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Abstract: In this paper, we study the space of G-permutation degree of some classes of topological
spaces and the properties of the functor SPn

G of G-permutation degree. In particular, we prove: (a) If a
topological space X is developable, then so is SPn

GX; (b) If X is a Moore space, then so is SPn
GX; (c) If

a topological space X is an M1-space, then so is SPn
GX; (d) If a topological space X is an M2-space,

then so is SPn
GX.

Keywords: functor of permutation degree; developable space; Moore space; M1-space; M2-space;
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1. Introduction

Let F be a covariant functor acting on a class of topological spaces. The following
natural general problem in the theory of covariant functors was posed by V. V. Fedorchuk
at the Prague Topological Symposium in 1981 (see [1]):

Let P be a topological property and F a covariant functor. If a topological space
X has the property P , then whether F(X) has the same property, and vice versa,
if F(X) has the property P , does the space X also have the property P?

This paper deals with such questions.
Let G be a subgroup of the symmetric group Sn, n ∈ N, of all permutations of the

set {1, 2, . . . , n}, and let X be a topological space. On the space Xn, define the following
equivalence relation rG: for elements x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) in Xn

x rG y⇔ there is σ ∈ G with yi = xσ(i), 1 ≤ i ≤ n.

The relation rG is called the G-symmetric equivalence relation. The equivalence class
of an element x ∈ Xn is denoted by [x]G or [(x1, x2, . . . , xn)]G. The quotient space Xn/rG
(equipped with the quotient topology of the topology on Xn) is called the space of G-
permutation degree of X and is denoted by SPn

GX. The quotient mapping of Xn to this space
is denoted by πs

n,G; when G = Sn, one writes πs
G.

Let f : X → Y be a continuous mapping. Define the mapping SPn
G : SPn

GX → SPn
GY by

SPn
G f ([x]G) = [( f (x1), f (x2), . . . , f (xn))]G, [x]G ∈ SPn

GX.

It is easy to verify that SPn
G as defined is a functor in the category of compacta. This

functor is called the functor of G-permutation degree.
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In [1,2], V. V. Fedorchuk and V. V. Filippov investigated the functor of G-permutation
degree, and it was proved that this functor is a normal functor in the category of compact
spaces and their continuous mappings.

In recent years, a number of studies have investigated various covariant functors, in
particular the functor of G-permutation degree, and their influence on some topological
properties (see, for instance, [3–6]). In [3,4], the index of boundedness, uniform connected-
ness, and homotopy properties of the space of G-permutation degree have been studied,
and it was shown in [4] that the functor SPn

G preserves the homotopy and the retraction
of topological spaces. References [5,6] deal with certain tightness-type properties and
Lindelöf-type properties of the space of G-permutation degree.

The current paper is devoted to the investigation of some classes of topological spaces
(such as developable spaces, Moore spaces, M1-spaces, M2-spaces, Lašnev’s and Nagata’s
spaces) in the space of G-permutation degree.

Throughout the paper, all spaces are assumed to be T1.
Observe that the space SPn

GX is related to the space expnX of nonempty ≤ n-element
subsets of X equipped with the Vietoris topology whose base form the sets of the form

O〈U1, U2, . . . , Uk〉 =
{

F ∈ expnX : F ⊂ ∪k
i=1Ui, F ∩Ui 6= ∅, i = 1, . . . , k

}
where U1, U2, . . . , Uk are open subsets of X [2].

Observe that the mapping πh
n,G : SPn

GX → expn X assigning to each G-symmetric
equivalence class [(x1, x2, . . . , xn)]G the hypersymmetric equivalence class [(x1, x2, . . . , xn)]hc

containing it represents the functor expn as the factor functor of the functor SPn
G [1,2].

Also, the spaces SP2
GX and exp2X are homeomorphic, while it is not the case for n > 2 [2].

2. Results

In this section, we present the results obtained in this study.
For an open cover γ of a space X and a subset A of X, the star of A with respect to γ is

defined by St(A, γ) =
⋃{U ∈ γ : U ∩ A 6= ∅}.

Let γ be an open cover of X. Obviously, SPn
Gγ = {πs

n,G(U1 × . . .×Un) = [U1 × . . .×
Un]G : U1, . . . , Un ∈ γ} is an open cover of SPn

GX.

