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Abstract: This manuscript endeavors to establish a framework for the mapping of music onto a
three-dimensional structure. Our objective is to transform the guitar choruses of Beatles songs into
curves, with each chorus corresponding to its respective curve. We aim to investigate and characterize
the intricacy of each song by employing mathematical techniques derived from differential geometry,
specifically focusing on the total curvature of the chorus curve. Given that a single song may
possess varying chord progressions in different verses, the performer can determine the geometric
representation they aim to convey through the number of loops and the direction of the curve. The
overarching objective of our study is to enable viewers to identify specific songs or motives by
visually examining an object and exploring its geometric properties. Furthermore, we posit that
these ideas can provide composers with a fresh perspective on their own musical compositions
while also granting non-professional audiences a glimpse into the intricacies involved in the process
of composing.
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1. Introduction

The inception of our research was initiated through an informal dialogue among
amateur musicians, centering on the phenomenon of vibrational occurrences within the low-
frequency spectrum of music, thereby endowing it with a palpable, corporeal quality. This
discourse prompted us to embark on an exploration of the prospect of characterizing music
as a tangible entity. This contemplation, in turn, provoked our interest in examining music
as an object of study, with the aim of unraveling its intricacies and assessing its resemblance
to other specific compositions. Figure 1 is one of our results; three Beatles songs (with the
help of a designer) have been produced as physical objects by our mathematical model.
This visualization holds particular significance for an audience that lacks familiarity with
the fundamental principles of music theory, such as deciphering musical notation on a sheet.
By examining the object derived from the visualization, viewers can gain valuable insights
into the complexity of the music itself. This approach provides a unique opportunity for
individuals without a formal background in music to develop a rudimentary understanding
of its intricacies and appreciate the nuances involved.

To attain our objective, we will utilize initial chord data presented in the Western
chromatic scale. The objects and explorations will be specific to the guitar choruses of
Beatles songs, as referenced in the previous work by the authors [1].

Our proposed method involves the mapping of a given song, comprising triads
conforming to classical Western harmony, onto three-dimensional curves that can be math-
ematically explored.

The western chromatic scale is based on 12 notes, without loss of generality, starting
with the note A:

{A, A#, B, C, C#, D, D#, E, F, F#, G, G#} ,
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where each note in this list can be mapped to a number in the range of 0 through 11 (A→ 0
and G#→ 11). Chords are defined as a set of notes played together. A triad is a common
chord that is defined by a set of specific three different notes, as Fmaj = (F, A, C) = (8, 0, 3).
By this definition, if we transform the notes to natural numbers, then the notes can be
represented as elements of Z12 (modulo 12) and a given triad (x, y, z) ∈ Z3

12. Note that
this identification does not distinguish different voicings of a given chord. An example of
popular chords are major and minor. The major triad with root r, which is the relative shift
in terms of semi-tones, is composed of three tones, (r, r + 4, r + 7). As r represents the same
tone as r + 12, the respective intervals within the triad are (4, 3, 5), with the third entry, 5,
being the distance from r + 7 to r + 12. Similarly, the minor triad with root r is composed of
the three tones (r, r + 3, r + 7), inducing the intervals (3, 4, 5). In the other direction, each of
the 24 pairs (t, (a, b, c)), where t ∈ Z12 and (a, b, c) is either (4, 3, 5) or (3, 4, 5), corresponds
to a triad (t, t + a, t + a + b).

Figure 1. Three Beatles songs which we transformed into 3D physical objects, from left to right: Hello
Goodbye; All You Need Is Love; Like Dreamers Do. 3D printing Pla/Sla, by Lior Bar.

This formulation naturally lends itself to mathematical concepts rooted in group
theory, as explored in previous works such as [2,3].

We are intrigued by the possibility of providing a three-dimensional geometrical rep-
resentation for a set of triads, which could serve as a gateway to exploring music through
various mathematical tools. We contemplate whether a well-defined mathematical represen-
tation, based on the geometrical properties of the triads, can offer insights into the intended
message of the composer. This approach could potentially benefit not only individuals
without a background in reading musical notation but also those with a mathematical
aptitude, allowing them to engage with music in a novel and analytical manner.

