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Abstract: Parametric continuous-time analysis often entails derivations of continuous-time models
from predefined discrete formulations. However, undetermined convergence rates of frequency-
dependent parameters can result in ill-defined continuous-time limits, leading to modeling discrep-
ancy, which impairs the reliability of fitting and forecasting. To circumvent this issue, we propose a
simple solution based on functional data analysis (FDA) and truncated Taylor series expansions. It is
demonstrated through a simulation study that our proposed method is superior—compared with
misspecified parametric methods—in fitting and forecasting continuous-time stochastic processes,
while the parametric method slightly dominates under correct specification, with comparable forecast
errors to the FDA-based method. Due to its generally consistent and more robust performance
against possible misspecification, the proposed FDA-based method is recommended in the presence
of modeling discrepancy. Further, we apply the proposed method to predict the future return of
the S&P 500, utilizing observations extracted from a latent continuous-time process, and show the
practical efficacy of our approach in accurately discerning the underlying dynamics.

Keywords: continuous-time analysis; frequency-dependent parameter; functional data analysis; infill
asymptotics; modeling discrepancy

MSC: 41A15; 41A58; 60J60; 62R10; 65D10

1. Introduction

Much of finance and economics is about the study of dynamics over time, in which
analysis using time-series data plays a vital part. Despite discrete observations in practice,
many time-series data such as stock prices, interest rates, and GDP are essentially drawn
from their continuous-time underlying processes, for which consistent estimation can
be achieved from continuous-time analyses but not necessarily from their discrete-time
counterparts. Thus, the former has become increasingly incorporated by modern time-
series analysis (e.g., [1–4]).

In traditional parametric continuous-time analyses, the modeling routinely originates
in a discrete-time setting and is then extended to a continuous-time formulation as the
length of the time window shrinks towards zero [3]. However, such derivation often
imposes strong restrictions while specifying the convergence rates of frequency-dependent
(hereafter, f.d.) parameters, resulting in models that are unadaptable to real-world data and
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thus forecasting failure [4–12]. For instance, with different sets of conditions regarding the
converging speeds of the parameters, many GARCH-like processes have various diffusion
processes (e.g., [6,9,11,13]). Moreover, through a testing procedure involving discrimination
between the classes of deterministic and stochastic volatility models, ref. [7] discovered that,
unlike the traditional stochastic view of short-term interest rates, the Japanese short-term
interest rate indeed follows a deterministic pattern. Consequently, there arises discrep-
ancy in continuous-time modeling, as it is debatable which assumption is the correct one
(e.g., [14], pp. 176–178, [15]), and mistaking the assumption will lead to a misspecified limit
and thereby unreliable analysis results. In such circumstances, nonparametric approaches
appear to be appealing tools that can adapt to the true limits based on their data-driven
nature and bypass this discrepancy in continuous-time analysis [16].

There is a large body of literature demonstrating the effectiveness of nonparametric
methods for accurate estimation and forecasting in cases where parametric assumptions are
deemed to be inadequate (e.g., [17–26]). Many studies incorporate nonparametric methods
to approximate the density of the states in the absence of a closed-form expression, so that
they could use maximum likelihood estimation (MLE) for continuous-time diffusion models
(e.g., [22,27,28]). However, they still presume the parametric format of the underlying
processes. Another stream of literature uses kernel-based methods to estimate the processes
that are nonanticipative smooth functions with unknown structures (e.g., [23]) and make
forecasts through conditional density estimation (e.g., [19,20,29,30]). It has been shown,
however, that traditional kernel estimators can become inconsistent as the sampling density
grows despite the underlying processes becoming further revealed [18,31], and the infill
asymptotics (i.e., the asymptotic properties achieved as the sample becomes increasingly
dense [32]) require the careful consideration of the dependence among observations, which
is substantial work [33].

The main contribution of our paper is to propose a fitting and forecasting approach from
the viewpoint of functional data analysis (FDA) to accommodate f.d. data structures and make
good use of high-frequency data in order to achieve robust infill asymptotics. Indeed, the FDA
fitting method, by design, deals with a collection of subsets of finite-dimensional parameter
spaces, which becomes richer and denser with an enlarging sample, and the target function can
be consistently estimated by optimizing an empirical criterion (e.g., [34–36]). For such a feature,
in our method we employ the FDA-based approach to fit the underlying process using local
polynomial bases and obtain the forecasts by extending the movement of the process based on
the boundary derivatives of the functional fitting. FDA is renowned for its ability to uncover
the dynamics of unknown continuous processes without necessitating stringent assumptions
about the data structure [26,37,38]. However, to the best of our knowledge, its application in
tracing the f.d. data structures and performing forecasting in continuous-time analysis remains
underexplored in the existing literature. Thus, with a simulation study, this paper illustrates
the procedure and properties of the proposed FDA-based method and emphasizes that this
method excels when the convergence rate of f.d. parameters is undefined, effectively mitigating
the common problem of misspecification prevalent in parametric estimations. In addition, we
remark that functional approaches can be further developed in this context to achieve desired
infill asymptotics with bounded or unbounded domains. To improve readability, all proofs are
placed in Appendix A.

In addition to the simulation analysis, we substantiate the practical utility of the proposed
method in forecasting S&P 500 prices, a topic of enduring significance that has consistently
commanded the interest of financial practitioners and researchers within the field. Throughout
the years, various statistical and mathematical methods have emerged to offer insights into
stock price trends including but not limited to time-series analysis (e.g., [39–41]); machine
learning algorithms (e.g., [22,42,43]); technical indicators (e.g., [44–46]); and fundamental
analysis (e.g., [47–49]). However, to the best of our knowledge, the utilization of FDA for
future stock price predictions appears to be infrequent. This paper adopts the FDA-based
approach to predict the S&P 500 log-returns. Through the root mean squared forecast error
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(RMSFE) among different sample sizes and frequencies, we examine the performance of the
proposed method in forecasting the process in a given step ahead.

The rest of this paper is structured as follows. In Section 2, we explain the FDA-
based method, followed by a discussion of the large-sample properties. Section 3 sets
up a simulation study and takes strong GARCH(1,1) as a motivating example to show
that in continuous-time analysis, while parametric methods—such as MLE—encounter
discrepancy, the proposed FDA-based method can provide robust and reliable estimation
and forecasting. We then present an application of the proposed method in predicting
future S&P 500 prices in Section 4, and Section 5 concludes the paper.

2. Methods

In this section, we explain the functional fitting and forecasting methods, followed
by a discussion of the large-sample properties of the estimators. The method concerns
target functions that are continuous but not necessarily differentiable. While smoothness
assumptions are often imposed in FDA to accommodate incomplete and noisy observations,
as noted by [50], we construct the functional estimator through the Bernstein polynomial
approximation, which induces the convergence that requires only the continuity of the
underlying process.

2.1. Fitting and Forecasting

Consider a complete probability space (Ω,F , P) and a re-scaled bounded time interval
[0, 1]. The sample path of the stochastic process {X(t) ∶ t ∈ [0, 1]} for state ω ∈ Ω over [0, 1]
is denoted as Xω . Realizations are drawn at countably many time points with observational
error εω,t; as such,

Xω,t = Xω(t)+ εω,t. (1)

In parametric modeling, Xω(t) is the conditional mean with a specified functional
form, whereas in FDA, Xω(t) is the underlying sample path assumed to be continuous
at any given point t. Thus, in the discussion below, we establish the properties of our
fitting and forecasting quantities through an arbitrarily close approximation of Xω(t) by
the Bernstein polynomial BK(t, Xω), so that for each K ∈ N,

BK(t, Xω) ∶=
K
∑
k=0

Xω(
k
K
)× (

K
k
)× tk

(1− t)K−k, (2)

whence we have the following lemma.

Lemma 1. Consider BK(t, Xω) as in Equation (2) with the continuous sample path Xω for any
given ω ∈ Ω. For any ε > 0, there exists some δ(ε) > 0 that induces ∣t1 − t2∣ ≤ δ(ε) Ô⇒

∣Xω(t1)−Xω(t2)∣ ≤ ε/2 for all t1, t2 ∈ [0, 1]. Then, for all K ≥ 4 supt∈[0,1] ∣Xω(t)∣/(δ2(ε)ε), the
following holds:

sup
t∈[0,1]

∣BK(t, Xω)−Xω(t)∣ ≤ ε.

