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Abstract: Hand gesture recognition (HGR) is a challenging and fascinating research topic in computer
vision with numerous daily life applications. In HGR, computers aim to identify and classify
hand gestures. The limited diversity of the dataset used in HGR is due to the limited number of
hand gesture demonstrators, acquisition environments, and hand pose variations despite previous
efforts. Geometric image augmentations are commonly used to address these limitations. These
augmentations include scaling, translation, rotation, flipping, and image shearing. However, research
has yet to focus on identifying the best geometric transformations for augmenting the HGR dataset.
This study employed three commonly utilized pre-trained models for image classification tasks,
namely ResNet50, MobileNetV2, and InceptionV3. The system’s performance was evaluated on five
static HGR datasets: DLSI, HG14, ArabicASL, MU HandImages ASL, and Sebastian Marcell. The
experimental results demonstrate that many geometric transformations are unnecessary for HGR
image augmentation. Image shearing and horizontal flipping are the most influential transformations
for augmenting the HGR dataset and achieving better classification performance. Moreover, ResNet50
outperforms MobileNetV2 and InceptionV3 for static HGR.

Keywords: hand gesture recognition; image augmentation; geometric transformation; ResNet;
MobileNet; inception; static datasets

MSC: 68T07

1. Introduction

Interacting with computers using hand gestures can provide users with a natural and
intuitive interface. As a result, much research has focused on developing more accurate
and effective hand gesture recognition (HGR) methods and applying them in various
contexts. Hand gestures are currently utilized in multiple applications, such as games [1,2],
virtual and augmented reality [3–5], assisted living [6,7], and cognitive development evalu-
ation [8]. In addition, hand gesture recognition has gained significant interest in several
industries, including human–robot interaction in manufacturing [9–11] and autonomous
vehicle control [12,13]. With the recent growth of HGR, there is an increasing demand for
more advanced and robust methods to meet the requirements of various applications.

Despite the remarkable success of deep neural networks in HGR [14,15], there are still
significant challenges in this research area. The complexity of hand gestures and differences
in hand size are just two factors that can affect the performance of recognition algorithms.
The training of deep neural networks with insufficient data can lead to overfitting or failure
to learn a high-performance model. Various training schemes, including dropout layers
and data augmentation techniques [16], have been proposed to address this challenge.
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Data augmentation is a popular technique for increasing the size of a dataset and
addressing the problem of insufficient data [17,18]. Various approaches to image-based
data augmentation exist, encompassing geometric transformations, color manipulations,
random occlusion, and methods grounded in deep learning, such as Generative Adversarial
Networks (GANs) [18]. Among these, geometric transformations—comprising image
scaling, rotation, translation, shearing, and flipping—stand out as one of the most prevalent
approaches. These operations are crucial in expanding the sample pool for training deep
neural networks, balancing dataset sizes, and enhancing overall efficiency [19].

Geometric transformations have been extensively applied in hand gesture recognition
(HGR) studies to augment datasets effectively. For example, in Ref. [20], geometric aug-
mentation demonstrated a noteworthy enhancement, improving CNN performance by up
to 5%. Another study focusing on HGR, utilizing capsule networks, showcased improved
results when combined with geometric augmentation involving rotation and translation
operations [21]. Similarly, Ref. [22] used an adapted CNN and image translation (both
vertically and horizontally) to augment original data, resulting in a notable 4% boost in
classification accuracy. Moreover, Ref. [23] utilized random scaling and horizontal/vertical
translation to increase the diversity of training data for HGR applications.

The integration of color transformations with geometric transformations has notably
enhanced the performance of HGR systems. Color transformations involve histogram
equalization, contrast or brightness enhancement, white balancing, sharpening, and blur-
ring [24]. For instance, in Ref. [25], combining the shearing transformation with sigmoid
and gamma correction augmented the original images, resulting in a 5% improvement
in accuracy.

In their research, Taylor and Nicthe [26] highlighted the effectiveness of data augmen-
tation methods in enhancing the classification task performance of CNNs. Specifically,
their evaluation of various data augmentation schemes using a relatively simple CNN
architecture showed that geometric augmentation methods outperformed photometric
methods when training on a coarse-grained dataset, and these findings underscore the
importance of augmenting coarse-grained training datasets using transformations that alter
the geometry of images rather than focusing solely on lighting and color modifications.

GANs can be utilized for data augmentation [27,28] by training them to generate
new synthetic data. GANs face challenges due to the potential for mode collapse, non-
convergence, and oscillatory behavior [29,30]. There are differences between synthetic
data, which are artificially created without using actual datasets, and the term “augmented
data”, which involves generating additional training data through modifications or trans-
formations to the primary data. The primary objective of augmented data is to expand
the diversity of the training set, prevent overfitting, and enhance the model’s generaliza-
tion capacity to previously unseen data. Data augmentation techniques can be applied
to various data types, including images, text, and audio. On the other hand, augmented
data provide significant advantages in improving the performance of deep learning models
across various applications, such as object detection, image classification, image recognition,
natural language understanding, semantic segmentation, and more [31]. This method has
enhanced the efficiency and outcomes of deep learning models by generating new and
diverse training examples for datasets. Moreover, the use of augmented data can also
reduce operational costs related to the collection and labeling of data for deep learning
models [28]. Deep learning models often require time-consuming and expensive operations
for data collection and labeling.

