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Abstract: The partial correlation coefficient (Pcor) is a vital statistical tool employed across various
scientific domains to decipher intricate relationships and reveal inherent mechanisms. However,
existing methods for estimating Pcor often overlook its accurate calculation. In response, this
paper introduces a minimum residual sum of squares Pcor estimation method (MRSS), a high-
precision approach tailored for high-dimensional scenarios. Notably, the MRSS algorithm reduces
the estimation bias encountered with positive Pcor. Through simulations on high-dimensional data,
encompassing both sparse and non-sparse conditions, MRSS consistently mitigates the arithmetic
bias for positive Pcors, surpassing other algorithms discussed. For instance, for large sample sizes
(n > 100) with Pcor > 0, the MRSS algorithm reduces the MSE and RMSE by about 30-70% compared
to other algorithms. The robustness and stability of the MRSS algorithm is demonstrated by the
sensitivity analysis with variance and sparsity parameters. Stocks data in China’s A-share market are
employed to showcase the MRSS methodology’s practicality.

Keywords: partial correlation; high-dimensional data; variable selection; MCP

MSC: 62H20; 62]07

1. Introduction

The partial correlation coefficient (Pcor) measures the correlation between two random
variables, X and Y, after accounting for the effects of controlling variables Z, denoted
by pxy|z- The Pcor essentially quantifies the unique relationship between X and Y, after
removing the correlations between X and Z, and between Y and Z [1]. This correlation
coefficient provides a more thorough comprehension of the connection between variables,
untainted by the influence of confounding factors. Unlike the Pearson correlation coefficient,
which only captures the direct correlation between random variables, the Pcor enables the
identification of whether correlations stem from intermediary variables. This distinction
enhances the precision and validity of statistical analyses.

The Pcor is a fundamental statistical tool for investigating intricate relationships
and gaining a more profound comprehension of the underlying mechanisms in a variety
of scientific fields, such as psychology, biology, economics, and social sciences. When
examining genetic markers and illness outcomes, biologists used the Pcor to identify
correlations while accounting for potential confounding factors [2—4]. Marrelec et al.
utilised the partial correlation matrix to explore large-scale functional brain networks
through functional MRI [5]. In the field of economics, Pcor assists in comprehending
complex connections, including the interplay between interest rates and inflation, while
considering other variables” influence [6]. The financial industry also employs Pcor to
interpret connections and relationships between stocks in the financial markets [7,8]. For
example, Michis proposed a wavelet procedure for estimating Pcor between stock market
returns over different time scales and implemented it for portfolio diversification [9]. Using
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partial correlations within a complex network framework, Singh et al. examined the
degree of globalisation and regionalisation of stock market linkages and how these linkages
vary across different economic or market cycles [10]. Meanwhile, the employment of the
Gaussian graphical model (GGM) technique in psychology has recently gained popularity
for defining the relationships between observed variables. This technique employs Pcors to
represent pairwise interdependencies, controlling the influence of all other variables [11-13].
In the field of geography, a correlation analysis based on the Pcor of the fractal dimension
of the variations of HZD components is implemented to study the geomagnetic field
component variations in Russian [14].

Several methodologies have been proposed over the years to estimate the Pcor in
statistical analyses. For instance, Peng et al. introduced a Pcor estimation technique that
relies on the sparsity property of the partial correlation matrix and utilises sparse regression
methods [3]. Khare et al. suggested a high-dimensional graphical model selection approach
based on the use of pseudolikelihood [15]. Kim provided an R package “ppcor” for a
fast calculation to semi-Pcor [16]. Huang et al. introduced the kernel partial correlation
coefficient as a measure of the conditional dependence between two random variables in
various topological spaces [17]. Van Aert and Goos focused on calculating the sampling
variance of Pcor [18]. Hu and Qiu proposed a statistical inference procedure for Pcor
under the high-dimensional nonparanormal model [19]. However, these methods mainly
centre around determining whether or not the partial correlation coefficient is zero, without
adequate regard for the precision of the Pcor calculation and the algorithm’s efficacy. We
analysed multiple high-dimensional algorithms and discovered notable Pcor estimation
biases, particularly for positive Pcor. Even with larger sample sizes, these biases persisted.
Motivated by these findings, our primary goal is to put forward a Pcor estimation algorithm
to increase the precision of the Pcor estimation algorithm and diminish the estimation bias
for positive Pcor values.

This paper reviews current methods for estimating Pcor in high-dimensional data.
We introduce a novel minimum residual sum of squares (MRSS) Pcor estimation method
under high-dimensional conditions, aiming to mitigate the estimation bias for positive Pcor.
The algorithm'’s effectiveness is validated through simulation studies under sparse and
non-sparse conditions and real data analysis on stock markets.

The sections are structured as follows: Section 2 outlines definitions and corresponding
formulae for calculating Pcor, and examines common algorithms for estimating Pcor.
Section 3 presents our Minimum Residual Sum of Squares Pcor estimation, designed to
mitigate estimation bias for positive Pcor. In Section 4, we demonstrate the effectiveness
of our proposed algorithm through simulation studies on high-dimensional data under
both sparse and non-sparse conditions. Section 5 provides an analysis of real data related
to stock markets, while Section 6 contains the conclusion.

2. Estimation for Partial Correlation Coefficient
2.1. Definition of Pcor

The classical definition of the partial correlation coefficient is defined by the correla-
tion coefficient between the regression residuals from the linear models of two variables
with the controlling variable, respectively. Let X and Y be two random variables, and
Z =[Z1,2y,- - -, Zy| be p-dimensional controlling variables. Consider the linear regression
models of X and Y, respectively, with the controlling variable Z,

X =9+ Zf:l w;Z+e,
Y = Bo+ Zle BiZi+¢,

where ¢ and { are error terms. The partial correlation coefficient between X and Y is
conditional on Z, denoted by pxy|z, and defined by the correlation coefficient between the
regression residuals € and (, as follows
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= cor(e,{) = cov(e,¢)
Oxy|z = ( /g) var(s)m'

where cor(.,.) is the correlation coefficient of two random variables; cov(., .) is the covari-
ance of two random variables; var(.) is the variance of a random variable. Let the sample
size be n. In conventional low-dimensional cases (p < 1), the ordinary least squares (OLS)
is used to compute the residuals ¢ and {. Subsequently, the Pcor is computed from the
correlation coefficient of residuals. However, the OLS method is not practical for high-
dimensional cases (p > n). Regularisation methods are introduced to deal with such
cases later.

@

2.2. Calculation Formulae of Pcor
2.2.1. Based on Concentration Matrix

The concentration matrix can also be used to calculate Pcor. Let U; = [X,Y],
Uy =Z=[2Zy,...,2Zp)], U = [Uy, U] =[X,Y,Z] and X = cov(U) be the covariance matrix.
When assuming that X is a non-singular matrix, the concentration matrix is denoted as
Q= ()] 721 = %~ 1. Consider the following linear regression,

u, = qu +e,

where b = (by, by) is the regression coefficient and e = (e1, ;) is the regression error. We
have
e=(&,6) =U — b= — U,

where b is the estimator of b and U is the estimator of U;. The regression residual
¢ ~ N(0,V) is independent of U;. The covariance matrix of & can be computed by
cov(é) = cov(Uy) + cov(Uy) — 2cov(Uy, Uy)
=11 + LTy T Xy Tgp — 281580, Ty
= T11 — L1050y To1 = O

22 12
. o ags . . -1 1 w —w
According to the definition in Equation (1) and Q' = ——n—p ot [ _o?l ol } ,
the partial correlation coefficient can be computed by
s s cov(é1,8) w'?
pxy|z = cor(éy, &) = — — = )
Vvar(é1)/var(éy) wllVw

2.2.2. Based on Additional Regression Models

Additional linear regression models are introduced to calculate the Pcor. Consider
new linear regression models of X with [Y, Z] and Y with [X, Z], respectively,

X=AY+Y ! \NZi+7, €)
Y=9X+Y" mZ+rT, 4)
where 77 and T are regression error terms. Peng et al. [3] established the correlation be-
tween the aforementioned regression coefficients and Pcor, while verifying that formulas

22 11 .
Ao = pxy|z\/ G Y0 = Pxy |z S var(y) = ﬁ and var(t) = ﬁ hold. Then, we derive
Aoyo = p%m - Thus, the partial correlation coefficient between X and Y can be calculated

Pxy|z = Aoy/var(tT)/var(i), ®)

= sign(Ao)v/Aoo, (6)

by the formula below,
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where sign(-) is the sign function.
Consider linear regression models of Y with [1, Z] and Y with [1, X, Z], respectively,

Y =PBo+Y I BiZi+i,
Y=y q+70X+Y " viZi+T,

where  and 7 are error terms. The partial correlation coefficient can also be calculated as
follows [20]

Pxy|z = sign(7o) W- 7)

Here, we present five distinct formulae, (1), (2), (5), (6), and (7), for calculating Pcor
based on diverse regression models. Specific algorithms applicable to high-dimensional
scenarios will be presented in the following section.

