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Abstract: As far as we know, no dimensionless solutions for infiltrated flow under dams in anisotropic
media exist since those that can be found in manuals refer to isotropic soils. The novelty of this
work is the presentation of universal solutions in the form of abaci for water flow, average exit
gradient, uplift force, and its application point for this type of soil. These solutions are obtained by
the application of the discriminated nondimensionalization technique to the governing equations in
order to find accurate dimensionless groups that control the results of the problem. In particular, the
ratio of permeabilities corrected by a geometrical aspect relationship appears as a governing group,
so anisotropy can be considered as input information. In this way, the sought solutions are a function
of the emerging groups. Numerical solutions are used to successfully verify the results obtained,
which in turn are compared to those of other authors for isotropic scenarios.
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1. Introduction

Flow through porous media has been a widely studied issue in geotechnics and
hydrogeology for decades, and different books [1–3] and papers deserve to be cited as
references in relevant aspects of this topic, such as flow in saturated and unsaturated
media [4] or liquefaction [5–7]. According to Haq et al. [8] and Animasaun et al. [9], fluid
flow through porous media, as used in fluid mechanics, refers to how fluids behave while
passing through a porous substance such as sponge or wood or when filtering water via
sand or another porous material [1–7]. These problems are macroscopically approached
with the constitutive law of Darcy [10,11] since their microscopic mathematical treatment is
an unworkable task due to the intricate, complex, and heterogeneous structure of the soil
net. This law sets the connection between the mean velocity of the groundwater flow and
the gradient of the piezometric potential through the hydraulic conductivity, a parameter
that collects information from both the soil (porosity, tortuosity, grain size, connectivity)
and fluid (viscosity, specific weight) physical properties [12–14].

Assuming the incompressibility of fluid and soil grains, their small velocities (neg-
ligible inertial forces), and their anisotropic domains, the substitution of the continuity
equation in Darcy’s law gives rise to a Laplace-type expression that is the governing equa-
tion of the problem (in terms of the potential variable [15]), whose solution may be derived
either analytically or numerically [16–18]. However, in civil engineering and particularly in
the 2D design of retaining structures (such as gravity dams, cofferdams, and earth dams),
one of the most common solutions has the form of flow nets [19]. These are graphical
representations that directly show the stream function [20] and potential iso-lines within
the seepage scenario. The advantage of these patterns, for whose construction simple rules
are needed even in complex geometries with different boundary conditions, is to allow the
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user a direct and easy interpretation of the solution. Other possible means to study flow
through porous media are scale models [21], which have been traditionally used to obtain
empirical formulation for retaining structures as well as other hydrogeological problems,
such as pumping wells [22]. Nowadays, however, the most popular approach to these
problems is numerical simulation with commercial or free software code [23,24].

The aim of this paper is to study the phenomenon of flow through anisotropic porous
media under gravity dams with and without a foundation, looking for, particularly, the
solution of dimensionless unknowns such as water flow, average exit gradient, and uplift
force under the dam base and its application point. While for isotropic soils, dimensionless
groups and universal solutions are already known in the scientific literature, the same does
not apply to anisotropic soils. For this purpose, a technique that combines dimensional
analysis [25,26] and spatial discrimination [27–30] allows us to reduce the governing
equation and geometrical conditions to their dimensionless forms, from which the smallest
number of independent dimensionless groups that govern the problem emerge. Spatial
discrimination states that lengths can only be considered as the same dimension if they
are measured in the same direction, so a ratio of a vertical and a horizontal parameter
or variable is not dimensionless. Universal solutions are based on the Pi theorem [31],
which states that any dimensionless unknown of the problem is an arbitrary function of
the correctly deduced dimensionless groups. This technique has already been successfully
employed in different engineering problems such as soil consolidation [32,33], solute
and heat transport [34], and thermal interference in experimental measurements due to
overheating [35].

In previous works [36], several authors presented universal equations or graphics
in order to solve the flow of groundwater under dams in 2D isotropic domains. For this
purpose, they attempted to find dimensionless groups (such as the ratio between the width
of the dam and the thickness of the stratum) that seemed to work correctly. In effect, this
is true thanks to the isotropic character of the porous media. Nevertheless, in anisotropic
domains, such quotients as well as the ratio of anisotropic hydraulic conductivities (kx/ky)
do not work as independent dimensionless groups. In these anisotropic media, on the one
hand, aspect ratios must be quotients that relate lengths of the same spatial direction (as
spatial discrimination requires), and on the other hand, as it is deduced from dimensionless
governing equations, the ratio of conductivities (kx/ky) must be accompanied by a certain
aspect ratio to define the correct dimensionless groups.

The importance of working on anisotropic soils has been pointed out by many authors
for a long time [37–39]. Real soils, generally consolidated, can present horizontal hydraulic
conductivities with higher values than vertical conductivities depending on the nature of
the soil and the depth from where the sample is taken [40]. This fact has an enormous
impact on calculations related to soil engineering and, in particular, with the patterns
derived from seepage flow.

This document is organized as follows. In the “Mathematical Model” section, the
mathematical model of the flow through porous media under gravity dams is briefly
presented. The “Discriminated Governing Equations and Dimensionless Groups” section
explains the discriminated dimensional characterization method and the dimensionless
groups deduced in anisotropic media. The “Verification of the Emergent Discriminated
Dimensionless Groups” section verifies the correct characterization of the problem using the
deduced dimensionless groups with an example. The “Solutions” section is a compilation of
universal abaci obtained by numerical simulation for the following dimensionless variables:
water flow, average exit gradient, uplift force, and center of application. For isotropic
cases, comparisons with the results of other authors are presented. Finally, a case study is
presented, and the contributions and conclusions are summarized.
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2. Mathematical Model

The governing equation is an expression obtained by combining the momentum and
continuity Equations (1) and (2), respectively. For homogeneous soils and fluids, Darcy’s
law, which relates the velocity of the groundwater flow to the change in the potential head,
is equivalent to the momentum equation when the problem is studied in macroscopic level,
and Equation (1) shows its expression for 2D rectangular media. The continuity equation
employed in this study assumes a steady-state scenario with no sources or sinks.

v = −k∇h or vx = −kx
∂h
∂x

and vy = −ky
∂h
∂y

(1)

∇× v = 0 or
∂vx

∂x
+

∂vy

∂y
= 0 (2)

Introducing Darcy’s law in Equation (2), the governing equation, a Laplace-type
expression, for anisotropic soils in terms of the water potential is obtained, as shown in
Equation (3).

kx
∂2h
∂x2 + ky

∂2h
∂y2 = 0 (3)

For an isotropic soil, kx = ky = k, and Equation (3) is simplified to ∂2h
∂x2 +

∂2h
∂y2 = 0.

