
Citation: Awaluddin, B.-A.; Chao,

C.-T.; Chiou, J.-S. Investigating

Effective Geometric Transformation

for Image Augmentation to Improve

Static Hand Gestures with a

Pre-Trained Convolutional Neural

Network. Mathematics 2023, 11, 4783.

https://doi.org/10.3390/

math11234783

Academic Editors: Adrian Sergiu

Darabant, Diana-Laura Borza and

Faheim Sufi

Received: 21 October 2023

Revised: 20 November 2023

Accepted: 24 November 2023

Published: 27 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Investigating Effective Geometric Transformation for Image
Augmentation to Improve Static Hand Gestures with a
Pre-Trained Convolutional Neural Network
Baiti-Ahmad Awaluddin 1,2 , Chun-Tang Chao 1 and Juing-Shian Chiou 1,*

1 Department of Electrical Engineering, Southern Taiwan University of Science and Technology, 1, Nan-Tai St.,
Yongkang District, Tainan 71005, Taiwan; da82b207@stust.edu.tw (B.-A.A.); tang@stust.edu.tw (C.-T.C.)

2 Department of Electronics Engineering Education, Universitas Negeri Yogyakarta,
Yogyakarta 55281, Indonesia

* Correspondence: jschiou@stust.edu.tw; Tel.: +886-916-221-152; Fax: +886-6-3010-069

Abstract: Hand gesture recognition (HGR) is a challenging and fascinating research topic in computer
vision with numerous daily life applications. In HGR, computers aim to identify and classify
hand gestures. The limited diversity of the dataset used in HGR is due to the limited number of
hand gesture demonstrators, acquisition environments, and hand pose variations despite previous
efforts. Geometric image augmentations are commonly used to address these limitations. These
augmentations include scaling, translation, rotation, flipping, and image shearing. However, research
has yet to focus on identifying the best geometric transformations for augmenting the HGR dataset.
This study employed three commonly utilized pre-trained models for image classification tasks,
namely ResNet50, MobileNetV2, and InceptionV3. The system’s performance was evaluated on five
static HGR datasets: DLSI, HG14, ArabicASL, MU HandImages ASL, and Sebastian Marcell. The
experimental results demonstrate that many geometric transformations are unnecessary for HGR
image augmentation. Image shearing and horizontal flipping are the most influential transformations
for augmenting the HGR dataset and achieving better classification performance. Moreover, ResNet50
outperforms MobileNetV2 and InceptionV3 for static HGR.

Keywords: hand gesture recognition; image augmentation; geometric transformation; ResNet;
MobileNet; inception; static datasets

MSC: 68T07

1. Introduction

Interacting with computers using hand gestures can provide users with a natural and
intuitive interface. As a result, much research has focused on developing more accurate
and effective hand gesture recognition (HGR) methods and applying them in various
contexts. Hand gestures are currently utilized in multiple applications, such as games [1,2],
virtual and augmented reality [3–5], assisted living [6,7], and cognitive development evalu-
ation [8]. In addition, hand gesture recognition has gained significant interest in several
industries, including human–robot interaction in manufacturing [9–11] and autonomous
vehicle control [12,13]. With the recent growth of HGR, there is an increasing demand for
more advanced and robust methods to meet the requirements of various applications.

Despite the remarkable success of deep neural networks in HGR [14,15], there are still
significant challenges in this research area. The complexity of hand gestures and differences
in hand size are just two factors that can affect the performance of recognition algorithms.
The training of deep neural networks with insufficient data can lead to overfitting or failure
to learn a high-performance model. Various training schemes, including dropout layers
and data augmentation techniques [16], have been proposed to address this challenge.

Mathematics 2023, 11, 4783. https://doi.org/10.3390/math11234783 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11234783
https://doi.org/10.3390/math11234783
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0009-0004-2005-6404
https://orcid.org/0000-0001-6239-9828
https://orcid.org/0000-0002-3780-6708
https://doi.org/10.3390/math11234783
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11234783?type=check_update&version=1

Mathematics 2023, 11, 4783 2 of 23

Data augmentation is a popular technique for increasing the size of a dataset and
addressing the problem of insufficient data [17,18]. Various approaches to image-based
data augmentation exist, encompassing geometric transformations, color manipulations,
random occlusion, and methods grounded in deep learning, such as Generative Adversarial
Networks (GANs) [18]. Among these, geometric transformations—comprising image
scaling, rotation, translation, shearing, and flipping—stand out as one of the most prevalent
approaches. These operations are crucial in expanding the sample pool for training deep
neural networks, balancing dataset sizes, and enhancing overall efficiency [19].

Geometric transformations have been extensively applied in hand gesture recognition
(HGR) studies to augment datasets effectively. For example, in Ref. [20], geometric aug-
mentation demonstrated a noteworthy enhancement, improving CNN performance by up
to 5%. Another study focusing on HGR, utilizing capsule networks, showcased improved
results when combined with geometric augmentation involving rotation and translation
operations [21]. Similarly, Ref. [22] used an adapted CNN and image translation (both
vertically and horizontally) to augment original data, resulting in a notable 4% boost in
classification accuracy. Moreover, Ref. [23] utilized random scaling and horizontal/vertical
translation to increase the diversity of training data for HGR applications.

The integration of color transformations with geometric transformations has notably
enhanced the performance of HGR systems. Color transformations involve histogram
equalization, contrast or brightness enhancement, white balancing, sharpening, and blur-
ring [24]. For instance, in Ref. [25], combining the shearing transformation with sigmoid
and gamma correction augmented the original images, resulting in a 5% improvement
in accuracy.

In their research, Taylor and Nicthe [26] highlighted the effectiveness of data augmen-
tation methods in enhancing the classification task performance of CNNs. Specifically,
their evaluation of various data augmentation schemes using a relatively simple CNN
architecture showed that geometric augmentation methods outperformed photometric
methods when training on a coarse-grained dataset, and these findings underscore the
importance of augmenting coarse-grained training datasets using transformations that alter
the geometry of images rather than focusing solely on lighting and color modifications.

GANs can be utilized for data augmentation [27,28] by training them to generate
new synthetic data. GANs face challenges due to the potential for mode collapse, non-
convergence, and oscillatory behavior [29,30]. There are differences between synthetic
data, which are artificially created without using actual datasets, and the term “augmented
data”, which involves generating additional training data through modifications or trans-
formations to the primary data. The primary objective of augmented data is to expand
the diversity of the training set, prevent overfitting, and enhance the model’s generaliza-
tion capacity to previously unseen data. Data augmentation techniques can be applied
to various data types, including images, text, and audio. On the other hand, augmented
data provide significant advantages in improving the performance of deep learning models
across various applications, such as object detection, image classification, image recognition,
natural language understanding, semantic segmentation, and more [31]. This method has
enhanced the efficiency and outcomes of deep learning models by generating new and
diverse training examples for datasets. Moreover, the use of augmented data can also
reduce operational costs related to the collection and labeling of data for deep learning
models [28]. Deep learning models often require time-consuming and expensive operations
for data collection and labeling.

Numerous studies demonstrate the superiority of geometric transformations over
other methods. Furthermore, when aiming for generalization, a model capable of recog-
nizing new datasets is essential. A CNN model requires sufficient depth, trained on large
datasets, which demands substantial computational resources. Hence, an alternative is
needed, and that comes in the form of using pre-existing models. These models have
been trained beforehand with ample resources and can be applied to new datasets—a
process known as transfer learning. There are numerous available CNN models that can

Mathematics 2023, 11, 4783 3 of 23

be utilized. In this study, three pre-trained CNN models are employed for static hand
gesture recognition (HGR) tasks, namely ResNet50, MobileNetV2, and InceptionV3, cho-
sen for their outstanding performance [32]. Therefore, this paper aims to address the
following objectives:

1. Investigate whether using as many augmentations as possible on geometric transfor-
mations or focusing on a subset of the most effective geometric transformations yields
better results in improving model performance.

2. Identify augmentation methods within geometric transformations that yield the high-
est accuracy rates in enhancing CNN performance, which is achieved through a
systematic analysis. This involves a thorough examination of various geometric trans-
formations, assessing their impact on the model’s accuracy. The selection process is
based on rigorous experimentation and quantitative evaluation, ensuring that the
chosen augmentation methods contribute significantly to the improved performance
of Convolutional Neural Networks (CNNs) in the context of static hand gesture
recognition. The effectiveness is substantiated by comparative analyses and statistical
measures, providing a robust foundation for the identified augmentation methods.

3. Compare the performance of three pre-trained models, ResNet50, MobileNetV2, and
InceptionV3, in the classification of static hand gestures (HGRs). The evaluation of
these three models is conducted to assess their ability to classify static hand gestures,
providing crucial insights for further development in this field.

4. This research undertakes an evaluation of the accuracy of pre-trained neural networks
for image classification. Section 2 describes research methodology. Section 3 describes
the dataset, image augmentation, geometric transformations, CNN theory, and pre-
trained neural networks (ResNet, MobileNet, and Inception). Section 4 presents the
experimental setup, dataset preparation, and results using single and combined neural
networks. Section 5 analyzes the performance of each pre-trained neural network and
discusses the impact of image augmentation and geometric transformations on model
accuracy. Additionally, we explore implications and future research opportunities in
this area. Finally, Section 6 summarizes important findings, highlights our research’s
significance, and outlines future directions, including developing an image augmen-
tation framework for static hand gesture recognition based on pre-trained ResNet50
models that combine multiple geometric transformations with color modifications.

2. Research Methodology

In this research, the steps to determine the best geometric transformation for image
augmentation to improve recognition accuracy in hand gesture recognition (HGR) tasks and
compare the performance of the pre-trained CNN models (ResNet50, MobileNetV2, and
InceptionV3) are executed through a structured methodological approach. An illustration of
the steps in the research methodology can be found in Figure 1. The researchers formulated
the following research objectives:

1. Investigation of the necessity of employing geometric transformations for image
augmentation in CNN-based HGR tasks;

2. Exploration of the optimal geometric transformation based on CNNs for image aug-
mentation in HGR tasks;

3. Determining the most effective pre-trained CNN model (ResNet50, MobileNetV2, or
Inceptionv3) for HGR tasks.

Firstly, diverse datasets, such as HG14, DLSI, MU HandImages ASL, Sebastian Marcel,
and ArASL2018, were collected to encompass as many HGR contexts as possible. The next
step involves the application of transfer learning to pre-trained models, namely ResNet50,
MobileNetV2, and InceptionV3, to comprehend complex hand gesture features.

Evaluation is conducted in two main aspects, namely the effectiveness of image aug-
mentation and the performance of pre-trained models, using accuracy metrics during
transfer learning. Geometric transformations, such as scaling, rotation, translation, shear-
ing, and flipping, are explored in the augmentation evaluation. At the same time, the

Mathematics 2023, 11, 4783 4 of 23

performance of pre-trained models is measured by comparing ResNet50, MobileNetV2,
and InceptionV3 in classifying HGR datasets.

This research evaluates results and presents in-depth conclusions based on experi-
mental findings. Overall, these methodological steps form a comprehensive framework to
understand the role of image augmentation and CNN models in improving the accuracy
of HGR systems. By implementation programming using Python 3.6.13, particularly with
TensorFlow support, a solid technical foundation is provided, ensuring efficiency and
optimal performance in conducting this experiment.

Mathematics 2023, 11, x FOR PEER REVIEW 4 of 23

Firstly, diverse datasets, such as HG14, DLSI, MU HandImages ASL, Sebastian Mar-
cel, and ArASL2018, were collected to encompass as many HGR contexts as possible. The
next step involves the application of transfer learning to pre-trained models, namely Res-
Net50, MobileNetV2, and InceptionV3, to comprehend complex hand gesture features.

Evaluation is conducted in two main aspects, namely the effectiveness of image aug-
mentation and the performance of pre-trained models, using accuracy metrics during
transfer learning. Geometric transformations, such as scaling, rotation, translation, shear-
ing, and flipping, are explored in the augmentation evaluation. At the same time, the per-
formance of pre-trained models is measured by comparing ResNet50, MobileNetV2, and
InceptionV3 in classifying HGR datasets.

