
Citation: Jani, M.Y.; Patel, H.A.;

Bhadoriya, A.; Chaudhari, U.; Abbas,

M.; Alqahtani, M.S. Deterioration

Control Decision Support System for

the Retailer during Availability of

Trade Credit and Shortages.

Mathematics 2023, 11, 580.

https://doi.org/10.3390/

math11030580

Academic Editors: Babak Shiri and

Zahra Alijani

Received: 30 November 2022

Revised: 6 January 2023

Accepted: 9 January 2023

Published: 21 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Deterioration Control Decision Support System for the Retailer
during Availability of Trade Credit and Shortages
Mrudul Y. Jani 1 , Heta A. Patel 2, Amrita Bhadoriya 3 , Urmila Chaudhari 4,* , Mohamed Abbas 5,6

and Malak S. Alqahtani 7

1 Department of Applied Sciences, Faculty of Engineering and Technology, Parul University,
Vadodara 391760, Gujarat, India

2 Department of Mathematics, M. G. Science Institute, Gujarat University,
Ahmedabad 380009, Gujarat, India

3 Prestige Institute of Management and Research, Gwalior 474020, Madhya Pradesh, India
4 Government Polytechnic Dahod, Dahod 389151, Gujarat, India
5 Electrical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
6 Computers and Communications Department, College of Engineering, Delta University for Science and

Technology, Gamasa 35712, Egypt
7 Computer Engineering Department, College of Computer Science, King Khalid University,

Abha 61421, Saudi Arabia
* Correspondence: chaudhariurmi04@gmail.com

Abstract: The deterioration rate is a significant aspect of perishable goods. Since perishable items will
always deteriorate, there are effective methods for reducing the rate of deterioration. Furthermore,
in the existing inventory control literature, the deterioration rate is often viewed as an exogenous
component. Keeping this problem in mind, this article develops the perishable inventory control
system from the retailer’s perspective in which: (i) the deterioration rate is a controllable factor and
suggests a new fresh quality technology (FQT) indicator, (ii) demand is determined by the perishable
product’s quality, that is controlled by its rate of deterioration, (iii) the credit duration is predefined,
and (iv) shortages are expected. The key goal is to demonstrate that there is an ideal quantity of
the order that minimizes the retailer’s overall cost in terms of cycle time and deterioration rate.
Finally, theoretical results are validated by solving two numerical illustrations and conducting a
sensitivity analysis of the main factors resulting from the following managerial implications: (i) if
the range of deterioration is between zero and one then the retailer should invest in the preservation
factor to preserve the perishable product and if greater than one the retailer should not invest in
the preservation factor, (ii) credit period significantly reduces the total cost. Hence, this trade credit
strategy is more beneficial to the model.

Keywords: deterioration-dependent demand; fresh quality technology (FQT); management of per-
ishable inventory; shortages; trade credit

MSC: 90B05

1. Introduction

In real-world scenarios, the deterioration of products is a big issue in every business
segment. As perishable goods transit through a supply chain, they deteriorate at different
rates. Farming products such as fruits, vegetables, and meat are examples of perishable
products. Uncontrolled deterioration results in a large amount of spoiling waste. The loss
ratio due to the deterioration of fresh produce is as high as 30% in many countries [1]. In
China, the annual loss of agricultural products amounts to more than USD 43 billion, which
is equivalent to the production output of 0.1 billion hectares of cultivated land (China
Economic Information Daily 2016). Recent advanced technologies such as the freshness
preservation effort (FPE) [2], fresh-keeping effort (FKE) investment strategies, and a fresh
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product supply chain (FSC) system [3] have resulted in the development of emerging
innovations that may be utilized efficiently to assess and control the rate of deterioration [4].
In general, the rate of deterioration (DR) calculates the proportion of perishable items that
are unusable due to decay or expiry [5]. For illustration, fresh vegetables have a different
DR depending on the storage climate and handling techniques. Furthermore, the rate of
deterioration of the most perishable items remains constant under constant environmental
conditions but begins to fluctuate when storing temperature and humidity change. Because
a perishable product’s deterioration rate is proportional to its quality, it has a significant
impact on sales [3]. The availability of fresh goods on display affects sales at the point
of purchase [2]. Due to the general significant visual aspects of the farming quality of
the product and stock, the consumption trend and, as a result, inventory management of
agricultural products differs from those for other perishable goods.