Numerous studies demonstrate the superiority of geometric transformations over
other methods. Furthermore, when aiming for generalization, a model capable of recog-
nizing new datasets is essential. A CNN model requires sufficient depth, trained on large
datasets, which demands substantial computational resources. Hence, an alternative is
needed, and that comes in the form of using pre-existing models. These models have
been trained beforehand with ample resources and can be applied to new datasets—a
process known as transfer learning. There are numerous available CNN models that can
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be utilized. In this study, three pre-trained CNN models are employed for static hand
gesture recognition (HGR) tasks, namely ResNet50, MobileNetV2, and InceptionV3, cho-
sen for their outstanding performance [32]. Therefore, this paper aims to address the
following objectives:

1. Investigate whether using as many augmentations as possible on geometric transfor-
mations or focusing on a subset of the most effective geometric transformations yields
better results in improving model performance.

2. Identify augmentation methods within geometric transformations that yield the high-
est accuracy rates in enhancing CNN performance, which is achieved through a
systematic analysis. This involves a thorough examination of various geometric trans-
formations, assessing their impact on the model’s accuracy. The selection process is
based on rigorous experimentation and quantitative evaluation, ensuring that the
chosen augmentation methods contribute significantly to the improved performance
of Convolutional Neural Networks (CNNs) in the context of static hand gesture
recognition. The effectiveness is substantiated by comparative analyses and statistical
measures, providing a robust foundation for the identified augmentation methods.

3. Compare the performance of three pre-trained models, ResNet50, MobileNetV2, and
InceptionV3, in the classification of static hand gestures (HGRs). The evaluation of
these three models is conducted to assess their ability to classify static hand gestures,
providing crucial insights for further development in this field.

4. This research undertakes an evaluation of the accuracy of pre-trained neural networks
for image classification. Section 2 describes research methodology. Section 3 describes
the dataset, image augmentation, geometric transformations, CNN theory, and pre-
trained neural networks (ResNet, MobileNet, and Inception). Section 4 presents the
experimental setup, dataset preparation, and results using single and combined neural
networks. Section 5 analyzes the performance of each pre-trained neural network and
discusses the impact of image augmentation and geometric transformations on model
accuracy. Additionally, we explore implications and future research opportunities in
this area. Finally, Section 6 summarizes important findings, highlights our research’s
significance, and outlines future directions, including developing an image augmen-
tation framework for static hand gesture recognition based on pre-trained ResNet50
models that combine multiple geometric transformations with color modifications.

2. Research Methodology

In this research, the steps to determine the best geometric transformation for image
augmentation to improve recognition accuracy in hand gesture recognition (HGR) tasks and
compare the performance of the pre-trained CNN models (ResNet50, MobileNetV2, and
InceptionV3) are executed through a structured methodological approach. An illustration of
the steps in the research methodology can be found in Figure 1. The researchers formulated
the following research objectives:

1. Investigation of the necessity of employing geometric transformations for image
augmentation in CNN-based HGR tasks;

2. Exploration of the optimal geometric transformation based on CNNs for image aug-
mentation in HGR tasks;

3. Determining the most effective pre-trained CNN model (ResNet50, MobileNetV2, or
Inceptionv3) for HGR tasks.

Firstly, diverse datasets, such as HG14, DLSI, MU HandImages ASL, Sebastian Marcel,
and ArASL2018, were collected to encompass as many HGR contexts as possible. The next
step involves the application of transfer learning to pre-trained models, namely ResNet50,
MobileNetV2, and InceptionV3, to comprehend complex hand gesture features.

Evaluation is conducted in two main aspects, namely the effectiveness of image aug-
mentation and the performance of pre-trained models, using accuracy metrics during
transfer learning. Geometric transformations, such as scaling, rotation, translation, shear-
ing, and flipping, are explored in the augmentation evaluation. At the same time, the
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performance of pre-trained models is measured by comparing ResNet50, MobileNetV2,
and InceptionV3 in classifying HGR datasets.

This research evaluates results and presents in-depth conclusions based on experi-
mental findings. Overall, these methodological steps form a comprehensive framework to
understand the role of image augmentation and CNN models in improving the accuracy
of HGR systems. By implementation programming using Python 3.6.13, particularly with
TensorFlow support, a solid technical foundation is provided, ensuring efficiency and
optimal performance in conducting this experiment.
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Figure 1. Overview of the research methodology employed in this study.

3. Material
3.1. Dataset

This research utilized five publicly available datasets for HGR: HG14, DLSI, MU
HandImages ASL, Sebastian Marcel Static Hand Gestures, and ArASL2018. These datasets
were selected to comprehensively evaluate the most suitable geometric transformation for
augmenting the HGR dataset. Each dataset possessed unique characteristics such as gesture
categories, image background, image size, and color channels. ArabicSL was the most
extensive dataset, containing 54,049 images divided into 32 classes, while MU HandImages
ASL was the smallest, with only 2425 images divided into 26 classes.

