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Abstract: In this paper, we construct approximate normal forms of the double-zero bifurcation for
a two-parameter jerk system exhibiting a non-degenerate fold bifurcation. More precisely, using
smooth invertible variable transformations and smooth invertible parameter changes, we obtain
normal forms that are also jerk systems. In addition, we discuss some of their parametric portraits.
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1. Introduction

The double-zero bifurcation, also called the Bogdanov–Takens bifurcation, can occur
in a continuous-time dynamical system ẋ = f (x, µ), x ∈ Rn, µ ∈ R2, n ≥ 2 when the system
has at the critical value of µ an equilibrium point with two zero eigenvalues and no other
eigenvalues on the imaginary axis (see, e.g., [1,2]).

The double-zero bifurcation can be met, for instance, in mechanical, electrical, and bi-
ological systems. For example, the analysis of mathematical models of an internally
constrained planar beam equipped with a lumped visco–elastic device and loaded by a
follower force [3] or of a non-linear cantilever beam that is externally damped and made of
a visco–elastic material [4] reveals among other solutions the existence of a double-zero
bifurcation. Oscillators and electronic circuits are modeled by differential equations, and in
some cases, they experience a double-zero bifurcation (see, e.g., [5–7]). Also, a double-zero
bifurcation appears in some chemical reactions (see, e.g., [8,9]) and in fluid mechanics
(see, e.g., [10,11]).

The importance of the double-zero bifurcation is highlighted by the following remark:
“One of the most important features of the Takens–Bogdanov bifurcation is that it warrants
the existence of global connections in its vicinity (a homoclinic orbit in the non-symmetric
case and a homoclinic or a heteroclinic orbit if the system is symmetric)” [12].

This local bifurcation was first analyzed by Bogdanov [13] and Takens [14] in the case
n = 2. Several normal forms of this bifurcation were reported in this case (see, e.g., [1]).
In fact, such a normal form is “the simplest parameter-dependent form to which any generic
two-parameter system exhibiting the bifurcation can be transformed by smooth invertible
changes of coordinates and parameters and (if necessary) time reparametrizations” [2].
Approximate normal forms are obtained by truncation of higher-order terms. In the n-
dimensional case n ≥ 3, the study of the double-zero bifurcation is carried out by reduction
on a local center manifold to the planar case. It is natural to ask whether such a reduction
can be avoided, i.e., whether n−dimensional normal forms can be obtained. We will give
an affirmative answer for n = 3.

Mathematics 2023, 11, 4468. https://doi.org/10.3390/math11214468 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11214468
https://doi.org/10.3390/math11214468
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-4697-8699
https://doi.org/10.3390/math11214468
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11214468?type=check_update&version=2


Mathematics 2023, 11, 4468 2 of 12

In this paper, we consider the jerk system
ẋ = y
ẏ = z
ż = j(x, y, z, α, β)

, (1)

where j is smooth and α, β ∈ R are parameters. Our goal is to obtain normal forms and
approximate normal forms for the double-zero bifurcation of system (1), which is also a
jerk system.

Particular cases of jerk systems have been widely investigated. Among topics, we recall
local stability and bifurcations [15–22], chaotic behavior [23–26], and image encryption and
cryptography [27,28].

The paper is organized as follows: In Section 2, we recall some results regarding
non-degenerate fold bifurcations. In Section 3, we derive jerk approximate normal forms
for system (1), and we discuss some of their parametric portraits.

2. The Fold Curve

Assume there are αc, βc such that system (1) displays a non-degenerate fold bifurcation
when α passes through the critical value αc and β = βc is fixed. Following [21], sufficient
conditions are given below:

F1. There is at the critical value (αc, βc) an equilibrium point E(xc, 0, 0) of system (1) with a
simple zero eigenvalue and no other eigenvalues on the imaginary axis, i.e., j(Ec) = 0,
jx(Ec) = 0, jy(Ec) 6= 0, jz(Ec) 6= 0;

F2. The transversality condition jα(Ec) 6= 0;
F3. The nondegeneracy condition jx2(Ec) 6= 0;

where Ec = (xc, 0, 0, αc, βc). We have denoted: jx =
∂j
∂x

, jα =
∂j
∂α

, jx2 =
∂2 j
∂x2 .