Proposition 1. Let SPn
Gγ be an open cover of SPn

GX. For each [(x1, . . . , xn)]G ∈ SPn
GX, we have

St([(x1, . . . , xn)]G,SPn
Gγ) ⊂ [St(x1, γ)× . . .× St(xn, γ)]G.

Proof. Let [(y1, . . . , yn)]G ∈ St([(x1, . . . , xn)]G, SPn
Gγ). Then, there exists [U1× . . .×Un]G ∈

SPn
Gγ such that [(y1, . . . , yn)]G ∈ [U1 × . . .×Un]G. On the other hand, [U1 × . . .×Un]G ⊂

[V1× . . .×Vn]G if and only if
⋃n

i=1 Ui ⊂
⋃n

i=1 Vi and for every Vi , i = 1, 2, . . . , n, there exists
a permutation σ ∈ G such that Uσ(i) ⊂ Vi. Hence, we obtain that [(y1, . . . , yn)]G ∈ [U1 ×
. . . ×Un]G ⊂ [St(x1, γ) × . . . × St(xn, γ)]G. This means that St([(x1, . . . , xn)]G,SPn

Gγ) ⊂
[St(x1, γ)× . . .× St(xn, γ)]G.

Lemma 1. Let x1, x2, . . . , xn be points of X. For each i = 1, 2, . . . , n, let {Uim}∞
m=1 be a decreasing

sequence of nonempty subsets of X such that
⋂∞

m=1 Uim = {xi}. Then,

∞⋂
m=1

[U1m ×U2m × . . .×Unm]G = {[(x1, x2, . . . , xn)]G}.

Proof. Let i = 1, 2, . . . , n, and assume that [y1, y2, . . . , yn]G ∈
⋂∞

m=1[U1m × U2m × . . . ×
Unm]G. Then, for each positive integer m, [y1, y2, . . . , yn]G ∈ [U1m ×U2m × . . . ×Unm]G.
This means that there exists a permutation σ ∈ G such that yi ∈ Uσ(i)m for all i = 1, 2, . . . , n.
In addition, yi ∈

⋂∞
m=1 Uσ(i)m = {xσ(i)} for all i = 1, 2, . . . , n. Consequently, it follows that

yi = xσ(i). This means that [(y1, y2, . . . , yn)]G = [(x1, x2, . . . , xn)]G.
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Proposition 2. Let X be a space, and let x1, x2, . . . , xn be points of X. For each i = 1, n, let
Ui =

{
Uim
}

m∈N be a local base of X at xi. Then, SPn
GU =

{[
U1m ×U2m × . . .×Unm

]
G : Uim ∈

Ui, i = 1, n
}

m∈N is a local base of SPn
GX at [(x1, x2, . . . , xn)]G.

Proof. Without loss of the generality, suppose that Uim+1 ⊂ Uim for every positive integer
m. Let SPn

GV be an open subset of SPn
GX which contains [(x1, x2, . . . , xn)]G. Then, there

exist open subsets V1, V2, . . . , Vn of X such that [(x1, x2, . . . , xn)]G ∈
[
V1×V2× . . .×Vn

]
G ⊂

SPn
GV. Put Vxi = ∩

{
V ∈ {V1, V2, . . . , Vn} : xi ∈ V

}
for every i = 1, n. Then, Vx1 , . . . , Vxn

are open subsets of X such that [(x1, x2, . . . , xn)]G ∈
[
Vx1 ×Vx2 × . . .×Vxn

]
G ⊂

[
V1 ×V2 ×

. . .×Vn
]

G ⊂ SPn
GV. Since Ui is a local base at xi, there exists a positive integer mi such that

xi ∈ Umi i ⊂ Vxi . Let m = max{m1, . . . , mn}. Then, xi ∈ Umi ⊂ Vxi . Consequently,
[
U1m ×

U2m × . . .×Unm
]

G ∈ SPn
GU and [(x1, x2, . . . , xn)]G ∈

[
U1m ×U2m × . . .×Unm

]
G ⊂

[
Vx1 ×

Vx2 × . . .×Vxn

]
⊂ SPn

GV. Therefore, SPn
GU is a local base of SPn

GX at [(x1, x2, . . . , xn)]G.