Lemma 1 suggests that, fixing everything else, for any given ε, a high-degree polyno-
mial is needed for approximation if the continuity of Xω requires a very small δ(ε), while
a low-degree polynomial can achieve the desired approximation if a large δ(ε) suffices
for the given ε (see, e.g., Theorem 5.14 [51]). This lemma also implies that while fitting
any continuous process, the typical smoothness assumptions for functional data can be
imposed on the Bernstein approximating polynomials BK(t, Xω), and the size of the re-
maining estimation error can be regulated by a high-degree BK(t, Xω). There are three
remarks following Lemma 1. First, this lemma is based on the continuity of Xω(t), which
does not require the continuity of the observed series. Second, the lemma holds for any
continuous sample path and thus can also be applicable when Xω(t) itself is a diffusion
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process of Hölder continuity. Last but not the least, there are various methods to obtain
approximations to a continuous function with desirably small errors (Chapter 10 [52]),
and here we adopt the Bernstein polynomial for the delivery of the discussion. Hence,
the establishment of the asymptotics in the current study is achieved with the help of the
parametrization of BK(t, Xω), while in practice, we do not directly estimate or determine
the degree K in BK(t, Xω). Instead, the degree of the approximating polynomials will be
controlled through the construction of the functional estimator, as explained below.

In the spirit of FDA [38], one can construct a B-spline representation of a certain
degree for the polynomial approximation BK(t, Xω), such that BK(t, Xω) = ΦΦΦ⊺(⋅)CCC, where
ΦΦΦ is a B-spline basis that contains a vector of Q basis functions, CCCω is a vector of Q
corresponding basis coefficients, and the superscript “⊺” indicates the transpose operation.
Then, Equation (1) can be rewritten as

Xω,t ≈ ΦΦΦ⊺
(t)CCCω + εω,t. (3)

With the predetermined basis functions ΦΦΦ and the J observations {Xtj}
J
j=1 ∶= {Xω,tj}

J
j=1

at {tj}
J
j=1 ⊆ [0, 1−∆] for some 0 < ∆ < 1, the coefficients CCCω are estimated by minimizing

the penalized squares J−1
∑

J
j=1[Xtj − X̃(tj)]

2 +λ ∫
1

0 X̃(2)(t)dt with a tuning parameter λ and

some fitted function X̃(⋅), which yields

C̃̃C̃Cω ∶=

⎡
⎢
⎢
⎢
⎢
⎣

1
J

J
∑
j=1

ΦΦΦ(tj)ΦΦΦ⊺
(tj)+ λ∫

1

0
ΦΦΦ(2)

(t){ΦΦΦ(2)
(t)}

⊺
dt
⎤
⎥
⎥
⎥
⎥
⎦

−1
1
J

J
∑
j=1

ΦΦΦ(tj)Xω,tj , (4)

where the superscript “(2)” indicates the second-order derivative of a function (the second-order
derivative of the fitted function is one option for the roughness penalty—other penalties can also
be applied depending on the situation). In practice, Q and λ can be selected through certain
data-driven algorithms (e.g., [38]). Henceforth, the fitted process of Xω(t) is defined as

X̃ω(t) ∶= ΦΦΦ⊺
(t)C̃̃C̃Cω, ∀t. (5)

By choosing a B-spline basis of a proper degree larger than some value R for the
fitted process X̃ω(t), the ∆-step-ahead predictor at any given t, X̂ω(t +∆) is defined as a
truncated Taylor expansion with the first R derivatives of the fitted functions, such that

X̂ω(t +∆) ∶=
R
∑
r=0

1
r!

∆rX̃(r)
ω (t) =

R
∑
r=0

1
r!

∆rC̃̃C̃C⊺
ωΦΦΦ(r)

(t) ∀t ∈ (0, 1−∆]. (6)

The validity of the above Taylor expansion requires the fitted function X̃ω(t) to be at
least R times continuously differentiable, while the underlying process Xω(t) only needs to
be continuous. We want the relationship between the order R of continuous differentiability
and the degree K of the approximated function BK(t, Xω) to be such that R = K + 1, as the
Taylor polynomial approximation will have a non-zero residual if BK(t, Xω) is of a higher
degree (i.e., if R − 1 < K), while a higher degree of the functional estimator than necessary
(i.e., R − 1 > K) will bring extra volatility to the fitting and forecasting values. In practice,
R can also be selected through certain data-driven methods, such as that explained in
the simulation and empirical studies below. Due to the features of the B-spline basis
employed, one can adopt the order of R + 3 to ensure the desired differentiability of X̃ω(t).
The half-open interval (0, 1−∆] indicates that, technically, the forecast cannot be achieved
without any observation, and the forecast can be obtained as far as t +∆ = 1. Furthermore,
although the derivatives X̃(r)

ω (t) are applied in the approximation, we do not actually need
the convergence of these derivatives to, even if they exist, the derivatives of the truth—only
the convergence of the forecasting function in the level is of interest.
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2.2. Large-Sample Properties

We now discuss the consistency and the asymptotic normality of our functional
predictors based on the following assumptions.

Assumption 1. Consider a continuous sample path Xω(t) where for any ε > 0, there exists
δ(ε) > 0 such that ∣t1 − t2∣ ≤ δ(ε) implies ∣Xω(t1)−Xω(t2)∣ ≤ ε/2. Then, we have the following:

(a) The sample path Xω(t) is observed on a set of evenly spaced time points.

(b) The observational error εω,tj is uncorrelated across {tj}
J
j=1 ⊆ [0, 1], with E[εω,t ∣ Xω(s)] = 0

for s < t and Var[εω,t] < c <∞ for all t ∈ [0, 1] and some constant c.
(c) Q ∼ Jα1 and λ ∼ Jα2 with 0 < α1 < 1 and α2 < 0.

For simplicity, we assume in Assumption 1(a) that the observations are equally spaced
without a loss of generality. A less restrictive version would be to assume that the ratio
between the lengths of the largest and the smallest time windows is bounded above and
away from zero as in [53]. Part (b) states a sufficient condition to achieve the consistency of
the functional estimator X̃ω as in Equation (5), while a proper “low correlation” assumption
for this error term is also sufficient. Finally, part (c) indicates that the dimension of the basis
expansion shall increase with the sample size to allow for a consistent functional estimator
X̃ω , and, meanwhile, the tuning parameter shall be kept to o(1) so that the estimation error
introduced by the roughness penalty dies down as the sample size grows towards infinity.

For any given 0 < ∆ < 1, we consider the convergence of the forecasting process X̂ω

over (∆, 1) or, equivalently, over t ∈ (0, 1−∆). Note that even though the forecasting process
can be defined at the point t +∆ = 1 as in Equation (6), the asymptotics exclude the point of
t = 1−∆ due to the limited boundary performance.

Theorem 1 (Convergence of X̂ω given ∆). Consider a continuous sample path Xω on [0, 1]
such that for any ε > 0, there exists δ(ε) > 0, which induces ∣t1 − t2∣ ≤ δ(ε) Ô⇒ ∣Xω(t1) −

Xω(t2)∣ ≤ ε/2.
Let FK be the collection of all the (local) polynomials over [0, 1 −∆] that are at least K + 1

times continuously differentiable, and FK ∶ FK → R be the linear functional such that FK(ψ) ∶=

⟨X̂ω(⋅ +∆)− BK(⋅ +∆, Xω), ψ⟩ for ψ ∈ FK.

If Assumption 1 holds, then for any given K and R = K + 1, FK(ψ)
p
Ð→ 0 as J → ∞ for all

ψ ∈ FK, whence under K →∞, supt∈(0,1−∆) ∣X̂ω(t +∆)−Xω(t +∆)∣
p
Ð→ 0 as J →∞.

Theorem 1 establishes the convergence of the forecasting process X̂ω(⋅ +∆) through
its weak convergence to the Bernstein approximating polynomial BK(⋅ +∆, Xω) and the
uniform convergence of BK(⋅, Xω) to Xω . Specifically, for any given K and R = K + 1, X̂ω(⋅ +

∆) weakly converges to the approximating polynomial BK(⋅ +∆, Xω) with the enlarging
sample size J, while BK(⋅, Xω) uniformly converges to the true path Xω with an enlarging
K and regardless of the sample size J. Henceforth, X̂ω(⋅ +∆) converges uniformly to the
true path Xω with an enlarging K and J. For R = K + 1 with K ≥ 4 supt∈[0,1] ∣Xω(t)∣/(δ2(ε)ε),
it is worth noting that for a B-spline basis of order R + 3 to span the function space, the
number of basis functions Q needs to be such that Q ≥ 2(R + 2)+ 1, while Q grows towards
infinity at a lower speed than J; hence, we also have K = o(J) as K, J →∞.

