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Abstract: Diagnostic biomarkers are often measured with errors due to imperfect lab conditions
or analytic variability of the assay. The ability of a diagnostic biomarker to discriminate between
cases and controls is often measured by the area under the receiver operating characteristic curve
(AUC), sensitivity, specificity, among others. Ignoring measurement error can cause biased estimation
of a diagnostic accuracy measure, which results in misleading interpretation of the efficacy of a
diagnostic biomarker. Existing assays available are either research grade or clinical grade. Research
assays are cost effective, often multiplex, but they may be associated with moderate measurement
errors leading to poorer diagnostic performance. In comparison, clinical assays may provide better
diagnostic ability, but with higher cost since they are usually developed by industry. Correction for
attenuation methods are often valid when biomarkers are from a normal distribution, but may be
biased with skewed biomarkers. In this paper, we develop a flexible method based on skew–normal
biomarker distributions to correct for bias in estimating diagnostic performance measures including
AUC, sensitivity, and specificity. Finite sample performance of the proposed method is examined via
extensive simulation studies. The methods are applied to a pancreatic cancer biomarker study.

Keywords: biomarkers; correction for attenuation; measurement error
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1. Introduction

Most biomarkers are measured with research assays that may have poorer analytical
reproducibility as compared to clinical grade assays. However clinical assay development
is expensive, and there is no resource or incentive for academic labs to develop it. Diag-
nostic companies, on the other hand, would first evaluate if a biomarker may have good
performance, before they decide whether to invest in it to develop clinical assays. There-
fore, some potentially useful biomarkers are dropped from the pipeline due to inadequate
performance, while their performance could be adequate if they were evaluated using
clinical grade assays. An important question is whether we could quantify the potential
improvement in performance between research assays and clinical assays. This will help
in making a decision regarding the development of clinical grade biomarkers. Another
motivation is that clinical assays are usually in an ELISA format which requires a larger
volume as compared to some multiplex research assay platforms such as antibody arrays.
At the discovery and triage stage, a lot of candidates are evaluated and it is not possible to
use clinical grade assays due to blood volume constraint. Therefore, it is desirable to have
a fair appraisal of these candidates under these constraints.

A motivating example for our study is biomarker development for pancreatic cancer.
Research in Early Detection Research Network (EDRN) laboratories and elsewhere has
produced several candidate biomarkers for the detection of early-stage pancreatic ductal
adenocarcinoma (PDAC) [1]. The goal is to find biomarkers that could improve upon the
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performance of the current best marker, CA19-9 for early detection of PDAC. A study aim
of an EDRN pancreatic cancer bake-off study is to compare the performance of several
candidate biomarkers for discriminating resectable PDAC from benign pancreatic disease,
both alone and in combination with CA19-9. Resectable PDAC and benign pancreatic
disease are determined either by biopsy or by adequate follow up. The study’s goal is to
find biomarkers that can distinguish them without the need for surgery biopsy or long
term follow up. Malignant lesions will progress during follow-up, and hence the clinical
need is to be able to make a decision sooner. However, most biomarkers are measured
using research assays that have poorer analytical reproducibility as compared to clinical
grade assays. Figure 1 shows the association between a clinical assay and research assay
measures. Variability due to measurement error can attenuate diagnostic efficacy. To help
decision making during the biomarker development process, we aim to estimate the loss of
diagnostic efficacy of a biomarker due to analytic variability from measurement errors.

Standard diagnostic measures to evaluate the performance of biomarkers include
sensitivity, specificity, the receiver operating characteristic (ROC) curve, area under the
ROC curve (AUC), among others. There are several criteria for the determination of the
most appropriate cutoff value in a diagnostic test with continuous values. The Youden’s
index (sensitivity + specificity − 1) would be the point to maximize the summation of
sensitivity and specificity [2]. A second common criterion to choose the cutoff point
of a biomarker is the point on the ROC curve with minimum distance from the left-
upper corner of the unit square [3]. In the presence of biomarker measurement error,
Coffin and Sukhatme developed a bias correction method for estimation of AUC using
non-parametric kernel smoothers [4]. Faraggi derived an exact relationship between the
observed AUC and the true AUC under the assumption that the biomarker is from a normal
distribution among the controls and cases, respectively, and the measurement errors are
also normal [5]. Under most situations, ignoring measurement error can typically attenuate
AUC and hence under-estimate the efficacy of a diagnostic biomarker. In the presence of
internal reliability data, White and Xie developed bias-corrected estimators for sensitivity,
specificity, and other diagnostic measures [6]. Rosner et al. developed an approximation
method to correct for measurement error in the biomarkers, but without the normality
assumption [7]. Their approximation is based on a probit–shift model, which assumes that
the distributions of cases and controls satisfy a location-shift property. When a validation
subset is available, inverse probability weighting can be applied to adjust for bias from
biomarker measurement error [8].

The methods reviewed above, in general, assume a normal distribution for the true un-
observed biomarkers and measurement errors. One challenge in the methods for biomarker
measurement error is that the existing methods often rely on a normal or symmetric dis-
tribution of the biomarkers. However, in practice biomarker data are often skewed in the
distribution. For log normal distributions, the data will have a normal distribution after
taking a log transformation. Hence, applying the existing correction for the attenuation
method to the transformed data will be a fine approach. However, for general skewed
biomarkers, there may not be a suitable transformation so that the transformed data are
normal. This is also an important reason for the development of the new method in the
paper. An important strength of our method development is that our new method is
valid for both symmetric and skewed biomarkers. In addition, in the development of the
methods, we do not need to assume availability of either a validation subset or a reliability
subset with replicates.

In this paper, we propose a flexible method based on skew-normal distributions
under general measurement error models to adjust for estimation of AUC, sensitivity, and
specificity due to measurement errors in biomarkers. The paper is organized as follows. In
Section 2, we describe the statistical models for the problem of interest. We review a few
important corrections for attenuation methods when a reliability or validation subset is
available. In Section 3, we develop statistical methods to address our research problem of
biomarker measurement error when two different assay measurements of a biomarker are
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available. To avoid a normality assumption for the biomarker distribution, in Section 4 we
propose a more general class of distributions for biomarkers than the normal distribution. In
Section 5, results from simulation studies are presented. We demonstrate that the proposed
skew-normal biomarker correction estimator works well when the biomarkers are from a
normal distribution, and it works better than a correction for attenuation estimator when
the biomarkers are skewed. In Section 6, we illustrate the proposed method with the
pancreatic cancer biomarker study described above. In Section 7, we discuss the strengths
and limitations of the methods, and potential future developments in this research. Some
concluding remarks are given in Section 8.
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Figure 1. Upper: clinical assay versus research assay; lower: density estimation of log(clinical
CA19-9 + 1)/10 based on two bandwidths (dotted curves from wider bandwidth) .
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2. Statistical Models and Correction for Attenuation

