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Abstract: A flexible extended Krylov subspace method (F -EKSM) is considered for numerical
approximation of the action of a matrix function f (A) to a vector b, where the function f is of Markov
type. F -EKSM has the same framework as the extended Krylov subspace method (EKSM), replacing
the zero pole in EKSM with a properly chosen fixed nonzero pole. For symmetric positive definite
matrices, the optimal fixed pole is derived for F -EKSM to achieve the lowest possible upper bound
on the asymptotic convergence factor, which is lower than that of EKSM. The analysis is based on
properties of Faber polynomials of A and (I − A/s)−1. For large and sparse matrices that can be
handled efficiently by LU factorizations, numerical experiments show that F -EKSM and a variant of
RKSM based on a small number of fixed poles outperform EKSM in both storage and runtime, and
usually have advantages over adaptive RKSM in runtime.

Keywords: Markov-type functions; rational Krylov subspace; extended Krylov subspace
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1. Introduction

Consider a large square matrix A ∈ Rn×n and a function f such that the matrix
function f (A) ∈ Rn×n is well-defined [1,2]. The numerical approximation of

q = f (A)b, (1)

where b ∈ Rn is a vector, is a common problem in scientific computing. It arises in numerical
solutions of differential equations [3–6], matrix functional integrators [7,8], model order
reduction [9,10], and optimization problems [11,12]. Note that approximating the action
of f (A) to a vector b and approximating the matrix f (A) are different. For a large sparse
matrix A, f (A) is usually fully dense and infeasible to form explicitly.

Numerical methods for approximating the action of f (A) to a vector have been
extensively studied in recent years, especially for large-scale problems; see, e.g., [13–15]
and references therein. Existing algorithms often construct certain polynomial or rational
approximations to f over the spectrum of A and apply such approximations directly to
the vector b without forming any dense matrices of the same size as A. A class of mostly
common projection methods are based on Krylov subspaces Km(A, b); however, for many
large matrices this may require a very large dimension of approximation spaces. Rational
Krylov subspace methods have been investigated to decrease the size of subspaces for
approximations; see, e.g., [16–20]. Two well-known examples are the extended rational
Krylov subspace method (EKSM) [14,21,22] and the adaptive rational Krylov subspace
method (adaptive RKSM) [23,24].
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In this paper, we explore a generalization of EKSM that uses one fixed nonzero pole alter-
nately with the infinite pole for approximating the action of Markov-type (Cauchy–Stieltjes)
functions [25]. Markov-type functions can be written as

f (z) =
∫ 0

−∞

dµ(ζ)

z− ζ
, z ∈ C\(−∞, 0],

where µ is a measure that ensures that the integral converges absolutely. Note that this
definition can be generalized to integrals defined on [α, β], where −∞ ≤ α < β < ∞.
We consider the interval (−∞, 0] here, as this is sufficient for the most widely-studied

Markov-type functions f (z) = zγ with −1 < γ < 0, f (z) = eθ
√

z−1
z and for their simple

modifications, such as z` f (z) with ` ∈ Z+. Our analysis can be extended to integrals on
(−∞, β] as long as the measure µ(ζ) satisfies

∫ β
−∞ |dµ(ζ)| < ∞, as assumed in [21].

This study is motivated by [21], which provided an upper bound on the convergence
factor of EKSM for approximating f (A)b. Our work concerns a generalization of EKSM,
replacing the zero pole used in EKSM with a fixed nonzero pole s; hence, we call it the
flexible extended Krylov subspace method (F -EKSM). This algorithm can apply the three-
term recurrence to enlarge the subspace for symmetric matrices such as EKSM, while full
orthogonalization process may be necessary for adaptive RKSM regardless of the symmetry
of matrices. Beckermann and Reichel [26] studied the asymptotic convergence rate of
RKSM with different pole selections for approximating f (A)b of Markov functions via
Faber transform; however, they did not provide explicit expressions of the optimal cyclic
2 poles or the corresponding rate of convergence, which could be done by solving a quartic
equation analytically. In this paper, we derive explicit expressions of the optimal pole
s and the corresponding convergence factor using the different analytic tool from [21].
While our bounds on the convergence factor seem to not be as tight as the bounds in [26]
numerically, our poles and bounds are provided in explicit expressions; in addition, our
pole usually leads to faster convergence for discrete Laplacian matrices based on finite
difference discretizations and many practical nonsymmetric matrices.

We explore the optimal pole s to achieve the lowest upper bound on the asymptotic
convergence factor, which is guaranteed to outperform EKSM on symmetric positive
definite (SPD) matrices. For nonsymmetric matrices with an elliptic numerical range, we
provide numerical evidence to demonstrate the advantage of F -EKSM over EKSM in
convergence rate. Numerical experiments show that F -EKSM converges at least as rapidly
as the upper bound suggests. In practice, if the linear systems needed for constructing
rational Krylov subspaces can be solved efficiently by LU factorizations, then F -EKSM
outperforms EKSM in both time and storage cost over a wide range of matrices, and it
could run considerably faster than adaptive RKSM for many problems. In this paper, we
only consider factorization-based direct methods for solving the inner linear systems; for
the use and implications of iterative linear solvers see, e.g., [27].

Rational Krylov subspace methods may exhibit superlinear convergence for approxi-
mating f (A)b. As the algorithms proceed and more rational Ritz values converge to the
exterior eigenvalues of A, the ‘effective spectrum’ of A not covered by the converged Ritz
values shrinks, leading to gradual acceleration of the convergence. This analysis has been
performed for EKSM applied to the 1D discrete Laplacian ([28], Section 5.2) based on the
result from [21], leading to a sharper explicit bound on the convergence. The same idea
could be explored with F -EKSM; however, it is not considered here, as we did not observe
superlinear convergence in our experiments. This was probably because the effective
spectrum of our large test matrices did not shrink quickly enough to exhibit convergence
speedup before the stopping criterion was satisfied.

Though F -EKSM is closely connected to EKSM, we emphasize that the convergence
of F -EKSM cannot be derived directly from that of EKSM applied to a shifted matrix.
Admittedly, with the same vector b it is the case that F -EKSM with a pole s applied
to A and EKSM applied to I − A/s both generate the same subspaces Q(s)

2m+1(A, b) =
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(I − A/s)−mspan{b, Ab, ..., A2mb}, however, the existing theory of EKSM [21] can only
provide a bound on the convergence factor for approximating f (I − A/s)b, which is not
what is needed and has no obvious relationship with the convergence for approximating
f (A)b from the same subspace. Our analysis is based on a special min–min optimization
instead of the results of EKSM applied to a shifted matrix.

The remainder of this paper is organized as follows. In Section 3, we discuss the
implementation of F -EKSM. In Section 4, we analyze the linear convergence factor of F -
EKSM and provide the optimal pole with which the lowest upper bound on the convergence
factor can be achieved for SPD matrices. In addition, we numerically explore the optimal
pole and the convergence factor of F -EKSM for nonsymmetric matrices with an elliptic
numerical range. In Section 5, we consider a variant of RKSM that applies a few fixed cyclic
poles to provide faster approximations than F -EKSM for certain challenging nonsymmetric
matrices. In Section 6, we show the results of numerical experiments for different methods
on a variety of matrices. Our conclusions are provided in Section 7, followed by several
proofs of Lemmas in the Appendices.

2. Rational Krylov Subspace Methods and F -EKSM

For a wide range of matrix function approximation problems, polynomial Krylov
subspace methods converge very slowly [29,30]. To speed up convergence, a more effi-
cient approach is to apply rational Krylov subspace methods; see, e.g., [31,32] and refer-
ences therein.

The procedure of RKSM is outlined as follows. Starting with an initial nonzero vector
b that generates Q1(A, b) = span{v1}, where v1 = b/||b||, RKSM keeps expanding the
subspaces to search for increasingly more accurate approximate solutions to our problem of
interest. In order for RKSM to expand the current subspaceQm(A, b) toQm+1(A, b), we ap-
ply the linear operator (γm I− ηm A)−1(αm I− βm A) to a vector u ∈ Qm(A, b) \Qm−1(A, b).
To build an orthonormal basis {v1, v2, ..., vm+1} of the enlarged subspace Qm+1(A, b), we
may choose u = vm and adopt the modified Gram–Schmidt orthogonalization, obtaining

(γm I − ηm A)−1(αm I − βm A)vm = ∑m+1
i=1 himvi, (2)

where him = v∗i (γm I − ηm A)−1(αm I − βm A)vm. To ensure that the linear operator is
well-defined and nonsingular, we require that |γm|2 + |ηm|2 6= 0, |αm|2 + |βm|2 6= 0,
(γm, ηm) 6= (αm, βm) up to a scaling factor, and that αm

βm
and γm

ηm
(if βm and ηm are nonzeros)

not be an eigenvalue of A. The use of four parameters (αm, βm, γm, ηm) provides the
flexibility to accommodate both the zero (γm = 0, ηm = −1) and the infinity (γm = 1,
ηm = 0) poles in a unified framework. The expansion of rational Krylov subspaces does not
have to be based on the last orthonormal basis vector u = vm, as in (2). There are alternative
ways to choose the continuation vector to expand the subspaces; see, e.g., [33].

The shift-inverse matrix vector product (γm I − ηm A)−1(αm I − βm A)vm is equivalent
to solving (γm I − ηm A)w = (αm I − βm A)vm (the inner linear system) for w. Multiplying
both sides of (2) by γm I − ηm A, moving all terms containing A to the left-hand side and all
other terms to the right-hand side, we have

A
(

∑m+1
i=1 ηmhimvi − βmvm

)
= −αmvm + γm ∑m+1

i=1 himvi. (3)

Note that the above relation should hold for each index value m = 1, 2, . . ., thus, it is not
hard to see that (3) can be written in the following matrix form:

AVm+1Fm ≡ AVm+1

(
Hmdiag(η1, . . . , ηm)−

[
diag(β1, . . . , βm)

01×m

])
= Vm+1

(
Hmdiag(γ1, . . . , γm)−

[
diag(α1, . . . , αm)

01×m

])
≡ Vm+1Gm,
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where Vm+1 = [v1, v2, ..., vm+1] contains the orthonormal basis vectors of the rational
Krylov subspace:

Qm+1(A, v1) = qm(A)−1Km+1(A, v1)

=

(
m

∏
k=1

(γk I − ηk A)−1

)
span

{
v1, Av1, A2v1, ..., Amv1

}
,

and Hm, Fm, and Gm ∈ R(m+1)×m are all upper Hessenberg matrices. Specifically,

Hm =

[
Hm

h(m+1)me∗m

]
, Fm =

[
Fm

f(m+1)me∗m

]
=

[
Hmdiag(η1, ..., ηm)− diag(β1, ..., βm)

h(m+1)mηme∗m

]
,

Gm =

[
Gm

g(m+1)me∗m

]
=

[
Hmdiag(γ1, ..., γm)− diag(α1, ..., αm)

h(m+1)mγme∗m

]
, (4)

where em = [0, . . . , 0, 1]∗ ∈ Rm.
The idea of RKSM as a projection method is the same as standard Krylov: first, solve

the Galerkin projected problem defined for V∗m AVm = FmG−1
m , then project the solution

back to the m-dimensional subspace as an approximate solution for the original problem
defined for A.