Now we explore the asymptotic distribution of the functional prediction X̂ω . However,
before we state any further assumptions or the resulting asymptotic properties, it is impor-
tant to note that the realizations are subject to observational error εω,t, the behavior of which
can impact the asymptotic distribution of X̂ω. For example, when a continuous sample
path Xω is observed without noise, it is more plausible to consider the functional fitting
as an interpolation—in this case, we do not necessarily have asymptotic normality for X̂ω.
On the other hand, if Xω is observed with noise, we can establish pointwise asymptotic
normality under the following sufficient conditions:
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Assumption 2. (a) The noise εtj is independent across all {tj}
J
j=1 ⊆ [0, 1].

(b) Q ∼ Jα1 and λ ∼ Jα2 with α1 > 0 and α2 < 0, such that Q2λ = o(J−1/2) and J−1Q2 =

O(J−1/2).

Assumption 2(a) states a sufficient condition for generating the asymptotic normality
by the Lyapunov CLT, which allows for non-identically distributed variables. If one
has mixing random processes, a different version of this assumption can be specified by
imposing identical distribution, where a different CLT can be applied without affecting
the result regarding asymptotic normality. Part (b) assumes a stronger condition on the
orders of the two parameters Q and λ, so that the non-normal part of the estimation error
is dominated and will not be inflated while deriving the asymptotic distribution.

Theorem 2. Consider a continuous sample path Xω on [0, 1] where for any ε > 0, there exists
δ(ε) > 0 such that ∣t1 − t2∣ ≤ δ(ε) implies ∣Xω(t1)−Xω(t2)∣ ≤ ε/2.

Under Assumptions 1 and 2, the following asymptotic normality holds for all t ∈ (0, 1−∆],
R →∞, and J →∞:

[V(t; ∆, R,ΦΦΦ)]
−1/2

[X̂ω(t +∆)−Xω(t +∆)]
d
Ð→ N (0, 1),

where σ2
j ∶= Var[εtj] for all j, and

V(t; ∆, R,ΦΦΦ) ∶=
1
J2

J

∑
j=1

σ2
j A2

tj
(t; ∆, R,ΦΦΦ),

Atj(t; ∆, R,ΦΦΦ) ∶=
R
∑
r=0

1
r!

∆r
{ΦΦΦ(r)

(t)}
⊺
{∫

1

0
ΦΦΦ(s)ΦΦΦ⊺

(s)ds}
−1

ΦΦΦ(tj).

Theorem 2 constructs the pointwise asymptotic normality of the functional predic-
tor X̂ω through the asymptotically normal prediction error from X̂ω to the Bernstein
approximating polynomial BK(t, Xω) and the convergence of BK(t, Xω) to Xω as K in-
creases towards infinity. Specifically, X̂ω(t + ∆) − Xω(t + ∆) can be decomposed into
X̂ω(t +∆) − BK(t +∆, Xω) and BK(t +∆, Xω) − Xω(t +∆), where the former is inflated by
V(t; ∆, R,ΦΦΦ) to an asymptotic normal, and the latter is dominated because a desirably
small approximation error BK(t + ∆, Xω) − Xω(t + ∆) can be achieved by a sufficiently
large K (and R). Meanwhile, since the inverse factorial series ∑∞r=0(r!)−1 converges, when
R → ∞ we have ∑R

r=0(r!)−1∆r < C < ∞ for some small ∆ and some fixed C ∈ R, whence
Atj(t; ∆, R,ΦΦΦ), and thus A2

tj
(t; ∆, R,ΦΦΦ) is bounded. Then, by Assumptions 1(b) and 2(a),

the term V(t; ∆, R,ΦΦΦ)—and so is the variance X̂ω(t +∆)−Xω(t +∆)—is of order J−1. As a
result, a

√
J-asymptotic normality can be achieved.

3. Simulation

We now explain the numerical procedure of the proposed methods through a sim-
ulation study and compare its performance to that of a parametric approach under both
correct specification and misspecification, thereby revealing FDA’s superiority in tracking
the f.d. data structures of stochastic processes. The simulation study was conducted using
the software R (version 4.0.5) and MATLAB (version R2023a), and the computer code is
available in the Supplementary Materials.

3.1. The Data-Generating Process

The data-generating process is based on the strong GARCH (1,1), where yk = (Sk −

Sk−1)/Sk−1, k = 1, 2, . . . is the arithmetic return on a financial asset with the price Sk. Let h be
the time window, and recall that a strong GARCH (1,1) process is represented by yk = µ+ εk
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with εk ∼ N (0, Vk) given the σ-algebra generated by εk−1 and Vk = ωh + ξhε2
k−1 + γhVk−1 for

the f.d. parameters ωh, ξh, γh > 0 and ξh + γh < 1 [54,55].
As h shrinks, (Skh, Vkh) weakly converges to its continuous-time limit (St, Vt) [6]. This

is a simple but effective example, since given different assumptions as to the f.d. parameters’
convergence rates (i.e., the convergence of ξh can have rate

√
h or rate h), (St, Vt) has been

shown to be a diffusion process solution to either a stochastic volatility (SV) model [13,56]

[
dst
dvt

] = [
a

(β − 1
2 σ2)+ α exp(−vt)

]dt + [

√
1− ρ2 exp(

vt
2 ) ρ exp(

vt
2 )

0 σ
][

dW1
t

dW2
t
], (7)

where st ∶= log(St), vt ∶= log(Vt), and W1
t and W2

t are independent standard Brownian
motions, or a deterministic volatility (DV) model [6]

[
dst
dvt

] = [
a

β + α exp(−vt)
]dt + [

exp(
vt
2 )

0
]dW1

t . (8)

Indeed, despite the fact that the ARCH-type diffusion models under both SV and
DV have been frequently applied in the literature to estimate continuous-time processes
(e.g., [8,9,22,27,57,58]), there has been considerable debate as to the choice of the conver-
gence rate assumptions, which makes parametric analysis such as MLE tailored for either
limit questionable (e.g., [14,59]). More generally, if the f.d. data structures have different
limiting processes under different convergence conditions, it would be impractical for
parametric continuous-time generalizations to exhaust all possible limits to choose the
correct one.

To demonstrate how the FDA-based method can bypass this issue, we generate pseudo-
continuous return and volatility processes, as shown in Equations (7) and (8), over the
interval of [0, 1], resembling the “continuous-time” processes of five equally spaced trading
points per day for one year of 252 trading days (i.e., 5 time points per day × 252 days per
year × 1 year = 1260 data points in total). The true values of the parameters in Tables 1 and 2
are used to generate N = 1000 pseudo-continuous log-return and log-volatility trajectories
from the SV limit, denoted respectively by sS(t) and vS(t), and those trajectories from the
DV limit, denoted respectively by sD(t) and vD(t). It should be noted that the volatility
is not always observed in practice, and discussions addressing parametric analysis with
such unobservability have been provided in the literature (e.g., [22,27,60]). However, the
FDA-based method can handle the return and volatility processes separately; hence, in
what follows, we assume that volatility is accessible without harming the analysis of the
return. Should we be interested in the unobserved volatility, the same FDA-based method
could be applied to suitable proxies. We take the pseudo-continuous-time processes as
the observations, denoted as sS(tj), vS(tj), sD(tj), and vD(tj) for j = 1, . . . , J, to numerically
mimic the scenario where the sampling time window becomes arbitrarily small, and the
estimation is performed based on one-month rolling windows (i.e., J = 1260/12 = 105) and
eight-month rolling windows (i.e., J = 1260/12 ∗ 8 = 840), respectively. Cases with an evenly
spaced “daily” sampling density are also included to demonstrate the performance of the
FDA-based method under different sample sizes and frequencies.

3.2. Fitting and Forecasting with FDA

Now we present the procedures for fitting and forecasting with FDA in steps (a) to
(c) below, and the forecast evaluation is discussed in steps (d) and (e). Note that only the
implementations in terms of sS(t) and sD(t) are explained here, and similar procedures
can be applied to the vS(t) and vD(t) processes.