3.1.1. Hand Gesture 14 (HG14) Dataset

Guler et al. [33] created the Hand Gestures 14 (HG14) dataset, containing 14 hand
gestures suitable for hand interaction and application control in augmented reality. The
dataset includes 14,000 photos with RGB channels and a size of 256 × 256 pixels. Each
image has a simple and uniformly colored background, as shown in Figure 2 [33].
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3.1.2. DLSI (Department de Llenguatges Sistemes Informàtics) Dataset

Alashhab et al. [34] created the DLSI (Department de Llenguatges Sistemes Informàtics)
dataset to recognize gestures for visually impaired people. Various smartphone cameras
captured indoor and outdoor scenes under realistic conditions. The dataset comprises
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12,064 frames divided into 6 gestures, each normalized to 224 × 224 pixels. Figure 3 [34]
shows the sample images.
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3.1.3. Massey University HandImages ASL Dataset

The dataset MU HandImages ASL was created by Barczak et al. at Massey University
(MU), New Zealand. It contains 2425 images from 5 individuals, with each hand pose
captured in a room with varying lighting conditions and a green screen background. The
dataset consists of 26 classes representing standard American Sign Language (ASL) gestures,
with black background images and varying pixel sizes depending on the hand pose’s shape.
Figure 4 [34] shows some sample images from this dataset.
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3.1.4. Sebastian Marcel Static Hand Gesture Dataset

The Sebastian Marcel Static Hand Gesture Dataset was used as the training set for
developing a neural network model to recognize hand postures in images. Hand gestures
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were segmented using space discretization based on face location and body anthropometry.
The dataset includes six hand postures (a, b, c, point, five, v) demonstrated by ten individu-
als captured in uniform and complex backgrounds with varying image sizes, depending
on the hand gesture. Figure 5 [34] shows some sample images from this dataset.
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3.1.5. ArASL2018 Dataset

The ArASL2018 (Arabic Alphabet Sign Language 2018) dataset [35] includes 54,049
grayscale images of 32 hand poses representing the Arabic Alphabet Sign Language. Hand
gestures were captured from 40 individuals across different age groups under uniform
backgrounds and good lighting conditions. Some image preprocessing was performed to
remove noise and center the hand object in the image. Figure 6 [35] shows some sample
images from this dataset.
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3.2. Image Augmentation

Image augmentation is a technique to avoid overfitting in neural network training
by transforming the original data or image using specific techniques [18]. Geometric
transformations such as scaling, rotation, translation (shifting), shearing, and flipping can
augment image data. These transformations can produce new images from the original
ones, helping to generalize the knowledge learned by classifiers, such as neural networks.

Traditional image augmentation involves storing the augmented data on disk along-
side the original data, resulting in increased storage requirements, especially for large
datasets. An alternative approach called “on-the-fly” augmentation was proposed to ad-
dress this issue [18]. This approach performs augmentation during training rather than
storing augmented images in storage, leading to better knowledge generalization because
it produces new data/images in every training epoch. This work used the on-the-fly aug-
mentation strategy to achieve better performance in hand gesture recognition. The flow of
on-the-fly augmentation is illustrated in Figure 7.
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As shown in Figure 7, the original image dataset is divided into small batches. Each
batch undergoes random geometric transformations before being used for training a ma-
chine learning or deep learning algorithm. This technique produces different augmented
images in each batch and epoch, allowing for better knowledge generalization.

3.3. Geometric Transformation

This work evaluated all geometric transformations to determine the most suitable for
the HGR task. However, it should be noted that certain transformations, such as inverting,
may not be ideal for specific image types, such as digit images, which can confuse the
numbers 6 and 9.

3.3.1. Image Scaling

Image scaling resizes an input image to a larger or smaller size using a scale factor.
Equations (1) [36] and (2) [36] can be used to perform image scaling, where (x, y) are the
coordinates of a pixel in the original image, (x′, y′) are the coordinates of the pixel in the
scaled image, and sx and sy are the scale factors for the rows and columns of the image,
respectively.

x′ = x·sx (1)

y′ = y·sy (2)

Interpolation can be used to smooth the edges of the object in the scaled image and
maintain the aspect ratio when sx = sy. Image scaling improves model performance and
robustness to input size variations. When an image is scaled up, it is cropped to its original
size, while for scaling down, the original size is maintained with space filled using the
nearest pixel neighbor technique. Figure 8 shows a sample of a scaled image.
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3.3.2. Image Rotation

Image rotation is a common data augmentation technique in computer vision tasks
and involves rotating an image by a certain angle (typically 0 to 360 degrees) to create
additional training data. Equations (3) [37] and (4) [37] perform image rotation using (x,y)
as the original pixel coordinates and (x’,y’) as the corresponding pixel coordinates in the
rotated image. The rotation angle in radians is represented by θ, and (cx, cy) are the image
center coordinates.