The statistical models in the following will be general enough to include not only
the situation when replicates of a biomarker are available, but also the situation with two
different test measures of the same biomarker, such as research assays and clinical assays for
CA19–9. Under this situation, the methodology development will help in understanding
the degree of improvement of a clinical assay over a research assay. In addition, the models
may be applied to the situation when two different test measures of the same biomarker
may be linearly associated. Assume the total sample size is n. Let the disease status be
denoted by Yi for individual i, i = 1, . . . , n, in which Yi = 0 or controls and Yi = 1 for cases.
Let Wi be a biomarker assay measure from individual i, and Xi be the true underlying
biomarker. Let Mi be another assay measure of the same biomarker. We assume the
following models:

Wi = Xi + Ui, E(Ui|Xi) = 0,

Mi = α0 + α1Xi + Vi, E(Vi|Xi) = 0, (1)

where Ui is the measurement error from biomarker assay Wi, Vi is the measurement error
from biomarker assay Mi, and Ui and Vi are independent. Let µx and σx be the mean
and standard deviation of any random variable X, respectively. The first application of
model (1) is for the situation when replicates are available, in which (α0, α1) = (0, 1) and
σu = σv, where σu is the standard deviation of U. The second application of model (1) is
for the situation when clinical assay measure and research assay measure are available for
a specific biomarker in which (α0, α1) = (0, 1) but σu and σv are different. If we let Wi be
the clinical assay measure from individual i and Mi be the research assay measure, then
usually σu is smaller than σv. The third application of model (1) is when Wi is an unbiased
measure of one biomarker (i.e., true X plus an error), but Mi is a biased measure of the same
biomarker such that Mi is a linear function of Xi. The third application is common since
many research assays use a different technology (e.g., mass spectrometry) from that used
for a clinical assay (e.g., ELISA).

We first study the effect of bias when using the observed error-prone biomarker data
Wi (i = 1, . . . , n) on diagnostic performance. Let µx,0 and µx,1 denote E(X|Y = 0) and
E(X|Y = 1), respectively. By convention, we assume larger values of a biomarker are
associated with disease, that is, µx,1 ≥ µx,0. For a potential cutoff point c of the continuous
biomarker, an individual is classified as diseased if Xi ≥ c or classified as non-diseased
if Xi < c. Sensitivity of biomarker X is the true positive rate, and specificity is the true
negative rate. When biomarkers are measured with errors, the cutoff point c will likely be
different from the cutoff point when the true X is available. In this paper, for simplicity, we
assume a fixed cutoff point c that has been determined in advance. Assume there are n0
controls and n1 cases (∑n

i=1 Yi = n1). Let X(0),i, i = 1, . . . , n0 be the ith X biomarker in the
controls (Y = 0), and X(1),i, i = 1, . . . , n1 be the ith X biomarker in the cases (Y = 1), U(0),i
and U(1),i be the measurement errors in both groups, respectively. Bamber showed that the
AUC of X is known to be the same as pr(X(1) > X(0)) [9]; hence it is a general measure of
how well the biomarker distinguishes between cases and controls. Let Ax denote the AUC
when X is the true biomarker, σ2

x0
and σ2

x1
be the variances of X among controls and cases,

respectively, σ2
u,0 and σ2

u,1 be the variances of U among controls and cases, respectively.
We assume that X and U are independent, which is reasonable in general applications. If
σ2

x,0 = σ2
x,1 = σ2

x , σ2
u,0 = σ2

u,1 = σ2
u , then λ2 ≡ σ2

u/σ2
x is the intra versus inter-individual

variance ratio which provides a standardized measure of the size of measurement error.
Under this situation, if X is normally distributed among the controls and among the cases,
then the AUC based on X and the AUC based on W can be expressed as

Ax = pr(X(1) > X(0)) = Φ
(

µx,1 − µx,0√
2σx

)
,Aw = pr(W(1) > W(0)) = Φ

(
µx,1 − µx,0√
2σx
√

1 + λ2)

)
,
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where Φ(·) is the cumulative distribution function of the standard normal distribution [5].
Based on the calculation given above, Faraggi (2000) showed that the AUC with the true X
can be represented as a function of the AUC with the error-prone W and the intra versus
inter-individual variance ratio

Ax = Φ{Φ−1(Aw)
√

1 + λ2}. (2)

The correction method via (2) provides a simple adjustment for AUC estimation if the
measurement error variance is known. For example, if the AUC estimate of an error-prone
biomarker is 0.75 and if σu = σx, then the AUC from the true assay without measurement
error will be 0.83. If a clinical grade is available and if it has very small measurement error
then the expected AUC will likely be about 0.83; an improvement from the AUC of 0.75 of
the research assay.

There could be situations when the biomarker variances among the controls and cases
are different. When σx,0 may be different from σx,1, and σu,0 may be different from σu,1, the
AUC based on X and the AUC based on W can be expressed as

Ax = Φ

 µx,1 − µx,0√
σ2

x,0 + σ2
x,1

, Aw = Φ

 µx,1 − µx,0√
σ2

x,0 + σ2
x,1

√
1 + λ2∗)

,

where λ2
∗ = (σ2

u,0 + σ2
u,1)/(σ

2
x,0 + σ2

x,1). Based on the calculation given above, Reiser showed
that under this situation, the correction has the same form as (2), but the λ2 should be
replaced with λ2

∗ [10]. The correction for attenuation (CFA) method via (2) can be also
called a de-attenuation method.

Let Sex and Sew denote the sensitivity of X and W, Spx and Spw denote the specificity
of X and W, respectively. If X and U among the cases (Y = 1) are normally distributed,
then the sensitivity for X and the sensitivity for W can be expressed as

Sex = 1−Φ
(

c− µx,1

σx,1

)
, Sew = 1−Φ

 c− µx,1

σx,1

√
1 + (σ2

u,1/σ2
x,1)

.

If X and U among the controls (Y = 0) are normally distributed, then the specificity
for X and the specificity for W can be expressed as

Spx = Φ
(

c− µx,0

σx,0

)
, Spw = Φ

 c− µx,0

σx,0

√
1 + (σ2

u,0/σ2
x,0)

.