This research evaluates results and presents in-depth conclusions based on experi-
mental findings. Overall, these methodological steps form a comprehensive framework to
understand the role of image augmentation and CNN models in improving the accuracy
of HGR systems. By implementation programming using Python 3.6.13, particularly with
TensorFlow support, a solid technical foundation is provided, ensuring efficiency and op-
timal performance in conducting this experiment.

Figure 1. Overview of the research methodology employed in this study.

3. Material
3.1. Dataset

This research utilized five publicly available datasets for HGR: HG14, DLSI, MU
HandImages ASL, Sebastian Marcel Static Hand Gestures, and ArASL2018. These datasets
were selected to comprehensively evaluate the most suitable geometric transformation for
augmenting the HGR dataset. Each dataset possessed unique characteristics such as ges-
ture categories, image background, image size, and color channels. ArabicSL was the most
extensive dataset, containing 54,049 images divided into 32 classes, while MU Hand-
Images ASL was the smallest, with only 2425 images divided into 26 classes.

3.1.1. Hand Gesture 14 (HG14) Dataset
Guler et al. [33] created the Hand Gestures 14 (HG14) dataset, containing 14 hand

gestures suitable for hand interaction and application control in augmented reality. The
dataset includes 14,000 photos with RGB channels and a size of 256 × 256 pixels. Each
image has a simple and uniformly colored background, as shown in Figure 2 [33].

Figure 1. Overview of the research methodology employed in this study.

3. Material
3.1. Dataset

This research utilized five publicly available datasets for HGR: HG14, DLSI, MU
HandImages ASL, Sebastian Marcel Static Hand Gestures, and ArASL2018. These datasets
were selected to comprehensively evaluate the most suitable geometric transformation for
augmenting the HGR dataset. Each dataset possessed unique characteristics such as gesture
categories, image background, image size, and color channels. ArabicSL was the most
extensive dataset, containing 54,049 images divided into 32 classes, while MU HandImages
ASL was the smallest, with only 2425 images divided into 26 classes.

3.1.1. Hand Gesture 14 (HG14) Dataset

Guler et al. [33] created the Hand Gestures 14 (HG14) dataset, containing 14 hand
gestures suitable for hand interaction and application control in augmented reality. The
dataset includes 14,000 photos with RGB channels and a size of 256 × 256 pixels. Each
image has a simple and uniformly colored background, as shown in Figure 2 [33].

Mathematics 2023, 11, x FOR PEER REVIEW 5 of 23

Figure 2. Sample images from the HG14 dataset showcasing the 14 distinct hand gestures.

3.1.2. DLSI (Department de Llenguatges Sistemes Informàtics) Dataset
Alashhab et al. [34] created the DLSI (Department de Llenguatges Sistemes In-

formàtics) dataset to recognize gestures for visually impaired people. Various smartphone
cameras captured indoor and outdoor scenes under realistic conditions. The dataset com-
prises 12,064 frames divided into 6 gestures, each normalized to 224 × 224 pixels. Figure 3
[34] shows the sample images.

Figure 3. Sample images of the six different hand gestures are included in the DLSI dataset.

3.1.3. Massey University HandImages ASL Dataset
The dataset MU HandImages ASL was created by Barczak et al. at Massey University

(MU), New Zealand. It contains 2425 images from 5 individuals, with each hand pose
captured in a room with varying lighting conditions and a green screen background. The
dataset consists of 26 classes representing standard American Sign Language (ASL) ges-
tures, with black background images and varying pixel sizes depending on the hand
pose’s shape. Figure 4 [34] shows some sample images from this dataset.

Figure 2. Sample images from the HG14 dataset showcasing the 14 distinct hand gestures.

3.1.2. DLSI (Department de Llenguatges Sistemes Informàtics) Dataset

Alashhab et al. [34] created the DLSI (Department de Llenguatges Sistemes Informàtics)
dataset to recognize gestures for visually impaired people. Various smartphone cameras
captured indoor and outdoor scenes under realistic conditions. The dataset comprises

Mathematics 2023, 11, 4783 5 of 23

12,064 frames divided into 6 gestures, each normalized to 224 × 224 pixels. Figure 3 [34]
shows the sample images.

Mathematics 2023, 11, x FOR PEER REVIEW 5 of 23

Figure 2. Sample images from the HG14 dataset showcasing the 14 distinct hand gestures.

3.1.2. DLSI (Department de Llenguatges Sistemes Informàtics) Dataset
Alashhab et al. [34] created the DLSI (Department de Llenguatges Sistemes In-

formàtics) dataset to recognize gestures for visually impaired people. Various smartphone
cameras captured indoor and outdoor scenes under realistic conditions. The dataset com-
prises 12,064 frames divided into 6 gestures, each normalized to 224 × 224 pixels. Figure 3
[34] shows the sample images.

Figure 3. Sample images of the six different hand gestures are included in the DLSI dataset.

3.1.3. Massey University HandImages ASL Dataset
The dataset MU HandImages ASL was created by Barczak et al. at Massey University

(MU), New Zealand. It contains 2425 images from 5 individuals, with each hand pose
captured in a room with varying lighting conditions and a green screen background. The
dataset consists of 26 classes representing standard American Sign Language (ASL) ges-
tures, with black background images and varying pixel sizes depending on the hand
pose’s shape. Figure 4 [34] shows some sample images from this dataset.

Figure 3. Sample images of the six different hand gestures are included in the DLSI dataset.

3.1.3. Massey University HandImages ASL Dataset

The dataset MU HandImages ASL was created by Barczak et al. at Massey University
(MU), New Zealand. It contains 2425 images from 5 individuals, with each hand pose
captured in a room with varying lighting conditions and a green screen background. The
dataset consists of 26 classes representing standard American Sign Language (ASL) gestures,
with black background images and varying pixel sizes depending on the hand pose’s shape.
Figure 4 [34] shows some sample images from this dataset.

Mathematics 2023, 11, x FOR PEER REVIEW 6 of 23

Figure 4. Sample images from the MU HandImages ASL dataset featuring 26 distinct hand gestures
commonly used in ASL.

3.1.4. Sebastian Marcel Static Hand Gesture Dataset
The Sebastian Marcel Static Hand Gesture Dataset was used as the training set for

developing a neural network model to recognize hand postures in images. Hand gestures
were segmented using space discretization based on face location and body anthropome-
try. The dataset includes six hand postures (a, b, c, point, five, v) demonstrated by ten
individuals captured in uniform and complex backgrounds with varying image sizes, de-
pending on the hand gesture. Figure 5 [34] shows some sample images from this dataset.

Figure 5. Sample images from the Sebastian Marcel Static Hand Gesture Dataset featuring six dis-
tinct hand gestures demonstrated by ten individuals.

3.1.5. ArASL2018 Dataset
The ArASL2018 (Arabic Alphabet Sign Language 2018) dataset [35] includes 54,049

grayscale images of 32 hand poses representing the Arabic Alphabet Sign Language. Hand
gestures were captured from 40 individuals across different age groups under uniform
backgrounds and good lighting conditions. Some image preprocessing was performed to
remove noise and center the hand object in the image. Figure 6 [35] shows some sample
images from this dataset.

Figure 4. Sample images from the MU HandImages ASL dataset featuring 26 distinct hand gestures
commonly used in ASL.

3.1.4. Sebastian Marcel Static Hand Gesture Dataset

The Sebastian Marcel Static Hand Gesture Dataset was used as the training set for
developing a neural network model to recognize hand postures in images. Hand gestures

Mathematics 2023, 11, 4783 6 of 23

were segmented using space discretization based on face location and body anthropometry.
The dataset includes six hand postures (a, b, c, point, five, v) demonstrated by ten individu-
als captured in uniform and complex backgrounds with varying image sizes, depending
on the hand gesture. Figure 5 [34] shows some sample images from this dataset.

Mathematics 2023, 11, x FOR PEER REVIEW 6 of 23

Figure 4. Sample images from the MU HandImages ASL dataset featuring 26 distinct hand gestures
commonly used in ASL.

3.1.4. Sebastian Marcel Static Hand Gesture Dataset
The Sebastian Marcel Static Hand Gesture Dataset was used as the training set for

developing a neural network model to recognize hand postures in images. Hand gestures
were segmented using space discretization based on face location and body anthropome-
try. The dataset includes six hand postures (a, b, c, point, five, v) demonstrated by ten
individuals captured in uniform and complex backgrounds with varying image sizes, de-
pending on the hand gesture. Figure 5 [34] shows some sample images from this dataset.

Figure 5. Sample images from the Sebastian Marcel Static Hand Gesture Dataset featuring six dis-
tinct hand gestures demonstrated by ten individuals.

3.1.5. ArASL2018 Dataset
The ArASL2018 (Arabic Alphabet Sign Language 2018) dataset [35] includes 54,049

grayscale images of 32 hand poses representing the Arabic Alphabet Sign Language. Hand
gestures were captured from 40 individuals across different age groups under uniform
backgrounds and good lighting conditions. Some image preprocessing was performed to
remove noise and center the hand object in the image. Figure 6 [35] shows some sample
images from this dataset.

Figure 5. Sample images from the Sebastian Marcel Static Hand Gesture Dataset featuring six distinct
hand gestures demonstrated by ten individuals.

3.1.5. ArASL2018 Dataset

The ArASL2018 (Arabic Alphabet Sign Language 2018) dataset [35] includes 54,049
grayscale images of 32 hand poses representing the Arabic Alphabet Sign Language. Hand
gestures were captured from 40 individuals across different age groups under uniform
backgrounds and good lighting conditions. Some image preprocessing was performed to
remove noise and center the hand object in the image. Figure 6 [35] shows some sample
images from this dataset.

Mathematics 2023, 11, x FOR PEER REVIEW 7 of 23

Figure 6. Sample images from the ArASL2018 dataset featuring 32 distinct hand poses representing
Arabic Sign Language.

3.2. Image Augmentation
Image augmentation is a technique to avoid overfitting in neural network training by

transforming the original data or image using specific techniques [18]. Geometric trans-
formations such as scaling, rotation, translation (shifting), shearing, and flipping can aug-
ment image data. These transformations can produce new images from the original ones,
helping to generalize the knowledge learned by classifiers, such as neural networks.

Traditional image augmentation involves storing the augmented data on disk along-
side the original data, resulting in increased storage requirements, especially for large da-
tasets. An alternative approach called “on-the-fly” augmentation was proposed to address
this issue [18]. This approach performs augmentation during training rather than storing
augmented images in storage, leading to better knowledge generalization because it pro-
duces new data/images in every training epoch. This work used the on-the-fly augmenta-
tion strategy to achieve better performance in hand gesture recognition. The flow of on-
the-fly augmentation is illustrated in Figure 7.

Figure 7. Illustration of the “on-the-fly” image augmentation approach.

As shown in Figure 7, the original image dataset is divided into small batches. Each
batch undergoes random geometric transformations before being used for training a ma-
chine learning or deep learning algorithm. This technique produces different augmented
images in each batch and epoch, allowing for better knowledge generalization.

Figure 6. Sample images from the ArASL2018 dataset featuring 32 distinct hand poses representing
Arabic Sign Language.

Mathematics 2023, 11, 4783 7 of 23

3.2. Image Augmentation

Image augmentation is a technique to avoid overfitting in neural network training
by transforming the original data or image using specific techniques [18]. Geometric
transformations such as scaling, rotation, translation (shifting), shearing, and flipping can
augment image data. These transformations can produce new images from the original
ones, helping to generalize the knowledge learned by classifiers, such as neural networks.

Traditional image augmentation involves storing the augmented data on disk along-
side the original data, resulting in increased storage requirements, especially for large
datasets. An alternative approach called “on-the-fly” augmentation was proposed to ad-
dress this issue [18]. This approach performs augmentation during training rather than
storing augmented images in storage, leading to better knowledge generalization because
it produces new data/images in every training epoch. This work used the on-the-fly aug-
mentation strategy to achieve better performance in hand gesture recognition. The flow of
on-the-fly augmentation is illustrated in Figure 7.