It is known that if the fold conditions hold, then “generically, there is a bifurcation
curve F in the (α, β)-plane along which the system has an equilibrium exhibiting the same
bifurcation” [2]. For the sake of completeness, we prove this result in our case.

Lemma 1. Let αc, βc be such that E(xc, 0, 0) is an equilibrium point of system (1) and conditions
F1–F3 are satisfied. Then the standard projection of the curve

Γ :
{

j(x, 0, 0, α, β) = 0
jx(x, 0, 0, α, β) = 0

in the (α, β)-plane is a curve F along which system (1) has an equilibrium exhibiting a non-
degenerate fold bifurcation.

Proof. Considering the coordinates (x, α, β), Γ is the intersection of two surfaces. Clearly,
(xc, αc, βc) belongs to this intersection. Since

rank
[

jx jα jβ
jx2 jxα jxβ

]∣∣∣∣
Ec

= 2,

where Ec = (xc, 0, 0, αc, βc), Γ is a curve passing through (xc, αc, βc). Moreover, since

j(Ec) = 0, jx(Ec) = 0, and
D(j, jx)
D(x, α)

(Ec) = −jα(Ec)jx2(Ec) 6= 0, by the Implicit Function

Theorem (IFT), there are the functions x = x(β), α = α(β) in a neighborhood V of βc such
that x(βc) = xc, α(βc) = αc and which verify the equations of Γ. Hence, (x(β), α(β), β)
is a parametrization of Γ in a neighborhood of (xc, αc, βc). In addition, for all β ∈ V,
Eβ(x(β), 0, 0) is an equilibrium point of system (1) and by continuity, the other fold con-
ditions will be satisfied. Consequently, the construction can be repeated to extend the
curve further.
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The projection (x, α, β) 7→ (α, β) will give the fold bifurcation curve F.

3. The Double-Zero Bifurcation

In this section, we deduce jerk approximate normal forms for the double-zero bifurca-
tion of a jerk system. Also, we give parametric portraits of these.

When the parameters α and β vary simultaneously to track the bifurcation curve F,
another real eigenvalue can approach the imaginary axis, which leads to a double-zero
bifurcation generally.

Consider the following mechanism of the double-zero bifurcation: Let F = {(α(β), β) :
β ∈ R} be the fold bifurcation curve given by Lemma 1. The parameter β varies such that
E(x(β), 0, 0) is an equilibrium point that fulfills the conditions F1–F3. Taking into account
the characteristic polynomial of the equilibrium E(x(β), 0, 0) of system (1), namely

P(λ) = λ3 − jz(Eβ)λ
2 − jy(Eβ)λ,

where Eβ = (x(β), 0, 0, α(β), β), we assume there is a unique β = β0 and consequently a
unique pair (α0, β0) ∈ F, α0 = α(β0) such that

jy(x(β0), 0, 0, α0, β0) = 0.

Therefore, we get the equilibrium E0(x(β0), 0, 0) with a double-zero eigenvalue when
β passes through the critical value β0. Obviously, we can consider α instead of β.

In the following, we consider E0 = O(0, 0, 0) and (α0, β0) = (0, 0); we denote
E = (0, 0, 0, α, β) and 0̄ = (0, 0, 0, 0, 0). We are concerned with local properties: that is,
(α, β) moves in the parametric plane with |(α, β)| =

√
α2 + β2 being sufficiently small.

