0.7 0.6 0.7 0.2 16.1 11.3 6.7 6.8 6.3 6.0 6.7 4.4
2000 3.8 2.2 0.6 0.6 0.8 0.7 0.9 0.3 19.2 14.6 7.8 8.0 6.8 6.4 7.5 4.9
4000 5.2 3.5 0.8 0.9 1.0 0.9 1.1 0.4 22.3 18.4 9.0 9.3 7.7 7.5 8.7 5.6

Example 2

50
200 37.0 21.8 38.3 28.1 34.7 35.8 34.9 27.9 59.4 44.4 60.4 51.3 55.3 56.7 56.0 51.2
500 47.1 29.5 47.6 36.5 34.5 35.4 36.4 36.0 67.1 51.7 67.4 58.5 55.0 56.1 57.2 58.0

1000 51.7 33.6 51.3 39.8 34.1 34.8 36.9 39.2 70.4 55.4 70.1 61.2 54.4 55.2 57.8 60.5

100
500 22.6 12.0 15.7 9.9 25.1 22.6 14.9 8.1 46.5 32.8 38.7 30.5 48.8 47.1 36.7 28.0

1000 30.0 16.5 23.0 14.4 33.3 30.8 23.4 13.9 53.5 38.1 46.8 36.6 55.1 54.1 45.8 36.2
2000 36.6 20.1 30.3 19.2 35.3 34.7 30.0 19.0 59.2 42.1 53.8 42.4 56.4 56.6 51.6 42.2

200
500 6.9 3.4 1.9 1.7 2.6 2.8 1.9 0.8 25.8 17.9 13.7 12.9 13.5 14.0 11.8 8.2

1000 9.9 5.6 2.8 2.4 4.1 4.6 2.6 1.1 30.8 22.8 16.4 15.4 17.0 17.9 13.4 9.5
2000 13.5 8.3 3.9 3.4 6.4 6.9 3.5 1.5 35.9 27.6 19.5 18.1 21.6 22.3 15.8 11.2

400
1000 2.9 1.5 0.6 0.6 0.7 0.6 0.7 0.3 16.8 12.1 7.5 7.5 6.7 6.4 6.9 4.9
2000 4.1 2.5 0.8 0.8 0.9 0.8 0.9 0.4 19.9 15.4 8.6 8.8 7.3 7.0 7.8 5.5
4000 5.5 3.9 1.0 1.1 1.1 1.0 1.2 0.5 23.0 19.3 9.8 10.3 8.3 8.1 9.1 6.3
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Table 1. Cont.

MSE (×102) RMSE (×102)

Lasso MCP Lasso MCP

n p Res Reg2 Res Reg2 Coef Var RSS2 MRSS Res Reg2 Res Reg2 Coef Var RSS2 MRSS

Example 3

50
200 38.5 23.0 39.9 29.5 35.1 36.2 35.5 29.4 60.6 45.7 61.6 52.7 55.7 57.2 56.5 52.5
500 48.7 30.6 49.2 37.9 34.8 35.7 37.1 37.3 68.3 52.7 68.5 59.6 55.4 56.5 58.0 59.0

1000 53.4 34.5 53.0 41.4 34.5 35.4 37.4 40.9 71.5 56.0 71.2 62.4 54.9 56.1 58.4 61.9

100
500 24.4 13.3 17.8 11.5 27.9 25.5 17.3 10.1 48.3 34.6 41.2 32.8 51.3 50.0 39.6 31.1

1000 31.9 17.5 25.2 16.1 34.6 33.1 26.5 15.8 55.2 39.3 49.0 38.8 56.2 55.9 48.6 38.5
2000 38.8 21.5 32.4 20.7 36.0 35.8 31.7 20.6 61.0 43.6 55.6 44.1 57.1 57.6 53.0 44.0

200
500 8.3 4.4 2.8 2.6 3.6 3.9 2.5 1.3 28.1 20.3 16.5 15.8 17.1 17.7 14.0 11.1

1000 11.6 6.9 4.0 3.5 5.5 6.2 3.3 1.7 33.3 25.2 19.5 18.3 21.1 22.1 16.0 12.8
2000 15.4 9.7 5.4 4.7 8.3 8.9 4.6 2.3 38.3 29.8 22.6 21.1 26.2 26.8 18.8 14.6

400
1000 4.0 2.3 1.1 1.2 1.2 1.0 1.0 0.6 19.6 15.1 10.6 10.6 9.5 9.2 8.9 7.7
2000 5.4 3.6 1.4 1.5 1.4 1.3 1.2 0.8 22.8 18.6 11.9 12.0 10.4 10.1 9.9 8.5
4000 7.0 5.2 1.8 1.9 1.7 1.6 1.6 0.9 25.9 22.3 13.1 13.5 11.6 11.5 11.2 9.4

Example 4

50
200 41.7 25.4 43.6 32.8 36.3 37.6 37.2 32.6 63.1 48.1 64.4 55.6 57.2 58.7 58.3 55.4
500 53.8 34.3 54.3 42.6 36.1 37.2 38.9 41.9 71.7 56.0 72.0 63.3 57.0 58.2 60.0 62.6

1000 58.9 38.3 58.9 46.8 35.9 36.9 39.9 45.7 75.2 59.3 75.1 66.4 56.7 57.8 61.1 65.3

100
500 30.4 17.3 24.8 16.9 35.5 34.6 25.9 16.6 53.9 39.4 48.6 39.9 57.6 57.8 48.1 39.7

1000 39.7 22.5 34.6 23.5 38.4 39.5 33.6 23.4 61.6 44.8 57.4 46.8 59.8 61.1 54.5 46.8
2000 48.0 27.1 43.2 29.7 39.5 40.8 37.0 29.5 67.8 49.3 64.3 52.9 60.9 62.1 57.9 52.7

200
500 12.9 8.1 6.8 6.3 8.7 9.3 5.5 4.5 35.1 27.4 25.5 24.4 28.7 29.8 22.1 21.1

1000 18.5 12.4 9.8 8.8 13.9 15.0 8.2 6.7 42.1 33.7 30.6 28.9 36.5 38.0 26.9 25.6
2000 24.6 16.6 13.5 11.8 21.6 22.1 12.3 9.7 48.5 38.9 36.0 33.5 45.8 46.5 32.7 30.7

400
1000 9.1 7.0 5.2 5.2 5.2 5.0 4.0 4.2 29.6 25.9 22.3 22.4 22.2 21.9 19.7 20.4
2000 12.7 10.4 7.0 7.1 7.2 7.1 5.8 5.8 34.9 31.4 25.9 26.0 26.2 26.2 23.7 24.0
4000 16.5 14.1 8.9 9.2 9.7 9.9 7.8 7.8 39.8 36.3 29.3 29.6 30.4 31.1 27.2 27.6

For small sample sizes (n < 100), all algorithms tend to underperform due to the lim-
ited data information, with the mean MSE and RMSE being approximately ten times higher
than that of large sample size n > 100. And, our MRSS algorithm remains competitive, with
both MSE and RMSE in the same order of magnitude as the best performance Lasso.Reg2.
However, for large sample size (n ≥ 100), the MRSS algorithm’s performance becomes
notably superior. Specifically, the MRSS reduces the MSE by around 40% compared to the
suboptimal MCP.Reg2, and this percentage grows with increasing n. The MRSS represents
a significant improvement in algorithmic performance. Additionally, the MSE of the MRSS
algorithm exhibits a slower increase with increasing controlling size p, implying improved
stability to some extent.