In order to complete the mathematical model, the boundary conditions must be added.
For this kind of scenario, only first- and second-class boundary conditions are applied.
The first, also called the Dirichlet condition, shown in Equation (4), means that a constant
value of water potential is set at the boundary. This boundary condition is applied on the
horizontal upstream and downstream length, with values of h1 and h2, respectively. These
constant water potential values are the reason why the flow is generated since h1 > h2.
The second-class boundary condition, or Neumann condition, corresponds to impervious
borders of the scenario as given in Equation (5). This class is set in all the other borders
of the scenario, that is, those in which the dam and the soil are in contact, and the vertical
and bottom horizontal borders of the stratum. In this way, the only borders through which
water enters and leaves the scenario are the upper horizontal ones, while the others isolate
the problem from the rest of the system, so they can be studied independently.

As many problems of flow under retaining structures present several first-class bound-
ary conditions, the analytical resolution of the problem becomes very cumbersome. These
equations are written as follows:

h = ho,r at boundary regions 1, 2 . . . r (firstclass) (4)

∂v
∂n

∣∣∣∣
s
= 0 at boundary regions 1, 2 . . . s (secondclass) (5)

with n as the direction normal to the impermeable boundary surface.
Another way to study the flow through porous media is to employ the stream func-

tion Ψ, which is related to velocity and water head, according to Equation (6). This is a
scalar function whose derivative with respect to any direction would lead to the velocity
component orthogonal to that direction. If the problem is studied in a graphical way, those
points with the same value of stream function generate stream lines.

vx =
∂Ψ

∂y
= −kx

∂h
∂x

, vy = −∂Ψ

∂x
= −ky

∂h
∂y

(6)
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Therefore, the Laplace equation for anisotropic soils can also be expressed as a function
of this variable, shown in Equation (7), since ∂2h

∂x∂y = ∂2h
∂y∂x .

1
ky

∂2Ψ

∂x2 +
1
kx

∂2Ψ

∂y2 = 0 (7)

If isotropic soils are modelled, Equation (7) is transformed into equation ∂2Ψ
∂x2 + ∂2Ψ

∂y2 = 0.
Boundary conditions must then be translated to this variable although now first-

and second-class conditions have a different meaning. Dirichlet conditions, shown in
Equation (8), mean a constant value of flow along a given border, which in this scenario is a
way to impose that the contact between the dam and the soil is a stream line, and therefore,
no flow can occur through these borders, and the same happens to the vertical and bottom
horizontal borders. The value of the stream function along the dam–soil contact, Ψ1, takes
the highest value considered in the problem (which can be water flow value or simply 1),
while that along the vertical and bottom horizontal borders, Ψ2, is commonly 0. In this
way, stream line values vary between water flow and 0 or between 1 and 0, but in any
case, the highest values are close to the retaining structure, and they are reduced as they
grow further. Neumann conditions, shown in Equation (9), are set in those borders where
no variation of flow occurs, which for this problem are the upstream and downstream
horizontal borders. This means that water flows through these borders from upstream to
downstream, allowing it to enter and leave the system.

Ψ = Ψo,p at boundary regions 1, 2 . . . p (firstclass) (8)

∂Ψ

∂n

∣∣∣∣
q
= 0 at boundary regions 1, 2 . . . q (secondclass) (9)

Figure 1 presents the geometry and boundary conditions in terms of water potential
and stream function variable.
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Note that if Equation (7) is multiplied by the factor kx·ky, Equation (10) is obtained,
which is similar to Equation (3) and represents the same phenomenon although employing
different variables.
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kx
∂2Ψ

∂x2 + ky
∂2Ψ

∂y2 = 0 (10)

In fact, in 2D scenarios such as the one presented in this paper, water potential and stream
function are orthogonal, and so are Equations (3) and (7). For this reason, stream function
values can be obtained by numerical integration employing Equation (6) with the proper
values of water potential and a constant of integration for the stream function variable [41]. In
addition, boundary conditions presented in Equations (8) and (9) in terms of stream function
variable are related to those of Equations (3) and (4) in terms of water potential, as they
are translated as the impervious boundary along the dam–soil contact, vertical and bottom
horizontal borders (Equations (5) and (8)), and borders through which flow can occur applied
to the upstream and downstream horizontal borders (Equations (4) and (9)).

Although the problem can be addressed employing either the water potential or the
stream function variable, in the following sections, the discriminated dimensionless groups
are obtained employing the first since finding the dimensionless form of the unknown
expression is easier if the water potential variable is used.