Mathematics 2023, 11, x FOR PEER REVIEW 7 of 23

Figure 6. Sample images from the ArASL2018 dataset featuring 32 distinct hand poses representing
Arabic Sign Language.

3.2. Image Augmentation
Image augmentation is a technique to avoid overfitting in neural network training by

transforming the original data or image using specific techniques [18]. Geometric trans-
formations such as scaling, rotation, translation (shifting), shearing, and flipping can aug-
ment image data. These transformations can produce new images from the original ones,
helping to generalize the knowledge learned by classifiers, such as neural networks.

Traditional image augmentation involves storing the augmented data on disk along-
side the original data, resulting in increased storage requirements, especially for large da-
tasets. An alternative approach called “on-the-fly” augmentation was proposed to address
this issue [18]. This approach performs augmentation during training rather than storing
augmented images in storage, leading to better knowledge generalization because it pro-
duces new data/images in every training epoch. This work used the on-the-fly augmenta-
tion strategy to achieve better performance in hand gesture recognition. The flow of on-
the-fly augmentation is illustrated in Figure 7.

Figure 7. Illustration of the “on-the-fly” image augmentation approach.

As shown in Figure 7, the original image dataset is divided into small batches. Each
batch undergoes random geometric transformations before being used for training a ma-
chine learning or deep learning algorithm. This technique produces different augmented
images in each batch and epoch, allowing for better knowledge generalization.

Figure 7. Illustration of the “on-the-fly” image augmentation approach.

As shown in Figure 7, the original image dataset is divided into small batches. Each
batch undergoes random geometric transformations before being used for training a ma-
chine learning or deep learning algorithm. This technique produces different augmented
images in each batch and epoch, allowing for better knowledge generalization.

3.3. Geometric Transformation

This work evaluated all geometric transformations to determine the most suitable for
the HGR task. However, it should be noted that certain transformations, such as inverting,
may not be ideal for specific image types, such as digit images, which can confuse the
numbers 6 and 9.

3.3.1. Image Scaling

Image scaling resizes an input image to a larger or smaller size using a scale factor.
Equations (1) [36] and (2) [36] can be used to perform image scaling, where (x, y) are the
coordinates of a pixel in the original image, (x′, y′) are the coordinates of the pixel in the
scaled image, and sx and sy are the scale factors for the rows and columns of the image,
respectively.

x′ = x·sx (1)

y′ = y·sy (2)

Interpolation can be used to smooth the edges of the object in the scaled image and
maintain the aspect ratio when sx = sy. Image scaling improves model performance and
robustness to input size variations. When an image is scaled up, it is cropped to its original
size, while for scaling down, the original size is maintained with space filled using the
nearest pixel neighbor technique. Figure 8 shows a sample of a scaled image.

Mathematics 2023, 11, 4783 8 of 23

Mathematics 2023, 11, x FOR PEER REVIEW 8 of 23

3.3. Geometric Transformation
This work evaluated all geometric transformations to determine the most suitable for

the HGR task. However, it should be noted that certain transformations, such as inverting,
may not be ideal for specific image types, such as digit images, which can confuse the
numbers 6 and 9.

3.3.1. Image Scaling
Image scaling resizes an input image to a larger or smaller size using a scale factor.

Equations (1) [36] and (2) [36] can be used to perform image scaling, where 𝑥, 𝑦 are the
coordinates of a pixel in the original image, 𝑥′, 𝑦′ are the coordinates of the pixel in the
scaled image, and 𝑠 and 𝑠 are the scale factors for the rows and columns of the image,
respectively. 𝑥 𝑥 ∙ 𝑠 (1) 𝑦 𝑦 ∙ 𝑠 (2)

Interpolation can be used to smooth the edges of the object in the scaled image and
maintain the aspect ratio when 𝑠 𝑠 . Image scaling improves model performance and
robustness to input size variations. When an image is scaled up, it is cropped to its original
size, while for scaling down, the original size is maintained with space filled using the
nearest pixel neighbor technique. Figure 8 shows a sample of a scaled image.

Figure 8. Samples of scaled images using nearest neighbor interpolation.

3.3.2. Image Rotation
Image rotation is a common data augmentation technique in computer vision tasks

and involves rotating an image by a certain angle (typically 0 to 360 degrees) to create
additional training data. Equations (3) [37] and (4) [37] perform image rotation using (x,y)
as the original pixel coordinates and (x’,y’) as the corresponding pixel coordinates in the
rotated image. The rotation angle in radians is represented by θ, and (cx, cy) are the image
center coordinates. 𝑥 𝑥 𝑐𝑥 cos 𝜃 𝑦 𝑐𝑦 sin 𝜃 𝑐𝑥 (3) 𝑦 𝑥 𝑐𝑥 sin 𝜃 𝑦 𝑐𝑦 cos 𝜃 𝑐𝑦 (4)

Similar to image scaling, image rotation may result in blank areas that need to be
filled using interpolation techniques, such as the nearest pixel technique used in this work.
Figure 9 provides a sample of image rotation using the nearest pixel technique to interpo-
late the blank areas around the rotated image.

Figure 8. Samples of scaled images using nearest neighbor interpolation.

3.3.2. Image Rotation

Image rotation is a common data augmentation technique in computer vision tasks
and involves rotating an image by a certain angle (typically 0 to 360 degrees) to create
additional training data. Equations (3) [37] and (4) [37] perform image rotation using (x,y)
as the original pixel coordinates and (x’,y’) as the corresponding pixel coordinates in the
rotated image. The rotation angle in radians is represented by θ, and (cx, cy) are the image
center coordinates.

x′ = (x− cx)cos θ − (y− cy)sin θ + cx (3)

y′ = (x− cx)sin θ + (y− cy)cos θ + cy (4)

Similar to image scaling, image rotation may result in blank areas that need to be
filled using interpolation techniques, such as the nearest pixel technique used in this work.
Figure 9 provides a sample of image rotation using the nearest pixel technique to interpolate
the blank areas around the rotated image.

Mathematics 2023, 11, x FOR PEER REVIEW 9 of 23

Figure 9. Sample of image rotation with nearest pixel interpolation.

3.3.3. Image Translation
Image translation shifts an image along the x-axis and y-axis by a certain number of

pixels to create additional training data, improving model robustness to position varia-
tions. Equations (5) [38] and (6) [38] are used for x-axis and y-axis translation, respectively,
where (x,y) are the coordinates of a pixel in the original image, (x’,y’) are the coordinates
of the corresponding pixel in the translated image, and (dx, dy) are the translation offsets. 𝑥 𝑥 𝑑𝑥 (5) 𝑦 𝑦 𝑑𝑦 (6)

The nearest pixel interpolation technique also fills blank areas in the translated im-
ages. Figure 10 shows a sample of a translated image.

Figure 10. Sample of the translated image using nearest pixel interpolation.

3.3.4. Image Shearing
Image shearing is a technique that skews an image along the x-axis and y-axis by

shifting each row or column of pixels by a certain amount based on its y-coordinate or x-
coordinate, respectively. This technique helps handle input images captured from differ-
ent perspectives or angles. Shearing an image along the x-axis and y-axis can be achieved
using Equations (7) [39] and (8) [39], where (x,y) are the coordinates of a pixel in the orig-
inal image, (x’,y’) are the coordinates of the corresponding pixel in the sheared image, and
shx and shy are the shear factors along the x-axis and y-axis, respectively. 𝑥 𝑥 𝑠ℎ𝑥 𝑦 (7) 𝑦 𝑦 𝑠ℎ𝑦 𝑥 (8)

Nearest pixel neighbor interpolation is applied to fill the blank area in the sheared
images. Figure 11 provides a sample of the sheared image using nearest pixel interpola-
tion.

Figure 9. Sample of image rotation with nearest pixel interpolation.

3.3.3. Image Translation

Image translation shifts an image along the x-axis and y-axis by a certain number of
pixels to create additional training data, improving model robustness to position variations.
Equations (5) [38] and (6) [38] are used for x-axis and y-axis translation, respectively, where
(x,y) are the coordinates of a pixel in the original image, (x’,y’) are the coordinates of the
corresponding pixel in the translated image, and (dx, dy) are the translation offsets.

x′ = x + dx (5)

y′ = y + dy (6)

The nearest pixel interpolation technique also fills blank areas in the translated images.
Figure 10 shows a sample of a translated image.

Mathematics 2023, 11, 4783 9 of 23

Mathematics 2023, 11, x FOR PEER REVIEW 9 of 23

Figure 9. Sample of image rotation with nearest pixel interpolation.

3.3.3. Image Translation
Image translation shifts an image along the x-axis and y-axis by a certain number of

pixels to create additional training data, improving model robustness to position varia-
tions. Equations (5) [38] and (6) [38] are used for x-axis and y-axis translation, respectively,
where (x,y) are the coordinates of a pixel in the original image, (x’,y’) are the coordinates
of the corresponding pixel in the translated image, and (dx, dy) are the translation offsets. 𝑥 𝑥 𝑑𝑥 (5) 𝑦 𝑦 𝑑𝑦 (6)

The nearest pixel interpolation technique also fills blank areas in the translated im-
ages. Figure 10 shows a sample of a translated image.

Figure 10. Sample of the translated image using nearest pixel interpolation.

3.3.4. Image Shearing
Image shearing is a technique that skews an image along the x-axis and y-axis by

shifting each row or column of pixels by a certain amount based on its y-coordinate or x-
coordinate, respectively. This technique helps handle input images captured from differ-
ent perspectives or angles. Shearing an image along the x-axis and y-axis can be achieved
using Equations (7) [39] and (8) [39], where (x,y) are the coordinates of a pixel in the orig-
inal image, (x’,y’) are the coordinates of the corresponding pixel in the sheared image, and
shx and shy are the shear factors along the x-axis and y-axis, respectively. 𝑥 𝑥 𝑠ℎ𝑥 𝑦 (7) 𝑦 𝑦 𝑠ℎ𝑦 𝑥 (8)

Nearest pixel neighbor interpolation is applied to fill the blank area in the sheared
images. Figure 11 provides a sample of the sheared image using nearest pixel interpola-
tion.

Figure 10. Sample of the translated image using nearest pixel interpolation.

3.3.4. Image Shearing

Image shearing is a technique that skews an image along the x-axis and y-axis by
shifting each row or column of pixels by a certain amount based on its y-coordinate or x-
coordinate, respectively. This technique helps handle input images captured from different
perspectives or angles. Shearing an image along the x-axis and y-axis can be achieved using
Equations (7) [39] and (8) [39], where (x,y) are the coordinates of a pixel in the original
image, (x’,y’) are the coordinates of the corresponding pixel in the sheared image, and shx
and shy are the shear factors along the x-axis and y-axis, respectively.

x′ = x + shx× y (7)

y′ = y + shy× x (8)

Nearest pixel neighbor interpolation is applied to fill the blank area in the sheared
images. Figure 11 provides a sample of the sheared image using nearest pixel interpolation.

Mathematics 2023, 11, x FOR PEER REVIEW 10 of 23

Figure 11. Sample of the sheared image with nearest pixel interpolation.

3.3.5. Image Flipping
Image flipping reverses the left and right sides of the image. For HGR, only horizon-

tal flipping is used. The formula for horizontal flipping is provided in Equation (9) [40],
where (x,y) are the coordinates of a pixel in the original image, x’ is the corresponding
pixel index in the flipped image, and W is the width of the image. 𝑥 𝑊 1 𝑥 (9)

To flip the entire image, each row of pixels is reversed from left to right. No interpo-
lation is needed for flipping an image horizontally. Figure 12 shows a sample of horizon-
tally flipped images.

Figure 12. Sample of horizontally flipped image.