A space X is developable [7,8] if there exists a sequence {γm : m ∈ N} of open covers
of X such that, for each x ∈ X, {St(x, γm) : m ∈ N} is a local base at x. Such a sequence
of covers is called a development for X. It is well known that every metrizable space is
developable, and every developable space is clearly first countable.

Remark 1. Clearly, the above definition of the developable space is equivalent to the following:
(a) For each x ∈ X and for each positive integer m such that St(x, γm) 6= ∅, St(x, γm) is a

neighborhood of the point x, and
(b) For each x ∈ X and for each open U containing x, there exists a positive integer m such

that x ∈ St(x, γm) ⊂ U.

Theorem 1. If X is a developable space, then so is SPn
GX.

Proof. Assume that X is a developable space and {µm : m ∈ N} is a development for X.
For every m ∈ N, let

γm =

{ m⋂
j=1

Vj : Vj ∈ µj, j = 1, n
}

.

Then, {γm}m∈N is also a development for X such that St(x, γm+1) ⊂ St(x, γm) for all
x ∈ X and every m ∈ N. Put

SPn
Gγm =

{
[Um1 × . . .×Umn]G : Um1, . . . , Umn ∈ γm

}
.

It can be easily checked that SPn
Gγm is an open cover of SPn

GX for every m ∈ N.
Now, we will prove that for each [(x1, x2, . . . , xn)]G ∈ SPn

GX,
{St([(x1, x2, . . . , xn)]G,SPn

Gγm)}m∈N is a local base at [(x1, x2, . . . , xn)]G. Let SPn
GU be an

open subset of SPn
GX such that [(x1, x2, . . . , xn)]G ∈ SPn

GU. Then, there exist open sub-
sets U1, U2, . . . , Un of X such that [(x1, x2, . . . , xn)]G ∈ [U1 × U2 × . . . × Un]G ⊂ SPn

GU.
Since {St(xi, γm)}m∈N is a local base at xi for any i = 1, n, there exists a positive inte-
ger mi such that St(xi, γmi ) ⊂ Uxi =

⋂ {
Uj : xi ∈ Uj, j = 1, n

}
. Then ,there exists

m ≥ max{m1, m2, . . . , mn} such that St(xi, γm) ⊂ St(xi, γmi ) for all i = 1, n. By Proposition
1, we have

[(x1, x2, . . . , xn)]G ∈ St([(x1, x2, . . . , xn)]G,SPn
Gγm)

⊂ [St(x1, γm1)× . . .× St(xn, γmn)]G

⊂ [Ux1 × . . .×Uxn ]G ⊂ [U1 × . . .×Un]G ⊂ SPn
GU.

By Statement (b) of Remark 1, it means that SPn
GX is a developable space.

A regular developable space is a Moore space [7,8].
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Proposition 3. If X is a Moore space, then so is SPn
GX.

Proof. By Theorem 1, if X is a developable space, then the space SPn
GX is also developable.

On the other hand, it is well known from [9] that regularity is preserved under the closed-
and-open mapping and Cartesian product. Therefore, if X is a regular space, then the space
SPn

GX is also regular.

A family U = {Uα}α∈A of subsets of a topological space is closure preserving [7,9] if⋃
α∈A0

Uα =
⋃

α∈A0
Uα for every A0 ⊂ A.

Theorem 2. If U is a closure-preserving family of subsets of X, then SPn
GU = {[U1 ×U2 × . . .×

Un]G : U1, U2, . . . , Un ∈ U} is a closure-preserving family of subsets of SPn
GX.