Geometrical ideas for representing music have already been considered before. In [4,5],
a geometrical representation of harmony has been introduced with defining distances in
a polygon, which leads to better visualization of music. In [6], scale-theoretical ideas
which relate to geometry from the standpoint of voice have been presented. In [7], a
measure for determining the similarity between two melodies with multiple-note change
has been discussed based on pitch distance, the effects of primacy, and two-note changes.
In [8], a geometric model of psychoacoustics has been defined to express roughness and
harmonicity with the help of a height function.

Also, [9,10] propose a natural geometrical scheme for investigating and generating
varieties of pitch simultaneity and sound intensity using Eulerian flows with n-tuple Hopf
singularity for a sufficiently large n.

Even topological methods have also been considered. In [11] homotopy theory has
been applied to transformational theory, where two-dimensional diagrams capturing voice
leadings have been presented.

Affected by these ideas, we wonder how to transform songs into geometric objects
and evaluate or explore their complexity with a proper measure.
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The intuitive geometric approach involves defining a suitable distance metric, denoted
as d, between pairs of chords, represented as x and y, to establish a notion of proximity
in the geometric representation. This distance metric, denoted as d(x, y), provides a
local perspective by quantifying the dissimilarity or similarity between individual chords.
However, a limitation of this approach is that it primarily captures local relationships
and fails to provide a comprehensive understanding of the song’s global complexity. To
overcome this limitation, it becomes necessary to explore additional measures or techniques
that can offer a broader, more holistic perspective on the overall structure and complexity
of the song.

A chord is defined by three notes or more, but the first three notes: root, third, and
fifth, are the most important ones for harmonic sound. We mainly focused on choruses
defined by triads (we will not include in our model single notes) such that we reduce the
musical elements to the first three notes, as is the case in [2].

Each triad can be represented as a point in three-dimensional space. The song’s
progression is captured by establishing directed edges between every two successive triads,
forming a connected curve. This curve serves as a representation of the song or chorus and
encapsulates its complexity. By analyzing the geometric properties of this curve, we can
compare and evaluate different songs or choruses, enabling a quantitative assessment of
their relative complexities.

Following an extensive brainstorming session, we have reached a consensus to in-
vestigate this geometric object using differential geometry tools, specifically employing
the concept of total curvature. The theoretical foundation and initial findings of our ap-
proach have already been presented at the Bridges conference; for more details see [12]. By
leveraging total curvature as a measure, we aim to compare different songs and provide
a straightforward means for non-professional audiences to gain insights into the relative
complexities of the music, without requiring a prerequisite understanding of music theory.
Moreover, this method offers professional players and composers a novel tool to assess the
complexity and overall dynamics of a song.

To exemplify our findings, we select choruses from the Beatles’ repertoire, as docu-
mented in references such as [1,13]. To ensure simplicity in our demonstration, we establish
an initial condition. While we acknowledge that some musicians may express reservations
regarding this seemingly “dry” formulation, we maintain that the geometric properties
inherent in the analysis can still provide valuable insights into the measure of complexity
exhibited by the musical compositions.

2. Preliminaries

Given a sequence of chords, we aim to give a visual representation with a three-
dimensional geometrical structure and explore its mathematical properties.

In differential geometry, the curvature of a given point on the curve is the amount by
which a curve deviates from being a straight line; i.e., it measures the change in the angle of
the tangent along the curve at every point. In the plane, if a curve γ is twice differentiable
in the plane represented by γ(t) = ((x(t), y(t))), then the curvature κ of a given point can
be calculated by

κ =
det(γ′, γ′′)

||γ′||3
.

If the curve is given by an arc length parametrization, then the absolute value of the
curvature can be defined by κ(s) = ||γ′′(s)|| and can be generalized to any number
of dimensions.