3.4. Convolutional Neural Networks (CNNs)
Deep learning (DL) has various architectures, one of which is Convolutional Neural

Networks (CNNs), which are known for their effectiveness in image recognition com-
pared to traditional machine learning approaches [41]. The basic idea of the CNN is the
technique of image convolution, which combines an input matrix and a kernel matrix to
produce a third matrix that represents how one matrix is modified by the other.

A CNN architecture generally consists of two parts: feature extraction and classifica-
tion [42], as depicted in Figure 13. The feature extraction part applies image convolution
to the input image to produce a series of feature maps. These features are then used in the
classification part to classify the label of the input image.

Figure 11. Sample of the sheared image with nearest pixel interpolation.

3.3.5. Image Flipping

Image flipping reverses the left and right sides of the image. For HGR, only horizontal
flipping is used. The formula for horizontal flipping is provided in Equation (9) [40], where
(x,y) are the coordinates of a pixel in the original image, x’ is the corresponding pixel index
in the flipped image, and W is the width of the image.

x′ = (W − 1)− x (9)

To flip the entire image, each row of pixels is reversed from left to right. No interpola-
tion is needed for flipping an image horizontally. Figure 12 shows a sample of horizontally
flipped images.

Mathematics 2023, 11, 4783 10 of 23

Mathematics 2023, 11, x FOR PEER REVIEW 10 of 23

Figure 11. Sample of the sheared image with nearest pixel interpolation.

3.3.5. Image Flipping
Image flipping reverses the left and right sides of the image. For HGR, only horizon-

tal flipping is used. The formula for horizontal flipping is provided in Equation (9) [40],
where (x,y) are the coordinates of a pixel in the original image, x’ is the corresponding
pixel index in the flipped image, and W is the width of the image. 𝑥 𝑊 1 𝑥 (9)

To flip the entire image, each row of pixels is reversed from left to right. No interpo-
lation is needed for flipping an image horizontally. Figure 12 shows a sample of horizon-
tally flipped images.

Figure 12. Sample of horizontally flipped image.

3.4. Convolutional Neural Networks (CNNs)
Deep learning (DL) has various architectures, one of which is Convolutional Neural

Networks (CNNs), which are known for their effectiveness in image recognition com-
pared to traditional machine learning approaches [41]. The basic idea of the CNN is the
technique of image convolution, which combines an input matrix and a kernel matrix to
produce a third matrix that represents how one matrix is modified by the other.

A CNN architecture generally consists of two parts: feature extraction and classifica-
tion [42], as depicted in Figure 13. The feature extraction part applies image convolution
to the input image to produce a series of feature maps. These features are then used in the
classification part to classify the label of the input image.

Figure 12. Sample of horizontally flipped image.

3.4. Convolutional Neural Networks (CNNs)

Deep learning (DL) has various architectures, one of which is Convolutional Neural
Networks (CNNs), which are known for their effectiveness in image recognition compared
to traditional machine learning approaches [41]. The basic idea of the CNN is the technique
of image convolution, which combines an input matrix and a kernel matrix to produce a
third matrix that represents how one matrix is modified by the other.

A CNN architecture generally consists of two parts: feature extraction and classifica-
tion [42], as depicted in Figure 13. The feature extraction part applies image convolution to
the input image to produce a series of feature maps. These features are then used in the
classification part to classify the label of the input image.

Mathematics 2023, 11, x FOR PEER REVIEW 11 of 23

Figure 13. CNN architecture with feature extraction and classification parts.

A CNN applies convolution to produce a set of feature maps. Each filter can detect
specific patterns from the input image, such as edges, lines, or corners. The output of the
convolutional layer is passed through a non-linear activation function, such as ReLUs
(Rectified Linear Units), to introduce non-linearity and learn complex representations of
the input image. The ReLU function is defined in Equation (10) [43]: 𝑓 𝑥 𝑚𝑎𝑥 0, 𝑥 (10)

ReLUs (Recti ied Linear Units) are an activation function introduced by [44] and have
a strong biological and mathematical underpinning. In 2011, they were demonstrated to
further improve the training of deep neural networks. They work by thresholding values
at 0, i.e., f(x) = max(0, x). Simply put, they output 0 when x < 0, and conversely, they output
a linear function when x ≥ 0.

The pooling layer is used after the convolutional layer to reduce the dimensionality
of the feature maps and introduce translational invariance. Max pooling takes the maxi-
mum value within a local neighborhood, and average pooling calculates the average
value.

Fully connected layers perform a classification task by mapping the previous layer’s
output to a set of output classes. The network adjusts its weights and biases through a
backpropagation algorithm to minimize a loss function that measures the difference be-
tween the predicted and true output during training.

3.5. Pre-Trained Neural Networks
To be effective, a CNN model should be sufficiently deep (deep CNN) and trained

on large amounts of data to learn various patterns from the dataset [45]. Training a CNN
requires a powerful machine with a dedicated Graphics Processing Unit (GPU) for parallel
computation and ample memory to store the dataset and CNN parameters during train-
ing. Therefore, researchers have developed pre-trained CNN models on large public da-
tasets, such as ImageNet or Microsoft COCO [46]. These pre-trained models can be used
to build a CNN-based system for image classification and can be retrained for custom
cases using new datasets. This process, called transfer learning, enables pre-trained mod-
els to be trained in less time and use less computational power. This work uses three pre-
trained CNN models for static hand gesture recognition (HGR) tasks, ResNet50, Mo-
bileNetV2, and InceptionV3, due to their excellent performance, as reported in [32].

3.5.1. ResNet50
ResNet50 is a pre-trained CNN model proposed by Microsoft Research in 2015 [41].

It uses Residual Network architecture to solve the problem of vanishing gradients in deep
learning. The Residual Network contains residual connections, which add the input of a

Figure 13. CNN architecture with feature extraction and classification parts.

A CNN applies convolution to produce a set of feature maps. Each filter can detect
specific patterns from the input image, such as edges, lines, or corners. The output of
the convolutional layer is passed through a non-linear activation function, such as ReLUs
(Rectified Linear Units), to introduce non-linearity and learn complex representations of
the input image. The ReLU function is defined in Equation (10) [43]:

f (x) = max(0, x) (10)

ReLUs (Rectified Linear Units) are an activation function introduced by [44] and have
a strong biological and mathematical underpinning. In 2011, they were demonstrated to
further improve the training of deep neural networks. They work by thresholding values
at 0, i.e., f(x) = max(0, x). Simply put, they output 0 when x < 0, and conversely, they output
a linear function when x ≥ 0.

The pooling layer is used after the convolutional layer to reduce the dimensionality of
the feature maps and introduce translational invariance. Max pooling takes the maximum
value within a local neighborhood, and average pooling calculates the average value.

Mathematics 2023, 11, 4783 11 of 23

Fully connected layers perform a classification task by mapping the previous layer’s
output to a set of output classes. The network adjusts its weights and biases through
a backpropagation algorithm to minimize a loss function that measures the difference
between the predicted and true output during training.

3.5. Pre-Trained Neural Networks

To be effective, a CNN model should be sufficiently deep (deep CNN) and trained
on large amounts of data to learn various patterns from the dataset [45]. Training a CNN
requires a powerful machine with a dedicated Graphics Processing Unit (GPU) for parallel
computation and ample memory to store the dataset and CNN parameters during training.
Therefore, researchers have developed pre-trained CNN models on large public datasets,
such as ImageNet or Microsoft COCO [46]. These pre-trained models can be used to build a
CNN-based system for image classification and can be retrained for custom cases using new
datasets. This process, called transfer learning, enables pre-trained models to be trained in
less time and use less computational power. This work uses three pre-trained CNN models
for static hand gesture recognition (HGR) tasks, ResNet50, MobileNetV2, and InceptionV3,
due to their excellent performance, as reported in [32].

3.5.1. ResNet50

ResNet50 is a pre-trained CNN model proposed by Microsoft Research in 2015 [41]. It
uses Residual Network architecture to solve the problem of vanishing gradients in deep
learning. The Residual Network contains residual connections, which add the input of a
layer to its output, creating a shortcut connection. Figure 14 shows that the network can
skip over layers that might not contribute much to the output.

Mathematics 2023, 11, x FOR PEER REVIEW 12 of 23

layer to its output, creating a shortcut connection. Figure 14 shows that the network can
skip over layers that might not contribute much to the output.

Figure 14. Illustration of a residual connection with the input of layer L-1 added to its output.

The ResNet50 architecture comprises 50 layers, including 49 convolutional layers and
1 fully connected layer, and is divided into 5 convolutional stages. Each stage contains
several residual blocks, as shown in Figure 15. The first stage consists of a single convolu-
tional layer that performs a 7 × 7 convolution with a stride of 2, followed by a max pooling
layer with a pool size of 3 × 3 and a stride of 2. The subsequent stages contain three, four,
six, and three residual blocks, each with three convolutional layers using a combination
of 1 × 1, 3 × 3, and 1 × 1 convolutions, batch normalization, and ReLU activation. The out-
put of the fifth convolutional stage is processed by a global average pooling layer that
averages the feature maps across the spatial dimensions. The resulting output is passed
through a fully connected layer with 1000 output units corresponding to the number of
classes in the ImageNet dataset.

Figure 15. ResNet50 architecture with 49 convolutional layers and 1 fully connected layer.

3.5.2. MobileNetV2
MobileNetV2 is a CNN model proposed by Google in 2018 as an efficient alternative

to deep neural networks for deployment on mobile and embedded devices [47]. It uses
depthwise separable convolutions, which split the convolution operation into a depthwise
convolution and a pointwise convolution, significantly reducing computational complex-
ity and memory usage. MobileNetV2 also introduces several new features that improve
its performance while maintaining efficiency. Figure 16 illustrates the working of depth-
wise separable convolutions.

Figure 14. Illustration of a residual connection with the input of layer L-1 added to its output.

The ResNet50 architecture comprises 50 layers, including 49 convolutional layers and 1
fully connected layer, and is divided into 5 convolutional stages. Each stage contains several
residual blocks, as shown in Figure 15. The first stage consists of a single convolutional
layer that performs a 7 × 7 convolution with a stride of 2, followed by a max pooling layer
with a pool size of 3 × 3 and a stride of 2. The subsequent stages contain three, four, six,
and three residual blocks, each with three convolutional layers using a combination of
1 × 1, 3× 3, and 1× 1 convolutions, batch normalization, and ReLU activation. The output
of the fifth convolutional stage is processed by a global average pooling layer that averages
the feature maps across the spatial dimensions. The resulting output is passed through a
fully connected layer with 1000 output units corresponding to the number of classes in the
ImageNet dataset.

Mathematics 2023, 11, 4783 12 of 23

Mathematics 2023, 11, x FOR PEER REVIEW 12 of 23

layer to its output, creating a shortcut connection. Figure 14 shows that the network can
skip over layers that might not contribute much to the output.

Figure 14. Illustration of a residual connection with the input of layer L-1 added to its output.

The ResNet50 architecture comprises 50 layers, including 49 convolutional layers and
1 fully connected layer, and is divided into 5 convolutional stages. Each stage contains
several residual blocks, as shown in Figure 15. The first stage consists of a single convolu-
tional layer that performs a 7 × 7 convolution with a stride of 2, followed by a max pooling
layer with a pool size of 3 × 3 and a stride of 2. The subsequent stages contain three, four,
six, and three residual blocks, each with three convolutional layers using a combination
of 1 × 1, 3 × 3, and 1 × 1 convolutions, batch normalization, and ReLU activation. The out-
put of the fifth convolutional stage is processed by a global average pooling layer that
averages the feature maps across the spatial dimensions. The resulting output is passed
through a fully connected layer with 1000 output units corresponding to the number of
classes in the ImageNet dataset.

Figure 15. ResNet50 architecture with 49 convolutional layers and 1 fully connected layer.

3.5.2. MobileNetV2
MobileNetV2 is a CNN model proposed by Google in 2018 as an efficient alternative

to deep neural networks for deployment on mobile and embedded devices [47]. It uses
depthwise separable convolutions, which split the convolution operation into a depthwise
convolution and a pointwise convolution, significantly reducing computational complex-
ity and memory usage. MobileNetV2 also introduces several new features that improve
its performance while maintaining efficiency. Figure 16 illustrates the working of depth-
wise separable convolutions.