(a) Provide a candidate pool for the vector (λ, R) of the tuning parameter and the Taylor
expansion order. For each of the 1000 replications, take the length J−10 rolling windows
(except for the one-month daily sample, where we take the length J −3 rolling windows)
from the first J observed data points and estimate the underlying processes sS(t)
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and sD(t) as in Equations (4) and (5) using the B-spline basis of order R + 3 and the
number of basis functions min{2(R+ 2)+ 1, J +R+ 3}. We then obtain s̃S(t) and s̃D(t),
respectively, for each rolling window with each pair of (λ, R) candidates.

(b) For the first J observed data points from each of the 1000 replicates, compute
the forecasting values ŝS(t +∆) and ŝD(t +∆) for each of the length J − 10 rolling
windows with each pair of (λ, R) candidates using Equation (6). The (λ, R) pair
that minimizes the RMSFE over the ten rolling windows across all 1000 replications
is selected and denoted by (λ̂, R̂) to be used for later fitting and forecasting.

(c) For each of the 1000 replications, perform the fitting and forecasting on the length
J rolling windows (either one-month or eight-month) with the given observation
frequency using the selected parameters (λ̂, R̂), the basis order of R + 3, and the
number of basis functions min{2(R + 2)+ 1, J + R + 3}, yielding the rolling-window
forecasting values ŝS(t +∆) and ŝD(t +∆). It is worth noting that the forecasting
step of this method can be flexible, as ∆ is technically a continuous quantity. In
this simulation study, we only consider the forecasting step that is the same as the
sampling time window, which we later refer to as the “one-step-ahead forecast”,
while in general, for example, one can make a one-hour-ahead forecast with daily
data or a one-day-ahead forecast with hourly data.

(d) Implement the Kolmogorov-Smirnov (K-S) test on the pairs “ŝS(t+∆) and SS(t+∆)”,
“ŝS(t + ∆) and SD(t + ∆)”, “ŝD(t + ∆) and SS(t + ∆)”, and “ŝD(t + ∆) and SD(t +
∆)” for all time points t to check whether the FDA-based predictors can correctly
distinguish the true underlying processes in terms of distributions.

(e) Calculate the RMSFE according to [61,62] between the pairs “ŝS(t+∆) and sS(t+∆)”,
“ŝS(t +∆) and sD(t +∆)”, “ŝD(t +∆) and sS(t +∆)”, and “ŝD(t +∆) and sD(t +∆)”
for the out-of-sample performance evaluation.

In practice, the relevant parameters can be selected more exhaustively for each forecast
and each replication as needed; however, developing the asymptotic properties of such
data-driven methods is not the focus of the current paper, so we simplify the search in
step (a) by having only three possible Rs and three possible λs for each search, forming
nine pairs of (λ, R) candidates, and the resulting (λ̂, R̂) is used for all the replicates in all
the later forecasts. Also, the upper bound J + R + 3 of the number of basis functions Q is
used to simplify the search by first fixing Q at the sample size J while extending the fitting
function beyond the fitting domain by R + 3 equally spaced basis functions to capture the
smoothness on [1−∆, 1] and to avoid the boundary noise induced by the last R + 3 (i.e., the
order of the basis in our setting) basis functions.

3.3. Comparison with Parametric Methods

We adopted MLE as a benchmark parametric method for a performance compari-
son with our FDA approach as it is a commonly used approach for GARCH-like models
(see e.g., [22,63]). It is imperative to underscore that within this context, MLE was em-
ployed as the benchmark parametric approach for the estimation of a sequence of discrete
observations drawing from an unknown underlying diffusion process. While alternative
parametric methodologies, like the general method of moments (GMM), are available for
application, it is noteworthy that they all necessitate certain parametric assumptions about
the data distribution, which could potentially result in erroneous estimation results and
forecasts when dealing with f.d. data structures under infill asymptotics. Based on the
stochastic differential equations of the two limits in Equations (7) and (8), the likelihood
functions were obtained utilizing the (joint) normality of dW1

t and dW2
t , and the differentials

ds and dv were approximated by the corresponding first difference of the discrete obser-
vations. In favor of the parametric methods, we took the eight-month pseudo-continuous
rolling windows as the observed series, and the comparison between the two approaches
was conducted in terms of RMSFEs.
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Thus, based on Equations (7) and (8), the forecasts based on conditional expectation
are such that

⎧⎪⎪
⎨
⎪⎪⎩

ŝt+∆ ∶= Ê[st+∆∣st] = st + â∆,
v̂t+∆ ∶= Ê[vt+∆∣vt] = vt + [(β̂ − 1

2 σ̂2)+ α̂ exp(−vt)]∆
(9)

for the SV limit and

⎧⎪⎪
⎨
⎪⎪⎩

ŝt+∆ ∶= Ê[st+∆∣st] = st + â∆,
v̂t+∆ ∶= Ê[vt+∆∣vt] = vt + [β̂ + α̂ exp(−vt)]∆

(10)

for the DV limit, where â, β̂, α̂, and σ̂ are the estimated parameters from MLE, and ∆ is the
forecasting step as previously defined.

3.4. Results

Figures 1 and 2 present the forecasting results using the FDA-based method, where
the underlying processes are indicated by gray lines, the one-step-ahead rolling forecasts
are indicated by black lines, and the selected order of Taylor expansion is noted in the labels
of the plots. The figures reveal that the proposed functional approach accurately traced the
movements of both the underlying return and volatility processes.

Figure 1. Functional data prediction, eight-month rolling window, continuous returns.

Figure 2. Functional data prediction, eight-month rolling window, continuous volatility.

Then, we used the K-S test to compare the predicted and the underlying processes.
The p-values of the test on the null of distribution equality over the entire time domain
are presented in Figures 3 and 4, where the dashed lines indicate the 5% significance
level. As depicted in the two plots from the first column of Figure 3, the true return
and volatility underlying processes generated from the SV and DV models exhibited
significantly disparate distributions at almost every fixed observation time tj. The second
and third columns of Figure 3 suggest that the null hypothesis of distribution equality
was rejected when the underlying processes showed significant differences in the cross-
comparison, while the FDA forecast shared the same distribution as its true underlying
process at almost every tj, as evident in Figure 4. The results imply that the one-step-ahead
rolling forecast using the FDA-based method could preserve the distributions of the true
underlying processes pointwisely and could distinguish the true underlying processes
from a falsely assumed continuous-time limit in terms of their distributions.
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Figure 3. K-S test, eight-month rolling window, cross-comparison.

Figure 4. K-S test, eight-month rolling window, comparison with the true underlying process.

The proposed method was further applied to a lower observation frequency and a
smaller sample size, where it exhibited decent performance with short and sparse observed
series; the corresponding results are illustrated in Appendix B.1. A summary of compar-
isons across different sample sizes and frequencies in terms of RMSFE is presented in
Figure 5, where “1 Md” denotes the one-month rolling window with daily observations, “8
Md” denotes the eight-month rolling window with daily observations, “1 Mps” denotes the
one-month rolling window with pseudo-continuous observations, and “8 Mps” denotes the
eight-month rolling window with pseudo-continuous observations. The small yet discernible
differences in the RMSFEs among the different domain spans and different sampling densities
indicates that the FDA-based method benefited from both the infill sample growth and the
increasing-domain sample growth, though more from the former than from the latter.

(a) sS(t) (b) vS(t) (c) sD(t) (d) vD(t)

Figure 5. RMSFE distributions for different underlying processes.

The results for the first rolling window of the MLE are shown in Tables 1 and 2 to
provide a snapshot of the performance of MLE, while the results for all 420 rolling-window
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estimations are summarized by boxplots in Appendix B.2. Unsurprisingly, with the mis-
specified models, the estimates of the affected parameters mostly departed from the true
values with statistical significance, while MLE showed good asymptotic performance under
the correct specification. As noted in Tables 1 and 2, the rejection rates for some parameters
slightly exceeded the reasonable range of errors induced by a binomial distribution with
N = 1000 trials and a probability of success at 5% even when the model was correctly speci-
fied, which could be attributed to the insufficient number of observations. Nevertheless, in
general, methods that can circumvent such modeling discrepancy will be useful to avoid
misleading estimation results in continuous-time analysis.

Table 1. Estimating SV parameters with MLE.