The parameters αm, βm, γm, ηm can be changed in each iteration to determine the
poles. For example, if we set αk = ηk = 0,γk = 1 and βk = −1 for all k ∈ Z+, it is
the standard Krylov subspace method; if we set β2k = η2k−1 = −1, α2k−1 = γ2k = 1,
and α2k = β2k−1 = γ2k−1 = η2k = 0 for k ∈ Z+, it becomes EKSM. A special variant of
EKSM [34,35] constructs the following extended subspaces:

Kl,m(A, b) = span
{

A−l+1b, ..., A−1b, b, Ab, ..., Am−1b
}

. (5)

A practical choice for the two indices l and m leads to subspaces of the form Km,im+1(A, b)
for some i ∈ N+, which requires an orthonormal basis for the Krylov subspaces with vectors

b, Ab, A2b, ..., Aib, A−1b, Ai+1b, ..., A2ib, A−2b, A2i+1b, ....

However, there is no convergence theory for this special variant.
The general rational Krylov space of order m is provided by [36,37]:

Qm(A, b) = qm−1(A)−1span{b, Ab, ..., Am−1b},
where qm−1(z) = (γ1 − η1z)(γ2 − η2z)...(γm−1 − ηm−1z),

with γi, ηi prescribed in (2). For EKSM, the rational Krylov subspace of dimension is

Q(E)
2m+1(A, b) = Km+1(A, b) ∪ Km+1(A−1, b) = A−mspan{b, Ab, ..., A2mb}.

EKSM applies the operators A−1 and A in an alternating manner in each iteration.
For adaptive RKSM, the operation at step m can be written as follows:

(I − A/sm)
−1(A− σm I)vm = ∑m+1

i=1 himvi,

where sm is a nonzero pole and σm is a zero of the underlying rational function. To
find the optimal poles and zeros at each step, we first restrict the poles and zeros to
disjoint sets Ξ and Σ, respectively, where Σ ⊇ W(A) and Ξ ⊆ C\W(A) [38] and where
W(A) = {x∗Ax | x ∈ Cn, ‖x‖2 = 1} is the numerical range of A. The pair (Σ, Ξ) is called a
condenser [39,40]. An analysis of RKSM considers a sequence of rational nodal functions

rm(z) = ∏m
j=1

z−σj
1−z/sj

,
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where the zeros σj ∈ Σ and the poles sj ∈ Ξ. Adaptive RKSM tries to obtain asymptoti-
cally optimal rational functions by defining σj+1 and sj+1 recursively with the following
conditions: after choosing σ1 and s1 of minimal distance, define [38]:

σj+1 = arg max
z∈Σ

∣∣rj(z)
∣∣, sj+1 = arg min

z∈Ξ

∣∣rj(z)
∣∣. (6)

The points {(σj, sj)} are called generalized Leja points [41,42]. In practice, we compute
approximations with respect to the poles and zeros defined in (6) during the progress of
iteration. Adaptive RKSM usually converges with fewer iterations than EKSM while using
a smaller approximation subspace [24,38,43]. While usually converging in fewer iterations
than the variants with a few cyclic poles [32], each step of adaptive RKSM requires a
solution to a shifted linear system with a new shift, which is more expensive than using
existing LU factorizations to solve the linear system with the same coefficient matrix that
has been factorized. If the linear system at each RKSM step is solved by a direct method,
adaptive RKSM tends to require longer runtimes than variants with a few cyclic poles based
on reusing LU factorizations for each distinct pole. Adaptive RKSM is most competitive if
the linear systems arising from each step need to be solved approximately by an iterative
method and if effective preconditioning can be structured for each linear system with
different shift.

In this paper, we consider generating rational Krylov subspaces with cyclic poles s,
+∞, s, +∞, ... (s 6= 0), which we call the flexible extended Krylov subspace method (F -EKSM).
The corresponding linear operators are provided by (I − A/s)−1 and A, which are applied
in an alternating manner. To this end, we set β2k = −1, η2k−1 = 1/s, α2k−1 = γk = 1, and
α2k = β2k−1 = η2k = 0 for k ∈ Z+. The approximation space of F -EKSM is

Q(s)
2m+1(A, b) = (I − A/s)−mspan{b, Ab, ..., A2mb}.

The choice of the repeated pole s influences the convergence rate of F -EKSM. Our goal
is to find the optimal pole s∗ for Markov-type functions of matrices such that F -EKSM
achieves the lowest upper bound on the linear convergence factor. This subspace is iden-
tical to the one generated by EKSM applied to the shifted matrix I − A/s; the conver-
gence theory of EKSM [21] would provide a convergence factor bound for approximating
f (I − A/s)b instead of f (A)b, however, this is not our concern here, as our results are de-
rived with a special min–min optimization analysis, not from the results of EKSM applied
to a shifted matrix.

3. Implementation of F -EKSM for Approximating f (A)b

Without loss of generality, suppose that ||b||2 = 1 in (1) and let the initial subspace be
span

{
b, (I − A/s)−1b

}
. The approximation to f (A)b after (m− 1) steps is

qm = V2m f (Am)V∗2mb = V2m f (Am)e1,

where V2m ∈ Cn×(2m) is an orthonormal set of basis vectors of the subspace

Q(s)
2m+1(A, b) = Km(A, b) ∪ Km((I − A/s)−1, (I − A/s)−1b)

and Am = V∗2m AV2m denotes the restriction of matrix A in Q(s)
2m+1(A, b).

Because Km(A, b) = Km((I − A/s), b), we have Q(s)
2m+1(A, b) = Q(E)

2m+1(I − A/s, b).
To construct this subspace, we can apply EKSM to the matrix I − A/s, obtain V2m =

[v1, ..., v2m] as the orthonormal set of basis vectors of Q(E)
2m+1(I − A/s, b), and obtain

T2m = V∗2m(I − A/s)V2m ∈ R2m×2m, (7)
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which is a block upper Hessenberg matrix (see Section 3 in [22]). From (7), we obtain Am =
V∗2m AV2m = s(I2m − T2m). Following the derivation of EKSM [22], we can derive a similar
Arnoldi relation AV2m = V2m+2T2m for our proposed F -EKSM, where T2m ∈ R(2m+2)×2m is
a block upper Hessenberg matrix with 2× 2 blocks, and we obtain Am = V∗2m AV2m = T2m.
More implementation details of RKSM can be found in [33,44]. Notice that similar to EKSM,
for symmetric problems, the orthogonalization cost of F -EKSM can be saved with the block
three-term recurrence to enlarge the subspace.

The residual norm of F -EKSM is ‖ f (A)b−V2m f (Am)e1‖; however, it is not directly
computable because f (A)b is unknown. One stopping criterion for the Arnoldi approxima-
tion is to compute |hm+1,me∗m f (Am)e1| [30,45,46]; however, this may not be valid for RKSM.
Another possibility is to compute ‖qm − qm−1‖, which is the norm of the difference between
two computed approximations; see, e.g., [21,47]. Alternatively, it is possible to monitor
the angle ∠(qm, qm−1) between the approximations [48] in two consecutive iterations. This
convergence criterion is sometimes used in the literature on eigenvalue computations; see,
e.g., [49,50]. The two criteria usually exhibit very similar behavior. In this section, we
choose the latter.

For all RKSM, linear system solvers are required in common, as the action of (γm I −
ηm A)−1 to vectors is needed in (2). For EKSM and F -EKSM, respectively, we need the
action of A−1 and (I− A/s)−1 to the vectors. If these linear systems can be solved efficiently
by direct methods, both of them need only one LU factorization performed one time and
applicable to all linear solves. However, because of the adaptive poles, for adaptive RKSM
it is necessary to solve a linear system with a different coefficient matrix for every iteration.
Although adaptive RKSM achieves an asymptotically optimal convergence rate, it can be
more time-consuming than EKSM and F -EKSM, as a new LU factorization in each step is
usually much more expensive than a linear solution using existing LU factors.

4. Convergence Analysis of F -EKSM

Next, we study the optimal pole s for F -EKSM to achieve the lowest upper bound on
the convergence factor through min–min optimization.

4.1. General Convergence Analysis

In this section, we explore the asymptotic convergence of F -EKSM. Consider the class
of Markov-type functions f (z) in (8). For any a ≥ 0, a Markov-type function can be split
into the sum of two integrals [14]:

f (z) =
∫ 0

−∞

dµ(ζ)

z− ζ
, z ∈ C\(−∞, 0], (8)

f (z) = f1(z) + f2(z), where f1(z) =
∫ −a

−∞

dµ(ζ)

z− ζ
, f2(z) =

∫ 0

−a

dµ(ζ)

z− ζ
. (9)

Here, we let W1 := W(A) = {w∗Aw : ‖w‖2 = 1} be the numerical range of matrix
A and define W2 := { s

z−s |z ∈W1}, where s is the repeated pole for F -EKSM. We assume
that W1 is symmetric with respect to the real axis R and lies strictly in the right half of the
complex plane. Then, for s < 0, W2 is symmetric with respect to the real axis R and lies
in the left half of the complex plane. We define φi : C̄\Wi → C̄\D as the direct Riemann
mapping [51] for Wi (i = 1, 2), where D is the unit disk, and define ψi = φ−1

i as the inverse
Riemann mapping.

Our convergence analysis initially follows the approach in [21], then analyzes a spe-
cial min–min optimization. It first uses the Faber polynomials [52], providing a rational
expansion of functions for investigating the approximation behavior of F -EKSM. The main
challenge is to find how the fixed real pole s impacts the convergence and to determine the
optimal s to achieve the lowest upper bound on the convergence factor.
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Lemma 1. For the Markov-type function defined by (8) (where µ is a measure such that the integral
converges absolutely) and some given a > 0, the following inequalities hold for any m ∈ N, m > 1:∣∣∣∣∣ f1(z)−

m−1

∑
k=0

γ1,kF1,k(z)

∣∣∣∣∣ ≤ c1|φ1(−a)|−m, z ∈W1, (10)∣∣∣∣∣ f2(z)−
m−1

∑
k=0

γ2,kF2,k

(
1

z/s− 1

)∣∣∣∣∣ ≤ c2|φ2(z0)|−m, z ∈W1, (11)

where |φ2(z0)| = min
{
|φ2(−1)|,

∣∣φ2
( s
−a−s

)∣∣} and where |φ1(−a)|, |φ2(−1)|, and
∣∣φ2
( s
−a−s

)∣∣
are all greater than 1. Here, for i = 1, 2, γi,k are some real numbers and Fi,k denotes the Faber
polynomials of degree k associated with the Riemann mapping φi, while c1 and c2 are constant
positive real numbers independent of m.