2.3. Regularisation Regression for High-Dimensional Cases

Suppose we have centralised samples {x;, yj, zj1,...,2jp}j_4 1id. observed from

[X,Y,Z] with Z = [Zy,...,Zp]. Let X = [x1,...,x)5, Y = [y1,...,ya]7 and
Z = [Zy,...,Zy] =(2ji)nxp- We consider matrix-type linear regression models as follows,

X=Y" wZ+e ®)
Y=37 BiZi+ ©)

where ¢ = [e1,...,&4)T and { = [{1,..., )T are error terms. If we estimate regression
coefficients & = [#,...,4,]T and B = [B1,...,Bp]T, then we can calculate the estimated
residuals ¢ = X—Xand { = Y- Y, withX = Z& = Ele #;Z;and Y = Zﬁ = Zf;l B,»Zi.
According to the definition of Pcor, we can estimate the Pcor as follows

2

P cov(§,{)
\/var(8)var () I
5 52

where cov (¢, () = ;-1:1 (& — 5)(9- —{),var(¢) = ]7»‘:1 (& — 5)2 and var({) = ]V-’:l (& —0)
withe= 1Y 18, 0= 1Y ()

In high-dimensional (p > n) situations, the penalty function and regularisation re-
gression methods can be introduced to estimate the regression coefficients for regression
models. Regularisation regression methods address overfitting in statistical modelling by
adding a penalty to the loss function, constraining the coefficient magnitudes. Let p, (B) be
the penalty function with a tuning parameter A, for example, the regularisation estimate of
model (8) is given by

(10)

1
&= argminEHX—thH2+m(0€),
4

where the penalty p, («) could widely choose the Lasso penalty [21], the Ridge penalty [22],
the SCAD penalty [23], the Elastic net [24], the Fused lasso [25], the MCP penalty [26],
and other penalty functions. In this paper, the Lasso regularisation with penalty as
pa(a) = Al|al|; is implemented by the R-package “glmnet” [27], and the MCP with penalty
as py(a) = +(tA —a),, (t > 1) is implemented by the R-package “ncvreg”.

2.4. Existing Pcor Estimation Algorithms

To investigate high-dimensional Pcor estimation methods, we present some existing
methods that are suitable for both sparse and non-sparse conditions. Combining the
advantages and disadvantages of these methods, we propose a new high-dimensional
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Pcor estimation method: MRSS—minimum residual sum of squares partial correlation
coefficient estimation algorithm.

2.4.1. Res Algorithm

The Res algorithm is primarily defined by the Pcor definition. This algorithm is
implemented as follows. First, we use the regularisation regression (Lasso and MCP)
on linear models (8) and (9) to obtain the estimated regression coefficients & and B; then
calculate estimated residuals ¢ = X — X and é =Y-Y, withX=Zaand Y = ZB; at last,
estimate Pcor pres by formula (10).

2.4.2. Reg2 Algorithm

The Reg?2 algorithm can more effectively remove the influence of Z in X and Y using
the new regressions below. Consider new linear regression models as follows

X =a X+ aY -+, (11)
Y= b1X+b2Y+T1, (12)

where #1 and 7 are error terms, the estimators X = Zle #;Z; and Y = ):f:l /giZi are
estimated by the Lasso or MCP regularisation regressions of models (8) and (9). Then,
we implement the ordinary least squares (OLS) on models (11) and (12), and denote new
estimators of X and Y by XRegZ and YRegZ- Computing new residuals 7; = X — XRggz and
Hh=Y-— YRegz, we finally estimate Pcor by the Reg?2 algorithm as py.¢2 = cor(ij1, 7).

2.4.3. Coef and Var Algorithm

The Coef and Var algorithm is generated through the introduction of novel regression
coefficients based on the Pcor definition formula (5) and (6). Consider linear regression
models as follows

X=MY+Y " ANZi+m, (13)
Y =90X+) 1iZi+ (14)
where 77, and 1, are error terms. Then, we implement MCP regularisation on these

models (13) and (14) and obtain estimated first-term regression coefficients Ao, o and
the estimated variance var(#,), var(%;). Finally, we can obtain the Pcor estimate by

Coef algorithm as foer = sign(Ag)y/Aofo and the Pcor estimate by Var algorithm as
pvar = }\0 \Y4 v”r(fZ)/var(ﬁZ)'

2.4.4. RSS2 Algorithm

The RSS2 algorithm is given by the residual sum of squares in formula (7). First,
we implement the MCP regularisation on model (9): Y = Zp + { and estimate the resid-

ual { and the residual sum of squares (RSS) Ry = |[|{||3. Similarly, we implement the
MCP regularisation on model (14): Y = yoX + Zf;l viZ; + T and estimate the first-term
regression coefficient 4o, the residual %, and the RSS R, = ||#]|3. Then, we obtain the

Pcor estimate gy = sign(49)y/max(0, Ry — Rp)/R;. Switch the position of X and Y sim-
ilarly as the above steps. Then, we implement the MCP regularisation on model (8):
X = Za + ¢ and model (13): X = AgY + Y/ | A;Z; + 17 and obtain the RSS R = |[2][3,
Ry = |]71]|3 and the estimated first-term coefficient Ag. We obtain another Pcor estimate
px = sign(Ag)/max(0, R3 — Ry)/R3. Finally, we have the estimate Pcor by RSS2 algorithm
as Prss2 = (ﬁx + ﬁy)/z'
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3. Minimum Residual Sum of Squares Pcor Estimation Algorithm
3.1. Motivation

From the comprehensive simulations in this paper, it is evident that the Pcor estimation
methods discussed exhibit significant bias. This bias becomes more pronounced as the true
Pcor increases, especially when the Pcor is positive. Therefore, further research is necessary
to address this estimation bias in positive Pcor scenarios. While each algorithm has its
merits, the Reg?2 algorithm performs notably well when Pcor is below approximately 0.5.
In contrast, the Coef and Var algorithm stands out with minimal bias when Pcor exceeds
roughly 0.5. Our goal is to develop a method that synergises the strengths of both the Reg2
and Var algorithms.

The models introduced in the Reg?2 algorithm, (11) and (12), can be represented as,

X=aX+a) " BiZi+m, (15)
Y=bY+b ) ! &Z+7, (16)

When compared to models (13) and (14) from the Coef and Var algorithm, it is evident
that the residuals #7; and 77, share commonalities. Both provide insights into the information
in X after the exclusion of Y and Z effects in some sense. Similarly, 71 and 1, capture the
essence of Y after removing for X and Z influences. If we choose a #; and 7; with a smaller
residual sum of squares, then this will lead to a better estimation for the corresponding
regression models. A reduced residual sum of squares in the corresponding regression
models signifies enhanced precision in eliminating controlling variables effects, leading to
a more accurate Pcor estimator. Guided by the objective of minimising the residual sum
of squares, we introduce a novel algorithm for high-dimensional Pcor estimation in the
subsequent subsection.

3.2. MRSS Algorithm and Its Implementation

We propose a novel Minimum Residual Sum of Squares partial correlation coefficient
estimation algorithm, denoted by MRSS. This algorithm aims to diminish the estimation
bias for positive Pcor values under high-dimensional situations. Our MRSS algorithm
amalgamates the strengths of the Reg2, Coef, and Var algorithms, effectively curtailing bias
in Pcor estimation.

Define RSSX = ||||3 and RSSY = ||7||3 as the residual sum of squares of X after
removing the effects of X and Z, and the residual sum of squares of Y after removing the
effects of X and Z, respectively. The tuning parameter k is chosen by minimising the sum of
squares of the residuals, so as to remove more associated effects and ensure a more efficient
Pcor estimator. For k = 1, the pair (11, 71 ) represents the residuals from the Reg2 algorithm’
models (11) and (12). For k = 2, (112, T2) corresponds to the residuals from the Coef and Var
algorithms” models (13) and (14). Then, the residuals estimated by the MRSS algorithm
satisfy the minimum residual sum of squares of both X and Y for a more efficient Pcor

estimator as follows )
Nmrss = argmin RSSX = arg min ||77;||3,
k=1,2 k=12

. . ) (17)
Tinrss = arg min RSSY = arg min || 7 |5.
k=1,2 k=1,2
The Pcor estimated by MRSS is then given by
Pmrss = COT(Umrss/ Tmrss)lkzl + Ap \/var(Tmrss) /Uar(rlmrss)lkzz (18)

where [ is the indicator function and A is the primary regression coefficient in model (13).
If k = 1, then pyrss is estimated following the idea of Reg2 algorithm; if k = 2, then pss is
estimated following the idea of the Coef and Var algorithm. If the two k estimates in (17)
differ, the more stable Reg?2 algorithm is preferred, setting k = 1 in (18). Given that MRSS
integrates two existing algorithms, its convergence should align with their rates.
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During the implementation of the MRSS algorithm (Algorithm 1), the Coef and Var
algorithm often misestimates Pcor as 0 or 1 when the true Pcor is close to 0 or &1, affecting
the algorithms’ precision. To address this, we incorporate a discriminative condition in
the MRSS pseudo-code. If the estimated Pcor g, f or Ouar is zero or £1, the Coef and Var
algorithm is deemed unreliable, and the Reg?2 algorithm’s estimate is adopted.