To compare the performance of different algorithms more intuitively, we calculated the
percentage difference of MSE by MSEMRSS−MSEALG

MSEALG
× 100% with ALG be algorithms listed

above. Similarly, the percentage difference of RMSE can be calculated. And, Table 2 shows
the average percentage difference of MSE and RMSE compared to the MRSS algorithm
for a small sample size (n = 50) and large sample size(n = 100, 200, 400) with the same
settings in Table 1. For a small sample size (n = 50), we observe a 10–20% decrease in
MSE and RMSE for an MRSS algorithm relative to the Res algorithm, a 10–20% increase
relative to Lasso.Reg2, and a slight change relative to other algorithms. For large sample
size (n = 100, 200, 400), the MRSS algorithm reduces MSE by about 30–70% and RMSE by
20–60% relative to other algorithms, achieving effective control of the Pcor estimation error.
These results further illustrate the superiority of the MRSS algorithm. For optimal Pcor
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estimation performance, we suggest using the MRSS algorithm with a minimum sample
size of n = 100.

Table 2. The average percentage difference of the MSE and RMSE compared to the MRSS algorithm
for a small sample size (n = 50) and a large sample size (n = 100, 200, 400) with the same settings in
Table 1.

(%) For MSE For RMSE

Lasso MCP Lasso MCP

Example Res Reg2 Res Reg2 Coef Var RSS2 Res Reg2 Res Reg2 Coef Var RSS2

Small sample size (n = 50)

Example 1 −25 21 −25 −1 −2 −4 −6 −14 12 −15 −1 2 0 −1
Example 2 −24 22 −25 −1 0 −3 −5 −14 12 −14 −1 3 1 −1
Example 3 −23 23 −24 −1 3 0 −2 −13 12 −14 −1 4 2 0
Example 4 −22 23 −23 −1 11 8 3 −13 12 −13 −1 7 5 2

Large sample size (n = 100, 200, 400)

Example 1 −79 −62 −52 −39 −65 −63 −56 −60 −44 −34 −27 −36 −35 −30
Example 2 −78 −61 −51 −39 −63 −61 −53 −58 −43 −34 −26 −34 −34 −27
Example 3 −74 −55 −47 −34 −56 −55 −42 −52 −35 −28 −20 −30 −30 −18
Example 4 −53 −28 −27 −14 −37 −38 −15 −31 −14 −14 −6 −20 −21 −6

For Examples 1–4, shifting from sparse to non-sparse conditions with increasing non-
sparsity, we observe that all algorithms exhibit a higher MSE and RMSE under non-sparse
conditions compared to sparse conditions, and the MSE and RMSE increase with increas-
ing non-sparsity. This could be attributed to the greater impact and more complicated
correlations of the controlling variables, resulting in a less accurate estimate of the partial
correlation. However, even in Example 4 with the strongest non-sparsity, the MRSS al-
gorithm still performs well, possessing the smallest MSE and RMSE and outperforming
conventional algorithms. Especially under non-sparse conditions, the MRSS algorithm
provides a dependable and accurate estimation of Pcor despite the influence of complex
controlling variables.

4.2.2. For Pcor Values on [0, 1]

To investigate the effectiveness of Pcor estimation algorithms for various Pcor values,
we set a constant ratio of the dimension of controlling variables to the sample size (i.e.,
a fixed p/n = 2, 10). Figure 1 displays the average estimated Pcor of 200 repetitions
compared to the true Pcor for n = 100, 200, 400 and l = 6 in Example 1. The MRSS,
MCP.Reg2, and MCP.Var are denoted in red, green and blue, respectively. When Pcor is
small around Pcor < 0.5, the MRSS accurately simulates the true Pcor, performing similarly
to the MCP.Reg2. When Pcor is large, like about Pcor > 0.5, the MRSS performs sub-
optimally and comparable to the MCP.Var, falling slightly behind the RSS2. Essentially, the
MRSS effectively amalgamates the strengths of both MCP.Reg2 and MCP.Var algorithms,
reducing potential weaknesses for Pcor estimation. For a small sample size n = 100, the
MRSS leads to a significant improvement in the estimation for a large Pcor in [0, 1], but
still a considerable estimation bias for small Pcor in [0, 1] owing to the limited sample size
and information. For a large sample size n ≥ 200, the MRSS effectively reduces the Pcor
estimation bias for Pcor> 0. Consequently, greatly enhancing the sample size substantially
boosts the MRSS estimation accuracy, even if the ratio of the controlling variables dimension
to the sample size p/n increases from 2 to 10.

4.3. Parameter Sensitivity

We investigate the sensitivity of the performance of the MRSS algorithm to different
parameter settings, such as variance and sparsity. This allows us to explore the robustness
of algorithms under different parameter configurations.
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(a) n = 100, p = 200 (b) n = 200, p = 500 (c) n = 400, p = 1000

(d) n = 100, p = 1000 (e) n = 200, p = 2000 (f) n = 400, p = 4000

Figure 1. Average Pcor against true Pcor of each true Pcor = 0, 0.1, . . . , 0.95 for p = 2n in first row
and p = 10n in second row with n = 100, 200, 400 and l = 6 in Example 1.

4.3.1. For Variance

We set a variance parameter σ2 in data generation to test the stability of our algorithm
under varying variance. Table 3 shows the mean of MSE (×102) and RMSE (×102) for
the estimated Pcors of real Pcor = 0, 0.05, . . . , 0.95 with different variances σ2 = 1, 10, 40
and l = 10 for a large sample size (n = 50, 100) and small sample size (n = 200, 400) in
Examples 1–4. We discover that, as the variance increases σ2 from 1 to 40, the MSE and
RMSE remain consistent for various examples and sample sizes. This indicates that our
MRSS algorithm is highly robust to variance and retains good stability.

Table 3. The means of MSE (×102) and RMSE (×102) for the estimated Pcors of real Pcor =

0, 0.05, . . . , 0.95 with different variances σ2 = 1, 10, 40 and l = 10 for large sample size (n = 50, 100)
and small sample size (n = 200, 400) in Examples 1–4.

Small Sample Size MSE (×102) RMSE (×102)

Lasso MCP Lasso MCP

Example σ2 Res Reg2 Res Reg2 Coef Var RSS2 MRSS Res Reg2 Res Reg2 Coef Var RSS2 MRSS

Example 1
1 37.10 21.99 33.79 24.08 32.47 31.89 28.93 23.44 59.01 43.83 55.70 46.21 53.82 53.89 50.38 45.38

10 37.04 21.74 33.66 24.02 32.33 31.84 28.73 23.47 58.96 43.64 55.58 46.13 53.70 53.88 50.16 45.39
40 37.02 21.84 33.80 24.17 32.40 31.88 28.83 23.57 58.97 43.68 55.68 46.20 53.68 53.82 50.23 45.43

Example 2
1 37.51 22.24 34.36 24.62 32.86 32.34 29.39 24.03 59.36 44.11 56.21 46.76 54.17 54.31 50.85 46.00

10 37.54 22.18 34.25 24.49 32.74 32.16 29.17 23.84 59.39 44.06 56.11 46.63 54.12 54.19 50.63 45.82
40 37.40 22.16 34.29 24.64 32.80 32.27 29.15 24.08 59.27 44.00 56.15 46.75 54.08 54.22 50.50 46.05

Example 3
1 39.28 23.39 36.25 26.19 33.82 33.62 30.91 25.70 60.80 45.34 57.87 48.40 55.11 55.55 52.35 47.83

10 39.26 23.31 36.14 26.10 33.73 33.63 30.70 25.59 60.81 45.26 57.83 48.36 55.06 55.61 52.15 47.77
40 39.16 23.26 36.35 26.31 33.88 33.71 30.73 25.82 60.71 45.20 57.94 48.47 55.13 55.58 52.16 47.91

Example 4
1 45.40 27.50 43.23 32.04 36.97 37.76 35.42 31.63 65.54 49.50 63.65 54.16 58.21 59.28 56.64 53.76

10 45.43 27.40 43.20 32.00 36.98 37.76 35.50 31.65 65.56 49.40 63.65 54.10 58.21 59.34 56.77 53.76
40 45.38 27.42 43.15 31.89 37.06 37.94 35.30 31.59 65.49 49.36 63.56 53.98 58.23 59.43 56.50 53.68
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Table 3. Cont.