In a two-dimensional plane, the sign of curvature (positive or negative) is determined
by the direction of the curve: clockwise rotation corresponds to negative curvature, while
counterclockwise rotation corresponds to positive curvature. However, the concept of
clockwise or counterclockwise rotation is not applicable in higher dimensions, as it is inher-
ently tied to the two-dimensional plane. Therefore, we adopt the convention of considering
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the absolute value of curvature in higher dimensions, as the sign of the curvature is not
defined in those cases. The curvature of a line is zero, and the curvature of a circle with
radius R is constant κ = ± 1

R since it deformed uniformly. It turns out that if the derivative
never vanishes, the curvature can give a local approximation of a circle, which is centered
at E(t) = γ(t) + κ(t). In the case of two segments (vectors), which are attached as CD and
DE, as in Figure 2a, the curvature is defined by the exterior angle between the segments
(vectors), i.e., α3 in the respective change.

This reasoning leads us to the definition of total curvature for a given curve, as outlined
in [14]. The total curvature is computed by summing the curvatures at all points along the
curve. For instance, in the case of a triangle, as all points on a straight line possess zero
curvature, only the vertices of the triangle contribute to the curvature, resulting in three
defined points of curvature.

Surprisingly, in the two-dimensional plane, if a closed curve is simple (non-self-
intersecting), the total curvature is always either ±2π, as described in [14]. In the case of a
triangle, the total curvature is precisely 2π when the curve is defined in a counterclockwise
direction or −2π when defined in a clockwise direction, as depicted in Figure 2a.

A simple closed curve can define various domains, each with distinct properties. One
such domain is referred to as a convex domain, which satisfies the condition that for any
two points, A and B, within the domain, the entire line segment connecting them, denoted
as AB, lies entirely within the domain. This can be visualized as the gray domain in
Figure 2a.

Another type of domain is a star domain, which possesses a unique central point,
denoted as A, such that for every point B within the domain, the line segment connecting
A and B, represented as AB, is entirely contained within the domain.

It turns out that in two-dimensional planes, the complexity of the shape defined by a
closed simple curve, such as whether it is convex, non-convex, or exhibits other intricate
characteristics, does not affect the total curvature. Irrespective of the shape’s complexity,
the total curvature of a closed simple curve in the plane remains constant at ±2π. This
intriguing property suggests that the total curvature is solely determined by the topological
properties of the curve (number of laps), disregarding its specific geometric configuration.

AA

BB

CC

DD

EE

(a)

<<

>

>

(b)
Figure 2. Different polygonal curves in the plane. (a) Total curvature 2π. (b) Total curvature zero.

When dealing with a closed but non-simple curve, the approach is to calculate the total
curvature by decomposing the curve into a collection of simply closed curves, each with a
clockwise or counterclockwise orientation. Each of these simply closed curves individually
possesses a total curvature of ±2π. By summing up the curvatures of these closed curves,
we can determine the total curvature of the initial closed curve.

Various techniques exist for calculating the total curvature, as have been given in [14].
These techniques offer valuable insights into quantifying the total curvature of curves with
different complexities and configurations.

Figure 2a illustrates a closed convex polygon defined by the ordered vertices {A, B, C, D, E}.
In this case, non-zero curvature occurs only at the external angles {α1 . . . α5}, which corre-
spond to changes in the vectors of the polygon’s edges. Since the curve is both simple and
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closed in a counterclockwise orientation, the total curvature of the curve is determined to
be 2π.

In Figure 2b, the domain is formed by two polygonal closed curves: one is defined in
a counterclockwise direction (with a respective curvature of 2π), while the other is defined
in a clockwise direction (with a respective curvature of −2π). As a result, the sum of the
curvatures of these two curves is zero.

These examples highlight how the orientation and arrangement of the curves can affect
their respective curvatures and, in turn, influence the total curvature of the closed domain.

This leads us to the conclusion that the number of laps are the topological property. If
the lap is counterclockwise, then the index of the curve is +1, and if the curve is clockwise,
then the index is −1 (for more details, see [14]).