3. Discriminated Governing Equations and Dimensionless Groups

The discriminated nondimensionalization technique is a way to study seepage scenarios
in a summarized way. This states that any dimensionless unknown of the problem can be
expressed as a function of the dimensionless groups involving both geometrical and hydro-
geological variables. Although dimensionless numbers or groups have been traditionally
employed in several study fields, the discriminated approach is relatively new. As is known,
the derivation of the dimensionless groups in a given problem allows the solutions to be
only dependent on such groups instead of each of the physical and geometric parameters
involved (as Pi theorem sets). Nevertheless, the way in which dimensionless numbers are
derived is not unique. The most general procedure uses concepts of classical dimensional
analysis, frequently leading to scarcely precise groups that, however, are very extended in
engineering (for example, the Reynolds number in fluid mechanics [42] or flow through a
porous medium [43]). Nonetheless, this classical technique cannot be applied in scenarios with
anisotropic soils. The principle of discriminated nondimensionalization is precisely solving
anisotropic problems, generating completely dimensionless groups that can be used in these
scenarios since the technique enforces the groups be rigorously dimensionless both in the
units and in the spatial directions of the variables involved. When introducing the concept
of spatial discrimination, the smallest number of groups governing the problem is obtained,
and some of the classical numbers, such as Reynolds, Rayleigh, and others, emerge with new
definitions in terms of the physical and geometrical parameters involved in the problem. To
apply this technique, the following steps must be followed:

(i) References to transform the dimensional variables and unknowns in their dimension-
less form must be chosen, so the values they take are generally within the interval (0, 1). In
this step, any vector variable, such as length or velocity, turns into a dimensionless variable
according to its direction;

(ii) The new dimensionless variables are introduced in the governing equations, so
each of their addends can be split into two factors. The first is dimensionless and is formed
by the new variables and their derivatives, while the second, which is dimensional, clusters
the physical and geometrical parameters;

(iii) Since the dimensionless factors are supposed to be of the order of magnitude of
the unit, and the governing equation must be balanced, the dimensional factors must have
the same order of magnitude;

(iv) The independent ratios formed by pairs of dimensional factors are the discrimi-
nated dimensionless groups that govern the problem. The maximum number of dimen-
sionless groups is the number of dimensional factors minus one. According to Pi theorem,
the dimensionless solutions or patterns of the study problem are then a function of these
discriminated groups [31].
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The selected references for variables x, y, and h are wd, H, and ∆h, respectively. Hence,
the dimensionless variables are as follows:

x′ =
x

wd
y′ =

y
H

h′ =
h

∆h
(11)

Introducing these in Equation (3) yields the following:

kx
∆h
wd

2
∂2h′

∂x′2
+ ky

∆h
H2

∂2h′

∂y′2
= 0 (12)

According to this equation, the solution does not depend on the change of the water
potential upstream and downstream the dam. Now, assuming that the derivative factors
∂2h′

∂x′2
and ∂2h′

∂y′2
are of an order of magnitude unit due to the ranges chosen for the dimension-

less variables h′, x′, and y′, the only dimensionless group that can be obtained from the
former equation is as given below:

π1 =
kx H2

kywd
2 (13)

A more thorough discussion of how group π1 is deduced can be found in Alhama et al [44].
Group π1 can also be obtained if instead of the water potential variable, the stream

function variable is turned into dimensionless and introduced in Equation (10).

x′ =
x

wd
y′ =

y
H

Ψ′ =
Ψ

∆Ψ
(14)

kx
∆Ψ

wd
2

∂2Ψ′

∂x′2
+ ky

∆Ψ

H2
∂2Ψ′

∂y′2
= 0 (15)

As happened when the potential variable was used, the solution does not depend on
the change of stream function, and making the same assumptions, the monomial π1 can
be deduced.

Moreover, other groups appear when studying the scenario from a geometrical point
of view. These new groups, Equations (16)–(18), are related to the geometrical conditions,
so they are not necessarily of an order of magnitude unit.

π2 =
d
H

(16)

π3 =
a

wd
(17)

π4 =
a
b

(18)

where π1 is a kind of permeability ratio corrected by a convenient aspect factor (a clearly
new group coming from the discrimination technique); π2 and π3 characterize vertical and
horizontal flow, respectively, due to the geometric lengths that set the problem (a result
also derived from discrimination); and π4 presents additional information of the scenario
in the horizontal direction (in this case, it reflects the asymmetry).

The choice of criteria to define the groups π2 to π4 is arbitrary (other length ratios
could have been chosen) although the discrimination has to be satisfied; that is, the lengths
that define each group must have the same spatial direction. Furthermore, the combination
of any of the groups π3 and π4 with π1 also enables redefining π1. Thus, the choice of
the set of (four) independent groups for this problem is left to the experienced researcher
and is generally related to the numerical values adopted by the parameters from the real
scenarios and the influence of these parameters on the solution of the problem.
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Unknown variables must also be transformed into their dimensionless form, and
for this purpose, reference values are needed. The first variable to be changed is the
groundwater flow, for which the reference value is deduced as follows. Writing the
average horizontal flow as Qre f = vxSx, where vx is the horizontal velocity, and Sx is
the cross-section under the dam, and substituting vx from Darcy’s law, i.e., vx = −kx

∂h
∂x ,

and Sx = LyLz, this reference flow becomes Qre f = −kx
∂h
∂x LyLz. Now, the variables

involved in this formulation can be replaced by parameters of the studied scenario. That
is, Qre f = −kx

∆h
wd

H since a 2D problem is studied, and Lz = 1. According to Equation (13),

H
wd
∼
√

ky
kx

, so Qre f can be modified, leading to the following:

Qre f =
√

kxky∆h (19)

which is an expression that is commonly employed by several authors [37,38] when
anisotropic soils are considered but without any expressed justification. The value of
the dimensionless water flow group takes the form below:

πQ =
Q√

kxky∆h
(20)

The next unknown variable we are interested in is the uplift force under the dam. This
is obtained by integration of the pore pressure right under the retaining structure. If the
dam has no foundation, and there is no water potential downstream the dam (h2), the shape
of the pore pressure distribution is very similar to a triangle, and it becomes a trapezoid
when there is a foundation and/or water potential downstream the retaining structure
(Figure 2). Therefore, the uplift force F (area t in Figure 2) can be calculated as an addition
of a rectangular area (I), which depends on the position of the foundation (d), on the water
head value downstream the dam (h2), and a quasi-triangular area (II), which is the part
related to the variation of water potential (∆h). In order to obtain a dimensionless variable
between 0 and 1, the rectangular area (I) must be subtracted, and the remaining area (II) is
turned into a dimensionless value by applying the theoretical maximum pore pressure area
as a reference force. In this way, the expression that provides the dimensionless group of
the searched uplift force is given by the following:

πUF =
F− wdγw(h2 + d)

wdγw∆h
(21)
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The following studied variable is the application point of the uplift force, which is
obtained dividing the momentum due to the pore pressure under the dam by the uplift
pressure. In this case, it is calculated with respect to the heel of the dam. As occurs for the
uplift force, in order to calculate the dimensionless expression of this unknown, the pore
pressure distribution is also divided into its rectangle and triangle components (Figure 2).
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The application point of the uplift pressure due to the rectangular area (I) is always located
in the middle of the dam width (Ci = ci/wd = 0.5). However, that due to area II varies its
position according to the shape and is never lower than Ci = ci/wd = 0.33 or higher than
0.5. In this way, the dimensionless expression of the application point is as given below:

πC =

c
wd

F− (h2 + d)wdγw0.5

F− (h2 + d)wdγw
(22)

The last variable that is presented in this document is the average exit gradient, Ie,ave,
which is of importance when studying dams (or retaining structures in general) from the
safety point of view, especially in reference to piping. The exit gradient (I) is calculated as
the difference of hydraulic potential between the downstream highest and lowest points of
the buried length (the dam foundation in this study) divided by the value of this length.
Standards such as Eurocode-7 [45] propose this definition to the variable, and according to
them, these potential values are measured in a column of negligible thickness, so the only
information that contributes to the calculation is that right next to the retaining structure.
Harr [36] presented several graphics and formulations for obtaining the value of the exit
gradient at the point right downstream the retaining structure (ie), so again, only the data
beside it are involved. Nevertheless, as a way to consider a larger area and carry out more
realistic calculations, Harr also came up with an area for obtaining the value of an average
exit gradient, Ie,ave. This area has the vertical length of the buried length and the horizontal
length of half of this buried length. Nevertheless, since Harr only considered isotropic
soils, this area is not correct for anisotropic scenarios. A new way to obtain this horizontal
length is by multiplying Harr’s expression by an anisotropic factor. In this way, in the study
presented in this paper, the vertical length, lv, along which the gradient is calculated, is the

dam foundation, d, while the horizontal length, lh, is lv
2

√
kx
ky

.
The average exit gradient, Ie,ave, is traditionally considered as a dimensionless variable,

as it is the ratio of two lengths: water head variation, which is measured as a length (as
a reduction of the units involved in its definition), and the length of the dam foundation.
However, if considering spatial discrimination, each variable, although a length, is mea-
sured in a different direction: the variation of water potential in meters of water column
and the foundation length in meters in the vertical direction. Therefore, the average exit
gradient does have units according to spatial discrimination: [Ie,ave] =

Lwc
Ly

. Lwc is the di-
mension of the water potential since, although it is measured in meters and can sometimes
coincide with a vertical length, it is an energetic term and cannot be considered as a length
in any direction. The dimensionless expression of this variable is obtained dividing the
average exit gradient by the ratio of the total variation of water potential of the problem
(∆h, measured in Lwc) and a vertical length of scenario (measured in Ly). For this research,
the chosen expression to turn the variable into dimensionless is as follows:

πIe,ave =
Ie,ave·H

∆h
(23)

The dimensional values of the variables presented in this paper (Q, F, c, and Ie,ave)
can be obtained employing the expressions of the dimensionless variables in this section
(πQ, πUF, πC, and πIe,ave) and the abaci shown later, and once they are calculated, they
can be used to evaluate the safety of the structure. Therefore, the average exit gradient
is utilized when studying the risk of piping or heaving downstream the dam, while the
pore pressure distribution (or, in a summarized way, the uplift force and its application
point) influences the stability of the structure either to sliding or rotation. For any of the
verifications, more information of the problem is needed: soil unit weight, dam dimensions,
and characteristics of the zone where the structure is built, among other features. In
addition, knowing the amount of the groundwater flow is also useful in order to consider
all the possible phenomena occurring in the downstream area.
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4. Verification of the Emergent Discriminated Dimensionless Groups

In this section, Table 1 presents the scenarios and results of ten cases that were solved
employing numerical simulation. It shows the geometrical and hydrogeological parameters of
this set of ten suitable scenarios. The monomials ruling the problem, π1 to π4, were calculated
with these parameters and are also presented in Table 1. Cases are paired as follows:

• Cases 1 and 2 are assumed as reference, and although they present different values
for the parameters describing the scenario, they have the same value for the four
monomials, so they are the same base dimensionless scenario where π1 = 1, π2 = 0.25,
π3 = 5, and π4 = 1. This is the reason why they give the same solution pattern
(Figure 3a) according to Pi theorem. Note that the geometrical dimensional scale is not
written since it depends on the specific case;

• Cases 3 and 4 also present different values for the parameters describing the scenario.
The dimensionless monomials governing the problem are π1 = 5, π2 = 0.25, π3= 5, and
π4 = 1; that is, the value of π1 is higher than in cases 1 and 2, so the magnitude of the
horizontal flow is increased;

• Cases 5 and 6 have the following monomials ruling the problem: π1 = 1, π2 = 0.5, π3 = 5,
and π4 = 1, which means that the dam foundation is deeper than in cases 1 and 2;

• Cases 7 and 8 can be summarized with the following monomials: π1= 1, π2 = 0.25,
π3 = 1, and π4 = 1, reducing the horizontal length of the scenario both upstream and
downstream;

• Cases 9 and 10 have the following monomials ruling the scenario: π1 = 1, π2 = 0.25,
π3 = 5, and π4= 6, which means a reduction of the horizontal length of the scenario
only downstream the dam.
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Table 1. Scenarios for verification of dimensionless groups (h1 = 10 m, h2 = 0 m, ∆h = 10 m, kx, and
ky × 10−4).