Large sample size MSE (×102) RMSE (×102)

Lasso MCP Lasso MCP

Example σ2 Res Reg2 Res Reg2 Coef Var RSS2 MRSS Res Reg2 Res Reg2 Coef Var RSS2 MRSS

Example 1
1 6.81 3.87 1.62 1.47 2.46 2.60 1.71 0.65 24.70 18.44 11.77 11.34 11.80 11.97 10.47 6.98

10 6.80 3.84 1.65 1.49 2.51 2.71 1.76 0.68 24.68 18.39 11.85 11.41 11.87 12.18 10.55 7.08
40 6.77 3.88 1.64 1.46 2.43 2.55 1.70 0.66 24.61 18.43 11.78 11.29 11.65 11.86 10.34 6.98

Example 2
1 7.16 4.17 1.83 1.67 2.63 2.78 1.80 0.75 25.38 19.18 12.58 12.16 12.42 12.60 10.80 7.60

10 7.15 4.13 1.87 1.69 2.72 2.89 1.85 0.77 25.36 19.11 12.68 12.20 12.62 12.81 10.88 7.66
40 7.14 4.15 1.84 1.67 2.63 2.76 1.80 0.75 25.32 19.10 12.59 12.11 12.32 12.55 10.77 7.56

Example 3
1 8.60 5.34 2.75 2.55 3.62 3.82 2.37 1.28 28.00 21.88 15.69 15.22 15.99 16.23 13.12 10.69

10 8.58 5.30 2.78 2.57 3.61 3.82 2.37 1.31 27.97 21.79 15.76 15.26 15.93 16.18 13.01 10.74
40 8.57 5.33 2.76 2.53 3.59 3.76 2.33 1.28 27.94 21.84 15.68 15.14 15.93 16.13 12.84 10.63

Example 4
1 15.73 11.44 8.53 8.07 11.05 11.40 7.27 6.45 38.31 32.27 28.25 27.46 31.62 32.26 25.37 24.88

10 15.71 11.43 8.56 8.07 11.04 11.40 7.22 6.44 38.29 32.25 28.29 27.45 31.61 32.24 25.28 24.86
40 15.70 11.42 8.56 8.05 11.09 11.36 7.29 6.43 38.28 32.25 28.28 27.42 31.68 32.20 25.39 24.83

4.3.2. For Sparsity

To evaluate the effectiveness of algorithms under different sparsity conditions, we set
the data generation conditions to develop from sparse to non-sparse, with an increasingly
non-sparse convergence rate from Example 1 to Example 4. This suggests a greater inclusion
of controlling variables as we progress through the examples. From the above Tables 1–3,
our observations show that the MRSS algorithm performs well for all examples. For
moderate non-sparse convergence rates, as witnessed in Examples 2–3, MRSS demonstrates
both low MSE and RMSE, comparable to the sparse conditions of Example 1. As the rate
of non-sparsity convergence and the impact of controlling variables increase in Example
4, the best-performing MRSS also encounters difficulties in reducing the estimation bias.
Therefore, the best-performing MRSS algorithm remains the most favoured choice for
estimating Pcor under both sparse and non-sparse conditions. If it is possible to analyse
the degree of non-sparsity the initial data, then we can obtain a better understanding of the
algorithm’s error margin.

Another indication of the sparsity strength is the number of high correlation con-
trolling variables l. Figure 2 illustrates the performance of the featured algorithms for
varying numbers l = 6, 10, 14. The figure contrasts the average Pcor with the true Pcor for
l = 6, 10, 14 in Example 2 with the first row n = 100, p = 200 and the second n = 200,
p = 2000. As l increases, the interference from controlling variables in the estimation
process becomes more pronounced, leading to a heightened estimation bias. However, the
MRSS algorithm consistently showcases an optimal performance throughout the entire
[0, 1] interval. Remarkably, despite encountering a high interference level at l = 14, MRSS
keeps the bias in close alignment with the diagonal, in contrast to its counterparts. Table 4
shows the mean of the MSE and RMSE for l = 6, 10, 14. As l increases, both the MSE and
RMSE of the MRSS algorithm increase, but always remain slightly weaker than optimal in
small samples and significantly more optimal than the other algorithms in large samples.
These results demonstrate the robustness, stability, and precision advantages of the MRSS
algorithm.

4.4. Summaries

Based on numerous simulations, our study examines the practicality and effectiveness
of the MRSS algorithm in a variety of scenarios. Through extensive simulations, we provide
valuable insights into the accuracy and effectiveness of the MRSS algorithm. We provide
empirical evidence that MRSS effectively incorporates the strengths of the MCP.Reg2 and
MCP.Var algorithms and reduces the potential weaknesses of Pcor estimation, especially
in challenging environments with high-dimensional sparse and non-sparse conditions.
For larger sample sizes (n ≥ 100), the MRSS algorithm reduces the MSE and RMSE
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by approximately 30–70% compared to other algorithms and effectively controls Pcor
estimation errors. For small sample sizes (n < 100), a reduction of 10–20% is observed in
MSE and RMSE for the MRSS algorithm compared to the Res algorithm, an increase of
10–20% compared to Lasso.Reg2, and a slight change compared to other algorithms.

(a) l = 6, n = 100, p = 200 (b) l = 10, n = 100, p = 200 (c) l = 14, n = 100, p = 200

(d) l = 6, n = 200, p = 2000 (e) l = 10, n = 200, p = 2000 (f) l = 14, n = 200, p = 2000

Figure 2. Average Pcor against true Pcor for n = 100, p = 200 in the first row and n = 200, p = 2000
in the second row with l = 6, 10, 14 in Example 2.

Table 4. The mean of MSE (×102) and RMSE (×102) for estimated Pcors of real Pcor = 0, 0.05, . . . , 0.95
with l = 6, 10, 14 and σ2 = 1 for a large sample size (n = 50, 100) and small sample size (n = 200, 400)
in Examples 1–4.