x′ = (x− cx)cos θ − (y− cy)sin θ + cx (3)

y′ = (x− cx)sin θ + (y− cy)cos θ + cy (4)

Similar to image scaling, image rotation may result in blank areas that need to be
filled using interpolation techniques, such as the nearest pixel technique used in this work.
Figure 9 provides a sample of image rotation using the nearest pixel technique to interpolate
the blank areas around the rotated image.
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3.3.3. Image Translation

Image translation shifts an image along the x-axis and y-axis by a certain number of
pixels to create additional training data, improving model robustness to position variations.
Equations (5) [38] and (6) [38] are used for x-axis and y-axis translation, respectively, where
(x,y) are the coordinates of a pixel in the original image, (x’,y’) are the coordinates of the
corresponding pixel in the translated image, and (dx, dy) are the translation offsets.

x′ = x + dx (5)

y′ = y + dy (6)

The nearest pixel interpolation technique also fills blank areas in the translated images.
Figure 10 shows a sample of a translated image.
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3.3.4. Image Shearing

Image shearing is a technique that skews an image along the x-axis and y-axis by
shifting each row or column of pixels by a certain amount based on its y-coordinate or x-
coordinate, respectively. This technique helps handle input images captured from different
perspectives or angles. Shearing an image along the x-axis and y-axis can be achieved using
Equations (7) [39] and (8) [39], where (x,y) are the coordinates of a pixel in the original
image, (x’,y’) are the coordinates of the corresponding pixel in the sheared image, and shx
and shy are the shear factors along the x-axis and y-axis, respectively.

x′ = x + shx× y (7)

y′ = y + shy× x (8)

Nearest pixel neighbor interpolation is applied to fill the blank area in the sheared
images. Figure 11 provides a sample of the sheared image using nearest pixel interpolation.
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3.3.5. Image Flipping

Image flipping reverses the left and right sides of the image. For HGR, only horizontal
flipping is used. The formula for horizontal flipping is provided in Equation (9) [40], where
(x,y) are the coordinates of a pixel in the original image, x’ is the corresponding pixel index
in the flipped image, and W is the width of the image.

x′ = (W − 1)− x (9)

To flip the entire image, each row of pixels is reversed from left to right. No interpola-
tion is needed for flipping an image horizontally. Figure 12 shows a sample of horizontally
flipped images.
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3.4. Convolutional Neural Networks (CNNs)

Deep learning (DL) has various architectures, one of which is Convolutional Neural
Networks (CNNs), which are known for their effectiveness in image recognition compared
to traditional machine learning approaches [41]. The basic idea of the CNN is the technique
of image convolution, which combines an input matrix and a kernel matrix to produce a
third matrix that represents how one matrix is modified by the other.

A CNN architecture generally consists of two parts: feature extraction and classifica-
tion [42], as depicted in Figure 13. The feature extraction part applies image convolution to
the input image to produce a series of feature maps. These features are then used in the
classification part to classify the label of the input image.
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A CNN applies convolution to produce a set of feature maps. Each filter can detect
specific patterns from the input image, such as edges, lines, or corners. The output of
the convolutional layer is passed through a non-linear activation function, such as ReLUs
(Rectified Linear Units), to introduce non-linearity and learn complex representations of
the input image. The ReLU function is defined in Equation (10) [43]:

f (x) = max(0, x) (10)

ReLUs (Rectified Linear Units) are an activation function introduced by [44] and have
a strong biological and mathematical underpinning. In 2011, they were demonstrated to
further improve the training of deep neural networks. They work by thresholding values
at 0, i.e., f(x) = max(0, x). Simply put, they output 0 when x < 0, and conversely, they output
a linear function when x ≥ 0.

The pooling layer is used after the convolutional layer to reduce the dimensionality of
the feature maps and introduce translational invariance. Max pooling takes the maximum
value within a local neighborhood, and average pooling calculates the average value.
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Fully connected layers perform a classification task by mapping the previous layer’s
output to a set of output classes. The network adjusts its weights and biases through
a backpropagation algorithm to minimize a loss function that measures the difference
between the predicted and true output during training.

3.5. Pre-Trained Neural Networks

To be effective, a CNN model should be sufficiently deep (deep CNN) and trained
on large amounts of data to learn various patterns from the dataset [45]. Training a CNN
requires a powerful machine with a dedicated Graphics Processing Unit (GPU) for parallel
computation and ample memory to store the dataset and CNN parameters during training.
Therefore, researchers have developed pre-trained CNN models on large public datasets,
such as ImageNet or Microsoft COCO [46]. These pre-trained models can be used to build a
CNN-based system for image classification and can be retrained for custom cases using new
datasets. This process, called transfer learning, enables pre-trained models to be trained in
less time and use less computational power. This work uses three pre-trained CNN models
for static hand gesture recognition (HGR) tasks, ResNet50, MobileNetV2, and InceptionV3,
due to their excellent performance, as reported in [32].