Algorithm 1: MRSS algorithm

Data: (X, Y, Z) with the dimension (1, p)
Result: Pcor estimate py;rss
1 Implement MCP regularisation on models (8) and (9), and obtain Xand Y;

2 Implement ordinary least squares (OLS) on models (11) and (12), and obtain f(Rggz
and Ygeg with residuals 71 = X — Xgeg2 and 71 = Y — Ygego. Calculate the RSS
by RSSXy = ||| and RSSYy = || #1]3;

3 Implement MCP regularisation on models (13) and (14), obtain estimated
coefficients Ag, 40 and residuals #j, to. Calculate RSS by RSSX, = |7, ||%,

RSSY, = || I3

4 Estimate the Coef Pcor by per = sign(Ag)1/AoFo and the Var Pcor by

ﬁvar = ;\0 var(Fb)/var(ﬁZ);

5 if Pper = 0 07 Poar = 0 or £1 then

6 | Estimate Pcor by pyrss = cov(f1, 11);

7 else if RSSX, < RSSX; and RSSY, < RSSY; then
8 ‘ Estimate Pcor by pjurss = Ao /var(ty)/var(fz) ;
9 else

10 ‘ Estimate Pcor by fprss = cov(fy, 11);
11 end

The proposed MRSS algorithm selects the most suitable residuals by minimising RSS
and removing the impact of control variables to optimise the estimation of residuals in the
regression model. As such, the estimated Pcor generated by the MRSS algorithm combines
the advantages of both algorithms, resulting in a more accurate estimate. Notably, our
MRSS algorithm effectively addresses the Pcor estimation bias in cases where Pcor > 0.
For instance, when the Coef and Var algorithms estimate Pcor as 0 for true Pcor near
0, the MRSS algorithm utilises the minimum RSS principle to select the Reg? algorithm,
which performs better in the vicinity of Pcor = 0, and thereby efficiently avoids such
misestimations. Around Pcor = 0.5, the MRSS algorithm employs the minimum RSS
principle to determine the more accurate method between Reg2 and Var for exact selection.
This selection conforms to the minimum RSS principle, where the regression model and
accompanying residuals are selected to provide optimal estimation accuracy, leading to a
more precise Pcor estimate. When Pcor lies close to 1, the Reg2 algorithm’s estimates are
typically lower with a high RSSs. Thereafter, the MRSS method selects the Var algorithm
with small RSSs, which performs better based on the minimum RSS principle. In essence,
the MRSS method amalgamates the merits of the Reg2 and Var algorithms. By reducing the
sum of squares of the residuals, MRSS can choose the algorithm with a smaller estimation
error for Pcor > 0, which allows for the proficient regulation of the estimation bias of Pcor.

4. Simulation
4.1. Data Generation

To study the estimation efficiency of Pcor estimation algorithms under high-dimensional
conditions, we generate 7 centralised samples {x;, j, zj1, . . ., Zjp }j_; i.i.d from [X,Y, Z] with
Z = [er- . .,Zp]. LetX = [xl, .. .,Xn]T, Y= [yl/ ‘e ,yn]T and Z = [Zl/ ‘e ,Zp] = (Zji)nXp-
Initially, we produce n controlling samples {Zi}le independently and identically by
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; = 0.5u+e;

where u = [uy,...,u,]" and e; = [ey;,...,e,]" with uj and ¢;; generated independently
from the normal distribution N (0, 0?) with variance o2 fori = 1,..., p. The samples X and
Y are then generated by

|4 P
X = thiZ,-+s, and Y= ZﬁiZiJrC,
i=1 i=1

wej+1;

wheree = [e1,...,e4]T and { = [{4,...,T,]T with gj= NeEw
N(0,0?). The Pearson correlation of ¢ and { gives the partial correlation coefficient Pcor
Oxy|z = \/187 Notably, there is a one-to-one mapping between the true Pcor and the w
parameter.

Since our MRSS algorithm and the Reg? algorithm perform essentially the same for
Pcor < 0, our simulation focuses on real Pcor values in the range [0, 1], an interval prone
to significant biases with existing methods. Let the true partial correlation coefficient
vary as Pcor = 0,0.05,0.1,...,0.95 with the sample size n = 50,100, ...,400, the con-
trolling variable size p = 200, 500, 1000, 2000, 4000 and the normal distribution variance
0% =1,10,40. For each n, p combination, we estimate the partial correlation coefficient for
200 replications using the aforementioned estimation algorithms. We use the software R
(4.3.1) for our simulation.

Recognising that both sparse and non-sparse conditions are prevalent in real-world
applications [3,28], we present examples under both conditions. To ensure comparability
between the examples, the initial / coefficients of « and f are fixed under both conditions,
where we select the high-correlated numbers of controlling variables as I = 6,10, 14. For
non-sparse examples, the coefficients of « and 8 asymptotically converge to 0 at varying
rates, with coefficients beyond the (I + 1)-th starting at 0.05, which is significantly smaller
than the initial / coefficients.

and ¢j, 7j drawn i.i.d. from

e Example 1: under sparse conditions
Let the coefficients « and B be non-zero for the initial / elements and zero for the rest
as follows
a=—B=(-01-02,...,—4,01,02,...,4,0,..,0).
¢  Example 2: under non-sparse conditions
Let the coefficients & and B be the same as Example 1 for the initial / elements with a
convergence rate of O(1/27) for the remaining elements as follows
a=—B=(=01,-02,..., 9, s g 1 555 —FHF 1 — 52 )
where r is a tuning parameter to make the (I + 1)-th element close to 0.05.
e Example 3: under non-sparse conditions
Let the coefficients & and B be the same as Example 1 for the initial / elements with a
convergence rate of O(1/p) for the remaining elements as follows,
0= —p=(-01-02..., 5, 7371 1732/ jrar ~ AT+~ 72
where r is a tuning parameter to make the (I + 1)-th element close to 0.05.
¢  Example 4: under non-sparse conditions
Let the coefficients « and B be the same as Example 1 for the initial I elements with a
convergence rate of O(1/,/p) for the remaining elements as follows,

o (_ _ 1 r r r _ r __r
a=-p=(-01, 0'2""’20'¢1/2+1’¢1/2+2”"’,/p/2’ VIj2+177 ‘/p/z)’

where r is a tuning parameter to make the (I + 1)-th element close to 0.05.
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4.2. Simulation Results
4.2.1. By MSE and RMSE

We will assess the efficacy of the Pcor estimation algorithms using the mean square
error (MSE) and root mean square error (RMSE) indices as follows. These evaluation indica-
tors may indicate the performance of Pcor estimation algorithms from various perspectives.

R

A 1 .
(b — p0)?>, and RMSE(pg) = R Y (@) — po)%,
i=1

1
R ¢

1

1=

MSE(po) =

I
—

where py is the true Pcor, and §;) is the estimated Pcor in the (i)-th replication of R = 200
replications.

Table 1 displays the mean of MSE and RMSE (x 10?) for the estimated Pcors of the true
Pcor = 0,005 ...,095 with I = 10, ¢> = 1, n = 50,100,200,400 and
p = 200,500,1000,2000,4000 across Examples 1-4 using various methods. Tables Al
and A2, which consider the means of MSE and RMSE (x10?) for the estimated Pcors for
high correlation controlling variables number [ = 6, 14, can be found in the Appendix.

Table 1. The mean of MSE (x 102) and RMSE (x 102) for estimated Pcors of real Pcor = 0,0.05,...,0.95
with | = 10, 02 = 1, n = 50,100, 200, 400 and p = 200,500, 1000, 2000, 4000 in Examples 1—4.

MSE (x10?) RMSE (x10%)
Example 1 Lasso MCP Lasso MCP
n P Res Reg2 Res Reg2 Coef Var RSS2 MRSS Res Reg2 Res Reg2 Coef Var RSS2 MRSS
200 367 217 376 274 346 354 346 271 592 444 599 508 552 563 55.6 50.5
50 500 468 296 472 360 344 353 364 355 669 519 672 582 549 560 573 57.5
1000 514 33.0 507 393 341 348 36.6 388 702 548 697 608 543 553 575 60.3
500 221 11.7 152 95 242 215 140 7.7 459 324 381 299 479 460 355 27.3
100 1000 296 161 224 139 325 300 226 134 531 378 461 361 545 535 452 35.4
2000 36.1 197 296 184 350 343 294 182 588 417 532 415 561 563 511 41.3
500 66 31 17 15 24 26 1.8 0.7 251 173 128 121 127 133 115 7.6
200 1000 96 52 25 2.2 38 43 2.4 0.9 302 221 156 145 164 171 131 8.9
2000 130 79 36 31 6.0 6.6 3.3 14 353 270 186 173 21.0 215 153 10.5
1000 27 13 0.5 0.5 07 06 0.7 0.2 161 113 67 638 63 6.0 6.7 44
400 2000 3.8 22 0.6 06 08 07 0.9 0.3 192 146 78 8.0 6.8 64 7.5 49
4000 5.2 3.5 08 09 1.0 09 11 0.4 223 184 90 93 77 75 8.7 5.6
Example 2
200 370 218 383 281 347 358 349 279 594 444 604 513 553 567 56.0 51.2
50 500 471 295 476 365 345 354 364 360 671 517 674 585 550 561 572 58.0
1000 51.7 33.6 513 398 341 348 36.9 392 704 554 701 612 544 552 578 60.5
500 226 120 157 99 251 226 149 8.1 465 328 387 305 488 471 367 28.0
100 1000 30.0 165 23.0 144 333 30.8 234 139 535 381 468 366 551 541 4538 36.2
2000 36.6 201 303 192 353 347 300 190 592 421 538 424 564 56.6 516 42.2
500 6.9 3.4 19 1.7 26 28 19 0.8 258 179 137 129 135 140 118 8.2
200 1000 9.9 56 28 24 41 46 2.6 1.1 308 228 164 154 170 179 134 9.5
2000 135 83 39 3.4 64 69 3.5 15 359 276 195 181 216 223 158 112
1000 29 15 0.6 06 07 06 0.7 0.3 168 121 75 7.5 6.7 64 6.9 49
400 2000 4.1 2.5 08 08 09 08 0.9 0.4 199 154 86 8.8 73 70 7.8 5.5
4000 5.5 3.9 1.0 11 11 1.0 12 0.5 230 193 98 103 83 81 9.1 6.3




Mathematics 2023, 11, 4311

10 of 22

Table 1. Cont.