Small Sample Size MSE (×102) RMSE (×102)

Lasso MCP Lasso MCP

Example l Res Reg2 Res Reg2 Coef Var RSS2 MRSS Res Reg2 Res Reg2 Coef Var RSS2 MRSS

Example 1
6 9.8 11.2 9.9 9.5 14.4 13.2 11.3 7.4 30.7 31.4 30.8 29.6 32.2 30.9 28.9 25.2

10 37.1 22.0 33.8 24.1 32.5 31.9 28.9 23.4 59.0 43.8 55.7 46.2 53.8 53.9 50.4 45.4
14 70.6 37.8 59.6 46.1 91.2 98.5 55.0 47.1 81.2 58.2 72.6 63.6 94.6 98.2 69.6 64.5

Example 2
6 10.2 11.6 10.3 9.9 15.1 13.8 11.6 7.8 31.3 31.9 31.4 30.2 33.1 31.8 29.5 25.9

10 37.5 22.2 34.4 24.6 32.9 32.3 29.4 24.0 59.4 44.1 56.2 46.8 54.2 54.3 50.8 46.0
14 71.0 38.2 60.1 46.6 91.5 98.8 55.3 47.5 81.5 58.4 73.0 64.0 94.7 98.4 69.8 64.9

Example 3
6 11.1 12.3 11.3 10.8 16.4 15.1 12.9 9.0 32.6 33.0 32.9 31.6 35.0 33.6 31.4 28.1

10 39.3 23.4 36.2 26.2 33.8 33.6 30.9 25.7 60.8 45.3 57.9 48.4 55.1 55.5 52.3 47.8
14 73.0 39.5 62.6 48.8 93.2 100.3 56.7 49.9 82.7 59.6 75.0 65.9 95.6 99.1 70.8 66.9

Example 4
6 15.3 15.6 15.6 14.7 22.1 20.8 18.3 13.8 38.3 37.3 38.6 37.0 41.5 40.4 38.6 35.7

10 45.4 27.5 43.2 32.0 37.0 37.8 35.4 31.6 65.5 49.5 63.6 54.2 58.2 59.3 56.6 53.8
14 78.9 43.5 70.9 56.0 98.9 105.3 61.0 57.5 86.3 62.8 80.7 71.5 98.3 101.4 73.9 72.8



Mathematics 2023, 11, 4311 15 of 22

Table 4. Cont.

Large Sample Size MSE (×102) RMSE (×102)

Lasso MCP Lasso MCP

Example l Res Reg2 Res Reg2 Coef Var RSS2 MRSS Res Reg2 Res Reg2 Coef Var RSS2 MRSS

Example 1
6 2.9 1.9 1.8 1.1 1.6 1.4 1.4 0.5 16.3 12.8 12.4 9.9 9.5 9.0 9.7 6.5

10 6.8 3.9 1.6 1.5 2.5 2.6 1.7 0.6 24.7 18.4 11.8 11.3 11.8 12.0 10.5 7.0
14 11.7 6.8 1.6 1.6 12.6 17.9 3.2 0.9 32.2 24.3 11.8 11.9 25.3 29.9 14.1 8.1

Example 2
6 3.1 2.1 2.0 1.3 1.8 1.5 1.5 0.6 17.0 13.5 13.2 10.6 10.2 9.6 9.9 7.1

10 7.2 4.2 1.8 1.7 2.6 2.8 1.8 0.7 25.4 19.2 12.6 12.2 12.4 12.6 10.8 7.6
14 12.1 7.2 1.8 1.8 13.1 18.3 3.4 1.0 32.8 25.0 12.7 12.7 26.2 30.7 14.6 8.8

Example 3
6 3.8 2.6 2.6 1.7 2.2 1.9 1.7 0.9 18.8 15.2 15.1 12.4 12.2 11.5 11.0 8.9

10 8.6 5.3 2.7 2.5 3.6 3.8 2.4 1.3 28.0 21.9 15.7 15.2 16.0 16.2 13.1 10.7
14 14.4 9.1 3.2 3.1 15.6 21.4 4.5 1.9 36.0 28.5 16.9 16.9 31.0 35.7 17.7 13.0

Example 4
6 8.1 6.1 6.5 5.0 6.0 5.6 4.2 3.9 27.6 23.5 24.7 21.7 22.8 22.2 19.2 19.3

10 15.7 11.4 8.5 8.1 11.0 11.4 7.3 6.4 38.3 32.3 28.2 27.5 31.6 32.3 25.4 24.9
14 23.8 17.6 10.7 10.6 29.9 37.4 12.6 9.4 47.0 40.0 31.7 31.5 50.0 55.2 32.6 29.9

Conducting a sensitivity analysis with various variance and sparsity parameters, the
outcomes demonstrate the benefits of the MRSS algorithm in terms of robustness, stability,
and accuracy. As the variance increases from 1 to 40, the MSE and RMSE remain consistent
for distinct examples and sample sizes. This demonstrates that our MRSS algorithm is
remarkably resilient to variability and maintains excellent stability. As the level of sparsity
decreases (from Examples 1–4, or from l = 6 to 14), it is noticeable that the MSE and RMSE
of the MRSS algorithm increase, but remain within the same order of magnitude. Even the
optimal MRSS algorithms undergo a significant rise in MSE and RMSE for Example 4 and
l = 14, as an escalation of non-sparse and intricate controlling variables brings forth certain
systematic errors.

5. Real Data Analysis

A distinguishing feature of financial markets is the observed correlation among the
price movements of various financial assets. A prevalent feature entails the existence of a
substantial cross-correlation between stock returns’ simultaneous time evolution [29]. In
numerous instances, a strong correlation does not necessarily imply a significant direct
relationship. For instance, two stocks in the same market may be subject to shared macroe-
conomic or investor psychology influences. Therefore, to examine the direct correlation
between these stocks, it is necessary to eliminate the common drivers represented by the
market index. The Pcor meets this requirement by assessing the direct relationship between
the two stocks after removing the market impacts of controlling variables. When accurately
estimating the Pcor, it is possible to evaluate the impact of diverse factors (e.g., economic
sectors, other markets, or macroeconomic factors) on a specific stock. The resulting partial
correlation data may be utilised in fields, such as stock market risk management, stock
portfolio optimisation, and financial control [7,8]. Moreover, the Pcor can also indicate the
interdependence and influence of industries in the context of global integration. These
techniques for analysing Pcor can provide valuable information on the correlations between
different assets and different sectors of the economy, as they are generalisable and can
be applied to other asset types and cross-asset relationships in financial markets. This
information is beneficial for practitioners and policymakers.

We chose 100 stocks with substantial market capitalisation and robust liquidity from
the Shanghai Stock Exchange (SSE) market. These stocks can comprehensively represent the
overall performance of listed stock prices in China’s A-share market. We then downloaded
their daily adjusted closing prices from Yahoo Finance from January 2018 to August 2023
and removed the missing data. Here, a sufficient sample size of n = 1075 was chosen to
ensure the effectiveness of algorithms and limit the bias in Pcor estimation. For each pair of
the 100 stocks, we estimate their Pcor by setting the remaining stocks as the corresponding
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controlling variables and construct the estimated Pcor matrix. The Pcor matrix shows
the better internal correlation between two stocks after removing the influence of the
stock market.

Figure 3 presents the estimated Pcor matrices for 100 stocks from SSE markets using
MCP.Reg2, MCP.Var and MRSS algorithms. Blue signifies Pcor = 1, while red represents
Pcor = −1. Whilst the MCP.Coef, MCP.Var, and RSS2 algorithms all estimate Pcor as 0
when true Pcor approaches 0, our proposed MRSS algorithm resembles the MCP.Reg2,
which estimates an accurate Pcor for weak partial correlation. Thus, the MRSS is capable
of effectively estimating weak partial correlations. When dealing with high Pcor values
and strong partial correlation, we find that the MCP.Var algorithm overestimates Pcor as a
result of the divergence in stock prices. For two stocks with a higher stock price, the Pcor
estimated by the Var algorithm to be overestimated or even most at 1. MRSS effectively
solves this problem. Notably, as a result of incorporating the MCP.Var algorithm, the MRSS
algorithm amplifies certain partial correlations that are not significant by MCP.Reg2. These
results can also be seen in Table 5. The MRSS estimates these correlations to be stronger
partial correlations resulting in improved clarity in the partial correlations.