First, we use Taylor’s expansion of the function j with respect to (x, y, z) at (0, 0, 0):

j(x, y, z, α, β) = j(E) + jx(E)x + jy(E)y + jz(E)z +
1
2

jx2(E)x2 +
1
2

jy2(E)y2

+
1
2

jz2(E)z2 + jxy(E)xy + jxz(E)xz + jyz(E)yz +O(xiyjzk),

where i + j + k ≥ 3. We have j(0̄) = jx(0̄) = jy(0̄) = 0, jz(0̄) 6= 0, jx2(0̄) 6= 0.
We perform the parameter-dependent shift of the first variable, i.e.,

x = ε + δ(α, β), y = y, z = z,

and system (1) becomes 
ε̇ = y
ẏ = z
ż = j̃(ε, y, z, α, β)

, (2)

where

j̃(ε, y, z, α, β) =

(
j(E) + jx(E)δ +

1
2

jx2(E)δ2 +O(δ3)

)
+
(

jx(E) + jx2(E)δ +O(δ2)
)

ε

+
(

jy(E) + jxy(E)δ +O(δ2)
)

y +
(

jz(E) + jxz(E)δ +O(δ2)
)

z (3)

+
1
2

jx2(E)ε2 +
1
2

jy2(E)y2 +
1
2

jz2(E)z2 + jxy(E)εy + jxz(E)εz + jyz(E)yz

+O((ε + δ)iyjzk), i + j + k ≥ 3.

Now we try to find δ such that one of the linear terms vanishes via IFT. We have
two cases.

Case I. The annihilation of the term proportional to y.
Let f (α, β, δ) = jy(E) + jxy(E)δ +O(δ2) = jy(E) + jxy(E)δ + ϕ(α, β, δ)δ2.
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We have f (0, 0, 0) = jy(0̄) = 0 and fδ(0, 0, 0) = jxy(0̄). Imposing the condition
jxy(0̄) 6= 0, we can apply IFT; thus, there is the function δ = δ(α, β) with δ(0, 0) = 0
such that f (α, β, δ(α, β)) = 0 in the neighborhood of (0, 0). Moreover

δ(α, β) = −
jyα(0̄)
jxy(0̄)

α−
jyβ(0̄)
jxy(0̄)

β +O(αiβj), i + j ≥ 2.

We replace the above δ in (3), and then we expand in Taylor series with respect to
(α, β) at (0, 0), knowing that j(0̄) = jx(0̄) = jy(0̄) = 0, jz(0̄) 6= 0, jx2(0̄) 6= 0, jxy(0̄) 6= 0,
jα 6= 0. We have

j̃(ε, y, z, α, β) =
(

jα(0̄)α + jβ(0̄)β +O(αiβj)
)

+

(
jxα(0̄)jxy(0̄)− jx2(0̄)jyα(0̄)

jxy(0̄)
α +

jxβ(0̄)jxy(0̄)− jx2(0̄)jyβ(0̄)
jxy(0̄)

β +O(αiβj)

)
ε

+

(
jz(0̄)−

jyα(0̄)jxz(0̄)
jxy(0̄)

α−
jyβ(0̄)jxz(0̄)

jxy(0̄)
β +O(αiβj)

)
z

+
1
2

(
jx2(0̄) + jx2α(0̄)α + jx2β(0̄)β +O(αiβj)

)
ε2

+
1
2

(
jy2(0̄) + jy2α(0̄)α + jy2β(0̄)β +O(αiβj)

)
y2

+
1
2

(
jz2(0̄) + jz2α(0̄)α + jz2β(0̄)β +O(αiβj)

)
z2

+
(

jxy(0̄) + jxyα(0̄)α + jxyβ(0̄)β +O(αiβj)
)

ε y

+
(

jxz(0̄) + jxzα(0̄)α + jxzβ(0̄)β +O(αiβj)
)

ε z

+
(

jyz(0̄) + jyzα(0̄)α + jyzβ(0̄)β +O(αiβj)
)

yz

+O(εkylzmαnβp), i + j ≥ 2, k + l + m ≥ 3, n + p ≥ 0.