Proof. The proof is provided in Appendix A.

Lemma 2. Assume that ‖b‖2 = 1. For any given a ≥ 0 used in (9), the error of approximating
f (A)b by F -EKSM with cyclic poles s, +∞, s, +∞, ... satisfies

‖ f (A)b−V2m f (Am)e1‖ ≤ c8 min
{
|φ1(−a)|, |φ2(−1)|,

∣∣∣∣φ2

(
s

−a− s

)∣∣∣∣}−m
.

Proof. Let us define

g(z) = f1(z)−
m−1

∑
k=0

γ1,kF1,k(z), h(z) = f2(z)−
m

∑
k=0

γ2,kF2,k

(
1

z/s− 1

)
.

Because both g and h are analytic in W1, and as W(T2m) ⊂ W1, from Theorem 2 in [53]
we have

‖g(A)‖, ‖g(Am)‖ ≤ 11.08 max
z∈W1
|g(z)|, ‖h(A)‖, ‖h(Am)‖ ≤ 11.08 max

z∈W1
|h(z)|.

Next, we follow the proof in Section 3, Theorem 3.4 in [21], and use the above inequality:

‖ f (A)b−V2m f (Am)e1‖ =
∣∣∣∣∣∣∣∣ f1(A)b−∑m−1

k=0 γ1,kF1,k(A)b−V2m f1(Am)e1

+ V2m ∑m−1
k=0 γ1,kF1,k(Am)e1 + f2(A)b−∑m

k=0 γ2,kF2,k

(
s(A− sI)−1

)
b

−V2m f2(Am)e1 + V2m ∑m
k=0 γ2,kF2,k

(
s(Am − sI)−1

)
e1

∣∣∣∣∣∣∣∣
=‖g(A)b−V2mg(Am)e1 + h(A)b−V2mh(Am)e1‖
≤‖g(A)‖+ ‖g(Am)‖+ ‖h(A)‖+ ‖h(Am)‖

≤2× 11.08
(

max
z∈W1
|g(z)|+ max

z∈W1
|h(z)|

)
≤22.16

(
c1|φ1(−a)|−m + c2 min

{
|φ2(−1)|,

∣∣φ2
( s
−a−s

)∣∣}−m
)

≤c8 min
{
|φ1(−a)|, |φ2(−1)|,

∣∣φ2
( s
−a−s

)∣∣}−m.

Remark 1. The results of our analysis can additionally be applied to a linear combination of several
Markov-type functions with monomials zl , l ∈ Z+. One example of these functions is f (z) = zν,
ν ∈ (0, 1), as zν = zzν−1 and zν−1 is a Markov function. In addition, if the support of the
underlying measure of the Markov function is a proper subset of (−∞, 0], the error bound may not
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be sharp. The asymptotic convergence might be superlinear as well; see, e.g., [28]. While this idea
could be explored with F -EKSM, it is not considered here because we did not observe superlinear
convergence in our experiments. This was probably because the effective spectrum of our large test
matrices did not shrink quickly enough to exhibit convergence speedup before the stopping criterion
was satisfied.

To find the optimal pole to achieve the lowest upper bound on the asymptotic conver-
gence factor of F -EKSM, we need to determine s ≤ 0 such that

min
{
|φ1(−a)|, |φ2(−1)|,

∣∣∣∣φ2

(
s

−a− s

)∣∣∣∣}
is maximized. Let us define

ρ(s, a) = 1/min
{
|φ1(−a)|, |φ2(−1)|,

∣∣φ2
( s
−a−s

)∣∣}. (12)

Therefore, F -EKSM converges at least linearly with a convergence factor ρ(s, a) < 1, where
ρ depends on s and a. For any given pole s ≤ 0, we can find the artificial parameter a > 0
used in (9) such that it minimizes ρ(s, a). Let ρ̃(s) be the minimized ρ(s, a); then, we need
to find s ≤ 0 that minimizes ρ̃(s). We denote the minimized ρ̃(s) by ρ∗, which is the lowest
upper bound on the asymptotic convergence factor.

In summary, to find the optimal pole s needed to obtain the lowest upper bound on the
asymptotic convergence factor of F -EKSM, we can solve the following optimization problem:

ρ∗ = min
s≤0

ρ̃(s) = 1/maxs≤0 maxa≥0 min
{
|φ1(−a)|, |φ2(−1)|,

∣∣φ2
( s
−a−s

)∣∣}. (13)

The asymptotic convergence factor of F -EKSM in (13) is dependent on the Riemann
mapping φ. The formula of φ is different for matrices with different numerical ranges,
which leads to different values of ρ∗. In the following section, we show that this problem
has an analytical solution if A is symmetric positive definite.

4.2. The Symmetric Positive Definite Case

To explore the optimal pole s and the corresponding bound on the convergence factor
of F -EKSM, we can consider a symmetric positive definite matrix A. Assume that α, β > 0
are the smallest and the largest eigenvalues of A, respectively. The Riemann mappings
φ1, φ2 are

φ1(z) =

 z−c
d +

√( z−c
d
)2 − 1, <(z− c) > 0

z−c
d −

√( z−c
d
)2 − 1, <(z− c) < 0,

z ∈ C̄\W1 (14)

φ2(z) =


z−ĉ

d̂
+

√(
z−ĉ

d̂

)2
− 1, <

(
z−ĉ

d̂

)
> 0

z−ĉ
d̂
−
√(

z−ĉ
d̂

)2
− 1, <

(
z−ĉ

d̂

)
< 0,

z ∈ C̄\W2, (15)

where c = α+β
2 , d = β−α

2 , ĉ = 1
2 (

s
α−s +

s
β−s ) and d̂ = 1

2 (
s

β−s −
s

α−s ). It follows that

|φ1(−a)| = M +
√

M2 − 1, where M =
c + a

d
> 0,

|φ2(−1)| = N1 +
√

N2
1 − 1, where N1 =

1 + ĉ
d̂

> 0, and∣∣∣∣φ2

(
s

−a− s

)∣∣∣∣ = |N2|+
√

N2
2 − 1, where N2 =

s
−a−s − ĉ

d̂
. (16)
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Note that all the three expressions are the values of the function q(t) = t +
√

t2 − 1
at different values of t. Therefore, to compare |φ1(−a)|, |φ2(−1)|, and

∣∣φ2
( s
−a−s

)∣∣, it is
sufficient to compare M, N1, and |N2|, which is much easier.

Lemma 3. Using the notation provided in (14)–(16),

max
a≥0

min{M, N1, |N2|} =


α + β− 2αβ/s

β− α
, if s ∈ (−∞, s0]

α + β− 2s + 2
√
(α− s)(β− s)

β− α
, if s ∈ (s0, 0],

where s0 = −
√

αβ

κ1/6+κ−1/6 and κ = β/α is the condition number of matrix A.

Proof. The proof is provided in Appendix B.

We are now ready to show the major result regarding the optimal pole and the
corresponding lowest upper bound on the asymptotic convergence factor of F -EKSM for
approximating f (A)b of Markov-type functions.

Theorem 1. Let ρ̃(s) = mina≥0 ρ(s, a) be the convergence factor of F -EKSM for approximat-
ing f (A)b as defined in (12), where the matrix A is symmetric positive definite. Then, for the
optimization problem

ρ∗ = min
s≤0

min
a≥0

ρ(s, a) = min
s≤0

ρ̃(s),

the optimal solution is

s∗ = s0 = −
√

αβ

κ1/6 + κ−1/6 (17)

and the optimal objective function value is

ρ∗ =
1

Z∗ +
√

Z∗2 − 1
, where Z∗ =

κ + 1 + 2
√

κ
(

κ1/6 + κ−1/6
)

κ − 1
.

Proof. It is equivalent to find the optimal s that solves the following problem:

max
s≤0

T, where T = max
a≥0

min{M, N1, |N2|}.

From Lemma 3, T is a piecewise function with variable s, and we only need to find its
maximum value for s ∈ (−∞, 0].

For s ∈ (−∞, s0], T(s) = α+β−2αβ/s
β−α is a monotonically increasing function; therefore,

when s = s0, T(s) has its maximum value on this interval.

For s ∈ (s0, 0], T(s) = α+β−2s+2
√

(α−s)(β−s)
β−α . We find the first derivative of T(s) to be

T′(s) = − 1
β− α

(√
α− s +

√
β− s

)2√
(α− s)(β− s)

< 0.

Because T(s) decreases monotonically on (s0, 0], it has its maximum value when s = s0.
Therefore,

max
s≤0

T(s) = T(s0) =
α + β− 2αβ/s0

β− α
=

κ + 1 + 2
√

κ
(

κ1/6 + κ−1/6
)

κ − 1
. (18)

To sum up, for both s ∈ (−∞, s0] and s ∈ (s0, 0], the maximizer of T(s) is s = s0.
Consequently, it is the global optimal solution for s ∈ (−∞, 0].
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With s = s0, we can now return to (13) and (16) and obtain

ρ∗ =
1

maxs≤0 maxa≥0 min
{
|φ1(−a)|, |φ2(−1)|,

∣∣φ2
( s
−a−s

)∣∣} =
1

T(s0) +
√

T(s0)2 − 1
,

where T(s0) is provided in (18). The proof is established.

4.3. Nonsymmetric Case

Similar to the SPD case, to explore the lowest upper bound on the convergence factor
of F -EKSM we can consider a nonsymmetric matrix A with eigenvalues located in the
right half of the complex plane. Let α, β, γ > 0 and assume that the numerical range of
matrix A can be covered by an ellipse centered at point c = α+β

2 with a semi-major axis
d = β−α

2 and semi-minor axis γ.
The Riemann mapping φ1 is provided by

φ1(z) =
c− z

d
1 + η

2
+

√(
c− z

d
1 + η

2

)2
− η, z ∈ C̄\W1,

where η = d−γ
d+γ . Although the Riemann mapping φ2 is not easy to derive explicitly, for

a given s we can first approximate W2 by a polygon, then use the Schwarz–Christoffel
mapping toolbox [54] to approximate φ2 numerically. Then, we can compare |φ1(−a)|,
|φ2(−1)|, and

∣∣φ2
( s
−a−s

)∣∣ for different values of a. Based on (13), we tested different
values of s to find the optimal pole such that maxa≥0 min

{
|φ1(−a)|, |φ2(−1)|,

∣∣φ2
( s
−a−s

)∣∣}
is maximized. Table 1 shows the optimal pole s and the upper bound on the asymptotic
convergence factor ρ for matrices with different elliptic numerical ranges.

Table 1. Convergence factor of EKSM and F -EKSM for matrices with different elliptical numerical
ranges (α = 1).