3. Our Results
3.1. Curve Interpretation

Our objective is to establish a framework in which a given song, represented in three-
dimensional space, can be analyzed using the “total curvature” approach. This approach
enables us to evaluate the complexity of the song based on its geometric properties. By
understanding and incorporating these concepts, composers and musicians can enhance the
process of composition and performance. They can consider factors such as the number of
laps, direction, and other related elements to determine the appropriate chord progressions
and musical movements that align with the desired artistic expression. In the subsequent
discussion, we will delve further into these aspects.

To facilitate our geometrical representation, we will focus on guitar chords consisting
of triads, which are composed of three notes. In the case where a chord consists of more
than three notes, we will consider only the first three notes, following the approach outlined
in [2].

To represent these triads in a geometric context, we will map them to points in the
three-dimensional space Z12 × Z12 × Z12. This space allows for the incorporation of the
twelve possible pitches or tones in Western music theory. Each component of the point
represents a note within the chord, and the combination of these three components defines
the specific triad in our representation. By utilizing this mapping, we can explore and
analyze the geometric properties of the triads within a three-dimensional framework.

By considering each chord as a vertex, the sequence of chords can be represented as
an oriented curve. This curve connects the vertices in the order of their appearance in the
song, providing a visual depiction of the chord progression.

It is important to note that multiple curves can pass through the given set of vertices,
as there are various ways to connect them while preserving the sequence. However, our
mathematical exploration aims to find consistent results regardless of the specific curve
chosen. The analysis of the geometric properties and the application of mathematical tools
will ensure that the chosen curve accurately represents the underlying musical structure
and allows for meaningful comparisons and evaluations.

Notice that, with our geometrical approach, the sequence (A, G, B, A) and (A, B, G, A)
define the same curve but in opposite directions.

To facilitate the conversion of a computer plot into a physical object, we initially
developed a “working model” or technical model, as depicted in Figure 3. In this model,
we identified two key visual elements that we aimed to explore: (1) the curve representing
the chord progression and (2) the coordinate system.

The wire in the model represents the edges defined by the vertices, forming a polygonal
curve within three-dimensional space. This model served as a valuable tool from both a
mathematical and design perspective. Mathematically, it provided a natural representation
of a polygonal curve, which is one of the possible curve families that can pass through a
given sequence of vertices. From a design standpoint, the physical aspect of interacting
with the wire stimulated discussions regarding the use of different materials to convey
distinct sensory experiences associated with the transitions between successive chords.
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Figure 3. Our first experiment to define a sequence of triads into three-dimensional physical objects.
The chords as coordinates/vertices embedded in three-dimensional space. The wire moves along the
coordinates and represents chord progression, which leads to a polygonal curve.

Overall, this working model played a crucial role in bridging mathematical concepts
and design considerations, allowing us to further explore the geometric representation of
the music and consider the tangible aspects of the chord progression.

This polygonal curve will be our geometrical approach to expressing music. Figure 4,
shows how a smooth curve (the derivative is continuous as well) can be transformed to
a polygonal curve which preserves the total curvature properties. By these ideas, any
simple curve that goes through these vertices can be selected, so we choose the closed
polygonal curve.

(a)

OO

<<

>

<

> >

(b)

Figure 4. Take both curves counterclockwise. The index of the curves is five and the total curvature
is 10π. (a) A curve with four laps. (b) Approximation as a polygonal curve.

The following proposition will define exactly the set of songs/curves we will deal with.

Assertion 1. To streamline our analysis, we specifically focused on the choruses of songs where the
musical composition starts and ends with the same triad. This characteristic ensures that the chord
progression forms a closed curve, simplifying our geometric representation.

In instances where the chords or vertices give rise to two-sided directional edges, we define
the curvature as zero. This choice allows us to effectively handle cases where the curve transitions
between chords without introducing curvature variations.