Consider the change in parameters near the origin (α, β) 7→ (ν1, ν2) given by

ν1 = jα(0̄)α + jβ(0̄)β +O(αiβj)

ν2 =
jxα(0̄)jxy(0̄)− jx2(0̄)jyα(0̄)

jxy(0̄)
α +

jxβ(0̄)jxy(0̄)− jx2(0̄)jyβ(0̄)
jxy(0̄)

β +O(αiβj).

The above the map is regular if

D(ν1, ν2)

D(α, β)

∣∣∣∣
(0,0)

=
1

2jxy(0̄)

∣∣∣∣ jα(0̄) jβ(0̄)
jxα(0̄)jxy(0̄)− jx2(0̄)jyα(0̄) jxβ(0̄)jxy(0̄)− jx2(0̄)jyβ(0̄)

∣∣∣∣ 6= 0,

which is equivalent in our hypothesis to the regularity of the map

(x, α, β) 7→ (j(x, 0, 0, α, β), jx(x, 0, 0, α, β), jy(x, 0, 0, α, β))

at the origin.
The above change in parameters transforms system (2) in

ε̇ = y
ẏ = z
ż = j̃(ε, y, z, ν1, ν2)

, (4)
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where

j̃(ε, y, z, ν1, ν2) = ν1 + ν2ε +
(

jz(0̄)z +O(ν
g
1 νh

2 )
)
+

(
1
2

jx2(0̄) +O(ν
g
1 νh

2 )

)
ε2

+
1
2

jy2(0̄)y2 +
1
2

jz2(0̄)z2 + jxy(0̄)εy + jxz(0̄)εz + jyz(0̄)yz

+O(εiyjzkµl
1µm

2 ) +O(εnypzqµr
1µs

2),

g + h ≥ 1, i + j + k = 2, (i, j, k) 6= (2, 0, 0), l + m ≥ 1, n + p + q ≥ 3, r + s ≥ 0.
We denote A(ν1, ν2) =

1
2 (jx2(0̄) + O(νi

1ν
j
2)). Since A(0, 0) = 1

2 jx2(0̄) 6= 0, this results
in A(ν1, ν2) 6= 0 near (0, 0). Using the transformation

X = A(ν1, ν2)ε, Y = A(ν1, ν2)y, Z = A(ν1, ν2)z, µ1 = A(ν1, ν2)ν1, µ2 = ν2,

and
1

A(ν1, ν2)
=

2
jx2(0̄)

+O(νi
1ν

j
2), i + j ≥ 1,

system (4) can be written as

Ẋ = Y
Ẏ = Z
Ż = µ1 + µ2X + X2 + cZ + dXY + ϕ(µ1, µ2)Z

+
jy2(0̄)

jx2(0̄)
Y2 +

jz2(0̄)
jx2(0̄)

Z2 +
2jxz(0̄)
jx2(0̄)

XZ +
2jyz(0̄)
jx2(0̄)

YZ

+O(XiY jZkµl
1µm

2 ) +O(XnYpZqµr
1µs

2),

(5)

where i + j + k = 2, i 6= 2, l + m ≥ 1, n + p + q ≥ 3, r + s ≥ 0, c = jz(0̄) 6= 0, d =
2jxy(0̄)
jx2(0̄)

6=

0, ϕ(0, 0) = 0.
In conclusion, we have obtained the following theorem.

Theorem 1. Let the jerk system ẋ = y, ẏ = z, ż = j(x, y, z, α, β), where j is smooth.
Assume that the following conditions are fulfilled:

DZ1. j(0̄) = 0, jx(0̄) = 0, jy(0̄) = 0, jz(0̄) 6= 0;
DZ2. jα(0̄) 6= 0;
DZ3. jx2(0̄) 6= 0, jxy(0̄) 6= 0;
DZ4. The map (x, α, β) 7→ (j(x, 0, 0, α, β), jx(x, 0, 0, α, β), jy(x, 0, 0, α, β)) is regular at (0, 0, 0).