η 1 1 0.75 0.75 0.5 0.5 0.25 0.25 0 0
β 102 104 102 104 102 104 102 104 102 104

ρ∗F−EK 0.37 0.65 0.46 0.84 0.53 0.87 0.59 0.89 0.64 0.91
ρEK 0.52 0.82 0.63 0.95 0.71 0.96 0.77 0.97 0.82 0.98

log ρ∗

log ρ 1.53 2.18 1.69 3.45 1.86 3.77 2.02 4.11 2.17 4.46
s∗ −3.82 −20.6 −2.96 −11.0 −2.92 −14.5 −3.27 −17.6 −3.83 −20.9

In Table 1, η = 1 indicates the SPD case; with η = 0, the numerical range becomes a
disk. It can be seen that when η decreases, the convergence factor ρ for both EKSM and F -
EKSM increases, which implies that in the case of an elliptic numerical range both methods
converge significantly more slowly than in the SPD case. In particular, when β = 104 and
η = 0, it takes about 4.5 times as many steps as are needed for the corresponding SPD case
(β = 104, η = 1). It is worthwhile to compare these two methods with adaptive RKSM to
determine whether the slowdown is severe.

Another observation from Table 1 is that the optimal pole s∗ in the nonsymmetric
case is not far away from that in the SPD case. Hence, it is reasonable to approximate the
optimal shift s∗ for the nonsymmetric case using the one for the SPD case (see (17)), as the
actual optimal s∗ based on an accurate estimate of the numerical range is generally difficult
to evaluate, if it is even possible at all. Actually, for a nonsymmetric matrix A ∈ Rn×n, the
approximation of s∗ using (16) is exactly the optimal pole for its symmetric part (A+ A∗)/2.
Because
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W(A) =
{

xH Ax | x ∈ Cn, x∗x = 1
}

=
{
(p + qi)H A(p + qi) | p, q ∈ Rn, p∗p + q∗q = 1

}
= {(p∗Ap + q∗Aq) + (p∗Aq− q∗Ap)i | p, q ∈ Rn, p∗p + q∗q = 1},

W
(

A + A∗

2

)
=

{
(p + qi)H A + A∗

2
(p + qi) | p, q ∈ Rn, p∗p + q∗q = 1

}
= {p∗Ap + q∗Aq | p, q ∈ Rn, p∗p + q∗q = 1},

it is clear that W
(

A+A∗
2

)
= <(W(A)). If W(A) has an ellipse boundary centered at

point c = α+β
2 with a semi-major axis d = β−α

2 and semi-minor axis γ, it follows that
W( A+A∗

2 ) = {x | α ≤ x ≤ β}. To obtain such an approximation with respect to s∗, we only
need to run a modest number of Arnoldi steps within an acceptable amount of time in
order to obtain the approximations with respect to α and β that are needed in (17).

4.4. Convergence Analysis with Blaschke Product

Another convergence analysis for approximating functions of matrices can be seen
in [26]. Using the same notation as above and combining Theorem 5.2 with Equation (6.4)
in [26], we obtain a bound with the following form:

‖ f (A)b−V2m f (Am)e1‖ ≤ c max
y∈φ([−∞,0])

1
|B(y)| = c max

y∈φ1([−∞,0])

∣∣∣∣∣ 2m

∏
j=1

y− wj

1− wjy

∣∣∣∣∣,
where B(y) is called the Blaschke product and wj = φ1(sj). Using the cyclic poles s, ∞ as
F -EKSM, we find w ∈ [φ1(0), ∞], (φ1(0) ≥ 1) to minimize

max
y∈φ1([−∞,0])

∣∣∣∣ y− w
y(1− wy)

∣∣∣∣. (19)

Note that for y ∈ [φ1(0), ∞],
∣∣∣ y−w

y(1−wy)

∣∣∣ achieves its maximum either when y = φ1(0) or

when y = w +
√

w2 − 1. The problem then becomes the following optimization problem
for w:

ρ̃∗ = min
w∈[φ1(0),∞]

max
{

φ1(0)− w
φ1(0)(1− wφ1(0))

,
(

w−
√

w2 − 1
)2
}

.

It can be shown that the minimum is achieved when φ1(0)−w
φ1(0)(1−wφ1(0))

=
(

w−
√

w2 − 1
)2

.
The optimal w is then one root of a fourth-order equation, which is greater than φ1(0):

−4w2
1w4 + 4w1(w2

1 + 1)w3 + (w2
1 − 1)2w2 − 4w1(w2

1 + 1)w + 4w2
1 = 0, (20)

where w1 = φ1(0).
For the symmetric positive definite case, where φ1(z) is defined as in (14), w1 =

√
κ+1√
κ−1 ;

thus, the optimal w in (20) only depends on the condition number of the matrix A.
The convergence analysis for the optimal pole based on [26] involves a quartic function

in (20), and it is difficult to to find an explicit formula for the optimal pole. On the other
hand, our analysis based on [21] provides an explicit formula for the optimal pole in
Theorem 1. Next, in Section 6, we compare the theoretical convergence rates and actual
performance for these two optimal poles to different benchmarks.
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5. RKSM with Several Cyclic Poles for Approximating f (A)b

In our problem setting, the shift-inverse matrix/vector operations for RKSM are
performed by factorization-based direct linear solvers; F -EKSM usually outperforms
EKSM in both space size and runtime. Compared with adaptive RKSM, F -EKSM often
takes more steps but less time to converge for large sparse SPD matrices, although its
performance in both space and time can become inferior to adaptive RKSM for certain
challenging nonsymmetric problems. To improve the performance ofF -EKSM, we consider
using a few more fixed repeated poles. The rationale for this strategy is to take a balanced
tradeoff between F -EKSM and the adaptive variants of RKSM, ensuring that this variant
of RKSM has modest storage and runtime costs.

For example, we can consider such a method based on four repeated poles. Starting
with the optimal pole s1 < 0 of F -EKSM (17) and s2 = −β (the negative of the largest real
part of all eigenvalues), we apply several steps of adaptive RKSM to find and use new
poles until we find at least one pole smaller than s1 and one pole greater than s1 (both in
terms of modulus). For all poles obtained adaptively during this procedure, we let s3 be
the smallest (in modulus) and s4 be the largest one. It is not hard to see that the adaptive
RKSM steps terminate with the last pole s f being either s3 or s4. Our numerical experience
suggests that additional simple adjustment to s3 or s4 can help to improve convergence.
Specifically, if s f = s3, then s3 is divided by a factor of µ; otherwise, s4 is multiplied by the
same factor. Experimentally, we found that µ =

√
10 provides the best overall performance.

Thus, we keep the LU factorizations associated with the four poles, and in each step we
choose the pole cyclically from the set {s1, s2, s3, s4}.

In fact, we can use convergence analysis with Blaschke product in Section 4.4. If we
want to use four cyclic poles, we can solve the following optimization problem:

min
w1,w2,w3,w4∈[φ1(0),∞]

max
y∈[φ1(0),∞]

∣∣∣∣∣ 4

∏
j=1

y− wj

1− wjy

∣∣∣∣∣.
It takes time to compute the optimal w1, w2, w3, w4 numerically for the specific problem
setting, and our numerical experience shows that it takes a similar number of iterations to
converge compared to the above F -EKSM variant with four poles.

6. Numerical Experiments

We tested different variants of RKSM for approximating f (A)b, where the functions
were f1(z) = z−1/2, f2(z) = e−

√
z, f3(z) =

tanh
√

z√
z , f4(z) = z1/4, and f5(z) = log(z). The

first four consist of Markov-type functions and a Markov-type function multiplied with
monomials zl , l ∈ Z; while the last function f5 is non-Markov type, our algorithms exhibit
similar behavior when approximating f5(A)b as on the other functions. All experiments
were carried out in MATLAB R2019b on a laptop with 16 GB DDR4 2400 MHz memory,
Windows 10 operating system, and 2.81 GHz Intel dual-core CPU.

6.1. Asymptotic Convergence of EKSM and F -EKSM

For a real symmetric positive definite matrix A, EKSM with cyclic poles 0, ∞, 0, ∞, ...
converges at least linearly as follows:

‖ f (A)b−V2m f (Am)e1‖ ≤ Cρm,

where ρ = 1
Z+
√

Z2−1
, Z = κ+1+2

√
κ

κ−1 (and see Proposition 3.6 in [21]). Similarly, F -EKSM
with cyclic poles s∗, ∞, s∗, ∞, ... converges at least linearly with factor

ρ∗ =
1

Z∗ +
√
(Z∗)2 − 1

, where Z∗ =
κ + 1 + 2

√
κ
(

κ1/6 + κ−1/6
)

κ − 1
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because Z∗ > Z, F -EKSM has a smaller upper bound on the convergence factor than EKSM.
For the optimal pole from (20), using the Blaschke product technique we can denote

the method as F -EKSM* and its optimal pole as s̃∗ = φ−1
1 (w1), with the convergence factor

ρ̃∗ in (19). Because s̃∗ is a root of a fourth-order equation, it is difficult to explicitly find
its value; thus, we list several examples to compute the poles and convergence factors for
both single pole methods. In addition, we list the convergence factors for the shift-inverse
Arnoldi method (SI) based on one fixed nonzero pole:

ρSI =

√
κ − 1√

κ + 1 + 2κ1/4

(see [26], Corollary 6.4a).
For a matrix A with the smallest eigenvalue α = 1 and largest eigenvalue β = κ,

Table 2 shows the difference in the upper bounds of their convergence factors; note that the
asymptotic convergence factors are independent of the function f .

Table 2. Bounds on the asymptotic convergence factor for EKSM, F -EKSM, and F -EKSM* with
optimal pole s∗.

κ 10 102 103 104 105 106 108 1010

ρ∗FEK 0.1896 0.3660 0.5195 0.6455 0.7440 0.8182 0.9113 0.9578
ρ̃∗FEK∗ 0.0537 0.1853 0.3435 0.4945 0.6235 0.7265 0.8628 0.9339

ρEK 0.2801 0.5195 0.6980 0.8182 0.8935 0.9387 0.9802 0.9937
ρSI 0.4365 0.6076 0.7370 0.8333 0.8989 0.9405 0.9804 0.9937

log ρ∗

log ρEK
1.3069 1.5349 1.8218 2.1814 2.6264 3.1718 4.6448 6.8140

log ρ∗

log ρ̃∗
0.5686 0.5962 0.6128 0.6216 0.6260 0.6281 0.6296 0.6299

s∗ −1.4714 −3.8188 −9.0909 −20.589 −45.4370 −99.010 −463.16 −2153.4
s̃∗ −0.6058 −1.5527 −3.6568 −8.2269 −18.0917 −39.3540 −183.87 −854.7

It can be seen from Table 2 that F -EKSM has a lower upper bound on the asymptotic
convergence factor than EKSM, with F -EKSM* having an even lower upper bound. The
optimal pole s∗ for F -EKSM is roughly two to three times that of s̃∗ for F -EKSM*. The
shift-inverse Arnoldi has the largest converegence factor; thus, we did not compare it with
the other methods in our later tests.