Figure 15. ResNet50 architecture with 49 convolutional layers and 1 fully connected layer.

3.5.2. MobileNetV2

MobileNetV2 is a CNN model proposed by Google in 2018 as an efficient alternative
to deep neural networks for deployment on mobile and embedded devices [47]. It uses
depthwise separable convolutions, which split the convolution operation into a depthwise
convolution and a pointwise convolution, significantly reducing computational complexity
and memory usage. MobileNetV2 also introduces several new features that improve its
performance while maintaining efficiency. Figure 16 illustrates the working of depthwise
separable convolutions.

Mathematics 2023, 11, x FOR PEER REVIEW 13 of 23

Figure 16. Illustration of depthwise separable convolutions showing the depthwise convolution and
pointwise convolution.

The architecture of MobileNetV2 can be divided into three parts: the stem, the body,
and the head. The stem has a single convolutional layer that performs a 3 × 3 convolution
with a stride of 2, followed by batch normalization and a non-linear activation function.
The body contains a series of inverted residual blocks, each with a depthwise separable
convolution, a linear bottleneck, and batch normalization with a non-linear activation
function. The MobileNetV2 architecture includes a linear bottleneck that enhances the net-
work’s representational power while keeping its computational cost low. The architec-
ture’s head consists of a global average pooling layer, a 1 × 1 convolutional layer, and a
fully connected layer that uses a SoftMax activation function. Figure 17 provides a visual
representation of the MobileNetV2 architecture.

Figure 17. MobileNetV2 architecture with 17 bottleneck layers.

3.5.3. InceptionV3
InceptionV3 is a pre-trained CNN architecture introduced by Google in 2015 [48,49].

It uses multiple filters of different sizes in parallel at each stage of the network to capture
features at multiple resolutions and scales, increasing the ability to recognize objects of
different sizes and shapes. InceptionV3 also uses factorization to reduce the computa-
tional cost of the convolutional layers for more efficient performance. The architecture can

Figure 16. Illustration of depthwise separable convolutions showing the depthwise convolution and
pointwise convolution.

The architecture of MobileNetV2 can be divided into three parts: the stem, the body,
and the head. The stem has a single convolutional layer that performs a 3 × 3 convolution
with a stride of 2, followed by batch normalization and a non-linear activation function.
The body contains a series of inverted residual blocks, each with a depthwise separable con-
volution, a linear bottleneck, and batch normalization with a non-linear activation function.
The MobileNetV2 architecture includes a linear bottleneck that enhances the network’s
representational power while keeping its computational cost low. The architecture’s head
consists of a global average pooling layer, a 1× 1 convolutional layer, and a fully connected
layer that uses a SoftMax activation function. Figure 17 provides a visual representation of
the MobileNetV2 architecture.

Mathematics 2023, 11, 4783 13 of 23

Mathematics 2023, 11, x FOR PEER REVIEW 13 of 23

Figure 16. Illustration of depthwise separable convolutions showing the depthwise convolution and
pointwise convolution.

The architecture of MobileNetV2 can be divided into three parts: the stem, the body,
and the head. The stem has a single convolutional layer that performs a 3 × 3 convolution
with a stride of 2, followed by batch normalization and a non-linear activation function.
The body contains a series of inverted residual blocks, each with a depthwise separable
convolution, a linear bottleneck, and batch normalization with a non-linear activation
function. The MobileNetV2 architecture includes a linear bottleneck that enhances the net-
work’s representational power while keeping its computational cost low. The architec-
ture’s head consists of a global average pooling layer, a 1 × 1 convolutional layer, and a
fully connected layer that uses a SoftMax activation function. Figure 17 provides a visual
representation of the MobileNetV2 architecture.

Figure 17. MobileNetV2 architecture with 17 bottleneck layers.

3.5.3. InceptionV3
InceptionV3 is a pre-trained CNN architecture introduced by Google in 2015 [48,49].

It uses multiple filters of different sizes in parallel at each stage of the network to capture
features at multiple resolutions and scales, increasing the ability to recognize objects of
different sizes and shapes. InceptionV3 also uses factorization to reduce the computa-
tional cost of the convolutional layers for more efficient performance. The architecture can

Figure 17. MobileNetV2 architecture with 17 bottleneck layers.

3.5.3. InceptionV3

InceptionV3 is a pre-trained CNN architecture introduced by Google in 2015 [48,49].
It uses multiple filters of different sizes in parallel at each stage of the network to capture
features at multiple resolutions and scales, increasing the ability to recognize objects of
different sizes and shapes. InceptionV3 also uses factorization to reduce the computational
cost of the convolutional layers for more efficient performance. The architecture can be
divided into the stem, inception modules, and classification layers [48]. The stem processes
the input image and extracts low-level features, while the inception modules perform most
of the computation. Each inception module consists of several parallel convolutional layers
of different sizes combined using concatenation. Each module’s output passes through a
factorization layer, reducing feature map channels. A global average pooling layer, followed
by a fully connected layer with SoftMax activation, produces the network’s final output.
The architecture of InceptionV3 is illustrated in Figure 18.

Mathematics 2023, 11, x FOR PEER REVIEW 14 of 23

be divided into the stem, inception modules, and classification layers [48]. The stem pro-
cesses the input image and extracts low-level features, while the inception modules per-
form most of the computation. Each inception module consists of several parallel convo-
lutional layers of different sizes combined using concatenation. Each module’s output
passes through a factorization layer, reducing feature map channels. A global average
pooling layer, followed by a fully connected layer with SoftMax activation, produces the
network’s final output. The architecture of InceptionV3 is illustrated in Figure 18.

Figure 18. InceptionV3 CNN architecture.

3.6. Programming Tools
In this research using the Python programming language, especially Tensor-

Flow2.6.2, the ImageDataGenerator command serves as a key tool to enhance the perfor-
mance of models in hand gesture recognition (HGR) tasks. This experiment utilizes each
dataset, establishing a solid foundation. By applying transfer learning to pre-trained mod-
els, like ResNet50, MobileNetV2, and InceptionV3, the models can comprehend complex
features of hand gestures.