Then the considered system has at (α, β) = (0, 0) the equilibrium O(0, 0, 0) with a double-zero
eigenvalue and there are smooth invertible variable transformations and smooth invertible parameter
changes, which together reduce the system to

Ẋ = Y
Ẏ = Z
Ż = µ1 + µ2X + X2 + cZ + dXY + F(X, Y, Z, µ1, µ2)

, (6)

where c = jz(0̄) 6= 0, d =
2jxy(0̄)
jx2(0̄)

6= 0, F(X, Y, Z, µ1, µ2) = ϕ(µ1, µ2)Z +
jy2(0̄)

jx2(0̄)
Y2 +

jz2(0̄)
jx2(0̄)

Z2 +
2jxz(0̄)
jx2(0̄)

XZ +
2jyz(0̄)
jx2(0̄)

YZ + O(XiY jZkµl
1µm

2 ) + O(XnYpZqµr
1µs

2), i + j + k = 2,

i 6= 2, l + m ≥ 1, n + p + q ≥ 3, r + s ≥ 0, and ϕ is a smooth function with ϕ(0, 0) = 0.
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Remark 1. We notice the similarity between the reduced jerk system (6) and Bogdanov’s normal
form of the double-zero bifurcation on R2 given by (see, e.g., [2]){

Ẋ = Y
Ẏ = µ1 + µ2X + X2 ± XY

. (7)

Because c, d 6= 0 and the local stability and some local bifurcations are related to
the coefficients of the characteristic polynomial, we conclude that for a jerk system, an
approximate normal form for the double-zero bifurcation is given by the system

ẋ = y
ẏ = z
ż = µ1 + µ2x + x2 + cz + dxy

, (8)

where c, d ∈ R, c, d 6= 0 are fixed.
It is easy to see that if µ2

2 − 4µ1 > 0, system (8) has two equilibria E±(x±, 0, 0),

x± =
−µ2±

√
µ2

2−4µ1
2 , which collide when µ2

2 − 4µ1 = 0 and then disappear for µ2
2 − 4µ1 < 0.

Moreover, the characteristic polynomial at E± is given by

PE±(λ) = λ3 − cλ2 − dx±λ∓
√

µ2
2 − 4µ1.

The fold curve is F = {(µ1, µ2) : µ2
2 − 4µ1 = 0}, and λ1 = λ2 = 0 iff (µ1, µ2) = (0, 0).

Following [21], if the characteristic polynomial has the form P(λ) = λ3− cλ2− bλ− a,
then the Hopf bifurcation occurs if a < 0, b < 0, c < 0, a + bc > 0; hence, it cannot occur
at E+.

For E−, let a = −
√

µ2
2 − 4µ1, b = dx− = − µ2+

√
µ2

2−4µ1
2 d.

Assume c < 0. At E−, we obtain the Hopf bifurcation curve

H = {(µ1, µ2) : (2 + cd)
√

µ2
2 − 4µ1 + cdµ2 = 0},

which depends on c and d. In fact, H is half of the parabola µ1 = cd+1
(cd+2)2 µ2

2 for

d ∈ (−∞, 0) ∪ (0,− 1
c ) ∪ (− 1

c ,− 2
c ) ∪ (− 2

c , ∞), the negative semi-axis µ2 = 0 for d = − 2
c ,

and the positive semi-axis µ1 = 0 for d = − 2
c . Moreover, for c < 0, we get that E+

is an unstable equilibrium point with a two-dimensional stable manifold; thus, it does
not bifurcate.

Now, let d < 0. Consider the parametric portrait given in Figure 1, where H is
the above Hopf curve and F+,F− are the branches of the fold curve F separated by the
double-zero point (0, 0).