(a) MCP.Reg2 (b) MCP.Var (c) MRSS

Figure 3. Estimated Pcor matrix of 100 HKSE stocks, with blue representing Pcor = 1 and red
representing Pcor = −1.

Figure 4 shows the stocks’ Pcor network for the top-100 and top-50 pairs of Pcor
estimates by the MRSS algorithm from 100 SSE stocks. The node represents the stock,
coloured with its sector. The edge thickness represents the Pcor estimate between two
nodes, with the thick-edge Pcor > 0.4 and the thin-edge Pcor < 0.4. Table 5 shows the stock
pairs with their sector and Pcor estimates for all the MRSS estimated Pcor > 0.4 from 100
SSE stocks, and Table 6 shows the corresponding stock pairs with their company name,
business, and sector. Here, we use industry classifications from the Global Industry Classi-
fication Standard (GICS) with Communication Services, Consumer Discretionary (C.D.),
Consumer Staples, Energy, Financials, Health Care, Industrials, Information Technology
(I.T.), Materials, Real Estate and Utilities. We find that two stocks connected in the partial
correlation network with a high Pcor are almost in the same sector and operate in the same
business. In addition, high Pcor values may indicate shareholding relationships between
companies. For instance, the highly correlated 601398–601939–601288–601988–601328 (fi-
nancials) are all state-controlled banks that do not have a direct high Pcor link with the
city banks 601009–601166 (financials). And, stocks that do not belong to the same industry
under a high Pcor may have certain other links behind them, such as 601519 (I.T.)–601700
(industrials) having a common major shareholder. After stripping out the other factors
influencing the market, Pcor represents the inherent and intrinsic correlation between two
stocks because they are in the same sector.

As societies become increasingly integrated, the productive activities of different
industries become interdependent and interact with each other. Categorising a company
into only one industry does not reflect its overall performance and associated risks. Many
listed companies in the stock market belong to conglomerates and operate in different
industry sectors, so it is natural for the performance of these companies to be affected
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by multiple industries. Therefore, we will also find that Pcor, apart from showing the
correlation between industries, will also reveal the correlation between two industries that
are linked together by two stocks in different industries. For example, the partial correlation
between the Bank of Communications (601328) and PetroChina (601857) with Pcor = 0.258
links the Energy (600028–601857 in orange) and Financial (601398–601939–601288–601988–
601328 in dark blue) sectors of state-owned assets.

Overall, the MRSS algorithm amalgamates the characteristics of MCP.Reg2 and MCP.Var,
enhancing the estimation of strong partial correlations, while effectively estimating those
weak partial correlations, ultimately revealing the stock correlations.

(a) Top-50 pairs (b) Top-100 pairs

Figure 4. Stocks’ Pcor network for the top-100 and top-50 pairs of Pcor estimates by MRSS algorithm
from 100 SSE stocks. The node represents the stock, coloured with its sector. The edge thickness
represents the Pcor estimate between two nodes, with the thick edge Pcor > 0.4 and the thin edge
Pcor < 0.4.

Table 5. Stock pairs with their sector and Pcor estimates for all the MRSS estimated Pcor > 0.4 by
different algorithms from 100 SSE stocks.

Stock1 Stock2 Lasso MCP

Symbol Sector Symbol Sector Res Reg2 Res Reg2 Coef Var RSS2 MRSS

601398 Financials 601939 Financials 0.526 0.526 0.535 0.535 0.533 0.840 0.527 0.840
600022 Materials 601005 Materials 0.569 0.569 0.581 0.581 0.580 0.769 0.590 0.769
601186 Industrials 601390 Industrials 0.589 0.589 0.566 0.566 0.587 0.748 0.584 0.748
600012 Industrials 601099 Financials 0.405 0.405 0.399 0.399 0.404 0.697 0.414 0.697
601288 Financials 601988 Financials 0.473 0.473 0.476 0.476 0.490 0.646 0.473 0.646
600028 Energy 601857 Energy 0.550 0.550 0.545 0.545 0.569 0.607 0.534 0.607
601098 C.D. 601801 C.D. 0.468 0.468 0.474 0.474 0.475 0.606 0.476 0.606
601328 Financials 601988 Financials 0.357 0.357 0.316 0.316 0.369 0.600 0.322 0.600
600017 Industrials 601880 Industrials 0.372 0.372 0.382 0.382 0.384 0.574 0.394 0.574
600026 Industrials 601872 Industrials 0.590 0.590 0.572 0.573 0.590 1 0.593 0.573
601866 Industrials 601919 Industrials 0.552 0.552 0.545 0.545 0.562 1 0.554 0.545
601179 Industrials 601390 Industrials 0.291 0.291 0.275 0.275 0.285 0.543 0.284 0.543
600011 Utilities 600021 Utilities 0.535 0.535 0.522 0.522 0.535 0.543 0.529 0.543
601333 Industrials 601801 C.D. 0.526 0.526 0.526 0.526 0.525 1 0.528 0.526
600011 Utilities 600027 Utilities 0.514 0.514 0.517 0.517 0.514 1 0.501 0.517
601088 Energy 601666 Energy 0.289 0.289 0.326 0.326 0.359 0.492 0.349 0.492
601288 Financials 601398 Financials 0.353 0.353 0.338 0.338 0.349 0.491 0.339 0.491
601168 Materials 601899 Materials 0.515 0.515 0.490 0.490 0.535 1 0.497 0.490
601186 Industrials 601618 Industrials 0.260 0.260 0.245 0.245 0.250 0.488 0.249 0.488
600018 Industrials 601018 Industrials 0.480 0.480 0.483 0.483 0.486 1 0.485 0.483
600008 Utilities 600012 Industrials 0.319 0.319 0.309 0.309 0.312 0.436 0.304 0.436



Mathematics 2023, 11, 4311 18 of 22

Table 5. Cont.

Stock1 Stock2 Lasso MCP

Symbol Sector Symbol Sector Res Reg2 Res Reg2 Coef Var RSS2 MRSS

601009 Financials 601166 Financials 0.300 0.300 0.298 0.298 0.303 0.427 0.307 0.427
600020 Industrials 601177 Industrials 0.431 0.431 0.430 0.430 0.421 0.422 0.429 0.422
601001 Energy 601137 Materials 0.268 0.268 0.261 0.261 0.283 0.421 0.260 0.421
601519 I.T. 601700 Industrials 0.224 0.224 0.219 0.219 0.217 0.410 0.203 0.410
600017 Industrials 601008 Industrials 0.404 0.404 0.405 0.405 0.403 0.979 0.407 0.405
601318 Financials 601601 Financials 0.414 0.414 0.403 0.403 0.414 1 0.414 0.403

Table 6. Stock pairs with their company name, business, and sector for all the MRSS estimated Pcor
> 0.4 from 100 SSE stocks.