The official TensorFlow documentation [50] explains that the ImageDataGenerator
plays a central role in image augmentation, exploring geometric transformations like scal-
ing, rotation, translation, shearing, and flipping. The use of commands such as “fit” to
calculate internal statistics and “flow” to dynamically generate batches of images creates
an efficient and adaptive experimental environment [50]. In TensorFlow, the ImageDat-
aGenerator provides various parameters to control augmentation, such as scaling, rota-
tion, and flipping. The official TensorFlow documentation offers examples of usage and
recommended methods. For example:

```python 
from tensorflow.keras.preprocessing.image import ImageDataGenerator 
 
# Creating an instance of ImageDataGenerator with augmentation parameters 
datagen = ImageDataGenerator( 
    rotation_range = 20, 
    width_shift_range = 0.2, 
    height_shift_range = 0.2, 
    shear_range = 0.2, 
    zoom_range = 0.2, 
    horizontal_flip = True, 
    fill_mode = �nearest’ 
) 

Figure 18. InceptionV3 CNN architecture.



Mathematics 2023, 11, 4783 14 of 23

3.6. Programming Tools

In this research using the Python programming language, especially TensorFlow2.6.2,
the ImageDataGenerator command serves as a key tool to enhance the performance of
models in hand gesture recognition (HGR) tasks. This experiment utilizes each dataset,
establishing a solid foundation. By applying transfer learning to pre-trained models, like
ResNet50, MobileNetV2, and InceptionV3, the models can comprehend complex features
of hand gestures.

The official TensorFlow documentation [50] explains that the ImageDataGenerator
plays a central role in image augmentation, exploring geometric transformations like scal-
ing, rotation, translation, shearing, and flipping. The use of commands such as “fit” to
calculate internal statistics and “flow” to dynamically generate batches of images creates
an efficient and adaptive experimental environment [50]. In TensorFlow, the ImageData-
Generator provides various parameters to control augmentation, such as scaling, rotation,
and flipping. The official TensorFlow documentation offers examples of usage and recom-
mended methods. For example:

“‘python
from tensorflow.keras.preprocessing.image import ImageDataGenerator

# Creating an instance of ImageDataGenerator with augmentation parameters
datagen = ImageDataGenerator(
rotation_range = 20,
width_shift_range = 0.2,
height_shift_range = 0.2,
shear_range = 0.2,
zoom_range = 0.2,
horizontal_flip = True,
fill_mode = ‘nearest’
)

# Calculating internal statistics (fit) - assuming x_train is the image data
datagen.fit(x_train)

# Generating batches of images dynamically using flow
generated_images = datagen.flow(x_train, batch_size = 32)
“‘

Experiments are conducted by trying each pre-trained model on different datasets,
with the application of individual and combined augmentations. This structured approach
provides a deep understanding of the impact of augmentation on model performance
across various datasets. The official TensorFlow documentation, including code exam-
ples and parameters, serves as the primary reference source to detail the usage of the
ImageDataGenerator and strengthen the experimental framework.

4. Results
4.1. Experimental Setup

This study aims to determine the optimal geometric transformation for image aug-
mentation on the HGR dataset to improve classifier accuracy. To achieve this, it employed
an “on-the-fly” augmentation strategy and defined several parameters for random geo-
metric transformations, as shown in Table 1. Each transformation function was applied
individually during the training phase of the deep learning algorithm, and the process was
repeated three times to ensure consistent performance.



Mathematics 2023, 11, 4783 15 of 23

Table 1. Parameter settings for geometric transformations used in image augmentation.

Geometric Transformation Direction Parameter Setting

Scaling Horizontal and vertical [−20%, 20%]
Rotation CW and CCW [−30◦, 30◦]

Translation Horizontal and vertical [−20%, 20%]
Shearing Horizontal [−20◦, 20◦]
Flipping Horizontal [True, False]

Transfer learning uses ImageNet pre-trained weights as the initial network’s weights in
the experiment to avoid complex and high computation during learning. The optimization
of weights only occurs in the classification layer of the pre-trained model to optimize
the networks in the fully connected layers. Adaptive Moment Estimation (ADAM), an
optimization algorithm, is employed to enhance the training process and avoid gradient
vanishing during training [51]. The pre-trained network is retrained for 50 epochs with
a batch size of 32. To maintain the ImageNet pre-trained weights, network training is
performed by freezing all the layers in the feature extraction part. The performance of the
networks is evaluated using the “accuracy” metric.

The experiment uses Python programming language with several libraries, such as
TensorFlow, Matplotlib, and NumPy, on a personal computer with the specifications listed
in Table 2.

Table 2. Hardware and software specifications for the experiment.

Hardware/Software Specification

Processor (CPU) Intel Core i5-9300H @2.40 GHz
Memory (RAM) 32 GB DDR4

Graphics Processing Unit (GPU) Nvidia GTX 1660 Ti—6GB vRAM
Operating system Windows 11

Python version 3.6.13
Cuda/CuDNN version 11.0/8.0

4.2. Dataset Preparation

In this study, we used five publicly available datasets of HGR, as described in Section 2.
These datasets were used to evaluate the effectiveness of various experiment scenarios, as
summarized in Table 3. To train our networks, we randomly split each dataset into three
parts for training, evaluation, and testing, respectively, with a distribution of 60:20:20. To
augment the training data, we used the ImageDataGenerator module TensorFlow [50]. It is
important to note that only the training data were augmented.

Table 3. Specification of datasets used for the experiment.

Dataset Number of Data Number of Classes Images Size Image Background

DLSI 12,064 6 224 × 224 complex
HG14 14,000 14 256 × 256 uniform

MU HandImages ASL 2425 26 vary uniform
Sebastian Marcel 5531 6 vary uniform and complex

ArASL2018 54,049 32 64 × 64 uniform

In this work, it was observed that specific parameters in the HGR dataset could impact
the classification performance, such as input size and image background. As shown in
Table 3, each dataset had different sizes, so all input images were resized to a uniform size
of 224 × 224 pixels with three color channels (RGB) commonly used in pre-trained CNN
models like VGG, ResNet, and Inception.

The image background was classified as uniform or complex based on the dominance
of a single color or simple texture versus multiple colors, textures, or objects. While a



Mathematics 2023, 11, 4783 16 of 23

uniform background is easier to recognize and more accurate, it may not represent real-
life scenarios. Conversely, a complex background may be more challenging to recognize
but is more representative of real-life situations. Using HGR datasets with uniform and
complex backgrounds, we could analyze the impact of geometric-based augmentation on
background variations.

4.3. Experimental Results

The experiments were conducted based on the scenarios explained in the previous
section, which are divided into two parts. The first part involves a single augmentation
experiment to observe which geometric augmentation (scaling, rotation, translation, shear-
ing, and flipping) can lead to the best performance. The second part involves a combined
augmentation experiment to observe whether image augmentation using all five geometric
transformations produces better performance than a single one. As the datasets have a
different number of classes and are balanced; the only performance metric used is accuracy.

4.3.1. Results on Single Augmentation

The first experiment involved using a pre-trained ResNet50 model that was retrained
on the five HGR datasets. Each input image was augmented using the ImageDataGenerator
module from the TensorFlow library before being fed into the pre-trained model for learning.
Overall, ResNet50 performed very well for all datasets and geometric transformations,
achieving accuracies of over 95% for almost all experiment scenarios. Specifically, ResNet50
achieved the highest accuracy when using the DLSI and HG14 datasets, with average
accuracies of 97.67% and 97.47%, respectively, for all geometric transformations. This result
is surprising because the DLSI dataset has a complex image background. On the other
hand, the lowest accuracy was obtained when using the Sebastian Marcel dataset, with an
average accuracy of 94.98%. The performance of ResNet50 on all datasets is summarized
in Table 4.

Table 4. Classification accuracy results of geometric image augmentation using ResNet50 architecture.

Dataset
Geometric Transformations—Accuracy (%) Dataset Average

Accuracy (%)Scaling Rotation Translation Shearing Flipping

DLSI 97.86 97.37 97.47 97.86 97.77 97.67
HG14 97.07 97.46 98.32 97.18 97.32 97.47

MU HandImages ASL 95.14 97.26 96.05 97.26 97.57 96.66
ArASL2018 96.61 94.66 96.04 97.26 97.15 96.34

Sebastian Marcel 93.60 95.07 96.06 94.58 95.57 94.98

Geometric Avg. Accuracy (%) 96.06 96.36 96.79 96.83 97.08

Based on the results presented in Table 4, horizontal flipping achieved the highest ac-
curacy among the five geometric transformations, with an average accuracy of 97.08%. Fur-
thermore, image shearing and translation produced better results than scaling and rotation.

Moving on to the second experiment, as shown in Table 5, MobileNetV2 performed
worse than ResNet50 for all datasets. The MU HandImage ASL dataset achieved the highest
accuracy among all datasets, with significant differences from the other datasets of up
to 38%. However, MobileNetV2 performed poorly in classifying the DLSI dataset with a
complex image background. Unlike ResNet50, shearing transformation produced the best
results for all datasets, with an overall accuracy of 78.85%, followed by horizontal flipping,
with an average accuracy of 74.72%.



Mathematics 2023, 11, 4783 17 of 23

Table 5. Results of geometric image augmentation on the MobileNetV2 architecture.

Dataset
Geometric Transformations—Accuracy (%) Dataset Average

Accuracy (%)Scaling Rotation Translation Shearing Flipping

DLSI 73.63 73.78 69.96 79.79 76.66 74.76
HG14 59.18 57.75 59.00 65.18 60.39 60.30

MU HandImages ASL 92.40 90.88 91.49 95.74 95.74 93.25
ArASL2018 69.21 59.53 63.83 84.09 74.79 70.29

Sebastian Marcel 65.52 61.08 63.05 69.46 66.01 65.02

Geometric Avg. Accuracy (%) 71.99 68.60 69.47 78.85 74.72

Table 6 shows the results of using the InceptionV3 architecture for geometric image
augmentation. Similar to MobileNetV2, the MU HandImage ASL dataset achieved the
highest accuracy. The shearing operation resulted in the highest accuracy compared to other
geometric transformations for all datasets. However, InceptionV3 struggled to recognize
the hand gestures in the HG14 dataset, which had the lowest accuracy. This is surprising
because HG14 uses a uniform background in each image, and the difference in accuracy
compared to other datasets is significant.

Table 6. Results of geometric image augmentation on the InceptionV3 architecture.

Dataset
Geometric Transformations—Accuracy (%) Dataset Average

Accuracy (%)Scaling Rotation Translation Shearing Flipping

DLSI 67.28 65.44 60.92 71.70 69.27 66.92
HG14 48.57 41.54 39.43 49.11 40.25 43.78

MU HandImages ASL 89.06 86.63 82.67 94.22 89.06 84.34
ArASL2018 82.93 76.75 67.33 85.75 74.37 70.47

Sebastian Marcel 70.94 73.89 67.49 74.38 72.41 74.07

Geometric Avg. Accuracy (%) 71.76 68.85 63.57 75.03 69.07

4.3.2. Results of Combined Augmentation

This study performed experiments to compare the performance of pre-trained models
trained with single and combined geometric transformations. The same experimental setup
as before was used with three repetitions for each dataset to ensure consistency of model
performance. Table 7 shows that single augmentation yielded better results than combined
augmentation for every pre-trained model. The most significant decreases in accuracy
were observed in MobileNetV2 and InceptionV3, which experienced drops of 11.54% and
18.00%, respectively. The worst accuracy was obtained for HG14 and ArASL2018 datasets
when using MobileNetV2 and InceptionV3 with combined augmentation, with an accuracy
below 50%. However, MU HandImages ASL maintained good accuracy for each pre-trained
model using single or combined augmentation.

Table 7. Comparison of accuracies between single and combined augmentation methods.

Dataset
ResNet50 (%) MobileNetV2 (%) InceptionV3 (%)

Single Combined Single Combined Single Combined

DLSI 97.67 97.96 74.76 65.29 66.92 52.09
HG14 97.47 96.61 60.30 48.86 43.78 28.82

MU HandImages ASL 96.66 93.62 93.25 94.22 84.34 76.60
ArASL2018 96.34 92.41 70.29 39.38 70.47 18.47

Sebastian Marcel 94.98 95.57 65.02 58.13 74.07 74.38

Avg. Accuracy (%) 96.62 95.23 72.72 61.18 67.92 50.07



Mathematics 2023, 11, 4783 18 of 23

5. Discussion

The experimental discussion in this research presents noteworthy findings that can
serve as a foundation for further research and development in hand gesture recognition
(HGR). Analyzing the documented experimental results in Sections 4–6 reveals that im-
age shearing holds the most significant influence on the classification accuracy among
the five geometric transformations used for image augmentation. It is noteworthy that
despite the accuracy value of image shearing in ResNet50 being lower compared to the
flipping transformation, MobileNet, and Inception, in contrast, it achieved the highest
accuracy values.

This observed significance can be attributed to the technical aspects of image shearing,
wherein its ability to handle variations in object perspective and other specific characteristics