Parameter a α β σ ρ

True value 0.1 0.2 −8.5 2.7 −0.8

SV process fitted by an SV model (correct specification)
Estimate 0.004 0.289 −9.546 2.699 −0.800

Bias −0.096 0.089 −1.046 −0.001 0.000
Rejection rate 0.066 0.080 0.047 0.056 0.062

SV process fitted by a DV model (misspecification)
Estimate 0.101 232.294 −259.989 – –

Bias 0.001 232.094 −251.489 – –
Rejection rate 0.060 0.789 0.902 – –

Note: a 1000-time simulation allows for a “±
√

0.95 ∗ 0.05/1000 ∗ 2 = 0.014” error on the 5% rejection rate under
correct specification.

Table 2. Estimating DV parameters with MLE.

Parameter a α β σ ρ

True value 0.1 0.2 −8.5 0 0

DV process fitted by a DV model (correct specification)
Estimate 0.107 0.200 −8.531 – –

Bias 0.007 0.000 −0.031 – –
Rejection rate 0.048 0.051 0.053 – –

DV process fitted by an SV model (misspecification)
Estimate 1.033 0.200 −8.500 0.000 0.154

Bias 0.933 0.000 0.000 0.000 0.154
Rejection rate 0.346 1.000 1.000 1.000 0.877

Note: a 1000-time simulation allows for a “±
√

0.95 ∗ 0.05/1000 ∗ 2 = 0.014” error on the 5% rejection rate under
correct specification.

Finally, to compare the performance of the FDA and MLE methods, we applied the
MLE rolling-window estimation to perform one-step-ahead out-of-sample forecasting and
compared the distributions of the relative RMSFEs (rRMSFEs) calculated as the ratio of
the RMSFEs between FDA and MLE—a ratio below one signified that the FDA method
provided a more precise forecast than the MLE method. The results for cases in which the
MLE forecast was affected by the misspecification are shown in Figure 6, and those for cases
in which the MLE forecast was unaffected are summarized in Figure A13 in Appendix B.2.

First, note that misspecifying an SV process and estimating it with a DV model did
not cause significant bias in the estimation of the parameter a, which is the only parameter
needed for the forecast of the return process, according to Equations (9) and (10). Thus, the
estimation of sS was not significantly affected by misspecifying it as sD, and the distribution
of the rRMSFEs is summarized in Figure A13. However, the estimations for the parameters
α and β were affected by such a misspecification, which in turn caused inaccuracy and
instability in the forecast of the volatility process, as shown in the first plot of Figure 6.
Specifically, 47.9% of the rRMSFEs were lower than one, and around 44% of the rRMSFEs
were lower than 0.01, while when MLE performed better, the rRMSFEs of the two methods
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were still within a comparable range. Hence, the FDA-based method appeared to be more
stable and generally reliable. On the contrary, when a DV process was misspecified and
estimated by an SV model, the estimation of all the parameters was affected statistically,
but for the parameters α, β, and σ, the biases were negligibly small. Hence, according
to Equations (9) and (10) with σ̂ ≈ 0, the forecast for the volatility process would not be
substantially affected, as summarized in Figure A13. For the forecast of the return process
that relied on â, the estimates significantly deviated from the true value. However, since
the forecast error was determined by the re-scaled estimation error (â − a)δ and the noise,
the sizes of which were of the same order numerically, the final forecast error was not
notably influenced by the error in â, and the forecast exhibited a similar performance to the
FDA-based method, as shown in the second plot of Figure 6. However, in practice, when
the step ∆ became larger, the error in â began to show a further impact on the forecast.
Finally, the FDA-based method could still outperform the parametric method even in a
correctly specified case, as shown in the last plot of Figure 6.

Figure 6. rRMSFEs of FDA vs. MLE.

Above all, the FDA-based method showed general consistency and robustness against
modeling discrepancy, while the parametric methods could demonstrate unreliable per-
formance due to misspecification, and even when the parametric method excelled under
correct specification, the forecast errors of the two methods still lay within a comparable
range, as shown in Figures 6 and A13. When DV was misspecified as SV, the MLE forecast
for the volatility process surpassed FDA the furthest in terms of the RMSFE. However,
for the forecast of this non-random function, both methods performed well, as shown by
the RMSFEs in Figure 5. Hence, the proposed FDA-based method is recommended in the
presence modeling discrepancy.

4. Empirical Study

This section illustrates the application of our FDA-based method in stock price pre-
diction, through which we obtained the closing prices of the S&P 500 Index from the
Bloomberg terminal. Predicting volatility entails similar processes to forecasting future
price movements, for which historical volatility indices like the VIX could be incorporated
into our methodology. In accordance with the procedure utilized in our prior simulation
study, we proceeded to assess the predictive efficacy of the FDA method utilizing obser-
vations spanning a duration of one year. Specifically, one-month and eight-month rolling
windows of hourly data (every hour from 9:30 to 15:30) and daily data (every day at 12:30)
were employed, and the fitting and forecasting with parameter selection followed the
procedures described in steps (a) to (c) from Section 3.

Figures 7 and 8 depict the functional predictions across various sampling frequencies
and rolling windows. Figures 9 and 10 present the distribution of the ratio of absolute
forecast errors to log-returns in the four corresponding scenarios. The percentage of the
forecast errors was consistently small, suggesting a close alignment between the forecast
and the actual log-returns, which underscored the robustness and reliability of the proposed
FDA-based method.
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Figure 7. Functional data prediction, hourly S&P 500 log-returns.

Figure 8. Functional data prediction, daily S&P 500 log-returns.

Figure 9. Functional data prediction, hourly S&P 500 log-returns, distribution of % forecast error.

Figure 10. Functional data prediction, daily S&P 500 log-returns, distribution of % forecast error.

5. Conclusions

In continuous-time modeling, parametric methods fail to provide reliable analysis
when there is discrepancy due to the existence of multiple limits. This paper adopted FDA
to uncover the true continuous-time underlying processes subject to f.d. data structures
under infill asymptotics and suggested a forecasting method by integrating FDA with
Taylor series expansion, also exploring an application of FDA in out-of-sample prediction.

Our theorems demonstrate that the FDA-based method only requires the continuity
of the underlying sample path and the low correlation of the observation errors, and with
proper basis expansions, enlarging samples with an increasing sampling density ensure
that the functional estimator converges to a unique and well-defined limit. The simulation
analysis showed that the FDA-based method is capable of distinguishing processes with
different continuous-time limits in out-of-sample prediction. Furthermore, although the
parametric method dominated under correct specification, the forecast errors of the two
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methods were still within a comparable range, while the FDA-based method showed a
generally consistent and much more robust performance against possible misspecification
when the parametric method was subject to modeling discrepancy, which makes the
functional method a preferable tool for fitting and forecasting when there is uncertainty in
modeling the underlying process. Further, we validated the practical applicability of the
proposed method in predicting future S&P 500 prices. Our findings demonstrated that the
functional approach yielded dependable predictions even in cases where the underlying
process was unknown. It is important to note that, as shown in the empirical study, the
suggested FDA-based method is not limited to any particular continuous-time model;
instead, it is able to uncover the underlying process of many discretely observed stochastic
processes, including equity returns.

Lastly, the proposed FDA-based method shows limitations in certain circumstances.
First, as the most natural way to obtain the optimal values of the parameters determining
the functional estimators and forecasts, e.g., the number and the order of the basis function,
the tuning parameter λ, and the order of the Taylor expansion, is by data-driven algorithms,
the search within such an optimization process can induce computationally expensive
tasks. Additionally, in the presence of a continuous but volatile underlying process, our
approach also necessitates increased computational resources for determining the high-
order derivatives of the fitted functions. Moreover, the nature of the method implies that,
with everything else fixed, it generally works more comfortably and easily for smoother
processes than volatile ones and is more suited for capturing long-term patterns than
short-term shocks. Therefore, the performance of the method may heavily rely on high-
frequency data while fitting and forecasting highly volatile processes. For future research,
more efficient methods to obtain the optimal values of the parameters are to be developed,
and the effects of the estimated parameters on the overall performance of the fitting and
forecasting are to be explored. Furthermore, the method’s performance with volatile
underlying processes and/or sparse observations is to be further studied and improved.
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Let N0(ζ) and N1−∆(ζ) denote the ζ-neighborhood of t = 0 and t = 1−∆, respectively,
for some small ζ > 0. Then, we define T∆,ζ ∶= [0, 1 −∆] ∪ N0(ζ) ∪ N1−∆(ζ). Also, let X̃ω,J
denote the fitted function for Xω under the sample size J.