Case a
(m)

b
(m)

wd
(m)

h
(m)

d
(m)

kx
(m/s)

ky
(m/s) π1 π2 π3 π4 πQ πUF πC πIe,ave

1 50 50 10 10 2.5 1.00 1.00 1 0.25 5 1 0.354 0.500 0.406 0.596

2 75 75 15 4.74 1.186 1.00 0.10 1 0.25 5 1 0.353 0.500 0.406 0.596

3 50 50 10 22.36 5.59 1.00 1.00 5 0.25 5 1 0.481 0.500 0.427 0.782

4 100 100 20 31.62 7.906 1.00 0.50 5 0.25 5 1 0.481 0.500 0.427 0.782

5 50 50 10 10 5 1.00 1.00 1 0.50 5 1 0.244 0.500 0.411 0.377

6 75 75 15 4.74 2.37 1.00 0.10 1 0.50 5 1 0.244 0.500 0.411 0.377

7 10 10 10 10 2.5 1.00 1.00 1 0.25 1 1 0.339 0.500 0.409 0.610

8 20 20 20 15 3.75 2.00 1.125 1 0.25 1 1 0.339 0.500 0.409 0.610

9 50 8.33 10 10 2.5 1.00 1.00 1 0.25 5 6 0.341 0.516 0.411 0.656

10 60 10 12 3.975 0.949 1.00 0.10 1 0.25 5 6 0.341 0.516 0.411 0.656

The equipotential and streamline solutions are all represented in Figure 3. and as
expected, each pair has the same pattern despite the different values of the parameters
between each case. The range of values for the parameters was chosen to be broad enough
to clearly warrant different scenarios. Results of dimensionless expressions of water flow,
average exit gradient, uplift force, and its application point are also shown in Table 1. Again,
as expected, for each of the pairs, the dimensionless unknowns are the same value since
the data monomials are not altered.

According to the results presented in Table 1, the emergent discriminated dimension-
less groups (and the technique with which they are derived) are validated. The only slightly
different values, those of πQ for cases 1 and 2, are due to rounding to three significant
figures (the expansion to four figures in πQ is 0.3536 for case 1 and 0.3533 for case 2).

From the results in Table 1, some conclusions about the relative importance of the
discriminated dimensionless groups can be derived. If π1 varies from 1 (cases 1 and 2) to
5 (cases 3 and 4), keeping the values of the other monomials constant, the dimensionless water
flow changes by a high percentage (more than 30%), and the difference between the values of
πC is also significant (around 5%) in comparison to the other groups of simulations.

Referring to the change in π2, from 0.25 (cases 1 and 2) to 0.5 (cases 5 and 6), this
also influences the water flow, reducing this value by around 30%. The dimensionless
application point (πC) also varies although, as for changes of π1, this variation is lower
than that for πQ (less than 5%).

The importance of π3 is not as significant as π1 and π2, especially whether it takes
values higher than 10, as we see later. From π3 = 5 (cases 1 and 2) to π3 = 1 (cases 7 and 8),
the scenario decreases the reservoir length, causing a reduction of the amount of water
flowing through the porous medium. This decrease, however, is not as important in
percentage terms as the increase due to the increment of π1 or the reduction because of
the increment of π2. In this third case, the decrease is less than 10%. Looking at the
dimensionless application point now, this variation is even lower: less than 1%.

The last scenario variation is associated with the symmetry in the geometry of the
problem, that is, π4. Changing this group from 1 (cases 1 and 2) to 6 (cases 9 and 10) means
that a scenario that originally presented the same length upstream and downstream the
dam now has a downstream length six times smaller. This variation can be relevant or not
according to the value of the other groups, especially π3, for which values close to unity
make π4 significant. However, as π3 increases, the effect of π4 becomes less important.
In order to prove this effect, cases 9 and 10 present a high value of π4, namely 6, even
higher than π3. Although the variations of πQ and πC are quite low, as with the changes
of π3, something unusual appears: for the other validation cases, where the medium is
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symmetrical, the dimensionless value of the uplift force, πUF, maintained a constant value
of 0.5; however, the asymmetrical scenario increases this value to 0.516.

If the average exit gradient is now observed, monomials π1 and π2 also seem more
relevant than π3. As occurs for the water flow, an increase of π1 from 1 to 5 (cases 1 and
2–cases 3 and 4) leads to an increase of the dimensionless average exit gradient (approx-
imately 30%) as well as an increase of π2 from 0.25 to 0.5 (cases 1 and 2–cases 5 and 6)
leading to a decrease of πIe,ave (around 35%). Nevertheless, the difference of values due to
the change of π3 from 5 to 1 (cases 1 and 2–cases 7 and 8) is significatively lower (not even
3%). Finally, the effect of increasing the value selected for π4 from 1 to 6 becomes a little
more important, increasing the value of by about 10%.

5. Solutions
5.1. Universal Curves

Once the validity of the discriminated nondimensionalization technique was proven,
a large number of simulations were carried out in order to obtain abaci and universal
solutions that simplify the study of flow through isotropic and anisotropic media under
gravity dams for future research. The problems were simulated employing a free code
based on the network method [41] and the electrical analogy, a methodology that has been
successfully applied in other fields of engineering and, specifically, in ground engineering,
such as soil consolidation [46] or solute and heat transport [34]. Ngspice [47] was the
chosen program to simulate the electrical circuits derived from electrical analogy.

The assumptions of the numerical model are the following:

• The stratum is horizontal, as well as the base of the dam, so the geometry of the
scenario is simplified;

• The dam is completely impervious, as it is considered of concrete, so no flow can occur
through it;

• The horizontal upstream and downstream lengths are considered to have the same
value since in most of the practical cases, these two parameters are much larger than
the dam width, so the scenario can be considered as symmetric.