  (d4 
                                                                                                    

   

                                      

  

                                                                

  

ℱ+ 

ℱ− 
H 

2 
 

 

µ2 

     3 1 

µ1 

Figure 1. The parametric portrait for local bifurcations of system (8) for c < 0, d < 0.
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In region 1, there are no equilibrium points. On the curve F−, an equilibrium is born
and splits into the asymptotically stable node (or focus-node) E− and the unstable saddle
(or saddle-focus) E+ in the region 2. Hence system (8) displays a saddle–node bifurcation
when (µ1, µ2) crosses the fold curve F−. In region 3, E− is an unstable equilibrium point
with a one-dimensional stable manifold; hence, it loses stability when the curve H is crossed.
Moreover, a Hopf bifurcation occurs, and a stable limit cycle is born (we assume that the
first Lyapunov coefficient does not vanish). The unstable equilibria E+ and E− collide
when (µ1, µ2) ∈ F+ and then disappear when returning to region 1; thus, a degenerate fold
bifurcation occurs. We conclude that there are no other local bifurcations in the dynamics
of system (8) in the case c < 0, d < 0.

We notice that the above scenario is similar to that which takes place for Bogdanov’s
normal form (7) (see [2]). As is pointed out in [2], “. . . finally return to region 1, no limit
cycles must remain. Therefore, there must be global bifurcations ’destroying’ the cycle
somewhere between H and F+”. Consequently, a global bifurcation has to occur for
system (8) in this case.

In Figure 2, we present such a homoclinic bifurcation obtained by numerical simula-
tions. We fix c = −2, d = −5, µ2 = −1.2, and we vary the parameter µ1. Considering the
initial point (0.3463, 0.8131,−0.1167), we obtain an asymptotically stable orbit for µ1 = 0.15,
which turns into a stable limit cycle at the above-mentioned Hopf curve. The limit cycle
deforms (µ1 = 0.1, µ1 = −0.01) and finally becomes a homoclinic orbit (plotted here for
µ1 = −0.0738 using the initial point (−0.3142, 1.1737, 1.3654): the red part of the homoclinic
orbit corresponds to t ∈ (−∞, 0) and the blue one to t ∈ [0, ∞)).

Figure 2. The transition from an asymptotically stable orbit to a homoclinic orbit of system (8) via
limit cycles for c < 0, d < 0.

In the cases for which d ∈ (0,− 1
c )∪ (−

1
c ,− 2

c )∪ (−
2
c , ∞), we obtain similar parametric

portraits. The difference is that the regions 2 and 3 and the curves F− and F+ change
their roles.
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Now, assume that c > 0. We obtain that E− is an unstable equilibrium point with
an one-dimensional stable manifold; thus, it does not bifurcate. Moreover, in this case
system (8) does not experience a Hopf bifurcation.

Let d > 0, and the parametric portrait given in Figure 3, where B is half of the parabola
µ1 = cd+1

(cd+2)2 µ2
2 with µ2 > 0 and F+,F−, is as above.

  (d4 
                                                                                                    

   

                                      

  

                                                                

  

ℱ+ 

ℱ− 

B 

4 

 

 

µ2 

     5 1 

µ1 

Figure 3. The parametric portrait for local bifurcations of system (8) for c > 0, d > 0.

Again, there are no equilibrium points in region 1. Crossing the curve F+, an equi-
librium is born and separates into the unstable node (or focus-node) E+ and the unstable
saddle (or saddle-focus) E− in region 4. Since both equilibria are unstable, system (8) does
not display a saddle–node bifurcation in the classic sense: that is, a stable node and a saddle
coalesce. Anyway, a fold bifurcation occurs in the considered dynamics. In region 5, E+ is
an unstable equilibrium point with a two-dimensional stable manifold. Therefore, crossing
the curve B, the dimension of the stable manifold of E+ changes. The saddles E+ and
E− collide when (µ1, µ2) crosses F− and then disappear when returning to region 1; thus,
a degenerate fold bifurcation occurs. We conclude that there are no other local bifurca-
tions in the dynamics of system (8) in this case. Similar bifurcation diagrams are obtained
when d < 0.