To check the asymptotic convergence factor for each method, it is necessary to know
the exact vector f (A)b for a given matrix A and vector b in order to calculate the norm of
the residual at each step. For relatively large matrices it is only possible to directly evaluate
the exact f (A)b for diagonal matrices within a reasonable time. Because each SPD matrix
is orthogonally similar to the diagonal matrix of its eigenvalues, our experiment results
can be expected to reflect the behavior of EKSM, F -EKSM, and F -EKSM* applied to more
general SPD matrices.

We constructed two diagonal matrices A1, A2. The diagonal entry dj for A1 is
dj = (α1 + β1)/2 + cos(θj)(β1 − α1)/2, 1 ≤ j ≤ 10,000, where the θjs are uniformly
distributed on the interval [0, 2π] and α1 = 10−7, β1 = 1. The diagonal entry dj for A2

is dj = 10−8ρ
(j−1)
2 , 1 ≤ j ≤ 20,000, ρ2 = 1.001. We approximated fi(Ai)b using EKSM,

F -EKSM, and F -EKSM*, where b is a fixed vector with entries of standard normally
distributed random numbers. The experimental results are shown in Figure 1.

From the figures for different Markov-type functions, it can be seen that all methods
converge with factors no worse than their theoretical bounds, which verifies the validity of
the results shown in Theorem 1. Moreover, F -EKSM and F -EKSM* always converge faster
than EKSM for all the test functions and matrices. In particular, for approximating f2(A2)b,
our F -EKSM only takes about one quarter as many iterations to achieve a relative error
less than 10−5 as compared to EKSM. Furthermore, the theoretical bounds are not always
sharp for those methods.
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Figure 1. Actual and asymptotic convergence of EKSM, F -EKSM, and F -EKSM* for SPD matrices:
(a) f1(A1)b, κ = 108 and (b) f2(A2)b, κ = 4.799× 108.

For nonsymmetric matrices with elliptic numerical ranges, the theoretical convergence
rate cannot be derived by an explicit formula; Table 1 shows the numerical results. To verify
these results, we constructed a block diagonal matrix A3 ∈ R4901×4901 with 2× 2 diagonal
blocks with eigenvalues that lie on the circle centered at z = 5000.5 with radius 4999.5.
We then constructed another block diagonal matrix A4 ∈ R4901×4901 with eigenvalues that
lie in the ellipse centered at z = 5000.5, with a semi-major axis 4999.5 and semi-minor
axis 714.2. The optimal pole for F -EKSM can be computed using the strategy described
in Section 4.2 (s∗3 = −20.87 and s∗4 = −11.02). Figure 2 shows the spectra of the matrices
Ai, A−1

i and (I − Ai/s∗i )
−1 for i = 3, 4. Figure 3 shows the results for the nonsymmetric

matrices. Table 1 shows the asymptotic convergence factors of EKSM and F -EKSM for
matrices A3 and A4, where β = 104, η = 1, ρ∗FEK = 0.65, and ρEK = 0.82 for A3, while
β = 104, η = 0.75, ρ∗FEK = 0.84, and ρEK = 0.95 for A4.
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Figure 2. Spectra of several matrices: (a) spectrum of A3; (b) spectrum of A−1
3 ; (c) spectrum of

(I − A3/s∗3)
−1; (d) spectrum of A4; (e) spectrum of A−1

4 ; (f) spectrum of (I − A4/s∗4)
−1.
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Figure 3. Performance and theoretical asymptotic convergence of EKSM and F -EKSM for nonsym-
metric matrices with elliptic spectra: (a) approximating f1(A3)b; (b) approximating f4(A4)b.

Similar to the results for SPD matrices, F -EKSM converges faster than EKSM for the
two artificial nonsymmetric problems. The upper bounds on the convergence factor in
Table 1 match the actual convergence factor quite well.

6.2. Test for Practical SPD Matrices

Next, we tested EKSM, F -EKSM, F -EKSM*, and adaptive RKSM on several SPD
matrices and compared their runtimes and the dimension of their approximation subspaces.
Note that for general SPD matrices the largest and smallest eigenvalues are usually not
known in advance. The Lanczos method or its restarted variants can be applied to estimate
them, and this computation time should be taken into consideration for F -EKSM and
F -EKSM*. The variant of EKSM in (5) is not considered in this section, as there is no
convergence theory to compare with the actual performance and the convergence rate
largely depends on the choice of l and m in (5).

For the SPD matrices, we used Cholesky decomposition with approximate minimum
degree ordering to solve the linear systems involving A or I − A/s for all four methods.
The stopping criterion of all methods was to check whether the angle between the ap-
proximate solutions obtained at two successive steps fell below a certain tolerance. EKSM
and F -EKSM, and F -EKSM* all apply the Lanczos three-term recurrence and perform
local re-orthogonalization to enlarge the subspace, whereas adaptive RKSM applies a full
orthogonalization process with global re-orthogonalization.

We tested four 2D discrete Laplacian matrices of orders 1282, 2562, 5122, and 10242

based on standard five-point stencils on a square. For all problems, the vector b was a vector
with entries of standard normally distributed random numbers, allowing the behavior of
all four methods to be compared for matrices with different condition numbers.

Table 3 reports the runtimes and the dimensions of the rational Krylov subspaces that
the four methods entail when applied to all test problems; in the table, EK, FEK, and ARK
are abbreviation of EKSM, F -EKSM, and adaptive RKSM, respectively. The stopping crite-
rion was that the angle between the approximate solutions from two successive steps was
less than τ = 10−9. The single pole s∗ results for F -EKSM are −352.26,−569.84,−915.56,
and −1464.6, respectively, while for F -EKSM* the s̃∗ results are −140.89,−227.29,−364.53,
and −582.43, respectively. The shortest CPU time appearing in each line listed in the table
is marked in bold.

With only one exception, that of f2(z) = e−
√

z, it is apparent that F -EKSM converges
the fastest of the four methods in terms of wall clock time for all the test functions and
matrices with different condition numbers. While F -EKSM takes more steps than adaptive
RKSM to converge, it requires fewer steps than EKSM. Furthermore, the advantage of
F -EKSM becomes more pronounced for matrices with a larger condition number. Notably,
the advantage of F -EKSM in terms of computation time is stronger than in terms of the
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spatial dimension, which is due to the orthogonalization cost being proportional to the
square of the spatial dimension. F -EKSM* takes slightly more steps than F -EKSM to
converge in these examples, and both methods have similar computation times.

Table 3. Performance of EKSM, F -EKSM, F -EKSM*, and adaptive RKSM on SPD problems.

Time (s) Space Dimension

Function Problem EK FEK FEK* ARK EK FEK FEK* ARK

f1

Lap. A 0.28 0.19 0.23 0.70 52 42 46 22
Lap. B 1.10 0.70 0.88 3.70 76 52 60 25
Lap. C 7.35 4.49 5.21 19.30 102 66 76 28
Lap. D 43.36 24.52 27.82 100.96 138 84 96 30

f2

Lap. A 0.18 0.20 0.18 0.94 32 48 34 28
Lap. B 0.48 0.87 0.63 4.32 30 60 40 32
Lap. C 2.66 5.55 3.62 27.72 38 80 54 38
Lap. D 10.44 27.60 18.10 135.63 36 96 64 39

f3

Lap. A 0.29 0.22 0.26 0.69 52 42 46 22
Lap. B 1.17 0.71 0.88 3.26 76 52 60 25
Lap. C 7.55 4.49 5.28 19.36 102 66 76 28
Lap. D 43.15 23.81 27.61 101.28 138 84 96 30

f4

Lap. A 0.21 0.18 0.20 0.71 50 38 42 23
Lap. B 0.88 0.60 0.74 3.55 66 46 54 27
Lap. C 6.29 3.90 4.63 20.71 90 58 68 30
Lap. D 36.09 19.76 23.76 114.46 120 72 84 33

f5

Lap. A 0.32 0.17 0.24 0.67 48 36 42 21
Lap. B 1.04 0.65 0.77 3.20 66 46 52 24
Lap. C 6.28 3.81 4.53 18.60 88 56 66 27
Lap. D 35.06 19.34 23.90 97.79 116 70 84 29

The unusual behavior of all methods for f2(z) = e−
√

z can be explained as follows.
For these Laplacian matrices, the largest eigenvalues λmax range from 1.3× 105 to 8.4× 106.
Because f2(λmin) ≈ 0.0118 and f2(λmax) ≤ f2(105) ≈ 4.6× 10−138 (because f2 decreases
monotonically on [0, ∞)), the eigenvector components in vector b associated with relatively
large eigenvalues would be eliminated in vector f2(A)b in double precision. In fact, because

f2(103)
f2(λmin)

≈ 1.6× 10−12 ≈ τ, all eigenvalues of A greater than 103 are essentially ‘invisible’

for f2 under tolerance τ = 10−12, and the effective condition number of all four Laplacian
matrices is about 103

λmin
≈ 51. As a result, it takes EKSM the same number of steps to

converge for all these matrices; the shift for F -EKSM and F -EKSM* computed using λmin
and λmax of these matrices is in fact not optimal for matrices with such a small effective
condition number.

The pole s∗ in (17) for the SPD matrix is optimal, as we have proved that it has the
smallest asymptotic convergence factor among all choices of the single pole. In order
to numerically compare the behaviors for different setting of the single pole, we tested
matrices Lap. B and Lap. C in Table 3 with f1 and f3, respectively. For each problem, we
tested F -EKSM by setting different single poles s to s∗, 2s∗, s∗/2, 10s∗, s∗/10 and setting
s̃∗ for F -EKSM*. Figure 4 shows the experimental results. It can be seen that F -EKSM
has the fastest asymptotic convergence rate among all the 6 different values of single
poles when setting the optimal single pole s∗, which confirms that s∗ is indeed optimal in
our experiments.
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Figure 4. Convergence of F -EKSM for different setting of single poles: (a) f1 on Lap. B and (b) f3 on
Lap. C.

6.3. Test for Practical Nonsymmetric Matrices

We consider 18 nonsymmetric real matrices, all of which have all eigenvalues on the
right half of the complex plane. While these are all real sparse matrices, they all have
complex eigenvalues with positive real parts. Half are in the form of M−1K, where both M
and K are sparse and A = M−1K is not formed explicitly. Table 4 reports several features
for each matrix A: the matrix size is n, the smallest and largest eigenvalues in terms of
absolute value are |λsm| and |λlm|, respectively, the smallest and largest real parts of the
eigenvalues are Re(λsr) and Re(λlr), respectively, and the largest imaginary part of the
eigenvalues is Im(λli). Note that all these original matrices have spectra strictly in the left
half of the complex plane; we simply switched their signs to make f (A) well-defined for
Markov-type functions.

Table 4. Selected features of the test problems.