Symbol Company Business Sector Symbol Company Business Sector

601098 South central Media Media C.D. 601801 Anhui Xinhua Media publishing C.D.

600028 Sinopec Refining and Trading Energy 601857 PetroChina Refining and Trading Energy
601088 China Shenhua Energy Coal Mining Energy 601666 Pingdingshan Tianan Coal Mining Coal Mining Energy
601001 Datong Coal Industry Coal Mining Energy 601137 Ningbo Boway Alloy Material Industrial Metals Materials

601398 Industrial and Commercial Bank of China Banks Financials 601939 China Construction Bank Banks Financials
601288 Agricultural Bank of China Banks Financials 601988 Bank of China Banks Financials
601328 Bank of Communications Banks Financials 601988 Bank of China Banks Financials
601288 Agricultural Bank of China Banks Financials 601398 Industrial and Commercial Bank of China Banks Financials
601009 Bank of Nanjing Banks Financials 601166 Industrial Bank of China Banks Financials
601318 Ping An Insurance of China Insurance Financials 601601 China Pacific Insurance Insurance Financials

601186 China Railway Construction Infrastructure Industrials 601390 China Railway Engineering Group Infrastructure Industrials
600012 Anhui Expressway Railway and Highway Industrials 601099 China Pacific Insurance certificate Financials
600017 Rizhao Port Shipping Ports Industrials 601880 Dalian Port Shipping Ports Industrials
600026 China Shipping Development Shipping Ports Industrials 601872 China Merchants Energy Shipping Shipping Ports Industrials
601866 China Shipping Container Lines Shipping Ports Industrials 601919 China Ocean Shipping Shipping Ports Industrials
601179 China Xidian Electric Grid Equipment Industrials 601390 China Railway Engineering Infrastructure Industrials
601333 Guangshen Railway Railway and Highway Industrials 601801 Anhui Xinhua Media publishing C.D.
601186 China Railway Construction Infrastructure Industrials 601618 Metallurgical Corporation of China Professional Engineering Industrials
600018 Shanghai International Port Group Shipping Ports Industrials 601018 Ningbo Port Shipping Ports Industrials
600020 Zhongyuan Expressway Railway and Highway Industrials 601177 Hangzhou Advance Gearbox machine Industrials
600017 Rizhao Port Shipping Ports Industrials 601008 Lianyungang Port Shipping Ports Industrials
601519 Shanghai DZH Software Development I.T. 601700 Changshu Fengfan Power Equipment Grid Equipment Industrials

600022 Jinan Iron and Steel Plain Steel Materials 601005 Chongqing Iron and Steel Plain Steel Materials
601168 Western Mining Industrial Metals Materials 601899 Zijin Mining Industrial Metals Materials

600011 Huaneng Power International Electricity Utilities 600021 Shanghai Electric Power Electricity Utilities
600011 Huaneng Power International Electricity Utilities 600027 Huadian Power International Electricity Utilities
600008 Beijing Capital Water Utilities 600012 Anhui Expressway Railway and Highway Industrials

6. Conclusions

This paper presents a novel minimum residual sum of squares (MRSS) algorithm for
estimating partial correlation coefficients. Its purpose is to reduce the estimation bias of
positive partial correlation coefficients in high-dimensional settings under both sparse and
non-sparse conditions. The MRSS algorithm is effective in mitigating a Pcor estimation
bias by synergistically harnessing the strengths of the Coef, Reg2, and Var algorithms. We
also discuss the MRSS algorithm mathematical foundation and its performance in various
scenarios compared to some existing algorithms. Through rigorous simulations and real
data analysis, it becomes evident that the MRSS algorithm consistently outperforms its
constituent and listed algorithms, particularly in challenging environments characterised
by non-sparse conditions and high dimensionality. The sensitivity analysis with variance
and sparsity parameters demonstrate the robustness, stability, and precision advantages of
the MRSS algorithm. Further evidence of the effectiveness of the MRSS algorithm in the
correlation analysis of stock data is provided by real data analyses.

7. Future Work

Our proposed MRSS algorithm combines the benefits of two existing algorithms by
reducing the total squared residuals and enhancing the accuracy of Pcor estimation. In up-
coming studies, we may explore the integration of additional algorithms by minimising the
RSS to achieve a greater amalgamation of benefits from various algorithms and improve the
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estimation accuracy of the integrated algorithm. Reducing the computational complexity
of our minimised RSS integration algorithm to decrease computing time represents a core
issue in future research. Additionally, conducting in-depth theoretical research on MRSS
algorithms, including a proof analysis of consistency and convergence, will be an essential
direction for our next steps. Further refinement of theoretical proofs and an in-depth in-
vestigation of error convergence speed may uncover reasons for the systematic estimation
bias that cannot be ignored when Pcor is positive in all current algorithms. Meanwhile,
expanding the use of the MRSS algorithm to a wider range of fields is a focal point of our
future research. Concerning financial data, we intend to thoroughly examine the biased
correlations between financial data besides stocks and advise on relevant policies.
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Appendix A

Tables for the mean of MSE (×102) and RMSE (×102) of estimated Pcors of real
Pcor = 0, 0.05, . . . , 0.95 with σ2 = 1, n = 50, 100, 200, 400, p = 200, 500, 1000, 2000, 4000 and
the numbers of high correlation controlling variables l = 6, 14 in Examples 1–4.

Table A1. The mean of MSE (×102) and RMSE (×102) for the estimated Pcors of real Pcor =

0, 0.05, . . . , 0.95 with l = 6, σ2 = 1, n = 50, 100, 200, 400 and p = 200, 500, 1000, 2000, 4000 in Examples
1–4.

n p MSE (×102) RMSE (×102)

Method Lasso MCP Lasso MCP

Example 1 Res Reg2 Res Reg2 Coef Var RSS2 MRSS Res Reg2 Res Reg2 Coef Var RSS2 MRSS

50
200 10.0 11.1 10.6 10.2 15.8 14.3 12.1 8.1 31.2 31.9 32.0 31.0 35.3 33.8 31.5 27.6
500 11.4 14.3 11.7 12.3 20.5 19.1 16.2 11.3 33.2 36.0 33.5 33.9 40.2 39.1 36.4 32.6

1000 11.8 15.8 12.0 13.1 22.5 21.5 18.6 12.8 33.8 37.6 34.1 35.0 42.0 41.2 39.0 34.7

100
500 7.4 6.6 7.2 5.8 7.3 6.2 5.3 3.1 26.7 24.5 26.4 23.4 22.3 20.9 19.6 16.3

1000 8.6 8.6 8.5 7.2 9.2 8.0 6.8 4.0 28.9 27.7 28.6 26.0 25.2 23.8 22.2 18.4
2000 9.6 10.7 9.4 8.7 11.2 10.0 8.5 5.4 30.4 30.9 30.1 28.4 28.1 26.8 25.0 21.4

200
500 3.1 1.7 2.0 1.1 1.8 1.5 1.6 0.6 17.3 12.6 14.1 10.6 10.7 10.0 10.7 7.2

1000 4.1 2.6 2.9 1.6 2.4 2.0 2.1 0.8 19.8 15.6 16.6 12.5 12.3 11.6 12.2 8.1
2000 5.0 3.7 3.7 2.2 3.1 2.6 2.5 1.0 21.9 18.3 19.0 14.4 13.9 13.0 13.3 9.0

400
1000 1.3 0.7 0.5 0.4 0.6 0.5 0.6 0.3 11.3 8.3 7.0 6.3 6.0 5.8 6.5 4.6
2000 1.7 1.1 0.7 0.5 0.8 0.7 0.8 0.3 12.9 10.1 8.1 7.2 6.7 6.4 7.2 5.0
4000 2.2 1.5 0.9 0.7 0.9 0.8 0.9 0.4 14.5 12.1 9.3 8.1 7.4 7.0 8.1 5.4



Mathematics 2023, 11, 4311 20 of 22

Table A1. Cont.