renders it a crucial augmentation technique for enhancing the accuracy of hand gesture
recognition models.

The implication of these findings is that constructing a classification model capable of
effectively managing variations in object perspective is crucial for achieving high accuracy
in HGR. Furthermore, image flipping emerges as the second most influential geometric
transformation for the HGR task, as evidenced by the relatively higher accuracy observed
in both image shearing and flipping, as indicated in Figure 21. This underscores the
importance of developing an HGR model that can adeptly handle both variations in object
perspective and the reflection of gestures by the right or left hand. It is noteworthy that
while image scaling can impact classification accuracy, its effect is comparatively lower
than image shearing and flipping.

The use of image rotation as an augmentation method in hand gesture recognition
(HGR) datasets is generally applicable, but its effectiveness depends on the types of gestures
present in the dataset. Some gestures may require hand position rotation to differentiate
between distinct signs. For instance, in the MU HandImage ASL (Massey dataset), the
gesture for the letter “i” is nearly identical to the letter “j”, and the gesture for the letter
“z” is identical to the number “1”, as shown in Figure 19. In such cases, it is advisable
to carefully consider the use of image rotation or even exclude it from augmentation
operations to avoid introducing ambiguity into the dataset.

Mathematics 2023, 11, x FOR PEER REVIEW 19 of 23 
 

 

carefully consider the use of image rotation or even exclude it from augmentation opera-
tions to avoid introducing ambiguity into the dataset. 

 
Figure 19. The identical gestures between the number “1” and the letter “z” shown in (a) and the 
letters “i” and “j” shown in (b) in the MU HandImage ASL dataset are only distinguished by hand 
position. Therefore, rotation can be excluded from the augmentation operations. 

Similar to rotation, Figure 20 illustrates that image translation, particularly in the 
HG14 dataset, can produce ambiguously augmented data, such as in the HG14 dataset, 
where the horizontal translation of gesture number “6” may be identical to gesture num-
ber “9”. Similarly, gesture number “11” may be highly like gesture number “12” when 
shifted to the left. To handle this issue, translation can be excluded from augmentation, or 
the range of translation can be limited. 

 
Figure 20. Similar hand gestures in the HG14 dataset due to translational transformation: (a) “6” 
and “9” and (b) “11” and “12”. 

Figure 21 provides additional insights, confirming that image shearing and flipping 
are effective techniques for augmenting static hand gesture recognition (HGR) datasets. 
This effectiveness holds true across diverse datasets and pre-trained models. While image 
scaling is a viable option, Figure 22 highlights a cautionary note—using an excessive num-
ber of transformations can lead to overly complex images, potentially causing misclassifi-
cation. Consequently, a more practical approach for image augmentation in HGR tasks 
using Convolutional Neural Networks (CNNs) may involve combining two geometric 
transformations. 

Figure 19. The identical gestures between the number “1” and the letter “z” shown in (a) and the
letters “i” and “j” shown in (b) in the MU HandImage ASL dataset are only distinguished by hand
position. Therefore, rotation can be excluded from the augmentation operations.

Similar to rotation, Figure 20 illustrates that image translation, particularly in the
HG14 dataset, can produce ambiguously augmented data, such as in the HG14 dataset,
where the horizontal translation of gesture number “6” may be identical to gesture number
“9”. Similarly, gesture number “11” may be highly like gesture number “12” when shifted
to the left. To handle this issue, translation can be excluded from augmentation, or the
range of translation can be limited.



Mathematics 2023, 11, 4783 19 of 23

Mathematics 2023, 11, x FOR PEER REVIEW 19 of 23 
 

 

carefully consider the use of image rotation or even exclude it from augmentation opera-
tions to avoid introducing ambiguity into the dataset. 

 
Figure 19. The identical gestures between the number “1” and the letter “z” shown in (a) and the 
letters “i” and “j” shown in (b) in the MU HandImage ASL dataset are only distinguished by hand 
position. Therefore, rotation can be excluded from the augmentation operations. 

Similar to rotation, Figure 20 illustrates that image translation, particularly in the 
HG14 dataset, can produce ambiguously augmented data, such as in the HG14 dataset, 
where the horizontal translation of gesture number “6” may be identical to gesture num-
ber “9”. Similarly, gesture number “11” may be highly like gesture number “12” when 
shifted to the left. To handle this issue, translation can be excluded from augmentation, or 
the range of translation can be limited. 

 
Figure 20. Similar hand gestures in the HG14 dataset due to translational transformation: (a) “6” 
and “9” and (b) “11” and “12”. 

Figure 21 provides additional insights, confirming that image shearing and flipping 
are effective techniques for augmenting static hand gesture recognition (HGR) datasets. 
This effectiveness holds true across diverse datasets and pre-trained models. While image 
scaling is a viable option, Figure 22 highlights a cautionary note—using an excessive num-
ber of transformations can lead to overly complex images, potentially causing misclassifi-
cation. Consequently, a more practical approach for image augmentation in HGR tasks 
using Convolutional Neural Networks (CNNs) may involve combining two geometric 
transformations. 

Figure 20. Similar hand gestures in the HG14 dataset due to translational transformation: (a) “6” and
“9” and (b) “11” and “12”.

Figure 21 provides additional insights, confirming that image shearing and flipping
are effective techniques for augmenting static hand gesture recognition (HGR) datasets.
This effectiveness holds true across diverse datasets and pre-trained models. While im-
age scaling is a viable option, Figure 22 highlights a cautionary note—using an excessive
number of transformations can lead to overly complex images, potentially causing misclas-
sification. Consequently, a more practical approach for image augmentation in HGR tasks
using Convolutional Neural Networks (CNNs) may involve combining two geometric
transformations.

Mathematics 2023, 11, x FOR PEER REVIEW 20 of 23 
 

 

 
Figure 21. Comparison of classification accuracy among different geometric transformations using 
different pre-trained models. 

 
Figure 22. Comparison of classification performance between single and combined geometric aug-
mentations on different pre-trained models. 

This experiment reveals that ResNet50 outperforms MobileNetV2 and InceptionV3 
in static HGR datasets. Figure 22 demonstrates the superior performance of ResNet50, a 
popular CNN architecture, compared to MobileNetV2 and InceptionV3. The notable ad-
vantages of ResNet50, including its less complex network that demands less computing 
power and memory, have significant practical implications for real-world applications. In 
the development of hand gesture recognition applications for devices with limited com-
putational resources, choosing ResNet50 can result in faster and more energy-efficient 
models. This is particularly crucial in scenarios such as mobile devices, where optimizing 
resource usage is paramount for a seamless user experience. 

6. Conclusions 
Based on the results of the experiments conducted for static hand gesture recognition 

using Convolutional Neural Network (CNN) models, several conclusions can be drawn 
to guide the development of more efficient methods for this task. 

Firstly, in the context of geometric transformations, it was found that the use of shear-
ing and flipping had the most significant impact on improving the model’s accuracy. 

60

70

80

90

100

Scaling Rotation Translation Shearing Flipping

A
cc

ur
ac

y 
(%

)

ResNet50 MobileNetV2 InceptionV3

0

20

40

60

80

100

ResNet50 MobileNetV2 InceptionV3

A
cc

ur
ac

y 
(%

)

Single Augmentation Combined Augmentation

Figure 21. Comparison of classification accuracy among different geometric transformations using
different pre-trained models.

Mathematics 2023, 11, x FOR PEER REVIEW 20 of 23 
 

 

 
Figure 21. Comparison of classification accuracy among different geometric transformations using 
different pre-trained models. 

 
Figure 22. Comparison of classification performance between single and combined geometric aug-
mentations on different pre-trained models. 

This experiment reveals that ResNet50 outperforms MobileNetV2 and InceptionV3 
in static HGR datasets. Figure 22 demonstrates the superior performance of ResNet50, a 
popular CNN architecture, compared to MobileNetV2 and InceptionV3. The notable ad-
vantages of ResNet50, including its less complex network that demands less computing 
power and memory, have significant practical implications for real-world applications. In 
the development of hand gesture recognition applications for devices with limited com-
putational resources, choosing ResNet50 can result in faster and more energy-efficient 
models. This is particularly crucial in scenarios such as mobile devices, where optimizing 
resource usage is paramount for a seamless user experience. 

6. Conclusions 
Based on the results of the experiments conducted for static hand gesture recognition 

using Convolutional Neural Network (CNN) models, several conclusions can be drawn 
to guide the development of more efficient methods for this task. 

Firstly, in the context of geometric transformations, it was found that the use of shear-
ing and flipping had the most significant impact on improving the model’s accuracy. 

60

70

80

90

100

Scaling Rotation Translation Shearing Flipping

A
cc

ur
ac

y 
(%

)

ResNet50 MobileNetV2 InceptionV3

0

20

40

60

80

100

ResNet50 MobileNetV2 InceptionV3

A
cc

ur
ac

y 
(%

)

Single Augmentation Combined Augmentation

Figure 22. Comparison of classification performance between single and combined geometric aug-
mentations on different pre-trained models.



Mathematics 2023, 11, 4783 20 of 23

This experiment reveals that ResNet50 outperforms MobileNetV2 and InceptionV3
in static HGR datasets. Figure 22 demonstrates the superior performance of ResNet50,
a popular CNN architecture, compared to MobileNetV2 and InceptionV3. The notable
advantages of ResNet50, including its less complex network that demands less computing
power and memory, have significant practical implications for real-world applications.
In the development of hand gesture recognition applications for devices with limited
computational resources, choosing ResNet50 can result in faster and more energy-efficient
models. This is particularly crucial in scenarios such as mobile devices, where optimizing
resource usage is paramount for a seamless user experience.

6. Conclusions

Based on the results of the experiments conducted for static hand gesture recognition
using Convolutional Neural Network (CNN) models, several conclusions can be drawn to
guide the development of more efficient methods for this task.

Firstly, in the context of geometric transformations, it was found that the use of
shearing and flipping had the most significant impact on improving the model’s accuracy.
These transformations help the model better cope with variations in object perspectives,
indicating that building a classification model capable of handling changes in viewpoint is
a crucial aspect of static hand gesture recognition.

Secondly, in choosing a CNN model, ResNet50 consistently proved to outperform
MobileNetV2 and InceptionV3. Although ResNet50 may require more computational
power, the advantage of high-accuracy results suggests its importance in selecting a model
for this task.

However, the conclusions also highlight that overly complex geometric transforma-
tions can harm the model’s performance, especially for MobileNetV2 and InceptionV3.
Excessive geometric transformations may involve using too many types of transforma-
tions, making the model struggle to understand actual patterns, as each training example
experiences significant variation. Therefore, a balance is needed between performance
improvement and real-world representation by selecting transformations suitable for the
dataset’s characteristics.

Moreover, future research may consider color modifications in addition to geometric
transformations. Further understanding of how to optimize image augmentation methods,
including color variations, can significantly contribute to improving model performance,
especially in situations where color variations may affect image interpretation.

As a direction for future research, this study can be expanded by combining multiplex
geometric transformations with color modifications, creating a more holistic and effective
image augmentation framework. Additionally, further exploration can be conducted in
situations where there is a lack of data or significant variation between datasets. Integration
with transfer learning techniques and the development of more complex models can also
be an interesting focus of research. Thus, this study provides a foundation for further
exploration in enhancing the efficiency and effectiveness of static hand gesture recognition
using a CNN-based approach.

Author Contributions: Conceptualization, B.-A.A.; methodology, B.-A.A.; software, B.-A.A.; val-
idation, B.-A.A. and C.-T.C.; formal analysis, B.-A.A.; investigation, B.-A.A.; resources, B.-A.A.;
data curation, B.-A.A.; writing—original draft preparation, B.-A.A.; writing—review and editing,
B.-A.A. and C.-T.C.; visualization, B.-A.A.; supervision, C.-T.C. and J.-S.C.; project administration,