Problem Size n |λsm| |λlm| Re(λsr) Re(λlr) Im(λli) −s∗ Tol

aerofoilA 16,388 8.41× 10−2 1.02× 103 1.04× 10−2 1.01× 103 8.12× 102 1.185 10−11

aerofoilB 23,560 2.73× 10−1 2.63× 102 2.73× 10−1 1.43× 102 2.60× 102 2.447 10−13

matRe500A 3595 4.00× 10−1 1.21× 102 −2.01× 10−1 1.21× 102 1.12× 102 1.805 10−12

matRe500B 9391 3.00× 10−1 5.22× 102 −4.04× 10−1 5.22× 102 1.98× 102 3.331 10−12

matRe500C 22,385 2.78× 10−1 1.56× 103 −4.49× 10−1 1.56× 103 2.70× 102 4.666 10−12

matRe500D 50,527 2.84× 10−1 5.11× 103 −3.28× 10−1 5.11× 103 3.76× 102 7.163 10−12

matRe500E 110,620 2.62× 10−1 1.38× 104 −3.07× 10−1 1.38× 104 5.37× 102 9.548 10−12

obstacle 37,168 2.84× 10−1 2.95× 105 2.91× 10−2 2.95× 105 1.50× 102 6.273 10−10

plate 37,507 1.00× 10−2 8.71× 104 7.35× 10−4 8.71× 104 1.32× 102 2.021 10−9

tolosa 4000 1.18× 10+1 4.84× 103 1.56× 10−1 1.45× 103 4.62× 103 6.772 10−7

raefsky3 21,200 6.63× 10−6 7.99× 105 6.63× 10−6 7.99× 105 1.42× 100 0.033 10−6

step 96,307 5.87× 10−3 2.18× 104 5.87× 10−3 2.18× 104 6.61× 101 0.903 10−9

cavity 37,507 7.53× 10−3 2.51× 107 4.99× 10−3 2.51× 107 7.16× 102 11.25 10−8

convdiffA 146,689 2.37× 10+1 5.69× 102 unknown 5.62× 102 3.73× 102 41.32 10−13

convdiffB 146,689 7.88× 10+1 1.35× 103 unknown 3.98× 102 1.33× 103 317.2 10−13

convdiffC 146,689 2.14× 10+2 3.84× 103 unknown 3.63× 102 3.83× 103 117.4 10−13

gt01r 7980 5.87× 10−1 1.96× 104 1.33× 10−1 2.84× 103 1.96× 104 18.09 10−11

venkat 62,424 5.50× 10−5 1.08× 101 5.50× 10−5 1.08× 101 2.21× 100 0.003 10−11

For the single pole of F -EKSM and the initial pole of the four-pole variant (4Ps)
in Section 5, we used the optimal pole for the SPD case matrices (17) by setting α =
min{|λlm|, Re(λsr)} and β = max{|λlm|, Re(λlr)}. The same setting of α and β for building
the Riemann mapping φ1(z) in (14) was applied to compute the optimal pole for F -EKSM*
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in (20). In particular, because precise evaluation of α and β is time-consuming, we approxi-
mated them using the ‘eigs’ function in MATLAB, which is based on the Krylov–Schur
Algorithm; see, e.g., [55]. We set the residual tolerance to equal 10−3 for ‘eigs’, ensuring
that all the test matrices could find the largest and smallest eigenvalues within a reasonable
time. Higher accuracy in computing the eigenvalues is not required when determining the
optimal pole, as the convergence performance forF -EKSM does not change noticeably with
tiny changes of the value of the pole. Note that the single pole we used for each problem is
independent of the Markov-type function; see Table 4. For nonsymmetric matrices, we used
LU factorizations to solve the linear systems involving coefficient matrices of A or I − A/s
for all methods. The stopping criterion was either when the angle between the approximate
solutions was less than a tolerance for two successive steps, or when the dimension of the
Krylov subspaces reached 1000. There have been a few discussions about restarting for
approximating f (A)b, though only for polynomial approximation based on Arnoldi-like
methods; see, e.g., [17,56]. In this paper, we only focus on the comparison of convergence
rates for several different Krylov methods without restarting. Here, we need to choose a
proper tolerance for each problem such that it is small enough to fully exhibit the rate of
convergence for all methods while not being too small to satisfy. The last column of Table 4
reports the tolerances, which are fixed regardless of the different Markov-type functions.

In Tables 5–9, we report the runtime and dimension of the approximation spaces that
the four methods entail for approximating fi(A)b to the specified tolerances. The runtime
includes the time spent on the evaluation of optimal poles for F -EKSM, F -EKSM*, and the
four-pole variant. The “−” symbol indicates failure to find a sufficiently accurate solution
when the maximum dimension of approximation space (1000) was reached. The shortest
CPU time appeared in each line of the listed tables is marked in bold. Figure 5 shows
an example plot for each method, with the relative error sin∠(qk+1, qk) (where qk is the
approximation to f (A)b at step k) plotted against the dimension of the approximation
space for each function.

In the ninety total cases for eighteen problems and five functions shown in Tables 5–9,
the four-pole variant is the fastest in runtime in sixty cases and F -EKSM is the fastest in
fourteen cases. Among all cases when the four-pole variant is not the fastest, it is no more
than 10% slower than the fastest in twelve cases and 10–20% slower in eight cases.

Overall, the four-pole variant is the best in terms of runtime, though there are several
exceptions. The first is tolosa, which is the only problem on which adaptive RKSM ran
the fastest for all functions. For this problem, the dimension of the matrix is relatively
small; this makes it more efficient to perform a new linear solver at each step, as the LU
cost is cheap. Moreover, for tolosa, Im(λli) is close to |λlm|, meaning that the algorithms
based on repeated poles converge slower; see Table 1. The second exception is venkat,
where the four-pole variant is not the fastest for f3. In fact, for f3, EKSM, F -EKSM, and
F -EKSM* converge within a much smaller dimension of the approximation space than
for the other functions. A possible explanation is that in computer arithmetic it is difficult
to accurately capture the relative change in function values for f3 at small variables, and
venkat has majority of eigenvalues that are small in terms of absolute value. For example,
f3(6×10−5)− f3(6×10−5(1+10−7))

f3(6×10−5)
= 2.0× 10−11, which means that a relative change of 10−7 in

the independent variable of f3 near 6× 10−5 can lead to a relative change of 2.0× 10−11 in
function value; thus, f3 fails to observe such a difference in input above the given tolerance
10−10. The third exception is convdiffA, for which EKSM is fastest for four out of all five
functions. In fact, EKSM takes fewer steps to converge than F -EKSM, which can be seen at
the bottom right of Figure 5. A possible reason for this is that |λlm| and Re(λsr) can only be
evaluated approximately by several iterations of the Arnoldi method, and sometimes their
values cannot be found accurately. The ‘optimal’ pole based on inaccurate α can sometimes
be far away from the real optimal pole. Notable, for this exception F -EKSM* takes fewer
steps to converge than EKSM, though it requires more computation time. This is because
EKSM uses infinite poles; for the matrix in the form of M−1K, where M is an identity
matrix, it is not necessary to apply a linear solver for infinite poles, only a simple matrix
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vector multiplication. For the other cases in which F -EKSM or F -EKSM* runs fastest, the
four-pole variant usually runs only slightly slower, as in those cases it takes less time to
enlarge the approximation space than to compute more LU factorizations for using more
repeated poles.
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Figure 5. Decay of sin∠(qk, qk+1) as the approximation space dimension increases: (a) f1 on aerofoilA;
(b) f2 on matRe500E; (c) f3 on plate; (d) f4 on step.

It is important to underscore that the runtime needed for F -EKSM with our optimal
pole is less than that for F -EKSM* with an optimal pole derived based on [26] for a majority
of the nonsymmetric test matrices, which is similar to the minor advantage in runtime
of our F -EKSM shown in Table 3 for Laplacian matrices. In addition, the runtime of the
four-pole variant suggests that if sparse LU factorization is efficient for the shifted matrices
needed for RKSM, then using a small number of near optimal poles seems to be an effective
way to achieve the lowest overall runtime.

In terms of the dimension of the approximation space, adaptive RKSM always need
the smallest subspace to converge, with the four-pole variant in second place except for
f2 for tolosa. In most, cases EKSM needs the largest subspace to converge, while in others
F -EKSM needs the largest subspace. In the cases where F -EKSM and the four-pole variant
converge, the four-pole variant takes 7.8% to 87.6% fewer steps.

In summary, our experiments suggest that F -EKSM, F -EKSM*, and the four-pole
variant are competitive in reducing the runtime of rational Krylov methods based on direct
linear solvers for approximating f (A)b; on the other hand, if the goal is to save storage
cost, adaptive RKSM is preferable.
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Table 5. Performance of five rational Krylov subspace methods for the function f1(z) = z−1/2.

Time (s) Space Dimension

Problem EK FEK FEK* ARK 4Ps EK FEK FEK* ARK 4Ps

aerofoilA 29.59 10.43 13.22 23.36 5.63 504 278 330 54 94
aerofoilB 6.34 4.70 5.34 26.03 5.59 206 138 156 44 75

matRe500A 0.98 0.80 0.95 1.60 0.77 140 100 120 41 67
matRe500B 2.81 2.22 2.73 6.21 2.37 170 116 142 45 80
matRe500C 7.17 5.39 6.56 17.48 5.21 214 146 172 46 88
matRe500D 19.06 16.37 16.18 51.95 12.80 264 200 200 50 92
matRe500E 54.03 45.71 43.07 139.99 30.97 324 248 236 53 92

obstacle 28.04 14.58 19.74 36.10 10.65 376 226 290 50 104
plate 25.16 19.91 23.43 51.20 15.61 316 198 240 35 85

tolosa 1.44 1.14 1.47 0.18 0.59 174 154 164 31 76
raefsky3 − − − 15.79 6.36 − − − 28 48

step 67.41 45.12 52.46 110.92 36.01 364 192 224 40 69
cavity − 173.99 59.17 39.21 19.12 − 938 540 42 134

convdiffA 16.75 32.12 19.06 36.87 20.05 108 128 78 39 61
convdiffB 19.47 23.25 14.80 33.62 14.22 118 120 86 39 67
convdiffC 17.70 21.86 14.18 34.58 13.59 112 116 82 39 63

GT01R 32.07 18.49 8.74 12.58 4.64 600 472 328 63 151
venkat 60.62 37.67 13.51 30.22 8.72 528 400 210 40 69

Table 6. Performance of five rational Krylov subspace methods for the function f2(z) = e−
√

z.