Lastly, if the same chord repeats in a successive manner, from the geometrical point of view
there is no change in the chorus structure, so we will write this chord only once; as an example, see
the sequence in Equation (1), which defines the chorus of “Across the Universe”.

By imposing these simplifications, we aim to establish a clear and manageable frame-
work for studying the geometric properties of choruses in music. This focused approach
enables us to delve deeper into the analysis and interpretation of the musical structure
within a three-dimensional context.

The special case of choruses of two chords is trivial and will not be discussed in
our exploration.

Indeed, the characteristic of choruses in Western music often starting and ending
with the same chord is quite prevalent. A preliminary examination of Beatles songs,
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as documented in [1], reveals a considerable number of instances where this pattern is
observed. Songs such as “Across the Universe”, “All Together Now”, “Ask Me Why”,
“Baby in Black”, “Cry Baby Cry”, “Golden Slumbers”, “I’m So Tired”, “Julia”, and many
others follow this structure.

Having developed our mathematical formulation, we are now prepared to showcase
our construction and present the results, specifically focusing on the Beatles’ choruses.
By applying the total curvature approach and exploring the geometric properties of the
chord progressions, we aim to offer valuable insights into the complexity and structure of
these iconic songs. This analysis provides a unique perspective that is accessible to both
professional musicians and non-professional audiences with an interest in mathematics
and music. Through this endeavor, we hope to enrich the understanding and apprecia-
tion of the Beatles’ music and contribute to the broader exploration of music through a
mathematical lens.

The chorus of the Beatles’ song “Across the Universe” is defined by a sequence of
three chords. In this particular case, the chord progression follows the sequence

{(5, 9, 0), (0, 4, 7), (0, 4, 7), (10, 2, 5), (5, 9, 0), (0, 4, 7), (10, 2, 5), (5, 9, 0)} , (1)

which is a closed curve; see Figure 5. This visualization emphasizes the simplicity of the
chorus for the non-professional audience with the three-dimensional triangle (respective to
the three different chords), while from the mathematical point of view, the curve wraps the
triangle twice, which can be considered as an additional insight into the song structure. In
our model, we decided to include this number of laps (wrapping).

Figure 5. The Beatles: Across the Universe. The red dot represents the first vertex. The arrows
represent the curve direction. From left to right, 3D representation, projection (x, y) respective to
(root, third), projection (y, z) respective to (third, fifth), projection (z, x) respective to (third, root).

The chorus of “Ask Me Why”, is obtained by

{(7, 11, 2), (9, 0, 4), (9, 2, 6), (0, 4, 7), (9, 2, 6), (0, 4, 7), (7, 11, 2)} .

While the number of chords is similar to “Across the Universe”, it visualization is different.
First, as seen in Figure 6, while the three-dimensional curve is a simple curve, the projection
of the root and third leads to a point where the curve intersects itself. In addition, in each of
the projections, there are no laps. So the behavior of these two choruses that are represented
by curves is different (by a proper measure).

Note that in three-dimensions, only the absolute value of the curvature is well defined,
but since there is no curve direction (as clockwise or counterclockwise), the total curvature
is meaningless. This leads us to project the three-dimensional curve onto the plane in
three different ways by omitting one of the axes in each of the projections, where the total
curvature or index is well defined. This projection onto three planes (x, y), (y, z), (z, x)
leads to three total curvatures, which will be the respective characterizations of the three-
dimensional closed curve; i.e., each chorus has a respective vector of curvature which is
obtained by the projections. As we already discussed, this calculation of total curvature or
index for a close curve is determined by the index that holds the curve and not by local
property, so we can choose the edges as straight lines, a polygonal curve, and the curvature
will be obtained only in the vertices.
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Figure 6. The Beatles: Ask Me Why. From left to right, a 3D representation and the respective
projections. The numbers on the edges represent the direction of movement.

Remark 1. These projections show ‘the contribution’ of each note in the triad. If the plot is a thin
domain (as an acute triangle), this hints that the respective notes are located ‘nearby’ and vice versa,
as in some of the projections in the Beatles songs below.