Lemma A1. Consider a continuous sample path Xω(t) on [0, 1] where for any ε > 0, there exists
δ(ε) > 0 such that ∣t1 − t2∣ ≤ δ(ε) implies ∣Xω(t1) − Xω(t2)∣ ≤ ε/2. Suppose Assumption 1
holds. Then, for BK(t, Xω), as in Equation (2), and K ≥ 4 supt∈[0,1] ∣Xω(t)∣/(δ2(ε)ε), we have the
following:

(a) For any t ∈ T∆,ζ and ω ∈ Ω, X̃ω,J(t)− BK(t, Xω)
p
Ð→ 0 as J →∞.

(b) For every $, η > 0 there exists a ζ > 0 such that {X̃ω,J} is asymptotically stochastically
equicontinuous on T∆,ζ in that lim supJ→∞ P{supt1,t2∈T∆,ζ , ∣t1−t2∣<ζ ∣X̃ω,J(t1)− X̃ω,J(t2)∣ >

$} < η.

(c) For any t ∈ T∆,ζ , ω ∈ Ω, and r = 1, . . . , K, X̃(r)
ω,J1

(t)− X̃(r)
ω,J2

(t)
p
Ð→ 0 for any J1, J2 →∞.

(d) For every $, η > 0 there exists a ζ > 0 such that for all r = 1, . . . , K,

lim supJ→∞ P{supt1,t2∈N0(ζ) ∣X̃
(r)
ω,J(t1)− X̃(r)

ω,J(t2)∣ > ε} < η, and

lim supJ→∞ P{supt1,t2∈N1−∆(ζ) ∣X̃
(r)
ω,J(t1)− X̃(r)

ω,J(t2)∣ > ε} < η.

Lemma A2. Suppose Assumption 1 and Lemma A1 hold. Then, for r = 1, . . . , K,

(a) plimJ→∞ limt→0+ X̃(r)
ω,J(t) = limt→0+ plimJ→∞ X̃(r)

ω,J(t) and

plimJ→∞ limt→(1−∆)− X̃(r)
ω,J(t) = limt→(1−∆)− plimJ→∞ X̃(r)

ω,J(t).

(b) supt∈[0,1−∆] ∣X̃ω,J(t)− BK(t, Xω)∣
p
Ð→ 0 as J →∞.

(c) X̃(r)
ω,J(0)− B(r)

K (0, Xω)
p
Ð→ 0 and X̃(r)

ω,J(1−∆)− B(r)
K (1−∆, Xω)

p
Ð→ 0 as J →∞.

Lemma A3. Let f be a function that maps a squared matrix to a real value; then, for full-rank
Q-by-Q squared matrices AAA, BBB, and ZZZ,

f (AAA) = f (BBB)+ tr
⎡
⎢
⎢
⎢
⎣
{

∂ f (ZZZ)

∂ZZZ
}

⊺
(AAA −BBB)

⎤
⎥
⎥
⎥
⎦

,

where min{aij, bij} < zij < max{aij, bij} for all elements aij, bij, and zij of the matrices AAA, BBB, and
ZZZ, respectively, with i, j = 1, . . . , Q.

Appendix A.1. Proof of Theorem 1

Proof of Theorem 1. First, applying integration by parts given any positive integer H ≤

K + 1, we have that for all ψ ∈ FK,

H
∑
r=1

(−1)r−1X̃(r−1)
ω,J (1−∆)ψ(H−r)

(1−∆) =
H
∑
r=1

(−1)r−1X̃(r−1)
ω,J (0)ψ(H−r)

(0)+

∫

1−∆

0
X̃ω,J(t)ψ(H)

(t)dt − (−1)H
∫

1−∆

0
X̃(H)

ω,J (t)ψ(t)dt,

H
∑
r=1

(−1)r−1B(r−1)
K (1−∆, Xω)ψ(H−r)

(1−∆) =
H
∑
r=1

(−1)r−1B(r−1)
K (0, Xω)ψ(H−r)

(0)+

∫

1−∆

0
BK(t, Xω)ψ(H)

(t)dt − (−1)H
∫

1−∆

0
B(H)

K (t, Xω)ψ(t)dt,

which implies that
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∣∫

1−∆

0
X̃(H)

ω,J (t)ψ(t)dt −∫
1−∆

0
B(H)

K (t, Xω)ψ(t)dt∣

≤

RRRRRRRRRRR

H
∑
r=1

(−1)r−1
{X̃(r−1)

ω,J (1−∆)− B(r−1)
K (1−∆, Xω)}ψ(H−r)

(1−∆)

RRRRRRRRRRR

+

RRRRRRRRRRR

H
∑
r=1

(−1)r−1
{X̃(r−1)

ω,J (0)− B(r−1)
K (0, Xω)}ψ(H−r)

(0)
RRRRRRRRRRR

+ ∣∫

1−∆

0
X̃ω,J(t)ψ(H)

(t)dt −∫
1−∆

0
BK(t, Xω)ψ(H)

(t)dt∣.

Lemma A2(c) indicates that both ∣∑
H
r=1(−1)r−1

{X̃(r−1)
ω,J (1−∆)− B(r−1)

K (1−∆, Xω)}ψ(H−r)

(1 − ∆)∣ and ∣∑
H
r=1(−1)r−1

{X̃(r−1)
ω,J (0)− B(r−1)

K (0, Xω)}ψ(H−r)(0)∣ are op(1). Meanwhile,

Lemma A2(b) implies that ∣∫
1−∆

0 X̃ω,J(t)ψ(H)(t)dt− ∫
1−∆

0 BK(t, Xω)ψ(H)(t)dt∣ = op(1). Hence,
given any positive integer H ≤ K + 1,

∣∫

1−∆

0
X̃(H)

ω,J (t)ψ(t)dt −∫
1−∆

0
B(H)

K (t, Xω)ψ(t)dt∣ = ∣⟨X̃(H)
ω,J , ψ⟩− ⟨B(H)

K (⋅, Xω), ψ⟩∣ = op(1), ∀ψ ∈ FK ,

and for R = K + 1, applying the properties of inner products, one can obtain

⟨X̂ω(⋅ +∆), ψ⟩ = ⟨
R
∑
r=0

1
r!
(∆)

rX̃(r)
ω,J , ψ⟩ =

R
∑
r=0

1
r!
(∆)

r
⟨X̃(r)

ω,J , ψ⟩

=
R
∑
r=0

1
r!
(∆)

r
⟨B(r)

K (⋅, Xω), ψ⟩+ op(1) = ⟨
R
∑
r=0

1
r!
(∆)

rB(r)
K (⋅, Xω), ψ⟩+ op(1)

= ⟨BK(⋅ +∆, Xω), ψ⟩+ op(1).

Then, under Lemma 1, the desired results follow.

Appendix A.2. Proof of Theorem 2
Proof of Theorem 2. To improve readability, we define the following:

ΥΥΥ∆(t) ∶=
R
∑
r=0

1
r!

∆r
[ΦΦΦ(r)

(t)]
⊺

, ΩΩΩ ∶=
1
J

J
∑
j=1

ΦΦΦ(tj)ΦΦΦ⊺
(tj), ΓΓΓ ∶= ∫

1

0
ΦΦΦ(2)

(t){ΦΦΦ(2)
(t)}

⊺
dt.