Time (s) Space Dimension

Problem EK FEK FEK* ARK 4Ps EK FEK FEK* ARK 4Ps

aerofoilA 36.69 8.55 15.60 22.82 5.77 528 250 354 55 98
aerofoilB 7.26 4.41 5.94 28.71 5.34 218 126 168 50 71

matRe500A 1.14 0.88 1.08 1.82 0.75 150 110 130 45 68
matRe500B 3.43 2.37 2.95 6.75 2.65 184 126 150 49 88
matRe500C 8.50 5.57 7.56 21.21 5.72 228 150 192 57 100
matRe500D 22.45 15.13 17.15 57.99 13.44 290 186 210 56 100
matRe500E 61.06 42.70 49.31 168.76 33.15 350 234 264 63 104

obstacle 31.66 15.23 22.72 40.76 9.16 408 234 312 56 83
plate 35.45 24.05 26.59 64.00 15.42 388 244 268 44 81

tolosa 2.41 2.08 2.22 0.32 6.92 210 194 198 46 233
raefsky3 − 42.25 110.27 17.21 8.10 − 548 804 31 96

step 89.53 46.87 61.80 119.95 36.88 434 204 278 44 82
cavity − 164.15 56.39 46.52 16.65 − 824 504 50 102

convdiffA 21.92 31.98 20.91 42.67 20.55 126 128 86 44 64
convdiffB 23.26 25.79 15.45 43.14 14.01 130 128 92 48 64
convdiffC 22.93 23.13 15.55 41.18 13.64 128 120 92 46 64

GT01R 50.13 17.77 10.52 12.87 3.24 650 440 352 68 115
venkat 60.80 15.39 14.05 33.22 8.58 516 228 214 43 67
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Table 7. Performance of five rational Krylov subspace methods for the function f3(z) =
tanh

√
z√

z .

Time (s) Space Dimension

Problem EK FEK FEK* ARK 4Ps EK FEK FEK* ARK 4Ps

aerofoilA 55.22 10.67 21.92 22.07 5.14 496 236 340 54 76
aerofoilB 8.53 4.41 6.37 27.94 5.70 210 118 158 49 75

matRe500A 1.54 1.09 1.49 1.70 0.79 140 104 124 42 59
matRe500B 3.91 2.52 3.28 6.53 2.68 172 112 138 46 80
matRe500C 8.77 5.59 7.52 17.73 5.75 208 136 174 47 92
matRe500D 24.04 13.09 17.81 55.73 12.67 266 150 200 54 88
matRe500E 60.38 33.71 45.53 143.02 30.38 322 174 238 54 92

obstacle 35.95 16.59 23.63 35.95 11.04 376 226 290 50 104
plate 39.00 25.73 32.25 61.05 17.28 362 236 282 42 101

tolosa 2.57 1.99 2.30 0.19 0.80 174 154 164 31 76
raefsky3 − 75.56 173.31 17.84 9.05 − 556 732 31 100

step 86.80 46.22 62.19 142.57 36.27 382 192 268 51 77
cavity − 45.50 96.82 46.38 20.37 − 376 548 50 138

convdiffA 17.06 29.98 19.30 35.20 18.25 108 120 78 37 51
convdiffB 20.37 23.29 14.13 35.40 14.61 118 120 86 39 67
convdiffC 18.79 21.79 13.39 33.17 13.73 112 114 82 38 63

GT01R 83.07 7.72 15.42 12.26 5.42 606 242 328 66 151
venkat 2.48 5.13 5.08 39.07 8.27 66 64 64 50 59

Table 8. Performance of five rational Krylov subspace methods for the function f4(z) = z1/4.

Time (s) Space Dimension

Problem EK FEK FEK* ARK 4Ps EK FEK FEK* ARK 4Ps

aerofoilA 42.22 10.18 17.33 23.64 5.65 514 254 344 58 94
aerofoilB 7.24 4.51 5.65 28.03 6.04 204 122 156 49 87

matRe500A 1.12 0.88 1.08 1.81 0.82 138 100 120 44 71
matRe500B 3.14 2.35 2.88 6.98 2.42 168 114 140 50 79
matRe500C 7.63 5.17 6.72 20.17 5.27 210 134 170 54 87
matRe500D 19.84 14.03 16.77 58.09 12.62 258 166 198 56 88
matRe500E 53.91 38.53 43.11 167.40 29.82 316 206 232 63 88

obstacle 30.11 16.19 22.36 47.98 11.67 376 234 294 65 116
plate 39.41 26.07 32.72 82.89 18.73 388 254 308 56 121

tolosa 1.87 1.68 1.86 0.15 0.68 164 150 158 30 68
raefsky3 − 48.82 103.27 23.58 7.60 − 526 726 42 86

step 91.72 46.64 59.19 168.31 36.99 434 204 266 62 86
cavity − 128.72 81.85 69.43 25.41 − 712 576 75 190

convdiffA 15.64 29.43 18.71 36.12 19.66 104 118 76 38 59
convdiffB 19.18 19.98 14.31 37.46 16.27 116 110 86 42 75
convdiffC 17.22 19.49 13.40 36.65 15.15 110 106 82 41 71

GT01R 51.81 16.50 11.90 13.62 5.27 608 388 336 70 163
venkat 82.40 25.55 17.10 37.61 8.95 552 294 226 48 67
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Table 9. Performance of five rational Krylov subspace methods for the function f5(z) = log(z).

Time (s) Space Dimension

Problem EK FEK FEK* ARK 4Ps EK FEK FEK* ARK 4Ps

aerofoilA 40.81 10.75 18.15 23.09 5.89 516 256 344 55 94
aerofoilB 7.39 4.53 5.87 27.81 5.98 206 124 156 49 83

matRe500A 1.38 1.01 1.25 1.79 0.86 140 102 122 44 64
matRe500B 3.45 2.45 3.07 6.76 2.60 168 114 140 48 80
matRe500C 7.87 5.26 7.00 19.28 5.41 210 134 170 52 88
matRe500D 20.17 14.70 16.95 50.55 12.73 260 174 198 49 88
matRe500E 54.72 41.43 43.04 145.27 30.49 318 222 232 54 92

obstacle 30.77 16.28 22.89 40.04 11.73 376 230 294 55 112
plate 34.92 25.61 32.11 72.58 18.98 362 250 302 49 117

tolosa 2.63 1.94 2.15 0.23 0.92 170 154 160 30 76
raefsky3 − − − 17.76 8.07 − − − 31 88

step 90.39 46.88 59.46 137.08 37.45 434 204 266 51 85
cavity − 157.56 80.11 56.39 24.96 − 796 582 61 178

convdiffA 15.85 29.75 18.80 35.57 19.58 104 120 76 38 59
convdiffB 18.64 20.67 13.72 35.90 15.65 114 112 84 40 71
convdiffC 17.59 19.75 13.43 33.00 14.42 110 108 82 38 67

GT01R 47.93 20.42 12.02 12.34 5.83 612 426 336 63 163
venkat 72.81 28.59 15.32 36.06 8.78 542 324 218 47 68

7. Conclusions

In this paper, we have studied an algorithm called the flexible extended Krylov
subspace method (F -EKSM) for approximating f (A)b for Markov-type functions. The
central idea is to find an optimal pole to replace the zero pole in EKSM such that F -EKSM
needs only the same single LU factorization as EKSM while converging more rapidly.

In the main theoretical contribution of this work, Theorem 1, we prove that there
exists a unique optimal pole for a symmetric positive-definite matrix that guarantees the
fastest convergence of F -EKSM, which always outperforms EKSM. The theorem provides a
formula for both the optimal pole and an upper bound on the convergence factor. Numerical
experiments show that F -EKSM is more efficient than EKSM and that it is competitive in
runtime compared with adaptive RKSM if the shifted linear systems needed for rational
Krylov methods are solved using a direct linear solver.

F -EKSM may lose its advantages for challenging nonsymmetric matrices because of
possible failure to compute the optimal poles numerically and due to its relatively slow
convergence rate for these problems. This performance can be improved by using four
fixed poles chosen flexibly in the early stage of computation. Our numerical results show
that the four-pole variant is the most efficient in terms of runtime for many problems.
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Appendix A. Proof of Lemma 1

Because φi : C̄\Wi → C̄\D (i = 1, 2) and −a ∈ C̄\W1, −1 ∈ C̄\W2, s
−a−s ∈ C̄\W2, we

can conclude that |φ1(−a)|, |φ2(−1)| and
∣∣φ2
( s
−a−s

)∣∣ are all greater than 1.
Equation (10) has been proved in Section 3, Lemma 3.1 in [21]. For (11) involving f2,

our proof is analogous to what was done for f1.
Because φ denotes the Riemann mapping, for a fixed z ∈W1 we can write the Faber

polynomials by means of their generating function [57]:

1
z− ζ

= − 1
ψ′[φ(ζ)]

∞

∑
k=0

Fk(z)
φ(ζ)k+1 , z ∈W1, ζ 6∈W1.

We define a new variable y = 1
z/s−1 . Then, from (9), we have

f2(z) = f2

(
s
(

1 +
1
y

))
=
∫ 0

−a

dµ(ζ)

s(1 + 1
y )− ζ

= y
∫ 0

−a

1
s− ζ

dµ(ζ)

y− s
ζ−s

= −y
∫ 0

−a

1
s− ζ

1

ψ′2

[
φ2

(
s

ζ−s

)] ∞

∑
k=0

F2,k(y)

φ2

(
s

ζ−s

)k+1 dµ(ζ)

= −y
∞

∑
k=0

F2,k(y)
∫ 0

−a

dµ(ζ)

(s− ζ)ψ′2

[
φ2

(
s

ζ−s

)]
φ2

(
s

ζ−s

)k+1 . (A1)

Because W2 is symmetric with respect to the real axis R and lies in the left half of the
complex plane, ψ2 monotonically maps (−∞,−1) onto (−∞, min{R∩W2}) and (1,+∞)
onto (max{R∩W2},+∞). We then have the following properties for ψ2 and φ2:

|φ2(ζ)| ≥ c3|ζ|, and
∣∣ψ′2[φ2(ζ)]

∣∣ ≥ c4, ζ ∈ R\W2,

|φ2(ζ)| ≥ |φ2(z0)|, ζ ∈ (−∞, z0) for z0 ∈ (−∞, min{R∩W2}),
|φ2(ζ)| ≥ |φ2(z0)|, ζ ∈ (z0, ∞) for z0 ∈ (max{R∩W2},+∞),

where c3, c4 > 0 are constants independent of ζ.
It follows that the integral in the last expression of (A1) satisfies∣∣∣∣∣∣∣
∫ 0

−a

dµ(ζ)

(s− ζ)ψ′2

[
φ2

(
s

ζ−s

)]
φ2

(
s

ζ−s

)k+1

∣∣∣∣∣∣∣ ≤
∫ 0

−a

|dµ(ζ)|

|(s− ζ)|
∣∣∣ψ′2[φ2

(
s

ζ−s

)]∣∣∣∣∣∣∣φ2

(
s

ζ−s

)k+1
∣∣∣∣

≤
∫ 0

−a

|dµ(ζ)|

|(s− ζ)|c4c3

∣∣∣ s
ζ−s

∣∣∣∣∣∣φ2

(
s

ζ−s

)∣∣∣k ≤ c5 min
ζ∈(−a,0)

∣∣∣∣φ2

(
s

ζ − s

)∣∣∣∣−k
.