3.5.1. ResNet50

ResNet50 is a pre-trained CNN model proposed by Microsoft Research in 2015 [41]. It
uses Residual Network architecture to solve the problem of vanishing gradients in deep
learning. The Residual Network contains residual connections, which add the input of a
layer to its output, creating a shortcut connection. Figure 14 shows that the network can
skip over layers that might not contribute much to the output.
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Figure 14. Illustration of a residual connection with the input of layer L-1 added to its output.

The ResNet50 architecture comprises 50 layers, including 49 convolutional layers and 1
fully connected layer, and is divided into 5 convolutional stages. Each stage contains several
residual blocks, as shown in Figure 15. The first stage consists of a single convolutional
layer that performs a 7 × 7 convolution with a stride of 2, followed by a max pooling layer
with a pool size of 3 × 3 and a stride of 2. The subsequent stages contain three, four, six,
and three residual blocks, each with three convolutional layers using a combination of
1 × 1, 3× 3, and 1× 1 convolutions, batch normalization, and ReLU activation. The output
of the fifth convolutional stage is processed by a global average pooling layer that averages
the feature maps across the spatial dimensions. The resulting output is passed through a
fully connected layer with 1000 output units corresponding to the number of classes in the
ImageNet dataset.
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3.5.2. MobileNetV2

MobileNetV2 is a CNN model proposed by Google in 2018 as an efficient alternative
to deep neural networks for deployment on mobile and embedded devices [47]. It uses
depthwise separable convolutions, which split the convolution operation into a depthwise
convolution and a pointwise convolution, significantly reducing computational complexity
and memory usage. MobileNetV2 also introduces several new features that improve its
performance while maintaining efficiency. Figure 16 illustrates the working of depthwise
separable convolutions.
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pointwise convolution.

The architecture of MobileNetV2 can be divided into three parts: the stem, the body,
and the head. The stem has a single convolutional layer that performs a 3 × 3 convolution
with a stride of 2, followed by batch normalization and a non-linear activation function.
The body contains a series of inverted residual blocks, each with a depthwise separable con-
volution, a linear bottleneck, and batch normalization with a non-linear activation function.
The MobileNetV2 architecture includes a linear bottleneck that enhances the network’s
representational power while keeping its computational cost low. The architecture’s head
consists of a global average pooling layer, a 1× 1 convolutional layer, and a fully connected
layer that uses a SoftMax activation function. Figure 17 provides a visual representation of
the MobileNetV2 architecture.
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3.5.3. InceptionV3

InceptionV3 is a pre-trained CNN architecture introduced by Google in 2015 [48,49].
It uses multiple filters of different sizes in parallel at each stage of the network to capture
features at multiple resolutions and scales, increasing the ability to recognize objects of
different sizes and shapes. InceptionV3 also uses factorization to reduce the computational
cost of the convolutional layers for more efficient performance. The architecture can be
divided into the stem, inception modules, and classification layers [48]. The stem processes
the input image and extracts low-level features, while the inception modules perform most
of the computation. Each inception module consists of several parallel convolutional layers
of different sizes combined using concatenation. Each module’s output passes through a
factorization layer, reducing feature map channels. A global average pooling layer, followed
by a fully connected layer with SoftMax activation, produces the network’s final output.
The architecture of InceptionV3 is illustrated in Figure 18.
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3.6. Programming Tools

In this research using the Python programming language, especially TensorFlow2.6.2,
the ImageDataGenerator command serves as a key tool to enhance the performance of
models in hand gesture recognition (HGR) tasks. This experiment utilizes each dataset,
establishing a solid foundation. By applying transfer learning to pre-trained models, like
ResNet50, MobileNetV2, and InceptionV3, the models can comprehend complex features
of hand gestures.

The official TensorFlow documentation [50] explains that the ImageDataGenerator
plays a central role in image augmentation, exploring geometric transformations like scal-
ing, rotation, translation, shearing, and flipping. The use of commands such as “fit” to
calculate internal statistics and “flow” to dynamically generate batches of images creates
an efficient and adaptive experimental environment [50]. In TensorFlow, the ImageData-
Generator provides various parameters to control augmentation, such as scaling, rotation,
and flipping. The official TensorFlow documentation offers examples of usage and recom-
mended methods. For example:

“‘python
from tensorflow.keras.preprocessing.image import ImageDataGenerator

# Creating an instance of ImageDataGenerator with augmentation parameters
datagen = ImageDataGenerator(
rotation_range = 20,
width_shift_range = 0.2,
height_shift_range = 0.2,
shear_range = 0.2,
zoom_range = 0.2,
horizontal_flip = True,
fill_mode = ‘nearest’
)

# Calculating internal statistics (fit) - assuming x_train is the image data
datagen.fit(x_train)

# Generating batches of images dynamically using flow
generated_images = datagen.flow(x_train, batch_size = 32)
“‘

Experiments are conducted by trying each pre-trained model on different datasets,
with the application of individual and combined augmentations. This structured approach
provides a deep understanding of the impact of augmentation on model performance
across various datasets. The official TensorFlow documentation, including code exam-
ples and parameters, serves as the primary reference source to detail the usage of the
ImageDataGenerator and strengthen the experimental framework.