MSE (x10%) RMSE (x10%)
Lasso MCP Lasso MCP
n p Res Reg2 Res Reg2 Coef Var RSS2 MRSS Res Reg2 Res Reg2 Coef Var RSS2 MRSS
Example 3
200 385 230 399 295 351 362 355 294 606 457 616 527 557 572 565 52.5
50 500 487 306 492 379 348 357 371 373 683 527 685 59.6 554 565 58.0 59.0
1000 534 345 530 414 345 354 374 409 715 560 712 624 549 561 584 61.9
500 244 133 178 115 279 255 173 10.1 483 346 412 328 513 500 39.6 31.1
100 1000 319 175 252 161 346 331 265 158 552 393 49.0 388 562 559 486 38.5
2000 388 215 324 207 360 358 317 20.6 610 436 556 441 571 576 53.0 44.0
500 83 44 28 26 36 39 2.5 1.3 281 203 165 158 171 177 140 11.1
200 1000 116 69 4.0 3.5 55 6.2 33 1.7 333 252 195 183 21.1 221 16.0 12.8
2000 154 97 54 47 8.3 8.9 4.6 23 383 298 226 211 262 268 188 14.6
1000 4.0 2.3 1.1 1.2 1.2 1.0 1.0 0.6 196 151 106 10.6 9.5 9.2 8.9 77
400 2000 54 3.6 1.4 1.5 1.4 1.3 1.2 0.8 228 186 119 120 104 10.1 9.9 8.5
4000 7.0 52 1.8 1.9 1.7 1.6 1.6 0.9 259 223 131 135 116 115 112 9.4
Example 4
200 417 254 436 328 363 376 372 32.6 63.1 481 644 556 572 587 583 55.4
50 500 53.8 343 543 426 361 372 389 419 717 560 720 633 570 582 60.0 62.6
1000 589 383 589 468 359 369 399 457 752 593 751 664 567 578 611 65.3
500 304 173 248 169 355 346 259 16.6 539 394 486 399 576 578 481 39.7
100 1000 39.7 225 346 235 384 395 336 234 616 448 574 468 598 61.1 545 46.8
2000 48.0 271 432 297 395 408 370 29.5 67.8 493 643 529 609 621 579 52.7
500 129 81 6.8 6.3 8.7 9.3 5.5 4.5 351 274 255 244 287 298 221 21.1
200 1000 185 124 98 8.8 139 15.0 8.2 6.7 421 337 306 289 365 380 269 25.6
2000 246 166 135 11.8 216 221 123 9.7 485 389 360 335 458 465 327 30.7
1000 9.1 7.0 52 52 52 5.0 4.0 42 29.6 259 223 224 222 219 197 204
400 2000 127 104 7.0 7.1 72 7.1 5.8 5.8 349 314 259 260 262 262 237 24.0
4000 165 141 89 9.2 9.7 9.9 7.8 7.8 398 363 293 296 304 311 272 27.6

For small sample sizes (n < 100), all algorithms tend to underperform due to the lim-
ited data information, with the mean MSE and RMSE being approximately ten times higher
than that of large sample size n > 100. And, our MRSS algorithm remains competitive, with
both MSE and RMSE in the same order of magnitude as the best performance Lasso.Reg2.
However, for large sample size (n > 100), the MRSS algorithm’s performance becomes
notably superior. Specifically, the MRSS reduces the MSE by around 40% compared to the
suboptimal MCP.Reg2, and this percentage grows with increasing n. The MRSS represents
a significant improvement in algorithmic performance. Additionally, the MSE of the MRSS
algorithm exhibits a slower increase with increasing controlling size p, implying improved
stability to some extent.

To compare the performance of different algorithms more intuitively, we calculated the
percentage difference of MSE by MSE%_ALMSE“G x 100% with ALG be algorithms listed
above. Similarly, the percentage difference of RMSE can be calculated. And, Table 2 shows
the average percentage difference of MSE and RMSE compared to the MRSS algorithm
for a small sample size (n = 50) and large sample size(n = 100, 200,400) with the same
settings in Table 1. For a small sample size (1 = 50), we observe a 10-20% decrease in
MSE and RMSE for an MRSS algorithm relative to the Res algorithm, a 10-20% increase
relative to Lasso.Reg2, and a slight change relative to other algorithms. For large sample
size (n = 100,200, 400), the MRSS algorithm reduces MSE by about 30-70% and RMSE by
20-60% relative to other algorithms, achieving effective control of the Pcor estimation error.
These results further illustrate the superiority of the MRSS algorithm. For optimal Pcor
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estimation performance, we suggest using the MRSS algorithm with a minimum sample
size of n = 100.

Table 2. The average percentage difference of the MSE and RMSE compared to the MRSS algorithm
for a small sample size (n = 50) and a large sample size (1 = 100,200, 400) with the same settings in
Table 1.

(%) For MSE For RMSE
Lasso MCP Lasso MCP
Example Res Reg2 Res Reg2 Coef Var RSS2 Res Reg2 Res Reg2 Coef Var RSS2

Small sample size (n = 50)

Examplel —25 21 =25 -1 -2 —4 —6 —14 12 -15 -1 2 0 -1
Example2 —24 22 =25 -1 0 -3 -5 —14 12 -14 -1 3 1 -1
Example3 —23 23 -24 -1 3 0 -2 —13 12 -14 -1 4 2 0
Example4 —22 23 =23 -1 11 8 3 —13 12 -13 -1 7 5 2

Large sample size (n = 100, 200, 400)
Examplel -79 —62 —-52 -39 —-65 —63 —-56 —-60 —44 34 27 -36 -35 30
Example2 -78 —-61 -51 -39 —63 —61 —-53 —58 —43 -34 -26 —-34 -34 27
Example3 -74 -55 —47 -34 -5 —-55 —42 52 -3 —-28 -20 -30 -30 -18
Example4 —-53 —-28 27 14 -37 -3 —-15 -31 -—-14 -14 —6 —-20 -21 —6

For Examples 14, shifting from sparse to non-sparse conditions with increasing non-
sparsity, we observe that all algorithms exhibit a higher MSE and RMSE under non-sparse
conditions compared to sparse conditions, and the MSE and RMSE increase with increas-
ing non-sparsity. This could be attributed to the greater impact and more complicated
correlations of the controlling variables, resulting in a less accurate estimate of the partial
correlation. However, even in Example 4 with the strongest non-sparsity, the MRSS al-
gorithm still performs well, possessing the smallest MSE and RMSE and outperforming
conventional algorithms. Especially under non-sparse conditions, the MRSS algorithm
provides a dependable and accurate estimation of Pcor despite the influence of complex
controlling variables.

4.2.2. For Pcor Values on [0, 1]

To investigate the effectiveness of Pcor estimation algorithms for various Pcor values,
we set a constant ratio of the dimension of controlling variables to the sample size (i.e.,
a fixed p/n = 2,10). Figure 1 displays the average estimated Pcor of 200 repetitions
compared to the true Pcor for n = 100,200,400 and ! = 6 in Example 1. The MRSS,
MCP.Reg2, and MCP.Var are denoted in red, green and blue, respectively. When Pcor is
small around Pcor < 0.5, the MRSS accurately simulates the true Pcor, performing similarly
to the MCP.Reg2. When Pcor is large, like about Pcor > 0.5, the MRSS performs sub-
optimally and comparable to the MCP.Var, falling slightly behind the RSS2. Essentially, the
MRSS effectively amalgamates the strengths of both MCP.Reg2 and MCP.Var algorithms,
reducing potential weaknesses for Pcor estimation. For a small sample size n = 100, the
MRSS leads to a significant improvement in the estimation for a large Pcor in [0, 1], but
still a considerable estimation bias for small Pcor in [0, 1] owing to the limited sample size
and information. For a large sample size n > 200, the MRSS effectively reduces the Pcor
estimation bias for Pcor> 0. Consequently, greatly enhancing the sample size substantially
boosts the MRSS estimation accuracy, even if the ratio of the controlling variables dimension
to the sample size p/n increases from 2 to 10.

4.3. Parameter Sensitivity

We investigate the sensitivity of the performance of the MRSS algorithm to different
parameter settings, such as variance and sparsity. This allows us to explore the robustness
of algorithms under different parameter configurations.
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Figure 1. Average Pcor against true Pcor of each true Pcor = 0,0.1,...,0.95 for p = 2n in first row
and p = 10n in second row with n = 100,200,400 and / = 6 in Example 1.

4.3.1. For Variance

We set a variance parameter o2 in data generation to test the stability of our algorithm
under varying variance. Table 3 shows the mean of MSE (x10?) and RMSE (x10?) for
the estimated Pcors of real Pcor = 0,0.05, .. .,0.95 with different variances ¢ = 1,10, 40
and [ = 10 for a large sample size (n = 50,100) and small sample size (n = 200,400) in
Examples 1-4. We discover that, as the variance increases o2 from 1 to 40, the MSE and
RMSE remain consistent for various examples and sample sizes. This indicates that our
MRSS algorithm is highly robust to variance and retains good stability.

Table 3. The means of MSE (x10%) and RMSE (x10?) for the estimated Pcors of real Pcor =
0,0.05, . ..,0.95 with different variances ¢ = 1,10,40 and ! = 10 for large sample size (n = 50, 100)
and small sample size (n = 200,400) in Examples 1—4.