Given the order of Q relative to J, we impose that Q < J without a loss of generality.
Then, applying Equation (3), Lemma 1, and Lemma A3 with f (MMM) = aaa⊺MMM−1bbb for square
matrix MMM, vectors aaa ∶= ΥΥΥ∆(t) and bbb ∶= 1

J ∑
J
j=1 ΦΦΦ(tj)Xtj , and matrices AAA ∶= ΩΩΩ + λΓΓΓ and BBB ∶= ΩΩΩ

indicates that

X̂ω(t +∆) = ΥΥΥ∆(t)C̃̃C̃Cω = ΥΥΥ∆(t)(ΩΩΩ + λΓΓΓ)−1 1
J

J
∑
j=1

ΦΦΦ(tj)Xtj = aaa⊺AAA−1bbb = aaa⊺BBB−1bbb + tr
⎡
⎢
⎢
⎢
⎣
{

∂ f (ZZZ)

∂ZZZ
}

⊺
(AAA −BBB)

⎤
⎥
⎥
⎥
⎦

= ΥΥΥ∆(t)ΩΩΩ−1 1
J

J
∑
j=1

ΦΦΦ(tj)Xtj − tr[ZZZ−1bbbaaa⊺ZZZ−1λΓΓΓ]

= ΥΥΥ∆(t)ΩΩΩ−1 1
J

J
∑
j=1

ΦΦΦ(tj)ΦΦΦ⊺
(tj)CCC +ΥΥΥ∆(t)ΩΩΩ−1 1

J

J
∑
j=1

ΦΦΦ(tj)εtj +O(Q2λ)

= ΥΥΥ∆(t)CCC +ΥΥΥ∆(t)ΩΩΩ−1 1
J

J
∑
j=1

ΦΦΦ(tj)εtj +O(Q2λ),

and thus

X̂ω(t +∆)− BK(t +∆, Xω) = ΥΥΥ∆(t)ΩΩΩ−1 1
J

J

∑
j=1

ΦΦΦ(tj)εtj +O(Q2λ).
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By Assumption 2(b) and [64], ΩΩΩ = 1
J ∑

J
j=1 ΦΦΦ(tj)ΦΦΦ⊺(tj) = ∫

1
0 ΦΦΦ(t)ΦΦΦ⊺(t)dt+ o(J−1). Then,

again by Lemma A3, we have

X̂ω(t +∆)− BK(t +∆, Xω) =
1
J

J
∑
j=1

R
∑
r=0

1
r!

∆r
{ΦΦΦ(r)

(t)}
⊺
{∫

1

0
ΦΦΦ(s)ΦΦΦ⊺

(s)ds}
−1

ΦΦΦ(tj)εtj + o(J−1Q2
),

whence with Atj(t; ∆, R,ΦΦΦ) ∶= ∑
R
r=0

1
r! ∆

r{ΦΦΦ(r)(t)}
⊺
{∫

1
0 ΦΦΦ(s)ΦΦΦ⊺(s)ds}

−1
ΦΦΦ(tj), σ2

j ∶= Var(εtj)

and V(t; ∆, R,ΦΦΦ) ∶= J−2
∑

J
j=1 σ2

j A2
tj
(t; ∆, R,ΦΦΦ) for all j, by Assumption 2(a) and the Lyapunov

CLT, it follows that

[V(t; ∆, R,ΦΦΦ)]
−1/2

{X̂ω(t +∆)− BK(t +∆, Xω)}

=

⎡
⎢
⎢
⎢
⎢
⎣

J
∑
j=1

σ2
j A2

tj(t; ∆, R,ΦΦΦ)

⎤
⎥
⎥
⎥
⎥
⎦

−1/2 J
∑
j=1

Atj(t; ∆, R,ΦΦΦ)εtj + op(1)

d
Ð→ N (0, 1).

Hence, under Lemma 1, the desired results follow with K, R →∞.

Appendix A.3. Proof of Lemma 1

Proof of Lemma 1. For any given state ω ∈ Ω, the continuous sample path Xω is bounded
on the compact set [0, 1], where we have M ∶= supt∈[0,1] ∣Xω(t)∣ <∞. Then, the result can be
justified by the proof of Theorem 5.14 from [51].

Appendix A.4. Proof of Lemma A1

Proof of Lemma A1. Lemma A1(a) can be justified by the results from previous studies:
for example, under Assumptions 1 to 3 in [53], which state conditions for the choice of basis
functions and the distribution of the sampling points.

For part (b), with properly selected basis functions that are continuously differ-
entiable up to a desired order, applying the mean-value theorem indicates the Lips-
chitz condition such that for all t1 < t2 ∈ T∆,ζ with t2 − t1 < ζ, ∣X̃ω,J(t1)− X̃ω,J(t2)∣ ≤

sups∈T∆,ζ
∣X̃(1)

ω,J(s)∣(t2 − t1), where sups∈T∆,ζ
∣X̃(1)

ω,J(s)∣ = Op(1). Then, based on the fact that
limζ→0 sup∣t1−t2∣<ζ ∣t1 − t2∣ = 0 for all t1, t2 ∈ T∆,ζ , the asymptotic stochastic equicontinuity of
{X̃ω,J} follows on T∆,ζ .

For part (c), note that the convergence of the functional estimators is achieved through
the convergence of the estimated basis coefficients, and the derivatives of these functional
estimators are obtained through the derivatives of the non-stochastic basis functions; hence,
the convergence of the higher-order derivatives of the estimated functions can be easily
justified by choosing the proper basis functions that are continuously differentiable up to a
desired order.

For part (d), similarly to the justification for (b), with properly selected basis functions, one
can determine that for all t1 < t2 ∈ N0(ζ), ∣X̃(r)

ω,J(t1)− X̃(r)
ω,J(t2)∣ ≤ sups∈[t1,t2]∣X̃

(r+1)
ω,J (s)∣(t2 − t1),

where sups∈[t1,t2]∣X̃
(r+1)
ω,J (s)∣ = Op(1) and limζ→0 supt1<t2∈N0(ζ)∣t2 − t1∣ = 0. Therefore, the

asymptotic stochastic equicontinuity of {X̃(r)
ω,J} on N0(ζ) for r = 1, . . . , K follows. The same

justification holds for N1−∆(ζ).

Appendix A.5. Proof of Lemma A2
Proof of Lemma A2. To verify Lemma A2(a), note that

∣lim
t→0

X̃(r)ω,J(t)− B(r)K (0, Xω)∣ ≤ ∣lim
t→0

X̃(r)ω,J(t)− X̃(r)ω,J(t)∣+ ∣X̃
(r)
ω,J(t)− B(r)K (t, Xω)∣+ ∣B

(r)
K (t, Xω)− B(r)K (0, Xω)∣.
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Given any $ > 0, there exists an η > 0 such that one can find a t for which there is a J̄
such that

P{max{∣lim
t→0

X̃(r)ω,J(t)− X̃(r)ω,J(t)∣, ∣X̃
(r)
ω,J(t)− B(r)K (t, Xω)∣, ∣B

(r)
K (t, Xω)− B(r)K (0, Xω)∣} < $} > 1− η, ∀J > J̄,

implying that P{∣limt→0 X̃(r)
ω,J(t)− B(r)

K (0, Xω)∣ < 3$} > 1− η. Therefore, with Lemma A1(c), we

can state that plimJ→∞ limt→0 X̃(r)
ω,J(t) = limt→0 B(r)

K (t, Xω) = limt→0 plimJ→∞ X̃(r)
ω,J(t).

For Lemma A2(b), applying Theorem 21.9 from [65], with X̃ω,J(t)− BK(t, Xω)
p
Ð→ 0 for

each t ∈ T∆,ζ according to Lemma A1(a), as well as the asymptotic stochastic equicontinuity
of {X̃ω,J(t)} on t ∈ T∆,ζ according to Lemma A1(b), the uniform convergence in probability

of X̃ω,J on T∆,ζ such that supt∈T∆,ζ
∣X̃ω,J(t)− BK(t, Xω)∣

p
Ð→ 0 follows. Hence, Lemma A2(b)

is verified.
For Lemma A2(c), since the proofs for the two convergences follow the same idea, we

only focus on t → 0+ and omit the proof under t → (1−∆)−. Let Bζ = N0(ζ)⋂[0, 1−∆]. Then,

Lemma A2(c) can be proved by induction—we show that plimJ→∞ X̃(1)
ω,J(0) = B(1)

K (0, Xω), and

we justify that plimJ→∞ X̃(r)
ω,J(0) = B(r)

K (0, Xω) implies plimJ→∞ X̃(r+1)
ω,J (0) = B(r+1)

K (0, Xω)

for r = 1, . . . , K − 1.
Similarly to the verification for Lemma A2(b) based on pointwise convergence and

asymptotic stochastic equicontinuity, by Lemmas A1(c) and (d), as well as Theorem 21.9
from [65], we can show that X̃(1)

ω,J converges uniformly in probability on Bζ , such that given
any $ > 0, there exists an η > 0 for which one can find a J̄ such that

P
⎧⎪⎪
⎨
⎪⎪⎩

sup
t∈Bζ

∣X̃(1)
J1

(t)− X̃(1)
J2

(t)∣ < $

⎫⎪⎪
⎬
⎪⎪⎭

> 1− η, ∀J1, J2 > J. (A1)

Under the same $, η, J1, and J2, for all τ ≠ 0 ∈ Bζ , applying the mean-value theorem
yields

∣
X̃J1(τ)− X̃J2(τ)− X̃J1(0)+ X̃J2(0)