Remark 2. Notice that curvature zero can be obtained in different cases, where the number of
clockwise laps is equal to the number of counterclockwise laps. This complexity, for a chorus with
more than three chords, led us to think of this case as an indicator function, i.e., if there exists such a
‘turn’ (curvature zero) or not.

3.2. Curvature as a Tool to Estimate Musical Complexity

Now, we are ready to apply our model. Figure 7 describes the process from the chorus
of “Get Back” to the respective curves. In a similar way to “Across the Universe”, a 3D
triangle is obtained. The (x, y) projection (green triangle) is a closed counterclockwise curve
with a respective total curvature of 2π. The second projection leads to the red triangle, with
a respective total curvature of −2π (closed clockwise curve). The third projection leads
to the blue triangle, with a total curvature −2π. So, using our visualization, all choruses
(geometric objects) which are defined by (2π,−2π,−2π) in the same equivalent class, i.e.,
have the same total maneuver which leans on the total curvature vector of the curve.

Figure 7. The Beatles: Get Back. From left to right: the chorus, the three-dimensional representation,
and the three projections. The dot in every curve is the first triad in the chorus. The total curvature of
the respective projection in the plane is (2π,−2π,−2π).

Figure 8 represents the Beatles “Like Dreamers Do” chorus; as can be seen, despite
the projections defining a non-convex domain, the (x, y) and (z, x) do not affect the total
curvature (or index). In the (y, z) projection, a kind of knot, which leads to curvature zero,
is obtained that can indicate a more complex move between chords compared to “Get Back”
and may indicate the guiding hand of the composer trying to transmit. Finally, this chorus
is defined by the total curvature vector (2π, 0,−2π).

Figure 8. The Beatles: Like Dreamers Do. The respective projection’s total curvature is (2π, 0,−2π).
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Figure 9 represents the Beatles “Hello, Goodbye” chorus. Notice that in the second
and third projections, some of the chords are on the same edge, which are repetitions, and
the numbering explains the direction of movement and gives the progression’s feel along
the curve. Notice that in the (y, z) projection the curve is wrapped twice—two laps. In the
first projection (x, y), the total curvature is zero and leads to a knot, ‘feel’. The respective
vector in this case is (0,−4π, 4π).

Figure 9. The Beatles: Hello, Goodbye. The respective projection’s total curvature is (0,−4π, 4π).

Figure 10 leads to the vector (−4π, 2π, 6π) and can give a glance to the audience
with no music theory background on how complex music can go with our geometrical
representation, where a few laps (clockwise or counterclockwise) can give a “dizzy feel”,
which may indicate that there exists at least one point in the projection, in which the curve
defined its index (for more details, see Winding numbers in [14]).

Figure 10. The Beatles: All You Need Is Love. The curve reveals the complexity of this song. The
respective projection’s total curvature is (−4π, 2π, 6π).

Remark 3. Since a major triad with root r is defined by (r, r + 4, r + 7) and a minor triad by
(r, r + 3, r + 7), if the chorus is not defined by a translation of a single chord, then the polygonal
curve (where the number of chords ≥ 3) cannot be embedded in the two-dimensional space; i.e., there
exists a polygonal projection for each of the two-dimensional axes (x, y), (y, z) and (z, x).

This exploration by a vector of curvature or index (by omitting 2π) can give us a
new dimension for exploring songs; it does not give attention to the number of chords
which define the song or the distance between them but examines the sequence of triads
that constructs the chorus as a curve. The direction of progression along them leads to
the respective behavior of the chorus, which is defined by laps, knots, and more, and all
together can indicate the global structure which has been determined by the composer.

Indeed, the theoretical approach of exploring songs as geometric objects based on
the progression of chords can establish connections between different songs that may not
share the exact same chord progression but exhibit similar global progressions along their
choruses. This highlights the importance of the overall pattern and movement of the curve
rather than the specific chords themselves.