Case II. The annihilation of the term proportional to ε.
Let g(α, β, δ) = jx(E) + jx2(E)δ +O(δ2) = jx(E) + jx2(E)δ + ϕ(α, β, δ)δ2.
We have g(0, 0, 0) = jx(0̄) = 0 and gδ(0, 0, 0) = jx2(0̄) 6= 0. By IFT, there is a function

δ = δ(α, β) with δ(0, 0) = 0 such that g(α, β, δ(α, β)) = 0 in the neighborhood of (0, 0).
Moreover,

δ(α, β) = − jxα(0̄)
jx2(0̄)

α−
jxβ(0̄)
jx2(0̄)

β +O(αiβj), i + j ≥ 2.

We proceed as in the previous case. Now we consider the change in parameters
(α, β) 7→ (µ1, µ2) near the origin given by

ν1 = jα(0̄)α + jβ(0̄)β +O(αiβj)

ν2 = −
jxα(0̄)jxy(0̄)− jx2(0̄)jyα(0̄)

jx2(0̄)
α−

jxβ(0̄)jxy(0̄)− jx2(0̄)jyβ(0̄)
jx2(0̄)

β +O(αiβj).

The above map is regular in (0, 0) if the map

(x, α, β) 7→ (j(x, 0, 0, α, β), jx(x, 0, 0, α, β), jy(x, 0, 0, α, β))

is also regular at (0, 0, 0).
Consequently, system (2) is transformed into the system given in the next theorem.
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Theorem 2. Let the jerk system ẋ = y, ẏ = z, ż = j(x, y, z, α, β), where j is smooth.
Assume that the following conditions are fulfilled:

DZ1. j(0̄) = 0, jx(0̄) = 0, jy(0̄) = 0, jz(0̄) 6= 0;
DZ2. jα(0̄) 6= 0;
DZ3. jx2(0̄) 6= 0;
DZ4. The map (x, α, β) 7→ (j(x, 0, 0, α, β), jx(x, 0, 0, α, β), jy(x, 0, 0, α, β)) is regular at (0, 0, 0).

Then the considered system has at (α, β) = (0, 0) the equilibrium O(0, 0, 0) with a double-zero
eigenvalue, and there are smooth invertible variable transformations and smooth invertible parameter
changes, which together reduce the system to

Ẋ = Y
Ẏ = Z
Ż = µ1 + µ2Y + cZ + X2 + G(X, Y, Z, µ1, µ2)

, (9)

where c = jz(0̄) 6= 0, G(X, Y, Z, µ1, µ2) = ϕ(µ1, µ2)Z +
jy2(0̄)

jx2(0̄)
Y2 +

jz2(0̄)
jx2(0̄)

Z2 +
2jxy(0̄)
jx2(0̄)

XY +

2jxz(0̄)
jx2(0̄)

XZ +
2jyz(0̄)
jx2(0̄)

YZ +O(XiY jZkµl
1µm

2 ) +O(XnYpZqµr
1µs

2), i + j + k = 2, i 6= 2, l + m ≥

1, n + p + q ≥ 3, r + s ≥ 0, and ϕ is a smooth function with ϕ(0, 0) = 0.

Remark 2. In this case, the reduced jerk system (9) is similar to the normal form of the double-zero
bifurcation on R2 given by Guckenheimer and Holmes [1]:{

Ẋ = Y
Ẏ = µ1 + µ2Y + X2 + dXY

.

Now, we consider for a jerk system another approximate normal form for the double-
zero bifurcation given by the system

ẋ = y
ẏ = z
ż = µ1 + µ2y + cz + x2 + dxy

, (10)

where c, d ∈ R, c 6= 0 are fixed.
If µ1 < 0, system (10) has two equilibria E±(x)(±√−µ1, 0, 0), which coalesce when

µ1 = 0 and then disappear for µ1 > 0. The characteristic polynomial at E± is given by

PE±(λ) = λ3 − cλ2 − (µ2 ± d
√
−µ1)λ∓ 2

√
−µ1.