Note that for any ζ ∈ (−∞, 0) it is the case that s
ζ−s ∈ (−∞,−1) ∪ (0, ∞) ⊂ C̄\W2. It

follows that
∣∣∣φ2

(
s

ζ−s

)∣∣∣ > 1.
We note that the map f (z) = s

z−s (s < 0) from W1 to W2 can be written as a composition
of three maps f = f3 ◦ f2 ◦ f1, where f1(z) = z − s, f2(z) = 1/z, and f3(z) = sz, all of
which are bijective. We denote ∂W1 and ∂W2 as the boundary of W1 and W2, respectively.
Let Γ1 be the image of ∂W1 under f1 and let Γ2 be the image of Γ1 under f2 (which is
the preimage of ∂W2 under f3). Because W1 is the numerical range of A, it is convex and
compact per the Hausdorff–Toeplitz theorem; therefore, ∂W1 has a boundary rotation of 2π.
As f1 translates ∂W1 horizontally to the direction of the positive real axis, it preserves the
shape of the preimage such that Γ1 is of bounded rotation as well. In addition, it can be
shown that f2 = 1

z maps Γ1 to Γ2 with bounded rotation (see details in Lemma A1 shown
below). Finally, because f3(z) = sz preserves the shape of the preimage, ∂W2 has bounded
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rotation. From Chapter IX, Section 3, Theorem 11 in [52], we have maxy∈W2 |F2,k(y)| ≤ c6,
and the following inequality holds for y, z ∈W2:

∞

∑
k=m

F2,k(y)|φ2(z)|−k ≤ c6

∞

∑
k=m
|φ2(z)|−k = c7|φ2(z)|−m,

where c7 is some real positive constant independent of m.
In light of the above observations, if we denote

γ2,k = −y
∫ 0

−a

dµ(ζ)

(s− ζ)ψ′2

[
φ2

(
s

ζ−s

)]
φ2

(
s

ζ−s

)k+1 ,

then∣∣∣∣∣ f2(z)−
m−1

∑
k=0

γ2,kF2,k

(
1

z/s− 1

)∣∣∣∣∣ ≤
∣∣∣∣∣∣∣y

∞

∑
k=m

F2,k(y)
∫ 0

−a

dµ(ζ)

(s− ζ)ψ′2

[
φ2

(
s

ζ−s

)]
φ2

(
s

ζ−s

)k+1

∣∣∣∣∣∣∣
≤|y|c5

∞

∑
k=m

F2,k(y) min
ζ∈(−a,0)

∣∣∣∣φ2

(
s

ζ − s

)∣∣∣∣−k
≤ |y|c7c5 min

ζ∈(−a,0)

∣∣∣∣φ2

(
s

ζ − s

)∣∣∣∣−m

≤c2 min
ζ∈(−a,0)

∣∣∣∣φ2

(
s

ζ − s

)∣∣∣∣−m
,

where c2 = c7c5 is an upper bound of |y|c7c5 due to y = 1
z/s−1 ∈ [−1, 0).

For ζ ∈ (−a, 0), there are two cases to derive the minimum of
∣∣∣φ2

(
s

ζ−s

)∣∣∣.
Case 1: if −a ≥ s, then s

ζ−s ∈ [ s
−a−s ,−1]. Because W1 lies strictly in the right half of

the plane, by definition W2 lies between the vertical lines real(z) = 0 and real(z) = −1;
thus, min{R∩W2} ≥ −1 and we have

min
ζ∈(−a,0)

∣∣∣∣φ2

(
s

ζ − s

)∣∣∣∣ = |φ2(−1)|.

Case 2: if −a < s, then s
ζ−s ∈ (−∞,−1] ∪ [ s

−a−s ,+∞); clearly, s
−a−s ≥ 0, and because

max{R∩W2} ≤ 0, we have

min
ζ∈(−a,0)

∣∣∣∣φ2

(
s

ζ − s

)∣∣∣∣ = min
{
|φ2(−1)|,

∣∣∣∣φ2

(
s

−a− s

)∣∣∣∣} = |φ2(z0)|.

Note that the conclusion of Case 2 is valid for Case 1; therefore,∣∣∣∣∣ f2(z)−
m−1

∑
k=0

γ2,kF2,k

(
1

z/s− 1

)∣∣∣∣∣ ≤ c2|φ2(z0)|−m.

Lemma A1. Define the mapping f : Γ1 7→ Γ2, f (z) = 1
z , where Γ1 ⊂ C is the boundary of a

compact convex domain lying strictly in the right half of the complex plane and is symmetric with
respect to the real axis. Let Γ1 be the image of the interval [0, 2π) under the injection γ(t), which is
assumed to be absolutely continuous. Then, Γ2 has bounded rotation.

Proof. We define I1 ⊂ [0, 2π) as the subset where γ′(t) is continuous. Note that the
directional angle of the tangent line to γ(t) at t is θ(t) = arg[γ′(t)]. The boundary rotation
of Γ1 is defined in Page 270 of reference [58] as follows:

BD(Γ1) =
∫ 2π

0
|dθ(t)| =

∫
I1

|dθ(t)|+
∫

γ−1(Γ1)\I1

|dθ(t)| = 2π,
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which is due to the convexity of the domain enclosed by Γ1.
Note that Γ2 is the image of the interval [0, 2π) under the injection ( f ◦ γ)(t). Similarly,

the directional angle of the tangent line to ( f ◦ γ)(t) at t is

φ(t) = arg[( f ◦ γ)′(t)] = arg[ f ′(γ(t))γ′(t)] = arg[ f ′(γ(t))] + arg[γ′(t)] = arg[ f ′(γ(t))] + θ(t).

Because f is a conformal mapping that preserves the angles, the variation of the
directional angle at the discontinuities of γ′(t) (if any) are preserved. This can be written as∫

γ−1(Γ1)\I1
|dφ(t)| =

∫
γ−1(Γ1)\I1

|dθ(t)|. The boundary rotation of Γ2 can be written as

BD(Γ2) =
∫

I1

|dφ(t)|+
∫

γ−1(Γ1)\I1

|dφ(t)| =
∫

I1

|dφ(t)|+
∫

γ−1(Γ1)\I1

|dθ(t)|

≤
∫

I1

|d arg[ f ′(γ(t))]|+
∫

I1

|dθ(t)|+
∫

γ−1(Γ1)\I1

|dθ(t)| =
∫

I1

∣∣d arg[ f ′(γ(t))]
∣∣+ BD(Γ1),

where
|d arg[ f ′(γ(t))]| = |d arg[−1/γ2(t)]| = 2|d arg[γ(t)]|.

Because Γ1 is the boundary of a compact convex domain, lies strictly in the right half
of the complex plane, and is symmetric with respect to the real axis, there exists θ0 ∈ (0, π

2 )
such that

max
t∈[0,2π)

arg[γ(t)] = θ0, min
t∈[0,2π)

arg[γ(t)] = −θ0,

and we can select t+, t− ∈ [0, 2π) such that

arg[γ(t+)] = θ0, arg[γ(t−)] = −θ0.

Note that while these may not be unique, they split Γ1 into two disjoint continuous branches,
denoted as Γ+

1 and Γ−1 , on both of which arg[γ(t)] is monotonic (though not necessarily
strictly) with respect to t. It follows that∫

I1

∣∣d arg[ f ′(γ(t))]
∣∣ = 2

∫
I1

|d arg[γ(t)]|

=2
(∫

γ(t)∈Γ+
1

|d arg[γ(t)]|+
∫

γ(t)∈Γ−1
|d arg[γ(t)]|

)
= 2(2θ0 + 2θ0) = 8θ0,

because the two end points of Γ+
1 and Γ−1 are γ(t+) and γ(t−), respectively. Here, θ0 < π

2 ;
thus, we have ∫

I1

∣∣d arg[ f ′(γ(t))]
∣∣ < 4π.

Moreover, because BD(Γ1) = 2π, we have BD(Γ2) < 4π + 2π = 6π. The claim is estab-
lished.

Appendix B. Proof of Lemma 3

We first define t = min{M, N1, |N2|} and T = maxa≥0 t. For a fixed pole s ≤ 0,
M, N1, N2 are functions of the variable a; specifically, M is a linear function of a, N1 is a
constant independent of a, and N2 is linear to the reciprocal of a shifted value of a (see (16)).
Here, we are interested in their absolute values.

We can set up a Cartesian coordinate system to illustrate M, N1, and |N2| as functions
of −a and compare their values. The horizontal asymptote of the function N2 is f = − ĉ

d̂
.

First, we need to compare this with N1.

Case 1: − ĉ
d̂
≥ 1+ĉ

d̂
⇒ s ∈

(
−∞,−

√
αβ
]
.



Mathematics 2023, 11, 4341 26 of 29

The illustration is shown in Figure A1. Because N1 is constant, T ≤ N1, and for
−a→ −∞, N1 < N2 < M; thus, t = N1 such that T ≥ N1. To sum up, in this case we have
T = N1 = 1+ĉ

d̂
= α+β−2αβ/s

β−α .

Figure A1. Sketch map of Case 1 in proof of Lemma 3.

Case 2: − ĉ
d̂
< 1+ĉ

d̂
⇒ s ∈

(
−
√

αβ, 0
]
.

There is an intersection between N1 and N2 for−a < s, which we denote as p1. Solving
the equation N1 = N2 for a, we obtain −a = s

(
1

2ĉ+1 + 1
)

. Note that p1 can be either above
or below the line of M.

First, if p1 is below or on the line of M, then

c− s
(

1
2ĉ+1 + 1

)
d

≥ 1 + ĉ
d̂

=⇒ (α + β)s3 − 3αβs2 + α2β2 ≤ 0.

Letting θ(s) = (α + β)s3 − 3αβs2 + α2β2, we need to find the interval of s such that
θ(s) ≤ 0. Here, θ(s) is a cubic function and its two stationary points have positive function
values; thus, it only has one real root. We can use the Cardano formula [59] to obtain its
real root:

s0 = −
√

αβ

κ1/6 + κ−1/6 ≥ −
√

αβ.

Therefore, for s ∈
(
−
√

αβ, s0
]

we have θ(s) ≤ 0.
We denote the intersection between M and N2 as p2. As shown in Figure A2, when

−a is between p1 and p2, T = N1 = 1+ĉ
d̂

= α+β−2αβ/s
β−α .

Second, if p1 is above the line of M, then s ∈ (s0, 0]; see Figure A2.
When M = N2, we have

a + c
d

=
s

−a−s − ĉ

d̂
=⇒ a2 + 2sa + s(α + β)− αβ = 0.

We only need the root for −a ≤ 0, which is −a = s−
√
(α− s)(β− s). Therefore,

min{M, N1, |N2|} =

 N2, −a ∈
(
−∞, s−

√
(α− s)(β− s)

]
M, −a ∈

(
s−

√
(α− s)(β− s), 0

] .
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(a) (b)

Figure A2. Sketch map of Case 2 in proof of Lemma 3: (a) when p1 is below or on the line of M and
(b) when p1 is above the line of M.

It is clear from Figure A2 that the maximum of t is achieved at point p2, that is, when
−a = s−

√
(α− s)(β− s),

T =
c− s +

√
(α− s)(β− s)

d
=

α + β− 2s + 2
√
(α− s)(β− s)

β− α
.
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