Small Sample Size MSE (x10?) RMSE (x10?)
Lasso MCP Lasso MCP

Example o2 Res Reg2 Res Reg2 Coef Var RSS2 MRSS Res Reg2 Res Reg2 Coef Var RSS2 MRSS
1 3710 2199 3379 24.08 3247 3189 2893 2344 59.01 4383 5570 4621 5382 53.89 5038  45.38
Example1 10 37.04 21.74 33.66 2402 3233 31.84 2873 2347 5896 43.64 5558 4613 5370 53.88 50.16 4539
40 37.02 21.84 3380 2417 3240 3188 2883 2357 5897 43.68 b55.68 4620 53.68 53.82 5023 4543
1 3751 2224 3436 24.62 3286 3234 2939 2403 5936 4411 5621 4676 5417 5431 5085  46.00
Example2 10 37.54 2218 3425 2449 3274 3216 29.17 2384 59.39 44.06 56.11 46.63 5412 5419 50.63 4582
40 3740 2216 3429 2464 3280 3227 29.15 24.08 59.27 44.00 56.15 46.75 54.08 5422 50.50 46.05
1 3928 2339 3625 2619 33.82 3362 3091 2570 60.80 4534 57.87 4840 5511 55,55 5235 47.83
Example3 10 39.26 2331 36.14 26.10 33.73 33.63 30.70 2559 60.81 4526 57.83 4836 55.06 5561 5215 @ 47.77
40 39.16 2326 3635 2631 3388 3371 3073 2582 6071 4520 5794 4847 5513 5558 5216 4791
1 4540 2750 4323 32.04 3697 3776 3542 31.63 6554 4950 63.65 5416 5821 5928 56.64  53.76
Example4 10 4543 2740 4320 3200 3698 3776 3550 3165 6556 49.40 63.65 5410 5821 5934 5677 5376
40 4538 2742 4315 31.89 37.06 3794 3530 3159 6549 4936 6356 5398 5823 5943 5650  53.68
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Table 3. Cont.

Large sample size MSE (x10%) RMSE (x10%)
Lasso MCP Lasso MCP

Example o> Res Reg2 Res Reg2 Coef Var RSS2 MRSS Res Reg2 Res Reg2 Coef Var RSS2 MRSS
1 681 387 162 147 246 260 171 0.65 2470 1844 11.77 1134 11.80 1197 1047 6.98
Examplel 10 6.80 384 165 149 251 271 1.76 0.68 24.68 18.39 11.85 1141 11.87 1218 10.55 7.08
40 677 383 164 146 243 255 170 0.66 2461 1843 11.78 1129 11.65 11.86 10.34 6.98
1 716 417 183 167 263 278 1.80 0.75 2538 19.18 1258 12.16 1242 12.60 10.80 7.60
Example2 10 715 413 187 169 272 289 185 077 2536 19.11 12.68 1220 12.62 1281 10.88 7.66
40 714 415 184 167 263 276 1.80 0.75 2532 1910 1259 1211 1232 1255 10.77 7.56
1 860 534 275 255 362 382 237 128 2800 21.88 15.69 1522 1599 1623 13.12  10.69
Example3 10 858 530 278 257 361 3.82 2.37 1.31 2797 2179 1576 1526 1593 16.18 13.01 10.74
40 857 533 276 253 359 376 2.33 1.28 2794 2184 15.68 15.14 1593 16.13 12.84 10.63
1 1573 1144 853 807 11.05 1140 7.27 645 3831 3227 2825 2746 31.62 3226 2537 2488
Example4 10 1571 1143 856 8.07 11.04 1140 7.22 6.44 3829 3225 2829 2745 31.61 3224 2528 24.86
40 1570 1142 856 8.05 11.09 1136 7.29 643 3828 3225 2828 2742 31.68 3220 2539 2483

4.3.2. For Sparsity

To evaluate the effectiveness of algorithms under different sparsity conditions, we set
the data generation conditions to develop from sparse to non-sparse, with an increasingly
non-sparse convergence rate from Example 1 to Example 4. This suggests a greater inclusion
of controlling variables as we progress through the examples. From the above Tables 1-3,
our observations show that the MRSS algorithm performs well for all examples. For
moderate non-sparse convergence rates, as witnessed in Examples 2-3, MRSS demonstrates
both low MSE and RMSE, comparable to the sparse conditions of Example 1. As the rate
of non-sparsity convergence and the impact of controlling variables increase in Example
4, the best-performing MRSS also encounters difficulties in reducing the estimation bias.
Therefore, the best-performing MRSS algorithm remains the most favoured choice for
estimating Pcor under both sparse and non-sparse conditions. If it is possible to analyse
the degree of non-sparsity the initial data, then we can obtain a better understanding of the
algorithm’s error margin.

Another indication of the sparsity strength is the number of high correlation con-
trolling variables [. Figure 2 illustrates the performance of the featured algorithms for
varying numbers | = 6,10, 14. The figure contrasts the average Pcor with the true Pcor for
I = 6,10,14 in Example 2 with the first row n = 100, p = 200 and the second n = 200,
p = 2000. As ! increases, the interference from controlling variables in the estimation
process becomes more pronounced, leading to a heightened estimation bias. However, the
MRSS algorithm consistently showcases an optimal performance throughout the entire
[0,1] interval. Remarkably, despite encountering a high interference level at I = 14, MRSS
keeps the bias in close alignment with the diagonal, in contrast to its counterparts. Table 4
shows the mean of the MSE and RMSE for | = 6,10, 14. As | increases, both the MSE and
RMSE of the MRSS algorithm increase, but always remain slightly weaker than optimal in
small samples and significantly more optimal than the other algorithms in large samples.
These results demonstrate the robustness, stability, and precision advantages of the MRSS
algorithm.

4.4. Summaries

Based on numerous simulations, our study examines the practicality and effectiveness
of the MRSS algorithm in a variety of scenarios. Through extensive simulations, we provide
valuable insights into the accuracy and effectiveness of the MRSS algorithm. We provide
empirical evidence that MRSS effectively incorporates the strengths of the MCP.Reg2 and
MCP.Var algorithms and reduces the potential weaknesses of Pcor estimation, especially
in challenging environments with high-dimensional sparse and non-sparse conditions.
For larger sample sizes (n > 100), the MRSS algorithm reduces the MSE and RMSE
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by approximately 30-70% compared to other algorithms and effectively controls Pcor
estimation errors. For small sample sizes (n < 100), a reduction of 10-20% is observed in
MSE and RMSE for the MRSS algorithm compared to the Res algorithm, an increase of
10-20% compared to Lasso.Reg2, and a slight change compared to other algorithms.
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Figure 2. Average Pcor against true Pcor for n = 100, p = 200 in the first row and n = 200, p = 2000
in the second row with | = 6,10, 14 in Example 2.

Table 4. The mean of MSE (x102) and RMSE (x10?) for estimated Pcors of real Pcor = 0,0.05, . ..,0.95
with = 6,10,14 and 0? = 1 for a large sample size (n = 50,100) and small sample size (1 = 200,400)
in Examples 1-4.

Small Sample Size MSE (x10%) RMSE (x10%)
Lasso \% (G Lasso McCp
Example I Res Reg2 Res Reg2 Coef Var RSS2 MRSS Res Reg2 Res Reg2 Coef Var RSS2 MRSS

6 98 112 99 9.5 144 132 113 7.4 307 314 308 296 322 309 289 252
Examplel 10 371 220 338 241 325 319 289 234 590 438 557 462 538 539 504 454
14 706 378 596 461 912 985 55.0 47.1 812 582 726 636 946 982 69.6 64.5
6 102 11.6 103 99 151 138 11.6 7.8 31.3 319 314 302 331 318 295 25.9
Example2 10 375 222 344 246 329 323 294 240 594 441 562 468 542 543 508 46.0
14 710 382 601 466 915 988 553 475 815 584 73.0 640 947 984 698 64.9
6 11.1 123 113 108 164 151 12.9 9.0 326 330 329 316 350 336 314 28.1
Example3 10 393 234 362 262 338 33.6 309 257 608 453 579 484 551 555 523 47.8
14 730 395 626 488 932 1003 56.7 499 827 596 750 659 956 99.1 70.8 66.9
6 153 156 156 147 221 208 183 13.8 383 373 386 370 415 404 386 35.7
Example4 10 454 275 432 320 370 378 354 316 655 495 636 542 582 593 @ 56.6 53.8
14 789 435 709 560 989 1053 610 575 863 628 807 715 983 1014 739 72.8
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Table 4. Cont.

Large Sample Size MSE (x10%) RMSE (x10%)
Lasso MCP Lasso MCP
Example I Res Reg2 Res Reg2 Coef Var RSS2 MRSS Res Reg2 Res Reg2 Coef Var RSS2 MRSS
6 29 1.9 1.8 1.1 1.6 1.4 1.4 0.5 163 128 124 99 9.5 9.0 9.7 6.5
Examplel 10 6.8 3.9 1.6 1.5 2.5 2.6 1.7 0.6 247 184 11.8 113 11.8 120 105 7.0
14 117 68 16 16 126 179 32 0.9 322 243 118 119 253 299 141 8.1
6 31 2.1 2.0 1.3 1.8 1.5 1.5 0.6 170 135 132 106 102 9.6 9.9 7.1
Example2 10 72 42 18 17 26 28 1.8 07 254 192 126 122 124 126 108 7.6
14 121 72 1.8 1.8 131 183 34 1.0 328 25.0 127 127 262 30.7 14.6 8.8
6 38 26 26 17 2219 1.7 0.9 188 152 151 124 122 115 11.0 8.9
Example3 10 8.6 53 27 2.5 3.6 3.8 24 1.3 280 219 157 152 160 162 131 10.7
14 144 91 32 31 156 214 45 1.9 360 285 169 169 31.0 357 177 13.0
6 81 6.1 6.5 5.0 6.0 5.6 4.2 3.9 276 235 247 217 228 222 192 19.3
Example4 10 157 114 85 81 110 114 73 6.4 383 323 282 275 316 323 254 249
14 238 176 107 106 299 374 126 9.4 470 40.0 317 315 500 552 326 29.9

Conducting a sensitivity analysis with various variance and sparsity parameters, the
outcomes demonstrate the benefits of the MRSS algorithm in terms of robustness, stability,
and accuracy. As the variance increases from 1 to 40, the MSE and RMSE remain consistent
for distinct examples and sample sizes. This demonstrates that our MRSS algorithm is
remarkably resilient to variability and maintains excellent stability. As the level of sparsity
decreases (from Examples 14, or from [ = 6 to 14), it is noticeable that the MSE and RMSE
of the MRSS algorithm increase, but remain within the same order of magnitude. Even the
optimal MRSS algorithms undergo a significant rise in MSE and RMSE for Example 4 and
I = 14, as an escalation of non-sparse and intricate controlling variables brings forth certain
systematic errors.