Based on the calculation given above, White and Xie showed that approximately

Sex ≈ 1−Φ{Φ−1(1− Sew)
√

1 + λ2
1}, Spx ≈ Φ{Φ−1(Spw)

√
1 + λ2

0}, (3)

in which λ2
1 = σ2

u,1/σ2
x,1, and λ2

0 = σ2
u,0/σ2

x,0 [6]. The approximation in (3) is equal if the
sample size increases to infinity. Hence, under the normality assumption given above,
sensitivity and specificity of a biomarker will be attenuated if the biomarker measurement
is measured with errors. Approximation (3) provides CFA estimation for sensitivity and
specification that may work well for symmetric biomarker data.

We will investigate this in a more general measurement error model (1) that will
include the situation with two different test measures of the same biomarker, which will
address the issue of how much improvement clinical assays may obtain over research
assays. Model (1) will also include the situation when test measure W is unbiased with
an error, while test measure M is biased but linearly associated with the true biomarker.
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Hence, further developments of the methods will be needed to address practical problems
that we described in the introduction.

3. Correction for Attenuation with Two Biomarker Measures

In this section, we will apply the existing CFA methods for the situation when two
assay measures of a biomarker are available. For example, when there are two research
grade assays for the same biomarker, we develop a CFA method to make use of the two
different research assays to achieve the best AUC estimation. The composite CFA estimator
can correct for the bias of a naive estimator which does not take into account measurement
error in the estimation of sensitivity, specificity, and AUC. We assume that the available
data are based on the measurement error model (1). First, we consider the situation when
the two test measures W and M are unbiased for the same biomarker (but with random
errors), and they satisfy a special case of (1) such that

Wi = Xi + Ui, E(Ui|Xi) = 0,

Mi = Xi + Vi, E(Vi|Xi) = 0, (4)

in which σu may be different from σv. A special case of model (4) is the design with
biomarker replicates, in which σu = σv. Under this design with replicates, estimations
of σu and σx can be obtained similarly to the standard calculation of within and between
individual variations [11,12]. An important application of (4) is when Wi is the clinical
grade assay from individual i, and Mi is a corresponding research grade assay for the same
biomarker of interest, and under this situation, σu in general would be smaller than σv.
Estimation of the parameters associated with (4) can be obtained from the following result:

Proposition 1. In model (4), let X be a random variable with mean µx < ∞ and variance σ2
x < ∞,

U be a random error with mean 0 and variance σ2
u < ∞, V be a random error with mean 0 and

variance σ2
v < ∞. Assume that X, U and V are mutually independent. Then

n−1
n

∑
i=1

(Wi + Mi)/2→ µx, n−1
n

∑
i=1

Wi Mi → σ2
x + µ2

x,

n−1
n

∑
i=1

(Wi − µx)
2 → σ2

x + σ2
u , n−1

n

∑
i=1

(Mi − µx)
2 → σ2

x + σ2
v ,

where→ denotes convergence in probability.

Proposition 1 can be shown by first noting that E{(W + M)/2} = µx given that
E(U) = 0 and E(V) = 0. Because X, U and V are mutually independent, E(WM) = σ2

x +µ2
x.

Similarly, by direct calculation, var(W) = σ2
x + σ2

u , and var(M) = σ2
x + σ2

v . Hence, by the
law of large numbers, Proposition 1 has been shown. The calculations given above in
Proposition 1 are based on the assumption that the measurement error variances for the
controls (Y = 0) and for the cases (Y = 1) are the same. If σu,0 is different from σu,1, then the
calculations above for the variance components can be obtained within the control group
and case group, respectively. With the correction method (2), the corrected AUC using
W can be obtained, and the corrected AUC using M can be obtained as well. Likewise,
sensitivity and specificity estimations can be obtained by the correction method (3).

If Wi is a clinical grade assay from individual i and Mi is a corresponding research
grade assay for the same biomarker of interest, then in practice Wi will be the biomarker
assay to be used for the diagnosis of the specific disease outcome. If in case the measurement
error variance for W is not too small (compared with that for M, or vice versa), then it
will be more efficient to use the best combination of M and W. That is, in addition to
adjusting for measurement error using biomarker measures W and M, respectively, we
are interested in the best combination of them. We consider a linear combination of W
and M, γW + (1− γ)M where γ is between 0 and 1. Under this situation, we aim for an
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optimal γ such that the variance of γW + (1− γ)M is minimized. Under (4), this is the
same as minimizing the variance of γU + (1− γ)V. By simple calculation, the best γ is
σ2

v /(σ2
u + σ2

v ).
Now, we investigate the situation when W is unbiased for X (although with a ran-

dom error), but M is linearly associated with X, which is the biomarker of interest to
distinguish disease outcomes (Y for disease indicator). For a more general model (1),
Mi = α0 + α1Xi + Vi, the parameters in the model, cannot be identified based on the mo-
ments of W and M only. Under this situation, the parameters in (1) can be identified
by using the moments of Y, W, M. However, with the more general model for M, it is
necessary to assume that the measurement error variances are the same for the controls and
cases. That is σ2

u,0 = σ2
u,1 and σ2

v,0 = σ2
v,1. Then γ0 and γ1 can be estimated by noting that

α1 = cov(Y, M)/cov(Y, W), γ0 = E(M− α1W). Then, we may rewrite Mi = α0 + α1Xi +Vi
as M∗i = Xi + V∗i , where M∗i = {(Mi − α0)/α1} and V∗i = Vi/α1. As a result, M∗i is also
unbiased for Xi, but with error V∗i . Therefore, Wi and M∗i will follow the special case (4) dis-
cussed above. The intra versus inter-individual variance ratio λ2 can be calculated within
the controls (Y = 0) and the cases (Y = 1), respectively. The correction for attenuation (2)
for AUC, and (3) for sensitivity and specificity can be obtained as well.

In general, when research grade assays and clinical assays are available for either
the study cohort or a subset, model (4) could be reasonable for the analysis to adjust for
measurement errors in both types of measures if they have the same measurement scale.
However, if two types of different assays are from different labs, then they may have
different measurement scales. Under this situation, model (1) will be more appropriate
when the two biomarker assays are linearly associated. There is no need to assume a
validation set for the biomarker of interest. Of course, if there is a validation subset available
for the biomarker of interest, then the methods given above can be further modified. To be
focused, we will not investigate the situation with a validation subset in this paper.

4. Skew-Normal Biomarker Correction Estimator

The correction for attenuation estimator described in the last section is based on
the assumption that the true biomarker data and measurement errors are both normally
distributed. From our simulations, they may still work with limited bias for symmetric data
even though there is a small violation of normality. However, the bias could be moderate
or large if the data are very skewed. From our data example, biomarkers are often skewed.
Hence, it is important to correct biomarker measurement errors without the normality
assumptions. Methods to estimate the density function of the unobserved biomarker
based on error-prone measures can be obtained by via deconvolution [13]. However, this
approach is generally technical and very challenging in data applications. Therefore, a more
practical approach is to consider a class of distributions that contain both symmetric and
skewed distributions.