Furthermore, considering that a song can have multiple versions with different chord
arrangements (such as live performances or recorded variations), the player or composer
has the flexibility to choose the desired geometrical properties that best represent the
intended musical motive. They can make decisions such as determining the number of
geometrical loops present in the curve, whether the curve changes direction, and more.
By manipulating the geometrical structure of the curve, the user can convey their artistic
interpretation and enhance the musical experience for themselves and the audience.

This approach provides a creative and intuitive way for players and composers to
engage with and shape the musical composition, allowing them to express their artistic
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vision through the chosen geometric properties of the curve. It opens up possibilities for
exploration, interpretation, and customization, ultimately enriching the musical experience
and offering new avenues for creativity.

One of the intriguing aspects of the method is its potential to sort choruses into
equivalent classes based on their total curvature. By assigning a measure of complexity
through the total curvature, choruses with similar geometric structures can be grouped
together, regardless of the specific chord progressions or musical styles they belong to.
This allows for a novel way of categorizing and comparing different songs, transcending
traditional genre boundaries.

Furthermore, the geometric structure of a chorus can serve as a common ground
to relate and connect various musical styles. Different musical styles may have distinct
chord progressions and harmonic patterns, but their underlying geometric structures can
reveal shared characteristics or similarities. This offers a fresh perspective on exploring and
understanding the relationships between different musical genres and styles, potentially
bridging the gap between diverse musical traditions.

By employing a geometrical framework, our method enables a unified approach to
analyze and interpret choruses across musical styles, fostering a deeper understanding of
the underlying structures that shape musical compositions. It opens up possibilities for
cross-genre collaborations, creative inspiration, and the development of new musical ideas
by drawing upon the geometric connections and relationships between different styles.

In Appendix A additional exploration of Beatles choruses, where all explorations
together give the reader an immediate chosen song comparison

4. Future Work

Approaching this subject matter from a mathematical standpoint, our primary ob-
jective is to delineate mathematical curves that encapsulate the entirety of a given song,
encompassing its various sections, such as the chorus, verse, and other distinct parts. Each
of these mathematical curves will be uniquely characterized by a different color, and when
combined, they will collectively serve as a graphical representation of the entire musical
composition, which may even be defined by different knots.

In addition, our ambition extends to the generalization of our findings into the realm
of surfaces, akin to the approach outlined in [15], where the Gauss–Bonnet theorem, as
expounded in [14], will play a pivotal role. This theorem provides a means of classifying
topological surfaces based on their total Gaussian curvature and geodesic curvature, af-
fording us a broader perspective on the mathematical representation of music within a
geometric context.

Lastly, from a design perspective, our current endeavor revolves around the devel-
opment of models that afford viewers the opportunity to physically engage with and
tactilely experience the progression of a musical composition, as illustrated in Figure 1. The
designer, through the judicious selection of materials, including those possessing varying
textures such as roughness and softness is poised to convey the nuanced interplay between
harmonious and cacophonous elements within the musical structure, particularly evident
when transitioning between two chords.

5. Summary and Conclusions

In this study, we present a methodology for representing the chorus of a song as a
curve and propose an approach to explore its characteristics using geometric principles. By
employing geometric ideas, we aim to convey the intricacy of a song to a non-professional
musical audience, providing them with a fresh perspective grounded in geometry. Fur-
thermore, this framework offers musicians a means to characterize and analyze their own
compositions through a geometric lens. We assert that our model has the potential to estab-
lish connections between compositions originating from diverse musical styles, employing
geometric objects and properties, such as total curvature, as unifying elements. Overall, our
findings suggest that incorporating geometry into the analysis of musical pieces enables a
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deeper understanding and appreciation of their complexity and facilitates novel avenues
for artistic exploration.
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Appendix A. Additional Explorations

Figure A1. The Beatles: Cry Baby Cry. (4π, 4π, 0).

Figure A2. The Beatles: Golden Slumbers. (−2π,−2π,−4π).

Figure A3. The Beatles: Julia. (2π, 2π,−4π).
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