5. Real Data Analysis

A distinguishing feature of financial markets is the observed correlation among the
price movements of various financial assets. A prevalent feature entails the existence of a
substantial cross-correlation between stock returns’ simultaneous time evolution [29]. In
numerous instances, a strong correlation does not necessarily imply a significant direct
relationship. For instance, two stocks in the same market may be subject to shared macroe-
conomic or investor psychology influences. Therefore, to examine the direct correlation
between these stocks, it is necessary to eliminate the common drivers represented by the
market index. The Pcor meets this requirement by assessing the direct relationship between
the two stocks after removing the market impacts of controlling variables. When accurately
estimating the Pcor, it is possible to evaluate the impact of diverse factors (e.g., economic
sectors, other markets, or macroeconomic factors) on a specific stock. The resulting partial
correlation data may be utilised in fields, such as stock market risk management, stock
portfolio optimisation, and financial control [7,8]. Moreover, the Pcor can also indicate the
interdependence and influence of industries in the context of global integration. These
techniques for analysing Pcor can provide valuable information on the correlations between
different assets and different sectors of the economy, as they are generalisable and can
be applied to other asset types and cross-asset relationships in financial markets. This
information is beneficial for practitioners and policymakers.

We chose 100 stocks with substantial market capitalisation and robust liquidity from
the Shanghai Stock Exchange (SSE) market. These stocks can comprehensively represent the
overall performance of listed stock prices in China’s A-share market. We then downloaded
their daily adjusted closing prices from Yahoo Finance from January 2018 to August 2023
and removed the missing data. Here, a sufficient sample size of n = 1075 was chosen to
ensure the effectiveness of algorithms and limit the bias in Pcor estimation. For each pair of
the 100 stocks, we estimate their Pcor by setting the remaining stocks as the corresponding
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controlling variables and construct the estimated Pcor matrix. The Pcor matrix shows
the better internal correlation between two stocks after removing the influence of the
stock market.

Figure 3 presents the estimated Pcor matrices for 100 stocks from SSE markets using
MCP.Reg2, MCP.Var and MRSS algorithms. Blue signifies Pcor = 1, while red represents
Pcor = —1. Whilst the MCP.Coef, MCP.Var, and RSS2 algorithms all estimate Pcor as 0
when true Pcor approaches 0, our proposed MRSS algorithm resembles the MCP.Reg2,
which estimates an accurate Pcor for weak partial correlation. Thus, the MRSS is capable
of effectively estimating weak partial correlations. When dealing with high Pcor values
and strong partial correlation, we find that the MCP.Var algorithm overestimates Pcor as a
result of the divergence in stock prices. For two stocks with a higher stock price, the Pcor
estimated by the Var algorithm to be overestimated or even most at 1. MRSS effectively
solves this problem. Notably, as a result of incorporating the MCP.Var algorithm, the MRSS
algorithm amplifies certain partial correlations that are not significant by MCP.Reg2. These
results can also be seen in Table 5. The MRSS estimates these correlations to be stronger
partial correlations resulting in improved clarity in the partial correlations.

(a) MCPReg2 (b) MCP.Var (c) MRSS

Figure 3. Estimated Pcor matrix of 100 HKSE stocks, with blue representing Pcor = 1 and red
representing Pcor = —1.

Figure 4 shows the stocks” Pcor network for the top-100 and top-50 pairs of Pcor
estimates by the MRSS algorithm from 100 SSE stocks. The node represents the stock,
coloured with its sector. The edge thickness represents the Pcor estimate between two
nodes, with the thick-edge Pcor > 0.4 and the thin-edge Pcor < 0.4. Table 5 shows the stock
pairs with their sector and Pcor estimates for all the MRSS estimated Pcor > 0.4 from 100
SSE stocks, and Table 6 shows the corresponding stock pairs with their company name,
business, and sector. Here, we use industry classifications from the Global Industry Classi-
fication Standard (GICS) with Communication Services, Consumer Discretionary (C.D.),
Consumer Staples, Energy, Financials, Health Care, Industrials, Information Technology
(L.T.), Materials, Real Estate and Utilities. We find that two stocks connected in the partial
correlation network with a high Pcor are almost in the same sector and operate in the same
business. In addition, high Pcor values may indicate shareholding relationships between
companies. For instance, the highly correlated 601398-601939-601288-601988-601328 (fi-
nancials) are all state-controlled banks that do not have a direct high Pcor link with the
city banks 601009-601166 (financials). And, stocks that do not belong to the same industry
under a high Pcor may have certain other links behind them, such as 601519 (1.T.)-601700
(industrials) having a common major shareholder. After stripping out the other factors
influencing the market, Pcor represents the inherent and intrinsic correlation between two
stocks because they are in the same sector.

As societies become increasingly integrated, the productive activities of different
industries become interdependent and interact with each other. Categorising a company
into only one industry does not reflect its overall performance and associated risks. Many
listed companies in the stock market belong to conglomerates and operate in different
industry sectors, so it is natural for the performance of these companies to be affected
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by multiple industries. Therefore, we will also find that Pcor, apart from showing the
correlation between industries, will also reveal the correlation between two industries that
are linked together by two stocks in different industries. For example, the partial correlation
between the Bank of Communications (601328) and PetroChina (601857) with Pcor = 0.258
links the Energy (600028-601857 in orange) and Financial (601398-601939-601288-601988—
601328 in dark blue) sectors of state-owned assets.
Overall, the MRSS algorithm amalgamates the characteristics of MCP.Reg2 and MCP.Var,

enhancing the estimation of strong partial correlations, while effectively estimating those
weak partial correlations, ultimately revealing the stock correlations.
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Figure 4. Stocks’ Pcor network for the top-100 and top-50 pairs of Pcor estimates by MRSS algorithm
from 100 SSE stocks. The node represents the stock, coloured with its sector. The edge thickness
represents the Pcor estimate between two nodes, with the thick edge Pcor > 0.4 and the thin edge
Pcor < 0.4.

Table 5. Stock pairs with their sector and Pcor estimates for all the MRSS estimated Pcor > 0.4 by
different algorithms from 100 SSE stocks.

Stock1 Stock?2 Lasso MCP
Symbol Sector Symbol Sector Res Reg2 Res Reg2 Coef Var RSS2 MRSS

601398  Financials 601939  Financials 0.526 0.526 0.535 0.535 0.533 0.840 0.527 0.840
600022  Materials 601005 Materials  0.569 0.569 0.581 0.581 0.580 0.769 0.590 0.769
601186  Industrials 601390 Industrials 0.589 0.589 0.566 0.566 0.587 0.748 0.584 0.748
600012 Industrials 601099 Financials 0.405 0.405 0.399 0.399 0404 0.697 0414 0.697
601288  Financials 601988  Financials 0.473 0473 0476 0476 0490 0.646 0473 0.646
600028  Energy 601857  Energy 0.550 0.550 0.545 0.545 0569 0.607 0.534 0.607
601098 C.D. 601801 C.D. 0.468 0.468 0474 0474 0475 0.606 0.476 0.606
601328 Financials 601988  Financials 0.357 0.357 0.316 0.316 0.369 0.600 0.322 0.600
600017 Industrials 601880 Industrials 0.372 0.372 0.382 0.382 0.384 0.574 0.394 0.574
600026  Industrials 601872 Industrials 0.590 0.590 0.572 0.573 0.590 1 0.593 0.573
601866  Industrials 601919 Industrials 0.552 0.552 0.545 0.545 0.562 1 0.554 0.545
601179  Industrials 601390 Industrials 0.291 0.291 0.275 0.275 0.285 0.543 0.284 0.543
600011  Utilities 600021  Utilities 0.535 0.535 0.522 0522 0535 0543 0.529 0.543

601333  Industrials 601801 C.D. 0.526 0.526 0.526 0.526 0.525 1 0.528 0.526
600011  Utilities 600027  Utilities 0514 0514 0517 0517 0.514 1 0.501 0.517
601088  Energy 601666  Energy 0289 0289 0326 0326 0359 0492 0.349 0.492

601288  Financials 601398  Financials 0.353 0.353 0.338 0.338 0.349 0.491 0.339 0.491
601168  Materials 601899 Materials  0.515 0.515 0.490 0.490 0.535 1 0.497 0.490
601186 Industrials 601618 Industrials 0.260 0.260 0.245 0.245 0.250 0.488 0.249 0.488
600018 Industrials 601018 Industrials 0.480 0.480 0483 0.483 0.486 1 0.485 0.483
600008  Utilities 600012 Industrials 0.319 0.319 0.309 0.309 0312 0436 0.304 0.436
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Table 5. Cont.
Stock1 Stock?2 Lasso McCpP

Symbol Sector Symbol Sector Res Reg2 Res Reg2 Coef Var RSS2 MRSS
601009  Financials =~ 601166  Financials 0.300 0.300 0.298 0.298 0.303 0427 0307 0427
600020 Industrials 601177 Industrials 0.431 0431 0430 0430 0421 0422 0429 0422
601001  Energy 601137 Materials ~ 0.268 0268 0.261 0261 0283 0421 0260 0421
601519 LT. 601700 Industrials 0224 0.224 0219 0219 0217 0410 0.203  0.410
600017 Industrials 601008 Industrials 0.404 0.404 0405 0405 0.403 0979 0407 0405
601318  Financials 601601 Financials 0414 0414 0403 0403 0414 1 0414 0403

Table 6. Stock pairs with their company name, business, and sector for all the MRSS estimated Pcor
> 0.4 from 100 SSE stocks.