Our approach to correct for estimation of sensitivity, specificity, and AUC due to mea-
surement error is to consider a flexible class of distributions for the unobserved biomarkers.
Although there are various classes of distributions for this purpose, we propose to con-
struct bias correction based on a class of skew-normal distributions. The skew-normal (SN)
distribution was introduced by Azzalini, which includes normal distributions [14]. One
main difference between the SN distribution and the normal distribution is that the SN
contains a skewness parameter. Azzalini defined the SN distribution for a random variable
Z that has the following density

g(z, α) = 2φ(z)Φ(αz), (−∞ < z < ∞),

where λ ∈ R is the skewness parameter, φ(·) and Φ denotes the standard normal den-
sity and distribution functions, respectively. Azzalini derived the following moment
generating function:

MZ(t) = 2et2/2Φ(
αt√

1 + α2
).
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By using the moment-generating function, we can obtain E(Z) =
√

2/πδ, where
δ = α/

√
1 + α2, var(Z) = 1− (2/π)δ2, andtheskewness {(4−π)/2}{δ

√
2/π}3/{var(Z)}3/2.

Let X = ξ + ωZ, which is an SN distribution with parameters (ξ, ω, α). The density of
X can be written as

f (x, ξ, ω, α) =
2
ω

φ(
x− ξ

ω
)Φ(α

x− ξ

ω
),

where ξ and ω are the location and scale parameters, respectively, and α is the skewness
parameter. When α = 0, the specific SN distribution is a normal distribution. A logarithmic
transformation for skewed data may reduce the skewness, but the transformed data may
still be skewed. Hence, the skew-normal distribution will be more flexible in fitting
the data.

If X values were available, then ξ, ω, and α could be estimated via the maximum
likelihood estimator or the method of moments. There could be more than one root for
the parameter estimation, especially when α is close to 0, i.e., normal densityHowever,
from our numerical experience, different roots by the method of moments will still lead to
the same SN distribution. Hence, when X is observed, estimation of sensitivity, specificity,
and AUC will be valid if X is from an SN distribution. Let γ3 be the third central moment
of X. We note that µx = ξ + ωδ

√
2/π, where δ = α/

√
1 + α2, σ2

x = ω2{1− 2(δ2/π)},
and γ3 = {(4− π)/2}{δ

√
2/π}3/{1− 2(δ2/π)}3/2. Because biomarker measurements

are associated with errors, additional calculations will be needed to identify the parameters
involved in the observed data. If X is SN and U is from a symmetric distribution, then
we note that E(W) = E(X), var(W) = σ2

x + σ2
u , and E(W − µx)3 = E(X − µx)3. Under

this situation, the parameters of the SN distribution can be identified as long as σ2
u can be

consistently estimated. The sensitivity of X at a point c can be estimated by calculating
pr(X ≥ c|Y = 1), in which σu may be different from σv.

A special case of model (4) is the design with biomarker replicates in which σu = σv.
Under this design with replicates, estimations of σu and σx can be obtained similarly to the
standard calculation of within and between individual variations [10, 11]. An important
application of (4) is when Wi is the clinical grade assay from individual i and Mi is a
corresponding research grade assay for the same biomarker of interest, and under this
situation, σu in general would be smaller than σv. The estimation of σ2

u,1 can follow the
procedure that we discussed in Section 3, which would need to use both the W and M
data. Then, we will estimate the parameters of the SN distribution of X(1) using data
W(1),1, . . . , W(1),n1

among the W data from the n1 cases. Based on the first three moments
of W(1) given above, the (ξ, ω, α) parameters for X(1) can be estimated by the following
estimating equations:

n1

∑
i=1
{W(1),i − ξ −ωδ

√
2/π} = 0;

n1

∑
i=1
{W(1),i − ξ −ωδ

√
2/π}2 −ω2{1− 2(δ2/π)} − σ2

u,1 = 0;

n1

∑
i=1

{W(1),i − ξ −ωδ
√

2/π}3

{ω2{1− 2(δ2/π)}}3/2 −
{(4− π)/2}{δ

√
2/π}3

{1− 2(δ2/π)}3/2 = 0.

Hence, using the estimated (ξ, ω, α) from the calculations given above, the cumulative
distribution of the SN distribution at point c, pr(X ≤ c|Y = 1), is obtained. Then, the
sensitivity of X at c, pr(X ≥ c|Y = 1) is obtained by using W data from the cases. Similarly,
the specificity of X at a point c can be estimated by calculating pr(X ≤ c|Y = 0). We can
apply the estimating procedure for (ξ, ω, α) given above to estimate the SN distribution of
X(0) using data W(0),1, . . . , W(0),n0

among the W data from the n0 cases. Then, the specificity
of X at c, pr(X ≤ c|Y = 0) is obtained by using W data from the contrin in which σu may
be different from σv. A special case of model (4) is the design with biomarker replicates in
which σu = σv. Under this design with replicates, estimation of σu and σx can be obtained
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similarly to the standard calculation of within and between individual variations [10, 11].
An important application of (4) is when Wi is the clinical grade assay from individual i and
Mi is a corresponding research grade assay for the same biomarker of interest, and under
this situation, σu in general would be smaller than σv.ols.

Thereafter, as described above, the sensitivity and specificity can be estimated based
on the SN distributions by calculating the conditional distributions for cases and controls,
respectively. The ROC curve can then be obtained by calculating the sensitivity and
specificity values at a sequence of cutoff points (c). After the ROC curve is obtained,
the AUC can then be obtained. The method described above is the SN biomarker correction
estimator, which is new in the literature.