4. Results
4.1. Experimental Setup

This study aims to determine the optimal geometric transformation for image aug-
mentation on the HGR dataset to improve classifier accuracy. To achieve this, it employed
an “on-the-fly” augmentation strategy and defined several parameters for random geo-
metric transformations, as shown in Table 1. Each transformation function was applied
individually during the training phase of the deep learning algorithm, and the process was
repeated three times to ensure consistent performance.
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Table 1. Parameter settings for geometric transformations used in image augmentation.

Geometric Transformation Direction Parameter Setting

Scaling Horizontal and vertical [−20%, 20%]
Rotation CW and CCW [−30◦, 30◦]

Translation Horizontal and vertical [−20%, 20%]
Shearing Horizontal [−20◦, 20◦]
Flipping Horizontal [True, False]

Transfer learning uses ImageNet pre-trained weights as the initial network’s weights in
the experiment to avoid complex and high computation during learning. The optimization
of weights only occurs in the classification layer of the pre-trained model to optimize
the networks in the fully connected layers. Adaptive Moment Estimation (ADAM), an
optimization algorithm, is employed to enhance the training process and avoid gradient
vanishing during training [51]. The pre-trained network is retrained for 50 epochs with
a batch size of 32. To maintain the ImageNet pre-trained weights, network training is
performed by freezing all the layers in the feature extraction part. The performance of the
networks is evaluated using the “accuracy” metric.

The experiment uses Python programming language with several libraries, such as
TensorFlow, Matplotlib, and NumPy, on a personal computer with the specifications listed
in Table 2.

Table 2. Hardware and software specifications for the experiment.

Hardware/Software Specification

Processor (CPU) Intel Core i5-9300H @2.40 GHz
Memory (RAM) 32 GB DDR4

Graphics Processing Unit (GPU) Nvidia GTX 1660 Ti—6GB vRAM
Operating system Windows 11

Python version 3.6.13
Cuda/CuDNN version 11.0/8.0

4.2. Dataset Preparation

In this study, we used five publicly available datasets of HGR, as described in Section 2.
These datasets were used to evaluate the effectiveness of various experiment scenarios, as
summarized in Table 3. To train our networks, we randomly split each dataset into three
parts for training, evaluation, and testing, respectively, with a distribution of 60:20:20. To
augment the training data, we used the ImageDataGenerator module TensorFlow [50]. It is
important to note that only the training data were augmented.

Table 3. Specification of datasets used for the experiment.

Dataset Number of Data Number of Classes Images Size Image Background

DLSI 12,064 6 224 × 224 complex
HG14 14,000 14 256 × 256 uniform

MU HandImages ASL 2425 26 vary uniform
Sebastian Marcel 5531 6 vary uniform and complex

ArASL2018 54,049 32 64 × 64 uniform

In this work, it was observed that specific parameters in the HGR dataset could impact
the classification performance, such as input size and image background. As shown in
Table 3, each dataset had different sizes, so all input images were resized to a uniform size
of 224 × 224 pixels with three color channels (RGB) commonly used in pre-trained CNN
models like VGG, ResNet, and Inception.

The image background was classified as uniform or complex based on the dominance
of a single color or simple texture versus multiple colors, textures, or objects. While a
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uniform background is easier to recognize and more accurate, it may not represent real-
life scenarios. Conversely, a complex background may be more challenging to recognize
but is more representative of real-life situations. Using HGR datasets with uniform and
complex backgrounds, we could analyze the impact of geometric-based augmentation on
background variations.

4.3. Experimental Results

The experiments were conducted based on the scenarios explained in the previous
section, which are divided into two parts. The first part involves a single augmentation
experiment to observe which geometric augmentation (scaling, rotation, translation, shear-
ing, and flipping) can lead to the best performance. The second part involves a combined
augmentation experiment to observe whether image augmentation using all five geometric
transformations produces better performance than a single one. As the datasets have a
different number of classes and are balanced; the only performance metric used is accuracy.

4.3.1. Results on Single Augmentation

The first experiment involved using a pre-trained ResNet50 model that was retrained
on the five HGR datasets. Each input image was augmented using the ImageDataGenerator
module from the TensorFlow library before being fed into the pre-trained model for learning.
Overall, ResNet50 performed very well for all datasets and geometric transformations,
achieving accuracies of over 95% for almost all experiment scenarios. Specifically, ResNet50
achieved the highest accuracy when using the DLSI and HG14 datasets, with average
accuracies of 97.67% and 97.47%, respectively, for all geometric transformations. This result
is surprising because the DLSI dataset has a complex image background. On the other
hand, the lowest accuracy was obtained when using the Sebastian Marcel dataset, with an
average accuracy of 94.98%. The performance of ResNet50 on all datasets is summarized
in Table 4.

