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Abstract: The paper discusses the prospect of using a combined model based on finite segments
(polynomials) of the Volterra integral power series. We consider a case when the problem of identify-
ing the Volterra kernels is solved. The predictive properties of the classic Volterra polynomial are
improved by adding a linear part in the form of an equivalent continued fraction. This technique
allows us to distinguish an additional parameter—the connection coefficient α, which is effective in
adapting the constructed integral model to changes in technical parameters at the input of a dynamic
system. In addition, this technique allows us to take into account the case of perturbing the kernel
of the linear term of the Volterra polynomial in the metric C[0, T] by a given value δ, implying the
ideas of Volterra regularizing procedures. The problem of choosing the connection coefficient is
solved using a special extremal problem. The developed algorithms are used to solve the problem of
identifying input signals of test dynamic systems, among which, in addition to mathematical ones,
thermal power engineering devices are used.

Keywords: polynomial Volterra integral equation; associated continued fraction; identification;
nonlinear dynamical system

MSC: 45D05

1. Introduction

Present-day methods of mathematical modeling of nonlinear dynamic systems in-
clude extensive theoretical and algorithmic tools, including the Volterra functional integral
power series, Wiener functional series, Hammerstein and Wiener–Hammerstein models,
self-organization algorithms, genetic algorithms, and neural networks. In the theory of
mathematical modeling of dynamic systems, methods are widespread that use, firstly, a pri-
ori information about the internal structure of the simulated objects, secondly, observed
data on the behavior of the object under study and, finally, the joint use of information
of the first and second types. An insufficiency of a priori data about the structure of the
object of study, as a rule, lead researchers to use approaches that, on the one hand, take into
account information about the object at the stage of constructing a mathematical model,
for example, using a training sample, and on the other hand, carry out “adjustment” of
parameters and formation of models based on both current and retrospective information
directly when using the model [1].

To identify the dynamic characteristics of a nonlinear system under conditions of a
priori uncertainty about the internal structure, various methods have been developed (see,
for example, [2]), among which Volterra functional series occupy a worthy place.

Mathematics 2023, 11, 4724. https://doi.org/10.3390/math11234724 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11234724
https://doi.org/10.3390/math11234724
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-6162-7542
https://orcid.org/0000-0001-5782-0008
https://orcid.org/0000-0001-7298-2187
https://doi.org/10.3390/math11234724
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11234724?type=check_update&version=1


Mathematics 2023, 11, 4724 1 of 10

In the scientific literature, see for example [3,4], the universal properties of the
Volterra integral power series and their applicability for various technical objects are
noted. The monograph ([5], p. 247) states that “analytical study of nonlinear systems
using functional power series of the Volterra type is equivalent to the analysis of nonlinear
systems using experimental data”.

Note that there are diametrically opposed points of view when assessing the effective-
ness and relevance of this mathematical tool. In particular, in the monographs [3,6–8], this
method seems quite promising, and in [9,10], the opposite point of view is presented. The
strengths mentioned are, first of all, the applicability for various modes of the object under
study and interaction with a wide class of technical systems. The weakness mentioned is the
limitation of the degree of nonlinearity of the system. In the review ([11], p. 358), authors
noted that, currently, the “Volterra series is mainly used for the analysis and modeling of
nonlinear systems in the simulation or laboratory stage”. Therefore, the development of
new methods for constructing Volterra integral models and their modifications still remains
an urgent problem.

Constructing a model of nonlinear dynamics in the form of the Volterra polynomial

y(t) =
N

∑
n=1

t∫
0

. . .
t∫

0

Kn(s1, . . . , sn)
n

∏
i=1

x(t− si)dsi, t ∈ [0, T], (1)

consists of determining the required number of terms of the series (1) and estimating the
Volterra kernels of the corresponding orders. Here, the functions Kn (due to the scalarity of
the input signal x(t)) are symmetric with respect to their variables s1, . . . , sn. Authors, as a
rule, use a segment of the Volterra series (polynomial) at N = 2, 3. The limitation to two or
three terms is effective only in the case of weak nonlinearity, for example, when the input
signals of the system are small.

If the amplitude (height) of the input signals is relatively large, then sufficient accuracy
can only be ensured by a set of models built for certain domains of change in the input
signals. As noted in [10], the kernels in (1) “become dependent on the approximation
domain, i.e., on the levels and duration of the signals.” Thus, the effectiveness of using
Volterra series depends on solving the problem of identifying the first two or three terms of
the series (1) and, in addition, on algorithms for constructing integral models in real time.