Symbol Company Business Sector Symbol Company Business Sector
601098  South central Media Media C.D. 601801  Anhui Xinhua Media publishing C.D.
600028  Sinopec Refining and Trading  Energy 601857  PetroChina Refining and Trading Energy
601088  China Shenhua Energy Coal Mining Energy 601666  Pingdingshan Tianan Coal Mining Coal Mining Energy
601001  Datong Coal Industry Coal Mining Energy 601137  Ningbo Boway Alloy Material Industrial Metals Materials
601398  Industrial and Commercial Bank of China  Banks Financials 601939  China Construction Bank Banks Financials
601288  Agricultural Bank of China Banks Financials 601988  Bank of China Banks Financials
601328  Bank of Communications Banks Financials 601988  Bank of China Banks Financials
601288  Agricultural Bank of China Banks Financials 601398  Industrial and Commercial Bank of China Banks Financials
601009  Bank of Nanjing Banks Financials 601166  Industrial Bank of China Banks Financials
601318  Ping An Insurance of China Insurance Financials 601601  China Pacific Insurance Insurance Financials
601186  China Railway Construction Infrastructure Industrials 601390  China Railway Engineering Group Infrastructure Industrials
600012  Anhui Expressway Railway and Highway Industrials 601099  China Pacific Insurance certificate Financials
600017  Rizhao Port Shipping Ports Industrials 601880  Dalian Port Shipping Ports Industrials
600026  China Shipping Development Shipping Ports Industrials 601872  China Merchants Energy Shipping Shipping Ports Industrials
601866  China Shipping Container Lines Shipping Ports Industrials 601919  China Ocean Shipping Shipping Ports Industrials
601179  China Xidian Electric Grid Equipment Industrials 601390  China Railway Engineering Infrastructure Industrials
601333  Guangshen Railway Railway and Highway Industrials 601801  Anhui Xinhua Media publishing C.D.
601186  China Railway Construction Infrastructure Industrials 601618  Metallurgical Corporation of China Professional Engineering  Industrials
600018  Shanghai International Port Group Shipping Ports Industrials 601018  Ningbo Port Shipping Ports Industrials
600020  Zhongyuan Expressway Railway and Highway Industrials 601177  Hangzhou Advance Gearbox machine Industrials
600017  Rizhao Port Shipping Ports Industrials 601008  Lianyungang Port Shipping Ports Industrials
601519  Shanghai DZH Software Development LT. 601700  Changshu Fengfan Power Equipment Grid Equipment Industrials
600022  Jinan Iron and Steel Plain Steel Materials 601005  Chonggqing Iron and Steel Plain Steel Materials
601168  Western Mining Industrial Metals Materials 601899  Zijin Mining Industrial Metals Materials
600011  Huaneng Power International Electricity Utilities 600021  Shanghai Electric Power Electricity Utilities
600011  Huaneng Power International Electricity Utilities 600027  Huadian Power International Electricity Utilities
600008  Beijing Capital Water Utilities 600012 Anhui Expressway Railway and Highway Industrials

6. Conclusions

This paper presents a novel minimum residual sum of squares (MRSS) algorithm for
estimating partial correlation coefficients. Its purpose is to reduce the estimation bias of
positive partial correlation coefficients in high-dimensional settings under both sparse and
non-sparse conditions. The MRSS algorithm is effective in mitigating a Pcor estimation
bias by synergistically harnessing the strengths of the Coef, Reg2, and Var algorithms. We
also discuss the MRSS algorithm mathematical foundation and its performance in various
scenarios compared to some existing algorithms. Through rigorous simulations and real
data analysis, it becomes evident that the MRSS algorithm consistently outperforms its
constituent and listed algorithms, particularly in challenging environments characterised
by non-sparse conditions and high dimensionality. The sensitivity analysis with variance
and sparsity parameters demonstrate the robustness, stability, and precision advantages of
the MRSS algorithm. Further evidence of the effectiveness of the MRSS algorithm in the
correlation analysis of stock data is provided by real data analyses.

7. Future Work

Our proposed MRSS algorithm combines the benefits of two existing algorithms by
reducing the total squared residuals and enhancing the accuracy of Pcor estimation. In up-
coming studies, we may explore the integration of additional algorithms by minimising the
RSS to achieve a greater amalgamation of benefits from various algorithms and improve the



Mathematics 2023, 11, 4311

19 of 22

estimation accuracy of the integrated algorithm. Reducing the computational complexity
of our minimised RSS integration algorithm to decrease computing time represents a core
issue in future research. Additionally, conducting in-depth theoretical research on MRSS
algorithms, including a proof analysis of consistency and convergence, will be an essential
direction for our next steps. Further refinement of theoretical proofs and an in-depth in-
vestigation of error convergence speed may uncover reasons for the systematic estimation
bias that cannot be ignored when Pcor is positive in all current algorithms. Meanwhile,
expanding the use of the MRSS algorithm to a wider range of fields is a focal point of our
future research. Concerning financial data, we intend to thoroughly examine the biased
correlations between financial data besides stocks and advise on relevant policies.

Author Contributions: Conceptualisation and methodology, ].Y. and M.Y.; software, G.B. and J.Y,;
validation and formal analysis, G.B.; data curation, writing—original draft preparation, review and
editing, and visualisation, J.Y. All authors have read and agreed to the published version of the
manuscript.

Funding: This research was funded by the Doctoral Foundation of Yunnan Normal University (Project
No.2020ZB014) and the Youth Project of Yunnan Basic Research Program (Project No.202201AU070051).

Data Availability Statement: The authors confirm that the data supporting the findings of this study
are available within the article.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Tables for the mean of MSE (x10%) and RMSE (x10?) of estimated Pcors of real
Pcor = 0,0.05, . ..,0.95 with ¢ = 1, n = 50,100,200, 400, p = 200, 500, 1000, 2000, 4000 and
the numbers of high correlation controlling variables | = 6, 14 in Examples 1-4.

Table Al. The mean of MSE (x10%) and RMSE (x102) for the estimated Pcors of real Pcor =
0,0.05,...,0.95 with I = 6, 0% = 1, n = 50,100, 200, 400 and p = 200,500, 1000,2000, 4000 in Examples
1-4.

n p MSE (x10%) RMSE (x10?)

Method Lasso MCP Lasso MCP

Examplel Res Reg2 Res Reg2 Coef Var RSS2 MRSS Res Reg2 Res Reg2 Coef Var RSS2 MRSS
200 100 111 106 102 158 143 121 8.1 312 319 320 310 353 338 315 27.6

50 500 114 143 11.7 123 205 191 16.2 113 332 360 335 339 402 391 364 32.6
1000 118 158 120 131 225 215 186 128 338 376 341 350 420 412 390 34.7
500 7.4 6.6 72 58 73 62 5.3 3.1 267 245 264 234 223 209 196 16.3

100 1000 8.6 8.6 8.5 7.2 92 80 6.8 4.0 289 277 286 260 252 238 222 18.4
2000 9.6 107 94 87 112 100 85 54 304 309 301 284 281 268 250 21.4
500 3.1 1.7 20 1.1 1.8 1.5 1.6 0.6 173 126 141 106 107 100 10.7 7.2

200 1000 4.1 2.6 2.9 1.6 24 20 2.1 0.8 198 156 166 125 123 116 122 8.1
2000 5.0 37 37 22 3.1 2.6 2.5 1.0 219 183 190 144 139 13.0 133 9.0
1000 1.3 07 05 0.4 06 05 0.6 0.3 113 83 7.0 6.3 6.0 58 6.5 4.6