5. Simulation Study

We conducted a simulation study to examine finite sample performance of our pro-
posed skew-normal biomarker correction estimator, and the correction for attenuation
methods when diagnostic biomarkers may be measured with errors. In Table 1, we
investigate the situation when the true biomarkers X for controls and cases are either
from a normal, skew-normal, or log normal distribution, respectively. We first generated
X(0) from a normal distribution with mean 3 and standard deviation 1 for the controls.
Then, we generated the biomarkers for the cases from the same distribution, except that
E(X|Y = 1) = E(X|Y = 0) + ln(3.2). The sample size was n = 300, and the disease rate
was 50%. We also generated skew-normal biomarkers based on the same process. When
we generated skew-normal biomarkers for the controls, we first generated the data with
the parameters being ξ = 0, ω = 1, and α = 6 and then we standardized the variables so
that the variables had mean 3 and standard deviation 1. For the situation with log normal
variables, the distribution of the logarithm of the controls had a normal distribution with
mean 1 and standard deviation 0.3, and the distribution of the logarithm of the cases had a
normal distribution with mean 1.5 and standard deviation 0.3. The true AUC was about
0.795 if the true X measures were normal biomarkers, and was about 0.806 if they were
skew-normal biomarkers, and was about 0.811 if they were log normal biomarkers. To
evaluate estimation of the sensitivity and specificity, the cutoff point of the biomarker was
chosen as the point on the ROC curve which has the minimum distance from the left upper
corner of the unit square (which was the point that a perfect test would pass through) [3].
The sensitivity and specificity values are given in the tables. We generated error-prone
measures W and M based on model (4), Wi = Xi + Ui and Mi = Xi + Vi, in which U and
V are normal with σu = 1 and σv = 1. Under this model, the observed measures W and M
are like research grade biomarker replicates for the unobserved X. We calculated a naive
estimator based on M measures only (Naive–M), a CFA estimator based on W measures
(CFA–W), a CFA estimator based on M measures (CFA–M), a CFA estimator based on both
W and M measures (CFA–WM), and the proposed SN correction estimator based on both
W and M measures (SN–WM). In the tables, “bias” was calculated by taking the average of
the biases of AUC estimates from the 500 simulation replicates; “SD” denoted the sample
standard deviation of the estimates; “ASE” denoted the average of the estimated standard
errors of the estimates. We also calculated the 95% confidence interval coverage probabili-
ties (CP). The standard errors of the estimates were obtained from bootstrap. When the
biomarkers were from a normal distribution, all the three CFA methods were unbiased for
AUC, sensitivity, and specificity estimation, and the CFA method based on the best linear
combination of W and M was the most efficient among the three correction estimators. The
SN correction estimator had slightly bigger biases than the CFA-WM estimates when the
biomarkers were from a normal distribution, but it was still valid since the biases were
relatively less than the SE. When the biomarkers were from a skew-normal distribution,
some of the three CFA estimates may have been biased. When the biomarkers were from a
SN distribution, the SN correction estimators were better than the CFA estimators in terms
of bias and efficiency in most cases. The bias of the SN correction estimate for sensitivity
was not smaller than the CFA estimates; this was due to finite sample performance, since
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the bias disappeared when we increased the sample size. When the biomarkers were
from a log normal distribution, the CFA estimators and SN correction estimator had small
to moderate biases. The SN correction estimator was better than the CFA estimator for
AUC estimation.

We made the choice of the parameters µx = 3 and σx = 1 in Table 1 in the controls,
since assay data are positive in general. The result will not change if we replace µx = 3
with another value. However, the result will be different if we change the variance of X
or the variance of the measurement errors. In the Appendix A, we consider the situation
similar to Table 1 but with σu = σv = 0.71 (Table A1). The biases in Table A1 were smaller
than those from Table 1 in general. In Table A2, we consider the situation similar to Table 1
but with σu = σv = 1.22. The biases in Table A2 were typically larger than those from
Table 1 due to larger measurement errors.

In Table 2, we also investigated a scenario similar to Table 1, but the measurement
error variances for W and M are σu = 0.2 and σv = 1. The scenario in this table can be
considered as the case when Wi was a clinical grade measure and Mi was a research grade
measure, if they had the same measurement scale. The result from Table 2 was slightly
different from that from Table 1. When the biomarkers were from a normal distribution,
the three CFA estimators and the SN correction estimator were unbiased. There was a
very minor difference between the CFA estimator using W data and the CFA estimator
using the best linear combination of W and M. This was reasonable since if W had a much
smaller measurement error variance than that of M, then the additional contribution of M
would be very limited. Hence, when clinical grade biomarker measures are available and
if they have very minimal measurement errors, then research grade measures in general
would not provide additional efficiency gain in AUC, sensitivity, or specificity estimation.
When the true biomarkers were from a skew-normal distribution, the CFA–M estimator
was biased due to skewed biomarkers. The biases from the CFA estimator using W or using
both W and M were small. The reason was likely because the measurement error in W
was very small (σu is much smaller than σx). Similar to Table 1, the SN correction estimator
had slightly bigger biases than the CFA-WM estimates when the biomarkers were from a
normal distribution, but it was still valid since the biases were relatively less than the SE.
With log normal biomarkers, the CFA estimators using W or the best linear combination
of W and M and SN correction estimator had small biases because the error from W was
very small. The SN correction estimator was better than the CFA estimator using M only
for AUC estimation under this scenario.

In Table 3, same as Table 1, we generated the biomarkers for the cases and controls
with the same distribution based on E(X|Y = 1) = E(X|Y = 0) + ln(3.2). The sample
size and disease rate are the same as those in Table 1. We investigated the situation
when W is unbiased for X (although with a random error) but M is linearly associated
with X such that Wi = Xi + Ui and Mi = 0.2 + 0.8Xi + Vi, in which σu = 1 and σv = 1.
The AUC values in this table are the same as those in Table 1. Similar to Tables 1 and 2,
the naive estimates were biased while the three CFA estimators were unbiased when
the biomarkers were from a normal distribution. For the CFA, de-attenuation methods
were unbiased when X was normal, but could be biased when X was skewed. The main
findings from Table 3 were mostly similar to those from Tables 1 and 2. The proposed
SN correction estimator, in general, performed better than the CFA estimators when the
underlying biomarkers were from a skew-normal distribution. When the biomarkers
were from a log normal distribution, the CFA estimators and SN correction estimator
had small to moderate biases.
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Table 1. Simulation study when σu = σv = 1 (replicates).

Naive–M CFA–W CFA–M CFA–WM SN–WM

Normal biomarkers
AUC Bias −0.075 −0.001 0.000 −0.000 0.003

(0.795) SD 0.029 0.034 0.036 0.030 0.030
ASE 0.029 0.037 0.037 0.033 0.032
CP 0.246 0.970 0.936 0.952 0.952

Sensitivity Bias −0.058 0.000 0.002 0.001 −0.010
(0.719) SD 0.040 0.049 0.053 0.043 0.039

ASE 0.038 0.053 0.052 0.048 0.045
CP 0.696 0.952 0.940 0.968 0.970

Specificity Bias −0.062 −0.001 −0.000 0.000 0.011
(0.720) SD 0.038 0.049 0.052 0.047 0.035

ASE 0.038 0.053 0.052 0.048 0.036
CP 0.652 0.964 0.948 0.954 0.932

Skew-normal biomarkers
AUC Bias −0.083 −0.007 −0.006 −0.005 0.001

(0.806) SD 0.028 0.037 0.035 0.032 0.032
ASE 0.029 0.037 0.036 0.033 0.032
CP 0.136 0.938 0.956 0.946 0.938

Sensitivity Bias −0.066 0.007 0.009 0.008 0.011
(0.771) SD 0.037 0.048 0.047 0.041 0.045