One of the common ways to construct dynamic integral models is to move from (1) to
the discrete form [12–15]:

y(t) =
P

∑
n=1

L

∑
i1=1
· · ·

L

∑
in=1

hn(i1, . . . , in)x(t− i1) . . . x(t− in) + e(t), (2)

where hn is a discrete analogue of the Volterra kernel, L is finite memory, P is the order
of the polynomial, e(t) is some error (noise). The ratio (2) is considered as a functional
polynomial regression model (see, for example, [16–18]).

Constructing a Volterra regression model involves a number of difficulties. They are
associated, in particular, with the choice of the number L, which determines the system
memory, as well as with the presence of errors in the source data (as noted in [19], “the
identification problem by the least squares method is one of the incorrect ones”). Therefore,
it is no coincidence that research in this direction continues to the present day [20].

In practice, a situation of insufficient training data often arises. In a series of
papers [21–24], a new method for solving the identification problem with small amounts of
input and output data is considered, based on the introduction of randomized models in
which parameters are treated as random variables.

The papers [23,24] propose a method for determining statistical dependencies between
input and output data based on linear and power randomized models. Their construc-
tion involves estimating probabilistic characteristics. This approach was later developed
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in [21,22] to simulate a dynamic system, the output of which is measured with an error,
using a randomized model of the form

y(t) =
N

∑
n=1

m

∑
(s1,...,sn)=0

K(n)(s1, . . . , sn)
n

∏
i=1

x(t− si) + ξ(t),

where t ∈ [m, m + l], l is the number of measurements, si ∈ [0, m], x(t) is the input
(measured exactly), functions K(n) are random, ξ(t) is random additive noise.

These approaches are based on the use of basic knowledge about the object at the
preliminary training stage, which is performed during an active or passive experiment.

Among modern intelligent techniques of mathematical modeling of technological
processes, there are known schemes for controlling algorithms for setting up models based
on current data, i.e., the possibility of additional training of models during the function-
ing of dynamic systems and objects is provided [25]. This approach is characterized by
taking into account all retrospective knowledge about the object, which leads to increased
modeling accuracy. Models based on the Volterra integral power series (1) and their
modifications have wide application possibilities in intelligent systems for modeling and
controlling dynamic objects (see, for example, [26–29]). In this case, both tools for construct-
ing an IT management infrastructure [27] and management principles of model predictive
control [28,29] are used. In relation to (1), it is natural to perceive Volterra kernels as
functions specified with some error. An additional parameter introduced into such a model
will allow the response to be adjusted taking into account the current source data (input
signals). Thus, the design of the modified Volterra polynomial should include, in addition
to the transient characteristics (Volterra kernels), taking into account the range of test sets
of input–output signals, an additional parameter that takes into account the deviation of
the current signals from their previous values from the training set. In relation to (1), this
idea can be implemented through a combination with continued fractions, the use of which
makes it possible to apply the perturbation method and, thereby, take into account the
stochastic nature of the dynamics of objects.

In recent decades, the tool for continued fractions has been actively developing in
the field of studying their properties [30,31]. Issues of applied application of continued
fractions for problems of structural-parametric identification of models of linear dynamic
objects were considered in works [32–34]. In [34], to approximate a continuous transfer
function based on the theory of continued fractions, the authors use the results of measure-
ments of input and output influences. The stated topics also include work on fractional
differentiation [35–37].

In this paper, we propose a technique for using continued fractions, which consists
of replacing the linear integral term in (1) with its equivalent in the form of an associated
continued fraction and choosing the connection coefficient using a special extremal problem.
The results of implementing the proposed approach are presented for some dynamic
systems, including the problem of modeling the response of an element of a heat exchange
unit [38]. The contents of the paper include the following sections: Section 2 contains the
statement of the problem, Section 3 considers the solution to the problem of identifying
the parameter α, Section 4 includes the solution to the problem of identifying input signals.
Sections 3 and 4 also present the results of computational experiments for test dynamic
systems, including the heat exchanger element. Section 5 contains conclusions and future
research directions.