The fold curve is F = {(µ1, µ2) : µ1 = 0}, and λ1 = λ2 = 0 iff (µ1, µ2) = (0, 0).
The Hopf bifurcation cannot occur at E+. For E−, we denote a = −2

√−µ1,
b = µ2 − d

√−µ1.
Let c < 0. It follows that E+ is an unstable equilibrium point with a two-dimensional

stable manifold; thus, it does not bifurcate.
At E−, we obtain the Hopf bifurcation curve

H = {(µ1, µ2) : cµ2 − (2 + cd)
√
−µ1 = 0}.

In fact, H is half of the parabola µ1 = − c2

(cd+2)2 µ2
2 for d ∈ (−∞,− 2

c ) ∪ (− 2
c , ∞), and

the negative semi-axis µ2 = 0 for d = − 2
c .

Now, let d ≤ 0. We obtain the parametric portrait given in Figure 4, where H is
the above Hopf curve and F+,F− are the branches of the fold curve F separated by the
double-zero point (0, 0). Also, the behavior of system (10) in each region is the same as
of system (8) in the case c < 0, d < 0 (see Case 1). For d ∈ (0,− 2

c ) ∪ (− 2
c , ∞), we obtain

similar parametric portraits.
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Figure 4. The parametric portrait for local bifurcations of system (10) for c < 0, d < 0.

In the case c > 0, we obtain that E− is an unstable equilibrium point with a one-
dimensional stable manifold; thus, it does not bifurcate. In addition, a Hopf bifurcation
does not occur in the dynamics of system (10).

For d > 0, we get the parametric portrait given in Figure 5, where B is the parabola
µ1 = − c2

(cd+2)2 µ2
2 with µ2 < 0 and F+,F− are as above.

  (d4 
                                                                                                    

   

                                      

  

                                                                

  

ℱ+ 

ℱ− 
B 6 

 

 

µ2 

   7 1 

µ1 

Figure 5. The parametric portrait for local bifurcations of system (10) for c > 0, d > 0.

In this case, there are no equilibrium points in region 1, and an equilibrium appears
when (µ1, µ2) ∈ F−. This point splits into the unstable node (or focus-node) E+ and the
unstable saddle (or saddle-focus) E− in the region 6. Crossing the curve B, E+ changes its
number of negative eigenvalues, and in region 7, it has a two-dimensional stable manifold.
The saddles E+ and E− collide when (µ1, µ2) crosses F+ and then disappear when returning
to region 1; thus, a degenerate fold bifurcation occurs. We conclude that there are no other
local bifurcations in the dynamics of system (10) in this case. Similar bifurcation diagrams
are obtained when d ≤ 0.

Remark 3. It is known that the normal forms for the double-zero bifurcation given by Bogdanov [13],
Takens [14], and Guckenheimer and Holmes [1] are equivalent. In our case, the approximate
normal forms (8) and (10) have similar parametric portraits. Moreover, if c < 0, d < 0, the local
bifurcations are the same as those obtained for the Bogdanov normal form (see [2]) and Guckenheimer
and Holmes (see [1]), respectively. It remains an open problem to establish if a jerk system and the
corresponding approximate normal form are locally topologically equivalent: that is, the construction
of a homeomorphism that maps orbits of the first system onto orbits of the second system.
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4. Conclusions

In this paper, we have studied the double-zero bifurcation of an arbitrary
two-parameter jerk system. This bifurcation is associated with the appearance of two
zero eigenvalues. In the two-dimensional case, the behavior of a system that displays
such a bifurcation near the critical values of the parameters is given by the behavior of a
normal form. For an n−dimensional dynamical system, particularly a jerk system, a normal
form is obtained by reduction on a local center manifold. To avoid this reduction, using
invertible coordinate and parameter changes, we have derived approximate normal forms
for a double-zero bifurcation of an arbitrary two-parameter jerk system that continues
being a jerk system. We have obtained the simplest jerk systems that experience such a
bifurcation. In addition, we have given some parametric portraits and have studied the
local behavior of these systems.
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