ASE 0.037 0.046 0.045 0.043 0.044
CP 0.586 0.918 0.916 0.948 0.932

Specificity Bias −0.065 −0.019 −0.019 −0.011 −0.007
(0.775) SD 0.035 0.055 0.051 0.046 0.037

ASE 0.039 0.056 0.056 0.050 0.039
CP 0.642 0.936 0.956 0.950 0.954

Log normal biomarkers
AUC Bias −0.080 −0.014 −0.013 −0.010 0.004

(0.856) SD 0.026 0.028 0.029 0.025 0.026
ASE 0.027 0.030 0.030 0.027 0.028
CP 0.112 0.954 0.936 0.952 0.942

Sensitivity Bias −0.048 −0.003 −0.003 −0.003 −0.011
(0.772) SD 0.037 0.040 0.041 0.038 0.039

ASE 0.036 0.042 0.042 0.040 0.039
CP 0.782 0.960 0.942 0.954 0.950

Specificity Bias −0.096 −0.012 −0.012 −0.007 −0.011
(0.775) SD 0.038 0.053 0.056 0.049 0.036

ASE 0.038 0.056 0.055 0.050 0.039
CP 0.292 0.966 0.922 0.940 0.946

NOTE: Naive–M is the AUC estimator using M measures directly, CFA–W is a CFA AUC estimator based on W
measures, CFA–M is a CFA AUC estimator based on M measures, CFA–WM is a CFA AUC estimator based on
both W and M measures, and SN–WM is the SN correction estimator assuming X is skew-normal using both W
and M measures.

Table 2. Simulation study when σu = 0.2 (clinical assay), σv = 1 (research assay).

Naive–M CFA–W CFA–M CFA–WM SN–WM

Normal biomarkers
AUC Bias −0.075 0.002 0.000 0.002 0.002

(0.795) SD 0.029 0.025 0.035 0.025 0.025
ASE 0.029 0.027 0.035 0.027 0.026
CP 0.246 0.954 0.924 0.950 0.956
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Table 2. Cont.

Naive–M CFA–W CFA–M CFA–WM SN–WM

Sensitivity Bias −0.058 0.005 0.001 0.005 −0.001
(0.719) SD 0.040 0.036 0.052 0.036 0.032

ASE 0.038 0.038 0.050 0.039 0.034
CP 0.696 0.952 0.932 0.956 0.956

Specificity Bias −0.062 0.000 −0.002 0.000 0.007
(0.720) SD 0.038 0.036 0.051 0.037 0.030

ASE 0.038 0.038 0.050 0.039 0.030
CP 0.652 0.960 0.942 0.960 0.940

Skew-normal biomarkers
AUC Bias −0.083 0.003 −0.007 0.003 −0.002

(0.806) SD 0.028 0.026 0.034 0.026 0.027
ASE 0.029 0.026 0.035 0.026 0.028
CP 0.136 0.922 0.952 0.922 0.942

Sensitivity Bias −0.066 0.005 0.008 0.007 0.011
(0.781) SD 0.037 0.035 0.045 0.036 0.034

ASE 0.037 0.035 0.043 0.036 0.033
CP 0.586 0.942 0.910 0.940 0.914

Specificity Bias −0.065 0.002 −0.019 0.002 −0.001
(0.679) SD 0.035 0.039 0.049 0.038 0.031

ASE 0.039 0.039 0.055 0.040 0.032
CP 0.642 0.946 0.960 0.950 0.952

Log normal biomarkers
AUC Bias −0.080 0.001 −0.013 0.001 −0.003

(0.856) SD 0.026 0.021 0.028 0.021 0.022
ASE 0.027 0.022 0.029 0.022 0.024
CP 0.112 0.954 0.934 0.952 0.960

Sensitivity Bias −0.048 0.003 −0.003 0.004 −0.009
(0.772) SD 0.037 0.033 0.041 0.034 0.035

ASE 0.036 0.035 0.041 0.036 0.033
CP 0.782 0.950 0.940 0.950 0.914

Specificity Bias −0.096 0.000 −0.014 −0.001 −0.010
(0.775) SD 0.038 0.035 0.053 0.035 0.029

ASE 0.038 0.037 0.052 0.037 0.030
CP 0.292 0.954 0.920 0.948 0.944

NOTE: See the footnote of Table 1 for notation. The sample size n = 300. The results were from
500 simulation replicates.

Table 3. Simulation when Wi = Xi + U1, Mi = 0.2 + 0.8Xi + Vi, in which σu = 1 and σv = 1.

Naive–M CFA–W CFA–M CFA–WM B

Normal biomarkers
AUC Bias −0.099 −0.001 −0.001 −0.001 0.003

(0.795) SD 0.030 0.032 0.033 0.032 0.032
ASE 0.030 0.035 0.035 0.035 0.034
CP 0.086 0.956 0.944 0.952 0.938

Sensitivity Bias −0.075 0.000 0.003 0.001 −0.011
(0.780) SD 0.038 0.049 0.053 0.048 0.044

ASE 0.039 0.053 0.056 0.052 0.049
CP 0.500 0.956 0.942 0.958 0.954

Specificity Bias −0.080 −0.001 −0.002 −0.003 0.011
(0.720) SD 0.038 0.049 0.053 0.049 0.039

ASE 0.039 0.053 0.056 0.053 0.040
CP 0.482 0.956 0.946 0.960 0.946
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Table 3. Cont.

Naive–M CFA–W CFA–M CFA–WM B

Skew-normal biomarkers
AUC Bias −0.107 −0.007 −0.008 −0.006 −0.001

(0.806) SD 0.029 0.035 0.034 0.034 0.034
ASE 0.030 0.035 0.035 0.035 0.034
CP 0.036 0.946 0.950 0.946 0.944

Sensitivity Bias −0.088 0.007 0.009 0.008 0.013
(0.780) SD 0.041 0.048 0.050 0.046 0.052

ASE 0.037 0.047 0.051 0.048 0.050
CP 0.368 0.922 0.932 0.950 0.918

Specificity Bias −0.082 −0.020 −0.025 0.016 −0.010
(0.720) SD 0.038 0.054 0.054 0.050 0.043

ASE 0.040 0.056 0.061 0.056 0.044
CP 0.442 0.934 0.948 0.956 0.942

Log normal biomarkers
AUC Bias −0.106 −0.014 −0.015 −0.012 −0.005

(0.856) SD 0.028 0.026 0.027 0.027 0.028
ASE 0.028 0.029 0.029 0.029 0.030
CP 0.016 0.942 0.936 0.946 0.940

Sensitivity Bias −0.063 −0.003 −0.002 −0.002 −0.010
(0.772) SD 0.038 0.041 0.041 0.041 0.041

ASE 0.037 0.041 0.044 0.042 0.041
CP 0.622 0.958 0.950 0.950 0.946

Specificity Bias −0.122 −0.012 −0.019 −0.007 −0.013
(0.775) SD 0.036 0.053 0.057 0.053 0.039

ASE 0.039 0.057 0.061 0.056 0.043
CP 0.076 0.954 0.942 0.946 0.954

NOTE: See the footnote of Table 1 for notation. The sample size n = 300. The results were from
500 simulation replicates.