The universal curves presented here attempt to cover a large range of theoretical and
realistic situations and scenarios. For this, the values of the data dimensionless groups,
which are obtained from the geometric and geotechnical parameters of the problem [1,20,36],
are the following:

π1 = (0.03, 0.1, 0.3, 0.5, 1, 2, 5, 10, 30);
π2 = 0–0.75 (although the average exit gradient is not measured for π2 = 0);
π3 = (1, 2, 5, ≥10);
π4 = 1.
The reason why π4 presents a value of 1 in this document is to simplify the given

solutions. Moreover, since in actual scenarios, a and b commonly take large values compared
to those of wd, the problem can be considered as symmetrical, as monomial π4 loses
importance in these cases.

Firstly, the water flow abaci are presented. π2 is represented in the horizontal axis
and the unknown dimensionless variable πQ in the vertical axis. Three abaci, one for each
value of π3, are shown (Figures 4–6).

According to Figures 4–6, the groundwater flow under the retaining structure increases
with the value of π1. This is coherent since this dimensionless group is a comparison of
the ease with which the water runs through a porous medium horizontally and vertically.
Therefore, as the flow under the gravity dam is essentially horizontal (or at least, that is its
nature), the higher π1, the easier it is for the water to flow through the soil and the higher
the total flow obtained. Nevertheless, some exceptions appear for dams with foundation
(π2 > 0). When studying πQ for high values of π1 (≥5) but low values of π3 (1 and 2),
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the horizontal flow is stimulated and restricted at the same time, respectively. For this
reason, in Figure 4, curves for π1 = 5, 10, and 30 are below those with smaller values, and
in Figure 5, the same happens for π1 = 10 and 30. In Figure 6, where the medium is large
enough in the horizontal direction, π1 affects πQ as expected.
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In addition, π2 also seems to be highly decisive for determining the amount of water
obtained downstream the dam. The higher the value of this dimensionless group, the
deeper the foundation of the dam for the same scenario, leading to an increase in the im-
portance of the vertical flow. For this reason, as the value of π2 increases, the dimensionless
water flow decreases. Finally, the importance of π3 appears to be reduced as the value of
π1 is decreased, observing that for π1 = 0.03–1, curves of πQ are basically the same for all
π3 studied. This effect also occurs for medium-high π1 (2, 5, and 10) and π3 (≥5).

When studying the verification results in Table 1, it is seen that for symmetric scenarios
where the upstream and downstream horizontal lengths are the same, the dimensionless
value πUF remains constant. Moreover, with the many simulations carried out to develop
the abaci for dimensionless groundwater flow and application point of the uplift force, this
statement is reaffirmed. Therefore, when studying a symmetrical problem or a problem
that can be simplified as symmetrical, the uplift force is as follows:

πUF =
F− wdγw(h2 + d)

wdγw∆h
= 0.5 (24)

The next variable to study is the dimensionless application center, πC, whose corre-
sponding abaci are shown in Figures 7 and 8.

Paying attention to the effect of π1 in the value of the application point of the uplift force,
the higher the horizontal flow, the bigger the value of πC. This occurs because the increase in
the horizontal flow with respect to the vertical flow means a decrease in the pore pressure in
the uplift half of the dam base and an increase of this variable in the downstream half, shifting
the application point towards the geometrical center of the dam base.

The effect of the variation of π2 is also important to observe. If the dimensional position
of the application point with respect to the width of the dam is studied, it moves towards
the center of the dam as the foundation is deeper. This occurs because the rectangular area
of the pore pressure function becomes larger due to the foundation depth. Nevertheless,
for (approximately) π2 > 0.5, the rectangular area continues increasing, whereas the quasi-
triangular area hardly varies although the variation of the real application point is not as
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high as for the previous values of π2. For this reason, the value of πC (which is exclusively
associated with the quasi-triangular area) decreases at the end the curve for all values of π.
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The last group to consider, π3, seems to imply variations in πC. For those curves of
low π1, πC is not affected by π3. For large values of π1, as π3 increases, πC decreases,
which can be observed in the abaci (Figures 7 and 8).

In this way, the constant value of πUF is complemented with the πC abaci. The shape
of the pore pressure distribution is a trapeze, so it can be decomposed in a rectangle, which
is basically due to the depth of the foundation, and a quasi-triangle due to the variation
of potential along the dam base. As the dimensionless form of the uplift force subtracts
the part due to the position of foundation, this is, the rectangular part, the remaining part
takes a constant value 0.5 because of the triangular shape. The dimensionless form of the
application point of the uplift force is the variable that changes according to the exact shape
of the pore pressure distribution when the foundation position part is not considered.
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Finally, the last variable to examine is the average exit gradient πIe,ave, and its abaci
are shown in Figures 9 and 10.
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The effect of π1 on this variable is very similar to the effect on πQ and πC; that is, the
larger the value of π1, the larger πIe,ave turns out to be. This occurs because, as horizontal
flow increases its importance with respect to vertical flow, more change in hydraulic
potential occurs on the side of the dam foundation instead of under its base.

When studying how π2 affects πIe,ave, this is also quite evident: as the dam foundation
becomes deeper, the average gradient decreases. This effect appears because the buried
length is increased in a higher proportion than the exit hydraulic potential differences,
which leads to a lower value of average exit gradient, and therefore, the dimensionless
variable is also lower.

The influence of π3 is less evident, as it is somehow related to π1 and π2, meaning
that a concrete effect cannot be found. Figure 9, for which values of π3 are 1 and 2, shows
that for low values of π1 (<1), values of πIe,ave are lower for π3 = 1 until a certain value
of π2, in which both curves (π3 = 1 and 2) almost join together. πIe,ave curves for π1 = 1
in Figure 9 present a similar behavior although instead of having the same values from a
certain value of π2, the trend is changed, with the values related to π3 = 1 becoming higher
than those of π3 = 2. For π1 > 1, values of πIe,ave are always lower for curves of π3 = 2.

Figure 10, which shows the same curves as Figure 9 but for π3 = 5 and 10, presents
a slightly different picture. Low values of π1 (0.03–0.5) present curves similar to those of
Figure 9: the one representing a lower value of π3 (5 in this case) is below the curve of
higher π3 until a given value of π2 is reached, and from this, both curves are almost the
same. π1 = 1 curves behave in the same way as in Figure 9 (that is, they change their trend
from a certain π2), and this behavior also appears in curves π1 = 2–10. Finally, π1 = 30
curves show similar behavior to that shown in Figure 9, as for all lengths of the dam
foundation, πIe,ave values are lower for π3 = 10 than π3 = 5.