400 2000 1.7 11 07 05 08 07 0.8 0.3 129 101 81 7.2 6.7 64 7.2 5.0
4000 2.2 15 0.9 0.7 09 08 0.9 0.4 145 121 93 8.1 74 70 8.1 54
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Table Al. Cont.
n p MSE (x10%) RMSE (x102)
Method Lasso McCpP Lasso McCP
Res Reg2 Res Reg2 Coef Var RSS2 MRSS Res Reg2 Res Reg2 Coef Var RSS2 MRSS
Example 2
200 105 115 110 106 165 150 124 8.6 318 325 325 316 364 350 319 28.7
50 500 11.8 148 121 127 216 199 167 11.8 337 365 341 344 413 399 371 33.3
1000 122 160 124 135 231 220 192 131 343 379 346 355 425 417 397 35.1
500 78 69 76 61 78 67 55 33 274 250 271 239 234 219 201 16.8
100 1000 9.0 9.0 89 76 97 85 7.1 44 295 284 292 266 263 248 2238 19.5
2000 100 11.0 98 90 116 105 88 5.7 31.0 314 307 290 289 276 255 223
500 3.3 18 23 1.3 20 17 17 0.7 180 132 149 114 113 106 111 7.7
200 1000 44 29 32 18 27 23 21 0.9 205 162 175 133 133 124 124 8.6
2000 53 39 41 24 34 29 2.6 11 227 189 198 151 148 138 13.6 9.6
1000 15 08 06 05 07 06 0.6 0.3 121 9.1 77 70 65 63 6.7 5.1
400 2000 19 12 08 06 08 07 0.8 0.4 137 109 89 8.0 72 69 74 5.5
4000 24 17 11 0.8 1.0 09 1.0 0.4 153 128 102 8.9 80 76 8.3 6.0
Example 3
200 114 123 120 115 181 166 139 100 331 335 340 329 381 368 342 30.8
50 500 127 155 13.0 137 229 214 182 132 349 373 354 358 424 414 389 35.2
1000 132 170 135 145 246 234 206 145 357 391 361 368 438 429 409 36.8
500 86 77 86 70 87 76 6.4 4.0 288 263 287 255 255 240 219 18.9
100 1000 99 95 98 85 109 97 7.9 5.2 309 292 307 281 284 269 244 21.7
2000 109 11.8 108 99 131 119 101 6.8 325 325 322 305 315 300 278 249
500 40 23 29 17 24 21 19 0.9 197 148 167 130 133 125 118 9.3
200 1000 5.1 34 39 24 32 28 2.5 12 223 177 194 150 153 143 136 10.5
2000 62 46 49 31 41 35 31 15 244 204 217 170 170 159 15.0 11.7
1000 2.0 12 1.0 08 09 09 0.8 0.5 139 109 97 89 83 80 7.7 6.7
400 2000 25 17 12 10 1.1 1.0 0.9 0.6 156 128 109 9.9 91 88 8.3 7.3
4000 3.1 2.2 15 12 14 12 1.2 0.7 172 146 122 108 100 9.6 9.3 7.9
Example 4
200 139 142 147 140 224 207 177 133 366 360 376 363 423 410 390 35.5
50 500 165 184 169 172 275 264 238 175 398 407 403 401 459 452 441 40.3
1000 180 205 182 188 286 280 26.1 192 416 429 419 420 465 463 457 423
500 124 108 124 103 137 124 102 7.8 345 311 345 310 334 319 292 27.2
100 1000 146 134 146 127 183 16.8 14.0 108 375 348 375 345 387 373 346 32.0
2000 16.6 165 166 154 221 206 179 142 400 385 400 380 421 410 391 36.7
500 70 47 59 41 51 47 3.6 29 260 20.8 238 199 213 205 177 16.9
200 1000 94 68 81 57 73 6.6 5.1 41 301 248 279 232 251 242 211 20.0
2000 116 89 103 74 94 87 6.8 5.5 334 282 314 264 284 275 243 23.1
1000 52 39 37 33 35 33 2.4 2.7 223 192 188 177 181 178 152 16.2
400 2000 68 55 49 43 46 44 3.2 3.6 255 227 216 203 207 203 174 18.7
4000 85 70 62 54 59 56 4.2 4.5 285 254 244 226 234 230 196 20.9
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Table A2. The mean of MSE (x10%) and RMSE (x10?) for estimated Pcors of real Pcor =
0,0.05,...,0.95 with | = 14, 0> = 1, n = 50,100,200,400 and p = 200,500, 1000,2000,4000 in
Examples 1-4.

nop MSE (x102) RMSE (x10?)
Method Lasso MCP Lasso MCP
Examplel Res Reg2 Res Reg2 Coef Var RSS2 MRSS Res Reg2 Res Reg2 Coef Var RSS2 MRSS

200 685 368 704 552 879 960 615 57.4 809 582 819 724 929 971 76.3 74.3
50 500 910 495 912 719 868 932 773 73.7 934 677 934 827 923 957  86.2 84.4
1000 1009 564 988 783 835 893 83.0 79.0 983 725 973 863 905 936 89.6 87.2
500 394 214 182 142 911 1032 30.5 14.4 613 441 415 366 949 1006 499 36.8
100 1000 544 283 309 229 979 1047 357 23.3 721 506 541 464 981 101.3 54.6 46.9
2000 69.6 346 479 344 998 1046 419 34.8 815 559 674 569 989 101.1 60.8 57.5
500 10.6 53 1.7 1.7 7.1 13.2 2.8 0.8 31.8 225 130 128 219 284 141 8.2
200 1000 164 9.4 2.5 2.4 209 323 4.5 1.3 395 296 156 154 408 498 182 10.5
2000 234 143 3.7 3.7 436 56.7 8.4 2.4 473 365 188 187 634 724 259 14.9

1000 44 2.1 0.5 0.5 0.9 0.8 0.9 0.2 205 142 6.9 6.9 7.3 6.9 7.8 4.5

400 2000 6.4 3.7 0.6 0.7 1.2 1.2 1.2 0.3 24.8 19.0 7.8 8.0 8.3 8.6 8.8 49

4000 9.0 6.0 0.8 0.9 1.8 3.2 1.5 0.4 293 242 9.0 94 103 134 9.8 5.6
Example 2

200 686 370 705 560 881 959 614 58.1 809 584 820 730 930 971 76.3 74.9
50 500 915 499 913 719 873 944 776 73.9 936 682 934 827 925 963  86.3 84.5
1000 101.0 569 992 782 835 894 835 78.9 984 727 975 863 904 937 899 87.2
500 399 217 188 147 922 1032 30.7 14.8 61.7 444 422 372 954 100.6 50.1 37.4
100 1000 55.0 28.7 319 236 98.0 1049 36.0 23.8 724 510 55.0 471 981 101.3 549 47.5
2000 70.0 348 488 352 99.8 1048 424 35.8 81.8 560 681 576 989 1012 61.2 58.3
500 11.0 5.6 1.9 1.9 7.6 13.8 3.0 0.9 324 231 138 135 228 293 145 8.7
200 1000 16.8 9.8 2.8 2.7 221 327 49 1.4 400 302 164 162 425 506 193 11.3
2000 239 149 4.0 4.0 447 578 8.8 2.7 478 372 196 195 644 730 266 16.1
1000 4.7 2.3 0.6 0.6 1.1 0.9 1.0 0.3 212 149 7.6 7.7 79 7.6 8.1 5.0
400 2000 6.8 4.0 0.8 0.8 1.3 14 1.3 0.4 254 198 8.7 8.8 8.8 9.2 9.1 55
4000 9.4 6.5 1.0 1.1 1.9 3.5 1.6 0.5 300 250 9.8 102 109 142 102 6.2

Example 3

200 703 381 725 576 894 972 632 60.2 819 593 8.1 740 937 977 775 76.2
50 500 93.1 513 928 734 884 950 79.0 75.6 944 691 942 836 931 966 871 85.5
1000 1025 582 1007 80.0 851 91.0 853 80.3 99.1 737 982 873 913 945 907 87.8
500 424 232 219 173 944 1053 319 17.5 63.6 460 455 404 965 1016 51.1 40.7
100 1000 576 302 357 268 1001 106.7 37.0 27.2 741 522 582 503 99.1 1021 558 50.8
2000 722 360 523 379 101.8 1065 43.7 38.5 831 571 706 59.8 99.8 1020 623 60.6
500 13.0 7.3 3.3 32 104 175 4.0 1.7 353 262 177 174 287 355 176 12.8
200 1000 193 119 44 4.3 260 37.6 6.3 2.6 429 333 205 203 473 559 222 15.6
2000 269 171 59 59 498 641 10.8 4.3 50.7 398 239 237 686 777 295 20.3
1000 6.3 3.7 1.4 1.5 1.8 1.7 1.6 0.8 246 190 119 119 121 117 111 9.0
400 2000 8.8 6.0 1.8 1.8 22 2.3 1.9 1.0 29.1 240 130 132 133 140 124 9.8
4000 118 8.8 21 22 3.3 52 2.4 1.2 336 291 143 147 161 196 136 10.7

Example 4

200 734 402 767 614 924 999 664 64.5 838 610 8.5 764 952 990 795 78.9
50 500 966 536 9.6 773 925 992 827 80.1 963 708 961 858 952 986  89.1 88.0
1000 106.6 61.8 1058 854 904 964 911 864 101.1 76.0 100.7 902 941 972 938 91.2
500 492 279 310 251 1021 111.1 347 25.4 685 505 542 487 1002 1042 537 49.1
100 1000 66.0 355 484 371 1069 1121 41.0 37.8 794 568 678 593 1023 1046 59.8 60.0
2000 817 418 668 498 1092 1129 504 50.8 885 619 799 687 1032 1049 67.8 69.7
500 189 122 8.3 8.1 208 29.7 8.9 6.3 424 338 282 278 440 516 278 24.8
200 1000 283 194 11.7 115 450 592 147 9.9 519 424 335 330 661 753 351 31.0
2000 388 264 162 1568 761 928 23,6 15.2 609 493 393 387 870 957 432 38.1
1000 132 103 6.9 6.9 8.0 7.8 6.4 6.0 355 312 257 258 275 275 249 243
400 2000 188 157 9.2 9.4 11.6 125 9.7 8.2 424 385 297 299 334 349 306 28.4
4000 249 214 117 120 183 224 123 10.8 488 449 336 340 420 464 340 32.5
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