Table 4. Classification accuracy results of geometric image augmentation using ResNet50 architecture.

Dataset
Geometric Transformations—Accuracy (%) Dataset Average

Accuracy (%)Scaling Rotation Translation Shearing Flipping

DLSI 97.86 97.37 97.47 97.86 97.77 97.67
HG14 97.07 97.46 98.32 97.18 97.32 97.47

MU HandImages ASL 95.14 97.26 96.05 97.26 97.57 96.66
ArASL2018 96.61 94.66 96.04 97.26 97.15 96.34

Sebastian Marcel 93.60 95.07 96.06 94.58 95.57 94.98

Geometric Avg. Accuracy (%) 96.06 96.36 96.79 96.83 97.08

Based on the results presented in Table 4, horizontal flipping achieved the highest ac-
curacy among the five geometric transformations, with an average accuracy of 97.08%. Fur-
thermore, image shearing and translation produced better results than scaling and rotation.

Moving on to the second experiment, as shown in Table 5, MobileNetV2 performed
worse than ResNet50 for all datasets. The MU HandImage ASL dataset achieved the highest
accuracy among all datasets, with significant differences from the other datasets of up
to 38%. However, MobileNetV2 performed poorly in classifying the DLSI dataset with a
complex image background. Unlike ResNet50, shearing transformation produced the best
results for all datasets, with an overall accuracy of 78.85%, followed by horizontal flipping,
with an average accuracy of 74.72%.
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Table 5. Results of geometric image augmentation on the MobileNetV2 architecture.

Dataset
Geometric Transformations—Accuracy (%) Dataset Average

Accuracy (%)Scaling Rotation Translation Shearing Flipping

DLSI 73.63 73.78 69.96 79.79 76.66 74.76
HG14 59.18 57.75 59.00 65.18 60.39 60.30

MU HandImages ASL 92.40 90.88 91.49 95.74 95.74 93.25
ArASL2018 69.21 59.53 63.83 84.09 74.79 70.29

Sebastian Marcel 65.52 61.08 63.05 69.46 66.01 65.02

Geometric Avg. Accuracy (%) 71.99 68.60 69.47 78.85 74.72

Table 6 shows the results of using the InceptionV3 architecture for geometric image
augmentation. Similar to MobileNetV2, the MU HandImage ASL dataset achieved the
highest accuracy. The shearing operation resulted in the highest accuracy compared to other
geometric transformations for all datasets. However, InceptionV3 struggled to recognize
the hand gestures in the HG14 dataset, which had the lowest accuracy. This is surprising
because HG14 uses a uniform background in each image, and the difference in accuracy
compared to other datasets is significant.

Table 6. Results of geometric image augmentation on the InceptionV3 architecture.

Dataset
Geometric Transformations—Accuracy (%) Dataset Average

Accuracy (%)Scaling Rotation Translation Shearing Flipping

DLSI 67.28 65.44 60.92 71.70 69.27 66.92
HG14 48.57 41.54 39.43 49.11 40.25 43.78

MU HandImages ASL 89.06 86.63 82.67 94.22 89.06 84.34
ArASL2018 82.93 76.75 67.33 85.75 74.37 70.47

Sebastian Marcel 70.94 73.89 67.49 74.38 72.41 74.07

Geometric Avg. Accuracy (%) 71.76 68.85 63.57 75.03 69.07

4.3.2. Results of Combined Augmentation

This study performed experiments to compare the performance of pre-trained models
trained with single and combined geometric transformations. The same experimental setup
as before was used with three repetitions for each dataset to ensure consistency of model
performance. Table 7 shows that single augmentation yielded better results than combined
augmentation for every pre-trained model. The most significant decreases in accuracy
were observed in MobileNetV2 and InceptionV3, which experienced drops of 11.54% and
18.00%, respectively. The worst accuracy was obtained for HG14 and ArASL2018 datasets
when using MobileNetV2 and InceptionV3 with combined augmentation, with an accuracy
below 50%. However, MU HandImages ASL maintained good accuracy for each pre-trained
model using single or combined augmentation.

Table 7. Comparison of accuracies between single and combined augmentation methods.

Dataset
ResNet50 (%) MobileNetV2 (%) InceptionV3 (%)

Single Combined Single Combined Single Combined

DLSI 97.67 97.96 74.76 65.29 66.92 52.09
HG14 97.47 96.61 60.30 48.86 43.78 28.82

MU HandImages ASL 96.66 93.62 93.25 94.22 84.34 76.60
ArASL2018 96.34 92.41 70.29 39.38 70.47 18.47

Sebastian Marcel 94.98 95.57 65.02 58.13 74.07 74.38

Avg. Accuracy (%) 96.62 95.23 72.72 61.18 67.92 50.07
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5. Discussion

The experimental discussion in this research presents noteworthy findings that can
serve as a foundation for further research and development in hand gesture recognition
(HGR). Analyzing the documented experimental results in Sections 4–6 reveals that im-
age shearing holds the most significant influence on the classification accuracy among
the five geometric transformations used for image augmentation. It is noteworthy that
despite the accuracy value of image shearing in ResNet50 being lower compared to the
flipping transformation, MobileNet, and Inception, in contrast, it achieved the highest
accuracy values.