2. Problem Statement

Consider a polynomial (1) with N = 2, 3, the right-hand side of which meets the
smoothness requirements for carrying out calculations, y(0) = 0, kernels Ki, i = 1, 2, 3 are
continuous functions, in addition, K1(t) 6= 0, t ∈ [0, T], (K1(t))′t ∈ C[0, T].
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Let the following inequality hold:

α +

t∫
0

K1(s1)x(t− s1)ds1 6= 0, (3)

where α 6= 0, for all t ∈ [0, T]. Using the idea of continued fractions, under assumption (3),
it is easy to obtain

α

1−

t∫
0

K1(s1)x(t− s1)ds1

α +
t∫

0
K1(s1)x(t− s1)ds1

− α. (4)

Reducing fraction (4) to a common denominator will give the first term in (1):

t∫
0

K1(s1)x(t− s1)ds1. (5)

Thus, replacing (5) in (1) with the expression (4) gives the modified model

α

1−

t∫
0

K1(s1)x(t− s1)ds1

α +
t∫

0
K1(s1)x(t− s1)ds1

− α +
N

∑
n=2

t∫
0

. . .
t∫

0

Kn(s1, . . . , sn)
n

∏
i=1

x(t− si)dsi = y(t). (6)

Further, we assume that the problem of identifying Volterra kernels for construct-
ing models of the form (1) and (6) has been solved. We introduce the integral operator

Kx :=
t∫

0

K1(s1)x(t− s1)ds1 and the perturbed operator K̃x in which instead of K1(s1) a

function K̃1(s1) is known that deviates in the metric C[0, T] from K1(s1) by a given value δ.
We will use the standard conditions regarding the kernel K1 indicated at the beginning of
this Section and the notation K̃1(t) = K1(t) + δ, where δ is small positive parameter. Ex-
tensive literature addresses the issues of numerical solution of integral Volterra equations,
including under the conditions of a perturbed operator. An important part of this line
of research is the results obtained by M.M. Lavrentiev, A.M. Denisov, and A.S. Apartsyn.
Using ideas from [39,40], instead of (6), consider a model of the following form:

α

1−

t∫
0

K̃1(s1)x(t− s1)ds1

α +
t∫

0
K1(s1)x(t− s1)ds1

− α+
N

∑
n=2

t∫
0

. . .
t∫

0

Kn(s1, . . . , sn)
n

∏
i=1

x(t− si)dsi = yN(t), (7)

where yN(t) is the response of the integral model for a fixed value N ≥ 2 and a given value

δ, and the expression −α + δ

t∫
0

x(s)ds 6= 0 holds.
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Remark 1. We do not consider the case when, in (4), everywhere instead of K1(t) there is K̃1(t).
This is because under the assumption (3) with respect to K̃1(t), it degenerates into

t∫
0

K̃1(s1)x(t− s1)ds1 +
N

∑
n=2

t∫
0

. . .
t∫

0

Kn(s1, . . . , sn)
n

∏
i=1

x(t− si)dsi = ỹ(t),

and thus, the problem of selecting the associated parameter α, taking into account the deviation of
the current indicators (x(t), ỹ(t)) from their previous values from the training set, is excluded from
consideration.

Assuming that a model of the form (7) is built for some fixed value N, consider the
problem of finding an input signal x(t) that corresponds to a known response yN(t). This
formulation arises in connection with the construction of a nonlinear automatic control
system for a technical object ([5], p. 242). Given α, y(t), Ki(i = 1, 2, . . . , n), K̃1(t) the
Equation (7) is N-th power (polynomial) Volterra equation of the first kind with respect
to x(t).

Note that to construct a model of the form (7), in contrast to (6), it is necessary to
additionally solve the problem for identification of parameter α . We will pay special
attention to this issue in the next section.

3. On Choosing the Parameter α

We emphasize that the choice of parameter α 6= 0 is limited by conditions that ensure
that the denominators in (4) and (7) differ from zero. These conditions preserve the
arbitrariness in the choice of α. At the same time, the residual between yet(t) and yN(t)
depends on the choice of this parameter. Note that the choice of the value of the connected
parameter α affects the predictive properties of the integral model (7) and, accordingly,
the accuracy of the response under an arbitrary perturbation δ. Let us denote the response
of model (7) at a certain value of α by yα

N(t).
We formulate the problem of optimal (in some natural sense) choice of value α. We will

take the absolute value of the residual between yet(t) and yα
N(t) as the objective function

for a fixed δ:
|ε(t)| = |yet(t)− yα

N(t)|,

where yet(t) is the response of the dynamic object (or its simulation model). Selecting x(t)
from the feasible family of signals X(t), we set the accuracy criterion (7) in the form

max
x(t)∈X(t)

|yet(t)− yα
N(t)| → min

α∈R
.