5.2. Comparisons with the Results of Other Authors

Since the universal solutions existing in the literature only refer to the isotropic domain
(Muskat [20] for water flow values and Harr [36] for pore pressure under several points
of a dam without foundations), comparisons for these results are presented below. The
scenario that is compared is a dam with the following geometrical and hydrogeological
characteristics:

a =100 m;
b = 100 m;
wd = 10 m;
d = 0 m;
kx = ky = 10−4 m/s;
H = (0.2, 1.25, 2.5, 5, 100) m.
The lowest and highest values of H are only considered for pore pressure verifications

since Muskat’s solution only reaches a ratio of wd/H of 10 and does not report valuable
information for wd/H = 0.1. Table 2 shows the values of the water flow given by Muskat
as well as the differences between these and the values obtained by us. It is important
to highlight that the theoretical solution of Muskat is based on an infinite scenario in the
horizontal direction. That is the reason why large values of a and b were chosen although
some difference is expected because of this fact. Due to the negligible relative error,
calculated in the form Q−QMuskat

Q 100%, in all scenarios, the comparison can be considered
very satisfactory.

Table 2. Verification of groundwater flow values.

H (m) wd/H Q (m3/s/m) QMuskat/(k∆h) QMuskat Error (%)

1.25 8 1.12 × 10−4 0.11 1.10 × 10−4 1.79

2.5 4 2.03 × 10−4 0.20 2.00 × 10−4 1.48

5 2 3.45 × 10−4 0.35 3.50 × 10−4 1.45
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Referring to the comparison of uplift forces and their application point, since the
only author who has addressed this topic does so in terms of pore pressure, comparison
was carried out employing this variable. Table 3 presents the values of the pore pressure
under the dam at points (0.15wd, 0.25wd, 0.5wd, 0.75wd, and 0.85wd) obtained by numerical
simulations and compares their related dimensionless values with those given by Harr. In
this work, dimensionless pore pressure values are calculated as follows:

u(dimensionless) =
u

∆hγw
− h2 + d

∆h
=

u
γw
− (h2 + d)

∆h
(25)

Table 3. Verification of the pore pressure values under the gravity dam.

Dimensionless Position

H (m) H/(wd/2) 0.15 0.25 0.5 0.75 0.85

0.2 0 *

u (kPa) 84.32 74.51 50.00 25.49 15.68

u (dimensionless) 0.843 0.745 0.500 0.255 0.157

uHarr 0.840 0.74 0.500 0.260 0.160

Error (%) 0.356 0.671 0.000 1.961 1.911

1.25 0.25

u (kPa) 81.35 72.37 50.00 27.64 18.65

u (dimensionless) 0.814 0.724 0.500 0.276 0.186

uHarr 0.810 0.720 0.500 0.280 0.190

Error (%) 0.491 0.552 0.500 1.449 2.151

2.5 0.5

u (kPa) 79.01 70.49 50.00 29.51 21.00

u (dimensionless) 0.790 0.705 0.500 0.295 0.210

uHarr 0.790 0.700 0.500 0.300 0.210

Error (%) 0.000 0.709 0.000 1.695 0.000

5 1

u (kPa) 76.64 68.40 50.00 31.58 23.34

u (dimensionless) 0.766 0.684 0.500 0.316 0.234

uHarr 0.760 0.680 0.500 0.320 0.240

Error (%) 0.783 0.585 0.000 1.266 2.564

100 ∞ *

u (kPa) 74.19 66.37 50.05 33.73 25.91

u (dimensionless) 0.742 0.664 0.500 0.337 0.259

uHarr 0.740 0.660 0.500 0.340 0.260

Error (%) 0.270 0.602 0.000 0.890 0.386
* tending value.

According to Table 3, the pore pressure function employed to obtain both the uplift
force and its application point is correct when comparing it to Harr solutions in isotropic
soils. Relative errors, calculated as udimensionless−uHarr

udimensionless
100%, are always around or below 2%.

6. Case Study

In this section, an illustrative example is presented in order to explain the use of the
universal curves shown in this paper. For this aim, an infinite scenario in the horizontal
direction is considered, so the abaci employed in the example are those for π3 ≥ 5. The
parameters that characterize this scenario are the following:

wd = 20 m;
H = 20 m;
d = 5 m;
kx = 10−6 m/s;
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ky = 10−6 m/s;
h1 = 10 m;
h2 = 0 m.
If the permeability values in both directions are observed, they are the same because

an isotropic medium is considered first. In this case, then, the π1 value is only given by
the geometrical parameters, as occurred in the Harr abacus for pore pressure or Muskat’s
graph for flow under a gravity dam. π1 = 1 since H and wd have the same magnitude,
while π2 = 0.25. Thus, Figure 6 provides a dimensionless water flow πQ = 0.35. From this,
we obtain the following:

Q = πQQre f = πQ

√
kxky∆h = 0.35×

√
10−610−6 × 10 = 3.5× 10−6 m3/s/m

When calculating the uplift force, no graphical solutions are needed since the dimen-
sionless group πUF maintains a constant value of 0.5. This force is as given below:

F = πUFwdγw∆h + wdγw(h2 + d) = 0.5× 20× 10× 10 + 20× 10× (0 + 5) = 2000 kN/m

As regards the application point of this uplift force, according to Figure 8, πC = 0.406,
which leads to a dimensional value of c:

c = πC [F−(d+h2)wdγw ]+(d+h2)wdγw0.5
F wd

= 0.406×[2000−(5+0)×20×10]+(5+0)×20×10×0.5
2000 × 20 = 9.06 m

Finally, the value of πIe,ave can be taken from Figure 10, employing those curves for π3 = 10,
as it is the larger presented. πIe,ave is then 0.568, which leads to a dimensional Ie,ave:

Ie, ave =
πIe,ave∆h

H
=

0.568× 10
20

= 0.284

Similarly, this problem can be solved considering an anisotropic soil. If the same geo-
metrical scenario is taken, but the horizontal permeability is incremented to kx = 10−5 m/s,
the value of the dimensionless group π1 is altered, now being equal to 10. The other
dimensionless groups, π2 and π3, remain constant. From Figure 6, πQ = 0.525. This means
a dimensional groundwater flow of 1.654 × 10−5 m3/s/m. Since the geometrical charac-
teristics of the example have not been modified, the uplift force (F) keeps the same value
of 2000 kN/m. Figure 8 also gives the value of πC = 0.436 for the new problem, so the
dimensional value of c is obtained as 9.36 m. Finally, from Figure 10, πIe,ave is 0.861, leading
to Ie,ave of 0.431.

Thus, it can be concluded that the anisotropy of the medium influences the final
solutions of the problem even if the geometry is kept the same. This shows the impor-
tance of a rigorous knowledge of the soil permeability, and it should not be assumed to
be an isotropic medium. Nevertheless, there is more than one way to achieve a value
of π1 = 10. If the isotropic assumption is maintained, the discriminated dimensionless
problem would behave in the same way if H and, therefore, d are changed to 63.25 m and
15.81 m, respectively. The dimensionless value of water flow remains the same, 0.5, as the
dimensionless data are kept constant. However, the dimensional flow changes its value
to 5.25 × 10−6 m3/s/m because the permeability values are different. When calculating
the uplift force, this value also changes, i.e., F = 4162 kN/m, due to the change in the
geometry in the problem. For the dimensionless application point, as occurred for the
water flow, the value maintained the same value of 0.436. However, as both the uplift force
and the geometry of the problem were changed, the dimensional application point must be
recalculated, providing c = 9.692 m. The last parameter to be obtained, Ie,ave, also changed
due to the change of the geometry, now presenting a value of 0.136.
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Therefore, with simple mathematical calculations and the universal curves, groundwa-
ter flow, average exit gradient, uplift force, and its application point can be obtained, and
although the real scenarios might be completely different due to the geometry and/or soil
properties, if they are summarized into discriminated dimensionless groups, the method
can be easily applied.

7. Final Comments and Conclusions

A new dimensionless group in anisotropic media, kx H2

kywd
2 , was deduced by applying

the discrimination technique to the nondimensionalization of the governing equation of
seepage under dams. Such a group represents the dependence of the problem–solution
patterns on soil and geometric parameters in a more precise and simple way than the
groups emerging from classical techniques of dimensional analysis.

In addition, the rest of the dimensionless groups of the problem, involving geometric
parameters, were also deduced by employing the discrimination technique. In this way,
ratios between magnitudes in the same spatial direction were obtained.

Water flow under the dam, average exit gradient, uplift force, and its application
point, all unknowns of interest in these anisotropic problems, were expressed in their
dimensionless form as a function of the derived groups. Their solutions are displayed by
universal abaci, for which a large number of numerical simulations were carried out. The
numerical tool was the network method.

Successful comparisons of curves and universal solutions with those reported in the
literature for isotropic soils were carried out. Finally, the application of the curves is
illustrated for isotropic and anisotropic scenarios.
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Nomenclature

a Upstream horizontal length (m)
b Downstream horizontal length (m)
C Application point of the uplift force (dimensionless)
c Application point of the uplift force (m)
d Foundation depth (m)
F Uplift force under the dam due to the water flow (Pa/m)
H Stratum thickness (m)
h Water potential (m)
h′ Dimensionless water potential
h1 Water potential value upstream the dam (m)
h2 Water potential value downstream the dam (m)
ho Initial water potential boundary condition (m)
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I Exit gradient (dimensionless)
Ie,ave Average exit gradient (dimensionless)
ie Exit gradient at the point right downstream the dam (dimensionless)
k Permeability or hydraulic conductivity (m/s)
kx Horizontal permeability or hydraulic conductivity (m/s)
ky Vertical permeability or hydraulic conductivity (m/s)
lh Horizontal length where the average exit gradient is measured (m)
lv Vertical length where the average exit gradient is measured (m)
Lwc Dimension of the energetic potential of the fluid or hydraulic potential, h (m)

Ly
Length in the vertical direction, also the spatial dimension
in the vertical direction (m)

Lz Length in the direction orthogonal to the x-y plane (m)
n Direction normal to the surface
Q Water flow (m3/s/m)
QMuskat Water flow according to Muskat (M3/s/m)
Qre f Reference water flow (m3/s/m)
Sx Cross-section of the horizontal flow (m2)
udimensionless Dimensionless pore pressure
u Pore pressure (Pa)
uHarr Dimensionless pore pressure according to Harr
v Velocity vector (m/s)
vx Horizontal velocity (m/s)
vy Vertical velocity (m/s)
wd Dam width (m)
x Horizontal direction
x’ Dimensionless horizontal direction
y Vertical direction
y′ Dimensionless vertical direction
∂ Derivative symbol
∇ Gradient operator
γw Water unit weight (N/m3)
∆ Increment
π Dimensionless group
Ψ Stream function variable (m2/s)
Ψo Initial stream function boundary condition (m2/s)

Subscripts

1, 2 . . . denote the different governing monomials/ boundary conditions.
C denotes a variable related to the application point of the uplift force.
i denotes relationship with the rectangular area of the pore pressure distribution.
Ie,ave denotes a variable related to the average exit gradient.
ii denotes relationship with the quasi-triangular area of the pore pressure distribution.

p
denotes the number of first-class boundary conditions for the stream
function variable.

Q denotes a variable related to water flow.

q
denotes the number of second-class boundary conditions for the stream
function variable.

r denotes the number of first-class boundary conditions for the water potential.
s denotes the number of second-class boundary conditions for the water potential.
UF denotes a variable related to uplift force.
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