6. Analysis of PDAC Data

The PDAC study has been briefly described in the introduction section. The primary
aim is to develop biomarkers for the detection of early-stage PDAC. In this section, our
purpose is to demonstrate our methods to estimate diagnostic efficacy of CA19-9 when the
assays are measured with errors. In our analysis, CA19-9 research assays from a lab and
clinical grade assays are available. Clinical grade assays, in general, still may be measured
with errors, even though the magnitude of errors is typically smaller than that from research
grade assays. There are 68 early-stage PDAC cases and 67 controls in the analysis.

From the top portion of Figure 1, we observe the association between measures from
a clinical assay and a research assay. We note that the distributions of the two assay
measures are skewed and there are some very large values. The association between the
clinical and research assays is approximately linear after taking a log transform. The lower
portion of Figure 1 shows density estimation of the clinical assays (logarithm transform
of (CA19-9 + 1) then divided by 10), with two different bandwidths for kernel density
estimation. The two bandwidths in the controls are 2σw,0n−1/3

0 and 4σw,0n−1/3
0 , in which

σw,0 is the standard deviation of W among the controls. From the simulation result of Wang
and Hsu, both bandwidths work well, but the first selection is slightly better [15]. The
two bandwidths in the cases are chosen similarly to the controls. The density estimation is
for the purpose to demonstrate that the density of logarithm transform of CA19-9 (plus 1,
then divided by 10) is still skewed. The density estimation is not for the unobserved true
CA19-9, which would involve deconvolution in nonparametric estimation. Deconvolution
for density estimation is rather technical, which is not the focus of this research.
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The clinical assays and research assays are from different techniques, and they have
different measurement scales. Hence, the models in the analysis are Wi = Xi + Ui and
Mi = α0 + α1Xi + Vi. The analysis results are given in Table 4. We present the naive
estimates using the research assay, the CFA estimates and SN estimates using both types
of assays. For sensitivity and specificity estimation, the cutoff point of the biomarker is
first chosen as the point on the ROC curve of the clinical assay which has the minimum
distance from the left upper corner of the unit square. We also consider the cutoff point of
the biomarker with the best specificity, such that the sensitivity using the clinical assay is at
least 75%. Because the distribution of CA19–9 is likely skewed (Figure 1), it is possible that
the three CFA estimators may be biased. The SN correction estimator may be more suitable
for this analysis. From these estimates, based on the CFA and SN estimates, the AUC of the
true unobserved CA19–9 is at least 0.8. In addition, based on the two cutoff points chosen,
the sensitivity and specificity estimates are close to 0.75. Nevertheless, the data analysis
based on the small sample size is only for demonstration; future research with a larger
sample size is warranted.

Table 4. Pancreatic ductal adenocarcinoma Data Analysis.

Naive–M CFA–W CFA–M CFA–WM SN–WM

cutoff point: minimum distance from the left upper corner

AUC 0.749 0.849 0.801 0.822 0.812
SE 0.037 0.039 0.045 0.040 0.036

Sensitivity 0.735 0.789 0.770 0.723 0.751
SE 0.054 0.065 0.061 0.058 0.042

Specificity 0.537 0.826 0.553 0.811 0.734
SE 0.063 0.055 0.088 0.063 0.045

cutoff point: sensitivity using W is at least 75%

AUC 0.749 0.838 0.815 0.815 0.809
SE 0.042 0.038 0.042 0.042 0.035

Sensitivity 0.735 0.776 0.716 0.690 0.733
SE 0.048 0.047 0.055 0.059 0.043

Specificity 0.537 0.821 0.600 0.821 0.756
SE 0.058 0.049 0.096 0.048 0.048

NOTE: We assume that W = X + U and M = α0 + α1X + V, where W is a clinical assay measure, M is a research
assay measure. Naive–M is the AUC estimator using M measures directly, CFA–W is a corrected AUC estimator
based on W measures, CFA–M is a corrected AUC estimator based on M measures, CFA–WM is a corrected AUC
estimator based on both W and M measures, and SN–WM is the method of moments estimator, assuming X is
skew-normal based on both W and M measures.

7. Discussion

In this paper, we mainly address the issue of adjusting for measurement error in the
biomarkers in the estimation of diagnostic accuracy. Estimation of sensitivity and specificity
with measurement error is to address the issue of estimating conditional probabilities for a
cutoff point. The estimation of AUC with measurement error means addressing the issue
of calculating pr(X1 > X0) when X is not observed. Nonparametric estimation for this
problem would involve the challenging research problem of deconvolution in the density
estimation with measurement error [13]. Hence, our proposed SN correction estimator
provides a flexible approach to address this issue. Attwood et al. proposed using the
skew exponential power (SEP) distribution to model the ROC curve and related metrics in
the presence of non-normal data [16]. The SN distribution is a particular case of the SEP
distribution. It will be a future research aim to extend the SEP distribution for diagnostic
accuracy when biomarkers are measured with errors.
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From this research, we note that it is very challenging to develop nonparametric
methods for AUC, sensitivity, or specificity when biomarkers are measured with errors.
The proposed SN distribution for biomarkers to adjust for measurement error is from the
view point of a class of skewed distributions. For example, SN distributions will be more
flexible than an exponential distribution or a normal distribution. If the true biomarker
distribution is zero-inflated, then the bias in estimating AUC, sensitivity, and specificity
will likely depend on the probability mass at 0. It will be interesting in future research to
develop a more flexible approach to correct for measurement error when the true biomarker
distribution may be skewed or zero-inflated.

Another general approximation approach that could be applied to this problem is the
simulation extrapolation (SIMEX) approach. Cook and Stefanski studied this approach
for covariate measurement error problems [17]. An advantage of SIMEX is that it has the
advantage of being easy to implement. The use of SIMEX for AUC may have limited
bias [18]. However, bias from SIMEX for estimation of sensitivity and specificity could be
large. It remains a research problem to develop a valid SIMEX estimator for this problem,
especially when the biomarkers are skewed in the distribution.