In fact, the ε(t) is some function depending on the parameters t and α, so that
ε(t) = ε̄(α, t). Then, the problem of parametric identification of the connection coefficient α
for construction (7) can be reduced to solving an extremal problem: find a value of α∗ that
provides the minimum of maximum values |ε̄(α, t)| on the set of feasible t ∈ [0, T], α ∈ R, i.e.,

α∗ = arg min
α∈R
{max

t∈[0,T]
|ε̄(α, t)|}. (8)

Thus, we formulated the optimization problem (8) to remove the arbitrariness in
choosing the connected coefficient α. Now, we consider its solution using the example of
some dynamic system.

Example 1. Let us illustrate the solution to the problem (8) when describing the response of a heat
exchange unit element [38,41]:

∆i(t) =
λ1λ2

λ2 − λ1

t∫
0

(
∆Q(η)− Q0

D0
∆D(η)

)
γ(t, η)dη, (9)
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γ(t, η) = e
−λ1

t∫
0

D(ξ)dξ

− e
−λ2

t∫
0

D(ξ)d xi
,

where t is time, s; D is substance consumption, kg/s; Q is total heat load, kW; λ1, λ2 are some
constants; the symbol “∆” is increment, for example, D(t) = D0 + ∆D(t); the index “0” denotes
the initial parameters D0 = 0.16 kg/s; Q0 = 100 kW; i0 = 1059 kJ/kg.

To select the time range t ∈ [0, T], we use the recommendations of [41]. The method-
ological role of the model is also noted there (9).

Note that according to (9), the change in ∆i(t) linearly depends on the input signal
∆Q(t). Therefore, without loss of generality, in this section, when identifying the parameter
α in (7), we consider the case when ∆Q(t) = 0. Then, in terms of the model (7) yet(t) = ∆i(t),
x(t) = ∆D(t). Let us limit ourselves to (7) N = 2. The procedure for identifying Volterra
kernels in (7), where t ∈ [0, 20], is implemented using the technique from [40], the height
(amplitude) of test signals from the training set is β = 25%D0 =0.04.

Now, we present the results of a computational experiment to solve the problem of
parametric identification α. To illustrate the effectiveness of the proposed model (7), we
choose the input signal x(t) = ξe(t), where ξ 6= β, e(t) is the Heaviside function. Let the
kernel K̃(t) in (7) be specified with an error of δ = 0.1. The maximum of |ε̄(α, t)| is achieved
either inside the interval under study at point t1: 0 < t1 < T, or on the right boundary
t2 = T. The parameter α is selected from the matching condition

|ε̄(α, t1)| = |ε̄(α, t2)|. (10)

In particular, for ξ = 0.041, the value of α∗ obtained by solving the problems (8) and
(10) was −2.20331, while t1 = 4.42713, t2 = 20, and t∗ = 13.38662; so,

|ε̄(−2.20331, 4.42713)| = |ε̄(−2.20331, 20)| = 7.42245,

|ε̄(−2.20331, 13.38662)| = 0.

A comparison of the residuals |ε̄(α∗, t)| and |yet(t)− ỹ(t)| is shown in Figure 1.

0

5

10

15

2 4 6 8 10 12 14 16 18 20
t

Figure 1. Graphs of functions |ε̄(α∗, t)| (solid line) and |yet(t)− ỹ(t)| (dotted line).

The maximum values of response modeling errors (9) are reached at the end of the
transient process, while

max
t∈[0,T]

|yet(t)− ỹ(t)| = 15.58662, max
t∈[0,T]

|yet(t)− y2(t)| = 7.42245,

20∫
0

|yet(s)− ỹ(s)|ds = 257.7766,
20∫

0

|yet(s)− y2(s)|ds = 87.4427,

and the maximum relative application error (7) for the selected signal x(t) = 0.041 is
1.2%. Results of comparison of residuals |ε̄(α∗, T)| and |yet(T)− ỹ(T)| for ξ from the range
0.041÷ 0.045 are given in Table 1.
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Table 1. Results of a computational experiment for δ = 0.1.