τ − 0
∣ ≤ sup

t∈[0,τ]⊂Bζ

∣X̃(1)
J1

(t)− X̃(1)
J2

(t)∣ ≤ sup
t∈Bζ

∣X̃(1)
J1

(t)− X̃(1)
J2

(t)∣,

and with (A1), we have

P
⎧⎪⎪
⎨
⎪⎪⎩

sup
t≠0∈Bζ

∣
X̃J1(t)−X̃J2(t)−X̃J1(0)+X̃J2(0)

t ∣ < $

⎫⎪⎪
⎬
⎪⎪⎭

> 1− η. (A2)

We define the following two functions for t ≠ 0 ∈ Bζ :

gJ(t) =
X̃ω,J(t)− X̃ω,J(0)

t
and g(t) =

BK(t, Xω)− BK(0, Xω)

t
;

then, (A2) implies that gJ converges uniformly in probability on Bζ/{0}. Since X̃ω,J con-
verges uniformly to BK(⋅, Xω) in probability on Bζ , it follows that

plimJ→∞ gJ(t) = g(t), ∀t ≠ 0 ∈ Bζ . (A3)

Meanwhile, given the differentiability of X̃ω,J(t) and BK(t, Xω), we have

lim
t→0

gJ(t) = X̃(1)
ω,J(0) and lim

t→0
g(t) = B(1)

K (0, Xω). (A4)

Then, applying Lemma A2(a) on (A3) and (A4) indicates that plimJ→∞ X̃(1)
ω,J(0) =

B(1)
K (0, Xω).

Now suppose for a given r, where r = 1, . . . , K − 1, we have plimJ→∞ X̃(r)
ω,J(0) =

B(r)
K (0, Xω). Then, Lemmas A1(c) and (d) as well as Theorem 21.9 from [65] imply that
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X̃(r+1)
ω,J converges uniformly in probability on Bζ , such that given any $ > 0, there exists an

η > 0 for which one can find a J̄ such that P{supt∈Bζ
∣X̃(r+1)

J1
(t)− X̃(r+1)

J2
(t)∣ < $} > 1− η, for

all J1, J2 > J̄. Similarly to the previous proof, one can obtain

P
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

sup
t≠0∈Bζ

RRRRRRRRRRRRRR

X̃(r)
J1

(t)− X̃(r)
J2

(t)− X̃(r)
J1

(0)+ X̃(r)
J2

(0)

t

RRRRRRRRRRRRRR

< $

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

> 1− η.

Note that the pointwise consistency of X̃(1)
ω,J on Bζ can be shown by the same means as

for plimJ→∞ X̃(1)
ω,J(0) = B(1)

K (0, Xω), switching m with any point in the domain. Then, we
re-define the following two functions for t ≠ 0 ∈ Bζ :

gJ(t) =
X̃(r)

ω,J(t)− X̃(r)
ω,J(0)

t
and g(t) =

B(r)
K (t, Xω)− B(r)

K (0, Xω)

t
.

It is implied by the uniform convergence and the pointwise consistency that X̃(r)
ω,J

converges uniformly to B(r)
K (⋅, Xω) in probability on Bζ . It follows that

plim
J→∞

gJ(t) = g(t), ∀t ≠ 0 ∈ Bζ .

Meanwhile, given the differentiability of X̃(r+1)
ω,J (t) and B(r+1)

K (t, Xω), we have

lim
t→0

gJ(t) = X̃(r+1)
ω,J (0) and lim

t→0
g(t) = B(r+1)

K (0, Xω).

Then, again applying Lemma A2(a) indicates that plimJ→∞ X̃(r+1)
ω,J (0) = B(r+1)

K (0, Xω).

Appendix A.6. Proof of Lemma A3
Proof of Lemma A3. First, let ψ(q) ∶= f (BBB + q(AAA −BBB)) for q ∈ [0, 1]. Then, taking the first-
order derivative of ψ(q) with respect to q through the matrix argument of the function f
yields

ψ(1)
(q) = tr

⎡
⎢
⎢
⎢
⎣
{

∂ f (BBB + q(AAA −BBB))

∂(BBB + q(AAA −BBB))
}

⊺
{

∂(BBB + q(AAA −BBB))

∂q
}
⎤
⎥
⎥
⎥
⎦
= tr

⎡
⎢
⎢
⎢
⎣
{

∂ f (BBB + q(AAA −BBB))

∂(BBB + q(AAA −BBB))
}

⊺
(AAA −BBB)

⎤
⎥
⎥
⎥
⎦

.

By the mean-value theorem, there exists some q ∈ [0, 1] such that ψ(1)−ψ(0) = ψ(1)(q),
which is equivalent to

f (AAA)− f (BBB) = tr
⎡
⎢
⎢
⎢
⎣
{

∂ f (ZZZ)

∂ZZZ
}

⊺
(AAA −BBB)

⎤
⎥
⎥
⎥
⎦

.

Appendix B

Appendix B.1. FDA Results

This appendix presents the functional data predictions of return and volatility, the
corresponding K-S test results with different sample sizes, and the distribution of the
comparisons in relative MSFE (RMSFE). In particular, we adjusted our simulation by either
altering the observation frequency to daily or changing the rolling window to one month.
The prediction results are graphed in Figures A1, A2, A5, A6, A9 and A10. All the plots
of the one-step-ahead predictions are consistent with the scenario presented in the main
text, where our forecast results could correctly trace the trends of the underlying processes.
Further, Figures A4, A8 and A12 show that the predictions shared the same distribution as
the true underlying process at (almost) every time point, while Figures A3, A7 and A11
imply that the null hypothesis of distribution equality is rejected where the underlying
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processes show significant differences in the cross-comparison. In summary, the K-S test
results indicate that the FDA-based method appeared to correctly distinguish between the
processes with different limits in out-of-sample prediction and various sample sizes.

Figure A1. Functional data prediction, one-month rolling window, continuous returns.

Figure A2. Functional data prediction, one-month rolling window, continuous volatility.

Figure A3. K-S test, one-month rolling window, continuous observations, cross-comparison.

Figure A4. K-S test, one-month rolling window, continuous observations, comparison with the true
underlying process.
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Figure A5. Functional data prediction, eight-month rolling window, daily returns.

Figure A6. Functional data prediction, eight-month rolling window, daily volatility.

Figure A7. K-S test, eight-month rolling window, daily observations, cross-comparison.

Figure A8. K-S test, eight-month rolling window, daily observations, comparison with the true
underlying process.
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Figure A9. Functional data prediction, one-month rolling window, daily returns.

Figure A10. Functional data prediction, one-month rolling window, daily volatility.

Figure A11. K-S test, one-month rolling window, daily observations, cross-comparison.

Figure A12. K-S test, one-month rolling window, daily observations, comparison with the true
underlying process.

Appendix B.2. MLE Results

This section presents detailed information on the 420 rolling-window estimates.
Figures A14–A18 present the estimation results for each parameter. The three consec-
utive plots, from left to right, illustrate the distribution of the estimated values eliminating
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the 2.5% tail on each side to avoid plot distortion due to extreme values, the estimation
bias, and the rejection rate, respectively. Within each plot, the label “SS” corresponds to the
utilization of the SV model for estimating SV underlying processes, “SD” corresponds to the
employment of the SV model for DV underlying process estimation, “DD” corresponds the
use of the DV model for estimating DV underlying processes, and “DS” corresponds to the
use of the DV model for SV underlying process estimation. These figures suggest that MLE
offered dependable estimations under accurate specifications. However, its performance
lacked consistency when the underlying process was misspecified.

Figure A13. Unaffected MLE vs. FDA.

(a) Distribution of the estimates. (b) Distribution of the empirical bias. (c) Distribution of the rejection rates.

Figure A14. Estimation of â.
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(a) Distribution of the estimates. (b) Distribution of the empirical bias. (c) Distribution of the rejection rates.

Figure A15. Estimation of α̂.

(a) Distribution of the estimates. (b) Distribution of the empirical bias. (c) Distribution of the rejection rates.

Figure A16. Estimation of β̂.

(a) Distribution of the estimates. (b) Distribution of the empirical bias. (c) Distribution of the rejection rates.

Figure A17. Estimation of σ̂.
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(a) Distribution of the estimates. (b) Distribution of the empirical bias. (c) Distribution of the rejection rates.

Figure A18. Estimation of ρ̂.
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