8. Conclusions

We have developed a flexible modeling approach for measurement error in the
biomarkers in the estimation of diagnostic accuracy. One limitation of our proposed
SN correction estimator is that it is not consistent for the class of all distributions. Never-
theless, with the consideration that biomarkers are often skewed in the distribution, our
proposed estimator is expected to be valid in many general applications.
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Appendix A. Additional Simulations

We consider the situation similar to Table 1 but with σu = σv = 0.71 (Table A1).
Because σu and σv are smaller than those in Table 1, the biases in Table A1 were smaller
than those from Table 1 in general. In Table A2, we consider the situation similar to Table 1
but with σu = σv = 1.22. The biases in Table A2 were larger than those from Table 1 in
general. In summary, the results of Tables A1 and A2 were similar to the findings from
Table 1 except the magnitude of biases were slightly different because of the differences in
measurement error variances.

Table A1. Simulation study when σu = σv = 0.71 (replicates).

Naive–M CFA–W CFA–M CFA–WM SN–WM

Normal biomarkers
AUC Bias −0.046 0.000 0.000 −0.001 0.002

(0.795) SD 0.027 0.029 0.030 0.027 0.027
ASE 0.028 0.032 0.031 0.029 0.029
CP 0.632 0.962 0.932 0.960 0.948
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Table A1. Cont.

Naive–M CFA–W CFA–M CFA–WM SN–WM

Sensitivity Bias −0.036 0.000 0.001 0.001 −0.006
(0.719) SD 0.039 0.043 0.046 0.040 0.034

ASE 0.038 0.045 0.045 0.042 0.038
CP 0.858 0.958 0.940 0.952 0.970

Specificity Bias −0.039 −0.001 −0.001 −0.001 0.008
(0.720) SD 0.037 0.042 0.044 0.041 0.032

ASE 0.038 0.045 0.045 0.043 0.032
CP 0.840 0.970 0.946 0.958 0.938

Skew-normal biomarkers
AUC Bias −0.051 −0.005 −0.004 −0.002 0.000

(0.806) SD 0.027 0.032 0.030 0.029 0.028
ASE 0.028 0.031 0.031 0.029 0.028
CP 0.552 0.936 0.956 0.948 0.940

Sensitivity Bias −0.037 0.006 0.009 0.007 0.009
(0.771) SD 0.036 0.040 0.041 0.037 0.038

ASE 0.035 0.040 0.039 0.039 0.037
CP 0.828 0.936 0.918 0.944 0.924

Specificity Bias −0.040 −0.009 −0.009 −0.004 −0.005
(0.775) SD 0.035 0.047 0.044 0.040 0.034

ASE 0.039 0.048 0.048 0.045 0.035
CP 0.828 0.936 0.918 0.944 0.952

Log normal biomarkers
AUC Bias −0.049 −0.010 −0.010 −0.007 −0.004

(0.856) SD 0.024 0.024 0.024 0.022 0.023
ASE 0.025 0.026 0.026 0.024 0.025
CP 0.490 0.962 0.942 0.954 0.948

Sensitivity Bias −0.027 −0.002 −0.001 −0.001 −0.012
(0.772) SD 0.036 0.038 0.037 0.034 0.036

ASE 0.035 0.038 0.038 0.038 0.035
CP 0.888 0.950 0.950 0.962 0.930

Specificity Bias −0.062 −0.008 −0.007 −0.004 −0.012
(0.775) SD 0.036 0.042 0.046 0.042 0.032

ASE 0.036 0.046 0.045 0.042 0.033
CP 0.622 0.968 0.926 0.940 0.946

NOTE: See the footnote of Table 1 for notation. The sample size n = 300. The results were from
500 simulation replicates.

Table A2. Simulation study when σu = σv = 1.22 (replicates).

Naive–M CFA–W CFA–M CFA–WM SN–WM

Normal biomarkers
AUC Bias −0.060 −0.001 0.000 0.000 0.005

(0.795) SD 0.030 0.039 0.041 0.034 0.034
ASE 0.030 0.042 0.041 0.037 0.036
CP 0.092 0.964 0.934 0.956 0.948

Sensitivity Bias −0.074 0.000 0.002 0.000 −0.013
(0.719) SD 0.040 0.057 0.060 0.048 0.045

ASE 0.039 0.060 0.059 0.053 0.052
CP 0.530 0.960 0.928 0.972 0.964
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Table A2. Cont.

Naive–M CFA–W CFA–M CFA–WM SN–WM

Specificity Bias −0.077 0.001 0.000 0.000 0.015
(0.720) SD 0.039 0.055 0.060 0.052 0.039

ASE 0.039 0.060 0.059 0.053 0.040
CP 0.520 0.962 0.934 0.962 0.942

Skew-normal biomarkers
AUC Bias −0.104 −0.008 −0.007 −0.006 0.001

(0.806) SD 0.029 0.042 0.040 0.036 0.035
ASE 0.030 0.042 0.041 0.036 0.035
CP 0.050 0.936 0.948 0.942 0.942

Sensitivity Bias −0.085 0.009 0.012 0.009 0.014
(0.771) SD 0.037 0.054 0.053 0.046 0.053

ASE 0.037 0.053 0.052 0.048 0.052
CP 0.398 0.922 0.926 0.944 0.930

Specificity Bias −0.080 −0.026 −0.024 −0.015 −0.008
(0.775) SD 0.037 0.063 0.059 0.050 0.041

ASE 0.040 0.064 0.064 0.056 0.043
CP 0.462 0.922 0.948 0.948 0.956

Log normal biomarkers
AUC Bias −0.103 −0.016 −0.015 −0.012 −0.004

(0.856) SD 0.027 0.031 0.032 0.028 0.029
ASE 0.028 0.034 0.033 0.030 0.031
CP 0.022 0.950 0.934 0.954 0.944

Sensitivity Bias −0.064 −0.005 −0.004 −0.004 −0.011
(0.772) SD 0.038 0.044 0.045 0.041 0.042

ASE 0.037 0.046 0.045 0.043 0.042
CP 0.628 0.948 0.954 0.952 0.950

Specificity Bias −0.118 −0.016 −0.015 −0.008 −0.011
(0.775) SD 0.040 0.062 0.066 0.056 0.041

ASE 0.038 0.066 0.065 0.057 0.045
CP 0.118 0.950 0.920 0.952 0.952

NOTE: See the footnote of Table 1 for notation. The sample size n = 300. The results were from
500 simulation replicates.
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