β α∗ |yet(T)− ỹ(T)| |ε̄(α∗, T)|
0.041 −2.20331 15.58664 7.42245
0.042 −1.11759 31.17325 14.66873
0.043 −0.75644 46.75987 21.73701
0.044 −0.57593 62.34649 28.62992
0.045 −0.46761 77.93312 35.35023

The table shows that the use of a modified model (7) involving the minimax
problems (8) and (10) made it possible (for the selected range of technical characteris-
tics) to reduce the modeling error by half.

Assuming further that a model of the form (7) has been constructed, let us consider
the specifics of solving the polynomial equation that arises in the problem of reconstructing
input signals.

4. On Identifying the Input Signal x(t) in (7)

The theory and numerical methods for solving Volterra polynomial Equations (1) for
N = 1 and N ≥ 2 have significant differences. In [42], it is shown that (1) for N,≥ 2 has a
solution in the class of generalized functions. The publication [43] addresses further study
of this issue. In this work, we will focus on studying the continuous solution to (7), N ≥ 2.

In the works [41,44,45], there is a brief overview of the results of studies of polynomial
Equations (1) for N = 2, 3, where x(t) is a scalar function of time. Their most important
feature is the locality of the solution in C[0, T] (by locality we mean the smallness of the
right end of the segment t̄ < T, where T cannot be replaced by a larger number). Since (1)
has an exact solution only in special cases that correspond to N = 2, 3, let us dwell on the
specifics of (7) for the indicated values of N.

Remark 2. The methodology for studying the continuous solution of Volterra polynomial Equa-
tions (1) and estimating the value of the parameter t̄ is based on majorant estimates of special
nonlinear integral inequalities introduced in [46,47]. These inequalities play the same role for (1)
at a given N > 1 as the Gronwall–Bellman inequality does for a linear Volterra equation of the
first kind.

Let us move on to studying the Volterra polynomial equation of the first kind (7)
(N = 2). For simplicity, we choose the case of constant kernels Ki(s) = ki, ki > 0, i = 1, 2.
Without loss of generality, we set k1 = 1, so that (7) for N = 2, taking into account the
notation, takes the form

α

1− (1 + δ)Q(t)
α + Q(t)

− α + k2Q2(t) = y2(t), (11)

where Q(t) =
t∫

0

x(s)ds, α + Q(t) 6= 0, −α + δQ(t) 6= 0, δ > 0, t ∈ [0, t̄], α ∈ R. In contrast

to the quadratic polynomial Equation (1) for N = 2, the Equation (11) ((7) for N = 2) is
cubic with respect to Q(t). The exact solution (11)

Q3(t)− α

δ
Q2(t)− y(t)δ + α(1 + δ)

k2δ
Q(t) +

y(t)δ
k2δ

= 0 (12)

can be found by replacing the unknown in (12)

Q(t) = z(t) +
α

3δ
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and applying the Cardano formula [48] for the equation equivalent to (12)

z3(t) + p(t)z(t) + q(t) = 0, (13)

where

p(t) = −y(t) + α

k2
− α

k2δ
− α2

3δ2 ,

q(t) =
α

3k2δ
(2y(t)− α)− 1

3
α2

k2δ2 −
2

27
α3

δ3 .

Condition

D(t) =
q2(t)

4
+

p3(t)
27
≤ 0,

guarantees the realness of the roots of (13). Thus, the critical value t̄ is the smallest root of
the equation D(t) = 0 ∀t ≥ 0.

Let us illustrate the specifics of (11)–(13) with an example.

Example 2. Let the response of the dynamic system have the following form:

yet(t) =
Net

∑
m=1

1
m!

( t∫
0

x(s)ds

)m

, Net = 3, t ∈ [0, T], T = 1. (14)

Applying the Volterra kernel identification technique for constructing (1) with N = 2,
as outlined in [40], we obtain

K1(s1) = 1 +
s2

1
2

, K2(s1, s2) =
1
2

.

The response (7) to the signal x(t) = e(t) is equal to y2(t), whence ε̄(α, t) =
tδ(α + t + 1

6 t3)

δt− α
.