Proof. Let SPn
GU0 be a subfamily of SPn

GU and [(x1, x2, . . . , xn)]G ∈ SPn
GX \ ⋃{SPn

GW :
SPn

GW ∈ SPn
GU0}. Let Vi = X \⋃{U : xi ∈ X \U, U ∈ U}. Since U is a closure preserving

family of subsets of X, we have that Vi = X \⋃{U : xi ∈ X \U, U ∈ U}. This means that Vi
is an open subset of X and xi ∈ Vi for all i = 1, 2, . . . , n. Let SPn

GV = [V1 ×V2 × . . .×Vn]G.
Then, SPn

GV is open subset of SPn
GX, [(x1, x2, . . . , xn)]G ∈ SPn

GV and SPn
GV

⋂
SPn

GW = ∅ for
all SPn

GW ∈ SPn
GU0. Therefore, [(x1, x2, . . . , xn)]G ∈ SPn

GV ⊂ SPn
GX \ ⋃{SPn

GW : SPn
GW ∈

SPn
GU0}. It shows that [(x1, x2, . . . , xn)]G ∈ SPn

GX \ ⋃{SPn
GW : SPn

GW ∈ SPn
GU0}. Hence,

SPn
GU is a closure preserving family of subsets of SPn

GX.

A family U is called σ-closure preserving [7] if it is represented as a union of countably
many closure preserving subfamilies.

An M1-space [7,8] is a regular space having a σ-closure preserving base.

Example 1. Let Q denote the set of rational numbers. For x ∈ R, put Lx = {(x, y) : (x, y) ∈
R2, y > 0} and X = R∪ (

⋃{Lx : x ∈ R}). Define a base for a topology on X as follows: for any
s, t ∈ Q and z = (x, w) ∈ Lx such that 0 < s < w < t, we put U x

s,t(z) = {(x, y) : s < y < t},
and let U be the set of all such U x

s,t(z). For all r, s, t ∈ Q and z ∈ R such that s < z < t and r > 0,
we put

Vr,s,t(z) = (s, t) ∪ (
⋃
{(w, y) : 0 < y < r, w ∈ (s, t) \ {z}})

, and let V be the set of all Vr,s,t(z). Now, put B = U ∪ V . Then one can check that B is a σ-closure
preserving base for X. It shows that X is an M1-space. Moreover, the space X is a first countable,
but non-metrizable space.

Theorem 3. If X is an M1-space, then so is SPn
GX.

Proof. Let X be an M1-space and U =
⋃∞

i=1 Ui be a σ-closure preserving base in X. Since the
union of two closure preserving family of subsets of X is also closure preserving, we assume
that Ui ⊂ Ui+1 for each i. For every positive integer i, set SPn

GUi = {[U1 ×U2 × . . .×Un]G :
U1, U2, . . . , Un ∈ Ui}. Obviously, SPn

GUi ⊂ SPn
GUi+1 for all positive integers i. By Theorem 2,

Ui is a closure preserving family of subsets of SPn
GX, and at the same time Ui is a family of

open subsets of SPn
GX. Therefore, SPn

GU =
⋃∞

i=1 SP
n
GUi is a σ-closure preserving family of

open subsets of SPn
GX.

Now, we will show that SPn
GU is a base for SPn

GX. Let [(x1, x2, . . . , xn)]G be an arbitrary
element of SPn

GX and SPn
GU be an open subset of SPn

GX such that [(x1, x2, . . . , xn)]G ∈
SPn

GU. Since U is a base for X, there exist U1, U2, . . . , Un ∈ U such that [(x1, x2, . . . , xn)]G ∈
[U1 ×U2 × . . .×Un]G ⊂ SPn

GU. Since Ui ⊂ Ui+1 for each positive integer i, there exists
i0 such that U1, U2, . . . , Un ∈ Ui0 . Then it follows that [U1 ×U2 × . . . ×Un]G ∈ SPn

GUi0 .
Therefore, SPn

GU is a base for SPn
GX. This means that SPn

GX is an M1-space.

A collection B of (not necessarily open) subsets of a regular space X is a quasi-base
in X [7] if whenever x ∈ X and U is a neighborhood of x, there exists a B ∈ B such that
x ∈ IntB ⊂ B ⊂ U.
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An M2-space [7,8] is a regular space having a σ-closure preserving quasi-base.

Theorem 4. If X is an M2-space, then so is SPn
GX.

Proof. Suppose that X is an M2-space and B =
⋃∞

i=1 Bi is a σ-closure preserving quasi-base.
Since the union of two closure-preserving family of subsets of X is also closure preserving,
we assume that Bi ⊂ Bi+1 for each i. For each positive integer i, put SPn

GBi = {[B1 × B2 ×
. . .× Bn]G : B1, B2, . . . , Bn ∈ Bi}. Obviously, SPn

GBi ⊂ SPn
GBi+1 for all i. By Theorem 2,

Bi is a closure preserving family of subsets of SPn
GX. Therefore, SPn

GB =
⋃∞

i=1 SP
n
GBi is a

σ-closure preserving family of subsets of SPn
GX.