J.-S.C.; funding acquisition, J.-S.C. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the National Science and Technology Council, Taiwan grant
number NSTC 112-2221-E-218-017.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.



Mathematics 2023, 11, 4783 21 of 23

Data Availability Statement: All datasets in this work can be accessed through the link provided in
Section 2.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Lee, C.; Kim, J.; Cho, S.; Kim, J.; Yoo, J.; Kwon, S. Development of Real-Time Hand Gesture Recognition for Tabletop Holographic

Display Interaction Using Azure Kinect. Sensors 2020, 20, 4566. [CrossRef]
2. Ekneling, S.; Sonestedt, T.; Georgiadis, A.; Yousefi, S.; Chana, J. Magestro: Gamification of the Data Collection Process for

Development of the Hand Gesture Recognition Technology. In Proceedings of the 2018 IEEE International Symposium on Mixed
and Augmented Reality Adjunct (ISMAR-Adjunct), Munich, Germany, 16–20 October 2018; pp. 417–418.

3. Bai, Z.; Wang, L.; Zhou, S.; Cao, Y.; Liu, Y.; Zhang, J. Fast Recognition Method of Football Robot’s Graphics From the VR
Perspective. IEEE Access 2020, 8, 161472–161479. [CrossRef]

4. Nooruddin, N.; Dembani, R.; Maitlo, N. HGR: Hand-Gesture-Recognition Based Text Input Method for AR/VR Wearable Devices.
In Proceedings of the 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Toronto, ON, Canada, 11–14
October 2020; pp. 744–751.

5. Zhao, J.; An, R.; Xu, R.; Lin, B. Comparing Hand Gestures and a Gamepad Interface for Locomotion in Virtual Environments. Int.
J. Hum.-Comput. Stud. 2022, 166, 102868. [CrossRef]

6. Mezari, A.; Maglogiannis, I. An Easily Customized Gesture Recognizer for Assisted Living Using Commodity Mobile Devices.
J. Healthc. Eng. 2018, 2018, 3180652. [CrossRef] [PubMed]

7. Roberge, A.; Bouchard, B.; Maître, J.; Gaboury, S. Hand Gestures Identification for Fine-Grained Human Activity Recognition in
Smart Homes. In Procedia Computer Science; Elsevier B.V.: Amsterdam, The Netherlands; Liara Laboratory, University of Quebec,
Chicoutimi 555 Boul. Universite: Saguenay, QC, Canada, 2022; Volume 201, pp. 32–39.

8. Huang, X.; Hu, S.; Guo, Q. Multi-Object Recognition Based on Improved YOLOv4. In Proceedings of the 2021 CAA Symposium
on Fault Detection, Supervision, and Safety for Technical Processes (SAFEPROCESS), Chengdu, China, 17–18 December 2021;
pp. 1–4.

9. Kaczmarek, W.; Panasiuk, J.; Borys, S.; Banach, P. Industrial Robot Control by Means of Gestures and Voice Commands in Off-Line
and On-Line Mode. Sensors 2020, 20, 6358. [CrossRef]

10. Neto, P.; Simão, M.; Mendes, N.; Safeea, M. Gesture-Based Human-Robot Interaction for Human Assistance in Manufacturing.
Int. J. Adv. Manuf. Technol. 2019, 101, 119–135. [CrossRef]

11. Ding, I.-J.; Su, J.-L. Designs of Human–Robot Interaction Using Depth Sensor-Based Hand Gesture Communication for Smart
Material-Handling Robot Operations. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2023, 237, 392–413. [CrossRef]

12. Young, G.; Milne, H.; Griffiths, D.; Padfield, E.; Blenkinsopp, R.; Georgiou, O. Designing Mid-Air Haptic Gesture Controlled User
Interfaces for Cars. Proc. ACM Hum.-Comput. Interact. 2020, 4, 1–23. [CrossRef]

13. Qian, X.; Ju, W.; Sirkin, D.M. Aladdin’s Magic Carpet: Navigation by in-Air Static Hand Gesture in Autonomous Vehicles. Int. J.
Hum.–Comput. Interact. 2020, 36, 1912–1927. [CrossRef]

14. Devineau, G.; Moutarde, F.; Xi, W.; Yang, J. Deep Learning for Hand Gesture Recognition on Skeletal Data. In Proceedings of the
2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), Xi’an, China, 15–19 May 2018; pp.
106–113.

15. Wang, J.; Liu, T.; Wang, X. Human Hand Gesture Recognition with Convolutional Neural Networks for K-12 Double-Teachers
Instruction Mode Classroom. Infrared Phys. Technol. 2020, 111, 103464. [CrossRef]

16. Khoh, W.H.; Pang, Y.H.; Teoh, A.B.J.; Ooi, S.Y. In-Air Hand Gesture Signature Using Transfer Learning and Its Forgery Attack.
Appl. Soft Comput. 2021, 113, 108033. [CrossRef]

17. Khosla, C.; Saini, B.S. Enhancing Performance of Deep Learning Models with Different Data Augmentation Techniques: A Survey.
In Proceedings of the 2020 International Conference on Intelligent Engineering and Management (ICIEM), London, UK, 17–19
June 2020; pp. 79–85.

18. Shorten, C.; Khoshgoftaar, T.M. A Survey on Image Data Augmentation for Deep Learning. J. Big Data 2019, 6, 60. [CrossRef]
19. Kalaivani, S.; Asha, N.; Gayathri, A. Geometric Transformations-Based Medical Image Augmentation. In GANs for Data

Augmentation in Healthcare; Solanki, A., Naved, M., Eds.; Springer International Publishing: Cham, Switzerland, 2023; pp. 133–141,
ISBN 978-3-031-43204-0.

20. Islam, M.Z.; Hossain, M.S.; ul Islam, R.; Andersson, K. Static Hand Gesture Recognition Using Convolutional Neural Network
with Data Augmentation. In Proceedings of the 2019 Joint 8th International Conference on Informatics, Electronics & Vision
(ICIEV) and 2019 3rd International Conference on Imaging, Vision & Pattern Recognition (icIVPR), Spokane, WA, USA, 30 May–2
June 2019; pp. 324–329.

21. Bousbai, K.; Merah, M. Hand Gesture Recognition Using Capabilities of Capsule Network and Data Augmentation. In Proceedings
of the 2022 7th International Conference on Image and Signal Processing and their Applications (ISPA), Mostaganem, Algeria,
8–9 May 2022; pp. 1–5.

https://doi.org/10.3390/s20164566
https://doi.org/10.1109/ACCESS.2020.3020473
https://doi.org/10.1016/j.ijhcs.2022.102868
https://doi.org/10.1155/2018/3180652
https://www.ncbi.nlm.nih.gov/pubmed/30123440
https://doi.org/10.3390/s20216358
https://doi.org/10.1007/s00170-018-2788-x
https://doi.org/10.1177/09544054221102247
https://doi.org/10.1145/3397869
https://doi.org/10.1080/10447318.2020.1801225
https://doi.org/10.1016/j.infrared.2020.103464
https://doi.org/10.1016/j.asoc.2021.108033
https://doi.org/10.1186/s40537-019-0197-0


Mathematics 2023, 11, 4783 22 of 23

22. Alani, A.A.; Cosma, G.; Taherkhani, A.; McGinnity, T.M. Hand Gesture Recognition Using an Adapted Convolutional Neural
Network with Data Augmentation. In Proceedings of the 2018 4th International Conference on Information Management (ICIM),
Oxford, UK, 25–27 May 2018; pp. 5–12.

23. Zhou, W.; Chen, K. A Lightweight Hand Gesture Recognition in Complex Backgrounds. Displays 2022, 74, 102226. [CrossRef]
24. Galdran, A.; Alvarez-Gila, A.; Meyer, M.I.; Saratxaga, C.L.; Araújo, T.; Garrote, E.; Aresta, G.; Costa, P.; Mendonça, A.M.;

Campilho, A. Data-Driven Color Augmentation Techniques for Deep Skin Image Analysis. arXiv 2017, arXiv:1703.03702.
25. Tan, Y.S.; Lim, K.M.; Lee, C.P. Hand Gesture Recognition via Enhanced Densely Connected Convolutional Neural Network.

Expert Syst. Appl. 2021, 175, 114797. [CrossRef]
26. Taylor, L.; Nitschke, G. Improving Deep Learning with Generic Data Augmentation. In Proceedings of the 2018 IEEE Symposium

Series on Computational Intelligence (SSCI), Bangalore, India, 18–21 November 2018; pp. 1542–1547.
27. Motamed, S.; Rogalla, P.; Khalvati, F. Data Augmentation Using Generative Adversarial Networks (GANs) for GAN-Based

Detection of Pneumonia and COVID-19 in Chest X-Ray Images. Inform. Med. Unlocked 2021, 27, 100779. [CrossRef] [PubMed]
28. Rajeev, C.; Natarajan, K. Data Augmentation in Classifying Chest Radiograph Images (CXR) Using DCGAN-CNN. In GANs for

Data Augmentation in Healthcare; Solanki, A., Naved, M., Eds.; Springer International Publishing: Cham, Switzerland, 2023; pp.
91–110. ISBN 978-3-031-43204-0.

29. Farahanipad, F.; Rezaei, M.; Nasr, M.S.; Kamangar, F.; Athitsos, V. A Survey on GAN-Based Data Augmentation for Hand Pose
Estimation Problem. Technologies 2022, 10, 43. [CrossRef]

30. Saxena, D.; Cao, J. Generative Adversarial Networks (GANs): Challenges, Solutions, and Future Directions. ACM Comput. Surv.
CSUR 2021, 54, 1–42. [CrossRef]

31. Ciano, G.; Andreini, P.; Mazzierli, T.; Bianchini, M.; Scarselli, F. A Multi-Stage GAN for Multi-Organ Chest X-Ray Image
Generation and Segmentation. Mathematics 2021, 9, 2896. [CrossRef]

32. Avianto, D.; Harjoko, A.; Afiahayati. CNN-Based Classification for Highly Similar Vehicle Model Using Multi-Task Learning.
J. Imaging 2022, 8, 293. [CrossRef]

33. Güler, O.; Yücedağ, İ. Hand Gesture Recognition from 2D Images by Using Convolutional Capsule Neural Networks. Arab. J. Sci.
Eng. 2022, 47, 1211–1225. [CrossRef]

34. Alashhab, S.; Gallego, A.J.; Lozano, M.Á. Efficient Gesture Recognition for the Assistance of Visually Impaired People Using
Multi-Head Neural Networks. Eng. Appl. Artif. Intell. 2022, 114, 105188. [CrossRef]

35. Latif, G.; Mohammad, N.; Alghazo, J.; AlKhalaf, R.; AlKhalaf, R. ArASL: Arabic Alphabets Sign Language Dataset. Data Brief
2019, 23, 103777. [CrossRef] [PubMed]

36. Lecture—Image Processing: Geometric Operations—Scaling|WueCampus. Available online: https://wuecampus.uni-
wuerzburg.de/moodle/mod/book/view.php?id=958001&chapterid=10072 (accessed on 17 November 2023).

37. Lecture—Image Processing: Geometric Operations—Rotation|WueCampus. Available online: https://wuecampus.uni-
wuerzburg.de/moodle/mod/book/view.php?id=958001&chapterid=10071 (accessed on 17 November 2023).

38. Lecture—Image Processing: Geometric Operations—Translation|WueCampus. Available online: https://wuecampus.uni-
wuerzburg.de/moodle/mod/book/view.php?id=958001&chapterid=10067 (accessed on 17 November 2023).

39. Shearing in 2D Graphics. GeeksforGeeks 2020. Available online: https://www.geeksforgeeks.org/shearing-in-2d-graphics/
(accessed on 17 November 2023).

40. Lecture—Image Processing: Geometric Operations—Mirroring|WueCampus. Available online: https://wuecampus.uni-
wuerzburg.de/moodle/mod/book/view.php?id=958001&chapterid=10073 (accessed on 17 November 2023).

41. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

42. Phung, V.H.; Rhee, E.J. A High-Accuracy Model Average Ensemble of Convolutional Neural Networks for Classification of Cloud
Image Patches on Small Datasets. Appl. Sci. 2019, 9, 4500. [CrossRef]

43. Agarap, A.F. Deep Learning Using Rectified Linear Units (ReLU). arXiv 2019, arXiv:1803.08375.
44. Hahnloser, R.H.R.; Sarpeshkar, R.; Mahowald, M.A.; Douglas, R.J.; Seung, H.S. Digital Selection and Analogue Amplification

Coexist in a Cortex-Inspired Silicon Circuit. Nature 2000, 405, 947–951. [CrossRef]
45. Alzubaidi, L.; Zhang, J.; Humaidi, A.J.; Al-Dujaili, A.; Duan, Y.; Al-Shamma, O.; Santamaría, J.; Fadhel, M.A.; Al-Amidie, M.;

Farhan, L. Review of Deep Learning: Concepts, CNN Architectures, Challenges, Applications, Future Directions. J. Big Data 2021,
8, 53. [CrossRef]

46. Subburaj, S.; Murugavalli, S. Survey on Sign Language Recognition in Context of Vision-Based and Deep Learning. Meas. Sens.
2022, 23, 100385. [CrossRef]

47. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.-C. MobileNetV2: Inverted Residuals and Linear Bottlenecks. In
Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June
2018; pp. 4510–4520.

48. Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the Inception Architecture for Computer Vision. In
Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June
2016; pp. 2818–2826.

https://doi.org/10.1016/j.displa.2022.102226
https://doi.org/10.1016/j.eswa.2021.114797
https://doi.org/10.1016/j.imu.2021.100779
https://www.ncbi.nlm.nih.gov/pubmed/34841040
https://doi.org/10.3390/technologies10020043
https://doi.org/10.1145/3446374
https://doi.org/10.3390/math9222896
https://doi.org/10.3390/jimaging8110293
https://doi.org/10.1007/s13369-021-05867-2
https://doi.org/10.1016/j.engappai.2022.105188
https://doi.org/10.1016/j.dib.2019.103777
https://www.ncbi.nlm.nih.gov/pubmed/31372425
https://wuecampus.uni-wuerzburg.de/moodle/mod/book/view.php?id=958001&chapterid=10072
https://wuecampus.uni-wuerzburg.de/moodle/mod/book/view.php?id=958001&chapterid=10072
https://wuecampus.uni-wuerzburg.de/moodle/mod/book/view.php?id=958001&chapterid=10071
https://wuecampus.uni-wuerzburg.de/moodle/mod/book/view.php?id=958001&chapterid=10071
https://wuecampus.uni-wuerzburg.de/moodle/mod/book/view.php?id=958001&chapterid=10067
https://wuecampus.uni-wuerzburg.de/moodle/mod/book/view.php?id=958001&chapterid=10067
https://www.geeksforgeeks.org/shearing-in-2d-graphics/
https://wuecampus.uni-wuerzburg.de/moodle/mod/book/view.php?id=958001&chapterid=10073
https://wuecampus.uni-wuerzburg.de/moodle/mod/book/view.php?id=958001&chapterid=10073
https://doi.org/10.3390/app9214500
https://doi.org/10.1038/35016072
https://doi.org/10.1186/s40537-021-00444-8
https://doi.org/10.1016/j.measen.2022.100385


Mathematics 2023, 11, 4783 23 of 23

49. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going Deeper with
Convolutions. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA,
USA, 7–12 June 2015; pp. 1–9.

50. Tf.Keras.Preprocessing.Image.ImageDataGenerator|TensorFlow v2.14.0. Available online: https://www.tensorflow.org/api_
docs/python/tf/keras/preprocessing/image/ImageDataGenerator (accessed on 13 November 2023).

51. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2017, arXiv:1412.6980.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://www.tensorflow.org/api_docs/python/tf/keras/preprocessing/image/ImageDataGenerator
https://www.tensorflow.org/api_docs/python/tf/keras/preprocessing/image/ImageDataGenerator

	Introduction 
	Research Methodology 
	Material 
	Dataset 
	Hand Gesture 14 (HG14) Dataset 
	DLSI (Department de Llenguatges Sistemes Informàtics) Dataset 
	Massey University HandImages ASL Dataset 
	Sebastian Marcel Static Hand Gesture Dataset 
	ArASL2018 Dataset 

	Image Augmentation 
	Geometric Transformation 
	Image Scaling 
	Image Rotation 
	Image Translation 
	Image Shearing 
	Image Flipping 

	Convolutional Neural Networks (CNNs) 
	Pre-Trained Neural Networks 
	ResNet50 
	MobileNetV2 
	InceptionV3 

	Programming Tools 

	Results 
	Experimental Setup 
	Dataset Preparation 
	Experimental Results 
	Results on Single Augmentation 
	Results of Combined Augmentation 


	Discussion 
	Conclusions 
	References