Solution to the problems (8), (10), in which y2(t) =
tα(1 + 1

6 t3 + δ)

α− δt
+

t2

2
, t ∈ [0, T], for a

fixed δ = 0.1 is determined by the value α = −0.94048. For definiteness, we choose the
indicated values of δ and α and, for simplicity, limit ourselves to the case of constant kernels,
choosing in (11)

k1 = min
0≤s1≤1

|1 +
s2

1
2
| = 1, k2 =

1
2

and the desired right-hand side in the form t2

2 + t4

8 − 2t3.

Remark 3. Obviously, (14) is a partial sum of the series for the function exp
( t∫

0

x(s)ds
)

.

The choice of the value k1 in this example is dictated by condition (12) from [47].

Note that even in the simplest case of constant kernels, the continuous solution to (1)
for N = 2, generally speaking, has a local character. The values k1, k2 are chosen to
demonstrate this fact.

Besides, under the assumptions made, the solution to the polynomial Equation (1) is
determined by the formula

x∗(t) =
t(2− 12t + t2)√

4 + 4t2 − 16t3 + t4
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for all t ∈ [0, t̄1), where t̄1 = 0.74036. Moving on to the solution (1) with the perturbed
kernel k̃1 = k1 + δ = 1.1, we have a solution x∗∗ of the form

x∗∗(t) =
5t(2− 12t + t2)√

121 + 100t2 − 400t3 + 25t4

for all t ∈ [0, t̄2), where t̄2 = 0.78241. Here, t̄1 and t̄2 are the minimal positive roots of the
equations D1 = 0 and D2 = 0, where D1, D2 is the corresponding expression under the
radical. Using further Formulas (12) and (13) to solve (11), using the MAPLE computer
system, we obtain that the real root of (11) x∗∗∗(t) can be found for all t ∈ [0, t̄3), where
t̄3 = 0.86210. At the same time, by decreasing the value of α, the value of t̄3 decreases,
approaching the value of t̄2. In particular, when choosing α = −104, t̄3 = 0.78241 coincides
with t̄2 up to the fifth decimal place.

Let us present the results of a computational experiment, comparing the values of the
roots of polynomial equations at the nodes ti = 0.1÷ 0.9. We use the symbol ∗j (j = 1, 2, 3)
to mark situations where the inequalities ti < t̄j, which guarantee the realness of the roots,
are violated.

Table 2 shows (see the second and third columns) that the influence of the error
boundary layer is reflected in the values of x∗(ti), x∗∗(ti) at ti = 0.7. Since in this example
t̄3 > t̄2 > t̄1, the boundary layer affects the value of x∗∗∗(ti) at t = 0.8. Comparing the
value in the third and fourth columns of the table for ti = 0.1÷ 0.6, we can conclude that
the solutions to Equations (1) and (11) and with perturbed kernel k̃1 are quite close to
each other.

Table 2. Values x∗, x∗∗, x∗∗∗.

ti x∗(ti) x∗∗(ti) x∗∗∗(ti)

0.1 0.04038 0.03673 0.03675
0.2 −0.03585 −0.03261 −0.03264
0.3 −0.22833 −0.20728 −0.20696
0.4 −0.55337 −0.49882 −0.49419
0.5 −1.07143 −0.94914 −0.92311
0.6 −1.99749 −1.68974 −1.57229
0.7 −4.90247 −3.32067 −2.68428
0.8 ∗1 ∗2 −5.57908
0.9 ∗1 ∗2 ∗3

It should be noted that the transition to (7) at N = 3 involves the use of the Ferrari
method and requires separate consideration.

5. Conclusions

The paper discusses the problem of modeling nonlinear dynamics using Volterra
polynomials, associated with the problem of identifying input signals of a dynamic system.
The approach proposed by the authors makes it possible to generate a modified integral
model in a certain vicinity of the technical range of input influences. The formation of a
modified model is based on the use of the tool of continued fractions and the subsequent
solving an extremal problem of a special type to identify the associated parameter. Com-
putational experiments have shown the effectiveness of a new type of integral model in
describing nonlinear dynamics. The results of solving the problem of identifying input
signals on a dynamic test system are comparable in accuracy to those discussed earlier
in [45]. In addition, the use of modified integral models made it possible to expand the
range of existence of a solution to a multilinear integral equation. This result was obtained
experimentally (see Table 2) and requires further theoretical research.
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