Now, we will prove that SPn
GB is a quasi-base for SPn

GX. Let [(x1, x2, . . . , xn)]G be an
arbitrary element of SPn

GX and SPn
GV be an open subset of SPn

GX such that [(x1, x2, . . . , xn)]G ∈
SPn

GV. Consequently, there exist open subsets V1, V2, . . . , Vn of X such that [(x1, x2, . . . , xn)]G ∈
[V1 × V2 × . . . × Vn]G ⊂ SPn

GV. Since B is a quasi-base for X, there exist a permutation
σ ∈ G and Bσ(j) ∈ Bi such that xj ∈ IntBσ(j) ⊂ Vσ(j), where j = 1, 2, . . . , n. Note that
[(x1, x2, . . . , xn)]G ∈ [IntB1 × IntB2 × . . .× IntBn]G ⊂ Int([B1 × B2 × . . .× Bn]G) ⊂ [B1 ×
B2 × . . .× Bn]G ⊂ [V1 × V2 × . . .× Vn]G ⊂ SPn

GV. It shows that SPn
GB is a quasi-base for

SPn
GX.

Recall now that a space X is said to be stratifiable if f for every closed subset F ⊂
X there is a sequence of open subsets (U(F, k))k∈N such that (i) F =

⋂
k∈N U(F, k) =⋂

k∈N U(F, k), and (ii) if F1 ⊂ F2, then U(F1, k) ⊂ U(F2, k) for each k ∈ N. In the paper [10]
it was proved that a space is stratifiable if and only if it is M2. Therefore, we obtain
the following:

Corollary 1. If a space X is stratifiable, then so is SPn
GX.

A space X is a Lašnev space [7,8] if there exist a metric space Z and a continuous closed
mapping from Z onto X. Lašnev spaces are known to be M1-spaces.

Theorem 5. Let X be a space, and let n be a positive integer. If Xn is a Lašnev space, then so
is SPn

GX.

Proof. Suppose that Xn is a Lašnev space. Then, there exist a metric space Z and a
continuous closed mapping g : Z → Xn. Since πs

n,G : Xn → SPn
GX is a closed, onto

mapping, we obtain that the mapping πs
n,G ◦ g : Z → SPn

GX is also a closed mapping
from the metric space Z onto the space SPn

GX. This means that the space SPn
GX is a

Lašnev space.

Theorem 6 ([8]). Let X be a space. Then, X2 is a Lašnev space if and only if exp2X is a Lašnev space.

As we said in the Introduction, in Reference [2], it was shown that the spaces SP2X
and exp2X are homeomorphic. Hence, we obtain the following corollary.

Corollary 2. Let X be a space. Then, X2 is a Lašnev space if and only if SP2X is a Lašnev space.

A space X is a Nagata space [11] provided that for each x ∈ X, there exist sequences{
Um(x)

}
m∈N and

{
Vm(x)

}
m∈N of open neighborhoods of x such that for all x, y ∈ X:

(1)
{

Um(x)
}

m∈N is a local base at x;
(2) if y /∈ Um(x), then Vm(x) ∩Vm(y) = ∅ (or equivalently, if Vm(x) ∩Vm(y) 6= ∅, then

x ∈ Um(y)).

The definition of the Nagata space is equivalent to the following [11,12]: a Nagata
space is a first countable stratifiable space.
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Corollary 3. Let X be a space, and let n be a positive integer. If X is a Nagata space, then so is SPn
GX.

3. Conclusions

This work is related to the following important question. Let F be a covariant functor
and P a topological property. If a space X has the property P , whether F(X) has the
same or some other property. We studied the preservation of certain classes of spaces
(developable spaces, Moore space, M1- and M2-spaces, Nagata spaces) under the influence
of the functor SPn

G of G-permutation degree. We proved that this functor preserves each
mentioned class of spaces. It would be interesting to study the preservation of these and
some other properties under the influence of other important functors.
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