n p MSE (×102) RMSE (×102)

Method Lasso MCP Lasso MCP

Res Reg2 Res Reg2 Coef Var RSS2 MRSS Res Reg2 Res Reg2 Coef Var RSS2 MRSS

Example 2

50
200 10.5 11.5 11.0 10.6 16.5 15.0 12.4 8.6 31.8 32.5 32.5 31.6 36.4 35.0 31.9 28.7
500 11.8 14.8 12.1 12.7 21.6 19.9 16.7 11.8 33.7 36.5 34.1 34.4 41.3 39.9 37.1 33.3

1000 12.2 16.0 12.4 13.5 23.1 22.0 19.2 13.1 34.3 37.9 34.6 35.5 42.5 41.7 39.7 35.1

100
500 7.8 6.9 7.6 6.1 7.8 6.7 5.5 3.3 27.4 25.0 27.1 23.9 23.4 21.9 20.1 16.8

1000 9.0 9.0 8.9 7.6 9.7 8.5 7.1 4.4 29.5 28.4 29.2 26.6 26.3 24.8 22.8 19.5
2000 10.0 11.0 9.8 9.0 11.6 10.5 8.8 5.7 31.0 31.4 30.7 29.0 28.9 27.6 25.5 22.3

200
500 3.3 1.8 2.3 1.3 2.0 1.7 1.7 0.7 18.0 13.2 14.9 11.4 11.3 10.6 11.1 7.7

1000 4.4 2.9 3.2 1.8 2.7 2.3 2.1 0.9 20.5 16.2 17.5 13.3 13.3 12.4 12.4 8.6
2000 5.3 3.9 4.1 2.4 3.4 2.9 2.6 1.1 22.7 18.9 19.8 15.1 14.8 13.8 13.6 9.6

400
1000 1.5 0.8 0.6 0.5 0.7 0.6 0.6 0.3 12.1 9.1 7.7 7.0 6.5 6.3 6.7 5.1
2000 1.9 1.2 0.8 0.6 0.8 0.7 0.8 0.4 13.7 10.9 8.9 8.0 7.2 6.9 7.4 5.5
4000 2.4 1.7 1.1 0.8 1.0 0.9 1.0 0.4 15.3 12.8 10.2 8.9 8.0 7.6 8.3 6.0

Example 3

50
200 11.4 12.3 12.0 11.5 18.1 16.6 13.9 10.0 33.1 33.5 34.0 32.9 38.1 36.8 34.2 30.8
500 12.7 15.5 13.0 13.7 22.9 21.4 18.2 13.2 34.9 37.3 35.4 35.8 42.4 41.4 38.9 35.2

1000 13.2 17.0 13.5 14.5 24.6 23.4 20.6 14.5 35.7 39.1 36.1 36.8 43.8 42.9 40.9 36.8

100
500 8.6 7.7 8.6 7.0 8.7 7.6 6.4 4.0 28.8 26.3 28.7 25.5 25.5 24.0 21.9 18.9

1000 9.9 9.5 9.8 8.5 10.9 9.7 7.9 5.2 30.9 29.2 30.7 28.1 28.4 26.9 24.4 21.7
2000 10.9 11.8 10.8 9.9 13.1 11.9 10.1 6.8 32.5 32.5 32.2 30.5 31.5 30.0 27.8 24.9

200
500 4.0 2.3 2.9 1.7 2.4 2.1 1.9 0.9 19.7 14.8 16.7 13.0 13.3 12.5 11.8 9.3

1000 5.1 3.4 3.9 2.4 3.2 2.8 2.5 1.2 22.3 17.7 19.4 15.0 15.3 14.3 13.6 10.5
2000 6.2 4.6 4.9 3.1 4.1 3.5 3.1 1.5 24.4 20.4 21.7 17.0 17.0 15.9 15.0 11.7

400
1000 2.0 1.2 1.0 0.8 0.9 0.9 0.8 0.5 13.9 10.9 9.7 8.9 8.3 8.0 7.7 6.7
2000 2.5 1.7 1.2 1.0 1.1 1.0 0.9 0.6 15.6 12.8 10.9 9.9 9.1 8.8 8.3 7.3
4000 3.1 2.2 1.5 1.2 1.4 1.2 1.2 0.7 17.2 14.6 12.2 10.8 10.0 9.6 9.3 7.9

Example 4

50
200 13.9 14.2 14.7 14.0 22.4 20.7 17.7 13.3 36.6 36.0 37.6 36.3 42.3 41.0 39.0 35.5
500 16.5 18.4 16.9 17.2 27.5 26.4 23.8 17.5 39.8 40.7 40.3 40.1 45.9 45.2 44.1 40.3

1000 18.0 20.5 18.2 18.8 28.6 28.0 26.1 19.2 41.6 42.9 41.9 42.0 46.5 46.3 45.7 42.3

100
500 12.4 10.8 12.4 10.3 13.7 12.4 10.2 7.8 34.5 31.1 34.5 31.0 33.4 31.9 29.2 27.2

1000 14.6 13.4 14.6 12.7 18.3 16.8 14.0 10.8 37.5 34.8 37.5 34.5 38.7 37.3 34.6 32.0
2000 16.6 16.5 16.6 15.4 22.1 20.6 17.9 14.2 40.0 38.5 40.0 38.0 42.1 41.0 39.1 36.7

200
500 7.0 4.7 5.9 4.1 5.1 4.7 3.6 2.9 26.0 20.8 23.8 19.9 21.3 20.5 17.7 16.9

1000 9.4 6.8 8.1 5.7 7.3 6.6 5.1 4.1 30.1 24.8 27.9 23.2 25.1 24.2 21.1 20.0
2000 11.6 8.9 10.3 7.4 9.4 8.7 6.8 5.5 33.4 28.2 31.4 26.4 28.4 27.5 24.3 23.1

400
1000 5.2 3.9 3.7 3.3 3.5 3.3 2.4 2.7 22.3 19.2 18.8 17.7 18.1 17.8 15.2 16.2
2000 6.8 5.5 4.9 4.3 4.6 4.4 3.2 3.6 25.5 22.7 21.6 20.3 20.7 20.3 17.4 18.7
4000 8.5 7.0 6.2 5.4 5.9 5.6 4.2 4.5 28.5 25.4 24.4 22.6 23.4 23.0 19.6 20.9
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Table A2. The mean of MSE (×102) and RMSE (×102) for estimated Pcors of real Pcor =

0, 0.05, . . . , 0.95 with l = 14, σ2 = 1, n = 50, 100, 200, 400 and p = 200, 500, 1000, 2000, 4000 in
Examples 1–4.

n p MSE (×102) RMSE (×102)

Method Lasso MCP Lasso MCP

Example 1 Res Reg2 Res Reg2 Coef Var RSS2 MRSS Res Reg2 Res Reg2 Coef Var RSS2 MRSS

50
200 68.5 36.8 70.4 55.2 87.9 96.0 61.5 57.4 80.9 58.2 81.9 72.4 92.9 97.1 76.3 74.3
500 91.0 49.5 91.2 71.9 86.8 93.2 77.3 73.7 93.4 67.7 93.4 82.7 92.3 95.7 86.2 84.4

1000 100.9 56.4 98.8 78.3 83.5 89.3 83.0 79.0 98.3 72.5 97.3 86.3 90.5 93.6 89.6 87.2

100
500 39.4 21.4 18.2 14.2 91.1 103.2 30.5 14.4 61.3 44.1 41.5 36.6 94.9 100.6 49.9 36.8