This observed significance can be attributed to the technical aspects of image shearing,
wherein its ability to handle variations in object perspective and other specific characteristics
renders it a crucial augmentation technique for enhancing the accuracy of hand gesture
recognition models.

The implication of these findings is that constructing a classification model capable of
effectively managing variations in object perspective is crucial for achieving high accuracy
in HGR. Furthermore, image flipping emerges as the second most influential geometric
transformation for the HGR task, as evidenced by the relatively higher accuracy observed
in both image shearing and flipping, as indicated in Figure 21. This underscores the
importance of developing an HGR model that can adeptly handle both variations in object
perspective and the reflection of gestures by the right or left hand. It is noteworthy that
while image scaling can impact classification accuracy, its effect is comparatively lower
than image shearing and flipping.

The use of image rotation as an augmentation method in hand gesture recognition
(HGR) datasets is generally applicable, but its effectiveness depends on the types of gestures
present in the dataset. Some gestures may require hand position rotation to differentiate
between distinct signs. For instance, in the MU HandImage ASL (Massey dataset), the
gesture for the letter “i” is nearly identical to the letter “j”, and the gesture for the letter
“z” is identical to the number “1”, as shown in Figure 19. In such cases, it is advisable
to carefully consider the use of image rotation or even exclude it from augmentation
operations to avoid introducing ambiguity into the dataset.
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Similar to rotation, Figure 20 illustrates that image translation, particularly in the
HG14 dataset, can produce ambiguously augmented data, such as in the HG14 dataset,
where the horizontal translation of gesture number “6” may be identical to gesture number
“9”. Similarly, gesture number “11” may be highly like gesture number “12” when shifted
to the left. To handle this issue, translation can be excluded from augmentation, or the
range of translation can be limited.
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“9” and (b) “11” and “12”.

Figure 21 provides additional insights, confirming that image shearing and flipping
are effective techniques for augmenting static hand gesture recognition (HGR) datasets.
This effectiveness holds true across diverse datasets and pre-trained models. While im-
age scaling is a viable option, Figure 22 highlights a cautionary note—using an excessive
number of transformations can lead to overly complex images, potentially causing misclas-
sification. Consequently, a more practical approach for image augmentation in HGR tasks
using Convolutional Neural Networks (CNNs) may involve combining two geometric
transformations.
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Figure 22. Comparison of classification performance between single and combined geometric aug-
mentations on different pre-trained models.



Mathematics 2023, 11, 4783 20 of 23

This experiment reveals that ResNet50 outperforms MobileNetV2 and InceptionV3
in static HGR datasets. Figure 22 demonstrates the superior performance of ResNet50,
a popular CNN architecture, compared to MobileNetV2 and InceptionV3. The notable
advantages of ResNet50, including its less complex network that demands less computing
power and memory, have significant practical implications for real-world applications.
In the development of hand gesture recognition applications for devices with limited
computational resources, choosing ResNet50 can result in faster and more energy-efficient
models. This is particularly crucial in scenarios such as mobile devices, where optimizing
resource usage is paramount for a seamless user experience.

6. Conclusions

Based on the results of the experiments conducted for static hand gesture recognition
using Convolutional Neural Network (CNN) models, several conclusions can be drawn to
guide the development of more efficient methods for this task.

Firstly, in the context of geometric transformations, it was found that the use of
shearing and flipping had the most significant impact on improving the model’s accuracy.
These transformations help the model better cope with variations in object perspectives,
indicating that building a classification model capable of handling changes in viewpoint is
a crucial aspect of static hand gesture recognition.

Secondly, in choosing a CNN model, ResNet50 consistently proved to outperform
MobileNetV2 and InceptionV3. Although ResNet50 may require more computational
power, the advantage of high-accuracy results suggests its importance in selecting a model
for this task.

However, the conclusions also highlight that overly complex geometric transforma-
tions can harm the model’s performance, especially for MobileNetV2 and InceptionV3.
Excessive geometric transformations may involve using too many types of transforma-
tions, making the model struggle to understand actual patterns, as each training example
experiences significant variation. Therefore, a balance is needed between performance
improvement and real-world representation by selecting transformations suitable for the
dataset’s characteristics.

Moreover, future research may consider color modifications in addition to geometric
transformations. Further understanding of how to optimize image augmentation methods,
including color variations, can significantly contribute to improving model performance,
especially in situations where color variations may affect image interpretation.

As a direction for future research, this study can be expanded by combining multiplex
geometric transformations with color modifications, creating a more holistic and effective
image augmentation framework. Additionally, further exploration can be conducted in
situations where there is a lack of data or significant variation between datasets. Integration
with transfer learning techniques and the development of more complex models can also
be an interesting focus of research. Thus, this study provides a foundation for further
exploration in enhancing the efficiency and effectiveness of static hand gesture recognition
using a CNN-based approach.
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