1000 54.4 28.3 30.9 22.9 97.9 104.7 35.7 23.3 72.1 50.6 54.1 46.4 98.1 101.3 54.6 46.9
2000 69.6 34.6 47.9 34.4 99.8 104.6 41.9 34.8 81.5 55.9 67.4 56.9 98.9 101.1 60.8 57.5

200
500 10.6 5.3 1.7 1.7 7.1 13.2 2.8 0.8 31.8 22.5 13.0 12.8 21.9 28.4 14.1 8.2

1000 16.4 9.4 2.5 2.4 20.9 32.3 4.5 1.3 39.5 29.6 15.6 15.4 40.8 49.8 18.2 10.5
2000 23.4 14.3 3.7 3.7 43.6 56.7 8.4 2.4 47.3 36.5 18.8 18.7 63.4 72.4 25.9 14.9

400
1000 4.4 2.1 0.5 0.5 0.9 0.8 0.9 0.2 20.5 14.2 6.9 6.9 7.3 6.9 7.8 4.5
2000 6.4 3.7 0.6 0.7 1.2 1.2 1.2 0.3 24.8 19.0 7.8 8.0 8.3 8.6 8.8 4.9
4000 9.0 6.0 0.8 0.9 1.8 3.2 1.5 0.4 29.3 24.2 9.0 9.4 10.3 13.4 9.8 5.6

Example 2

50
200 68.6 37.0 70.5 56.0 88.1 95.9 61.4 58.1 80.9 58.4 82.0 73.0 93.0 97.1 76.3 74.9
500 91.5 49.9 91.3 71.9 87.3 94.4 77.6 73.9 93.6 68.2 93.4 82.7 92.5 96.3 86.3 84.5

1000 101.0 56.9 99.2 78.2 83.5 89.4 83.5 78.9 98.4 72.7 97.5 86.3 90.4 93.7 89.9 87.2

100
500 39.9 21.7 18.8 14.7 92.2 103.2 30.7 14.8 61.7 44.4 42.2 37.2 95.4 100.6 50.1 37.4

1000 55.0 28.7 31.9 23.6 98.0 104.9 36.0 23.8 72.4 51.0 55.0 47.1 98.1 101.3 54.9 47.5
2000 70.0 34.8 48.8 35.2 99.8 104.8 42.4 35.8 81.8 56.0 68.1 57.6 98.9 101.2 61.2 58.3

200
500 11.0 5.6 1.9 1.9 7.6 13.8 3.0 0.9 32.4 23.1 13.8 13.5 22.8 29.3 14.5 8.7

1000 16.8 9.8 2.8 2.7 22.1 32.7 4.9 1.4 40.0 30.2 16.4 16.2 42.5 50.6 19.3 11.3
2000 23.9 14.9 4.0 4.0 44.7 57.8 8.8 2.7 47.8 37.2 19.6 19.5 64.4 73.0 26.6 16.1

400
1000 4.7 2.3 0.6 0.6 1.1 0.9 1.0 0.3 21.2 14.9 7.6 7.7 7.9 7.6 8.1 5.0
2000 6.8 4.0 0.8 0.8 1.3 1.4 1.3 0.4 25.4 19.8 8.7 8.8 8.8 9.2 9.1 5.5
4000 9.4 6.5 1.0 1.1 1.9 3.5 1.6 0.5 30.0 25.0 9.8 10.2 10.9 14.2 10.2 6.2

Example 3

50
200 70.3 38.1 72.5 57.6 89.4 97.2 63.2 60.2 81.9 59.3 83.1 74.0 93.7 97.7 77.5 76.2
500 93.1 51.3 92.8 73.4 88.4 95.0 79.0 75.6 94.4 69.1 94.2 83.6 93.1 96.6 87.1 85.5

1000 102.5 58.2 100.7 80.0 85.1 91.0 85.3 80.3 99.1 73.7 98.2 87.3 91.3 94.5 90.7 87.8

100
500 42.4 23.2 21.9 17.3 94.4 105.3 31.9 17.5 63.6 46.0 45.5 40.4 96.5 101.6 51.1 40.7

1000 57.6 30.2 35.7 26.8 100.1 106.7 37.0 27.2 74.1 52.2 58.2 50.3 99.1 102.1 55.8 50.8
2000 72.2 36.0 52.3 37.9 101.8 106.5 43.7 38.5 83.1 57.1 70.6 59.8 99.8 102.0 62.3 60.6

200
500 13.0 7.3 3.3 3.2 10.4 17.5 4.0 1.7 35.3 26.2 17.7 17.4 28.7 35.5 17.6 12.8

1000 19.3 11.9 4.4 4.3 26.0 37.6 6.3 2.6 42.9 33.3 20.5 20.3 47.3 55.9 22.2 15.6
2000 26.9 17.1 5.9 5.9 49.8 64.1 10.8 4.3 50.7 39.8 23.9 23.7 68.6 77.7 29.5 20.3

400
1000 6.3 3.7 1.4 1.5 1.8 1.7 1.6 0.8 24.6 19.0 11.9 11.9 12.1 11.7 11.1 9.0
2000 8.8 6.0 1.8 1.8 2.2 2.3 1.9 1.0 29.1 24.0 13.0 13.2 13.3 14.0 12.4 9.8
4000 11.8 8.8 2.1 2.2 3.3 5.2 2.4 1.2 33.6 29.1 14.3 14.7 16.1 19.6 13.6 10.7

Example 4

50
200 73.4 40.2 76.7 61.4 92.4 99.9 66.4 64.5 83.8 61.0 85.5 76.4 95.2 99.0 79.5 78.9
500 96.6 53.6 96.6 77.3 92.5 99.2 82.7 80.1 96.3 70.8 96.1 85.8 95.2 98.6 89.1 88.0

1000 106.6 61.8 105.8 85.4 90.4 96.4 91.1 86.4 101.1 76.0 100.7 90.2 94.1 97.2 93.8 91.2

100
500 49.2 27.9 31.0 25.1 102.1 111.1 34.7 25.4 68.5 50.5 54.2 48.7 100.2 104.2 53.7 49.1

1000 66.0 35.5 48.4 37.1 106.9 112.1 41.0 37.8 79.4 56.8 67.8 59.3 102.3 104.6 59.8 60.0
2000 81.7 41.8 66.8 49.8 109.2 112.9 50.4 50.8 88.5 61.9 79.9 68.7 103.2 104.9 67.8 69.7

200
500 18.9 12.2 8.3 8.1 20.8 29.7 8.9 6.3 42.4 33.8 28.2 27.8 44.0 51.6 27.8 24.8

1000 28.3 19.4 11.7 11.5 45.0 59.2 14.7 9.9 51.9 42.4 33.5 33.0 66.1 75.3 35.1 31.0
2000 38.8 26.4 16.2 15.8 76.1 92.8 23.6 15.2 60.9 49.3 39.3 38.7 87.0 95.7 43.2 38.1

400
1000 13.2 10.3 6.9 6.9 8.0 7.8 6.4 6.0 35.5 31.2 25.7 25.8 27.5 27.5 24.9 24.3
2000 18.8 15.7 9.2 9.4 11.6 12.5 9.7 8.2 42.4 38.5 29.7 29.9 33.4 34.9 30.6 28.4
4000 24.9 21.4 11.7 12.0 18.3 22.4 12.3 10.8 48.8 44.9 33.6 34.0 42.0 46.4 34.0 32.5
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