Since a perishable item’s rate of deterioration may be reduced by proper handling and
storage environments, it should be evaluated as a decision parameter when circumstances
permit. As a result, the appropriate inventory strategy can be controlled using both
freshness-dependent demand and deterioration control information. Hence, to support
deterioration rate management, this article suggests a unique fresh quality technology (FQT)
parameter. Investing in suitable technology and manpower to furnish needed storage and
handling conditions, on the other hand, loss of farming goods due to a lower rate of
deterioration. The reduced degradation rate of farming goods justifies the high investment
cost for effective inventory management. Although loss prevention is an important aim in
farming product inventory control, economic concerns are a primary focus for real-world
retail decision making. Therefore, in this model, deterioration rate is controllable and
considered as a decision variable with the effort of freshness technologies and quality.

In this modern dynamic and competitive business context, trade credit policy be-
comes one of the most appropriate and efficient strategies to enhance demand and control
commodities. If a supplier offers a retailer to pay for products later without incurring
interest costs, the retailer is more inclined to purchase commodities. Therefore, the supplier
provides the retailer with a specific time to make the payment. This type of business finance
in which the retailer is permitted to purchase goods and pay the supplier afterward is
identified as a trade credit policy [6]. Many companies use this strategy to increase sales
and attract more customers. In addition, when a product’s demand frequently increases
because of the quality and freshness but the product is unavailable for a sustained duration,
shortages arise. Therefore, this article permits the partially backlogged shortages when
the cycle time comes to an end and also considers the upstream credit period in which the
supplier offers a retailer a mutual credit time so that the retailer can pay the balance at a
later scheduled date; this realistic scenario forms the basis of this study.

1.1. Aim of This Study

The objective of this research is to go into a new realm such as the field of inventory
management for agricultural products. The following important interesting and significant
questions are examined in this research:

• What is the need for controlling deterioration rate using fresh quality technology and
effort according to a cost factor?

• Why does the deterioration rate always consider the ideal rate if the deterioration rate
is between 0 and 1?

• Why must the optimal rate of deterioration and preservation factor be in the interval
[1,+ ∝)?

• How does a strategy of trade credit affect a retailer’s productivity and profitability?
• When should a retailer have to place a back order to escape stock-outs?
• If this model were implemented in reality, what would the managerial implications be?
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1.2. Contribution

Perishable products have high and varying deterioration rates when passing through
their logistics systems. Agri-fresh products are a typical example of perishable products
that include fresh fruits, fresh vegetables, and fresh meat. This article models the perishable
inventory decision support system [7] with deterioration-controlled/freshness-dependent
demand, and quality indication. Additionally, the allowable shortages condition, trade
credit policy, and controllable deterioration rate are used to analyze the dynamics with
various scalable parameters. We analytically model this scenario and perform sensitivity
analysis to generate associated managerial implications. The most significant contributions
are summarized below:

• This study develops a perishable inventory system in which deterioration rate is
considered as a decision parameter and investigates its impact on perishable quality
control parameters.

• The rate of deterioration is controlled using the fresh quality technique and effort as a
cost factor.

• The demand depends on the deterioration and quality of the perishable product.
• Quality is defined as the time integration of the original and deteriorating quality. For

illustration, a farming product with a reduced deterioration rate, which appears fresh
and has much more available stock, will generate higher demand.

• Trade credit policy and its impact on the overall cost of the retailer.
• Partially backlogged shortages are permitted.

1.3. Flow of the Paper

The remaining portion of this article is discussed as follows: Section 2 is the existing
review of the literature. In Section 3, the notation and assumptions are discussed. Section 4
creates a mathematical model for various upstream trade credit scenarios to minimize
the overall cost of the retailer. After that, Section 5 contains the numerical study, the
sensitivity analysis for the key parameters, and managerial implications for the retailer.
Finally, Section 6 moderates the conclusion and future prospects for this article.

2. Literature Review

In this part, a review of the literature on product demand, deterioration, and trade
credit policy in inventory models is used to highlight gaps in the area and demonstrate how
prior works have contributed to this research. The first segment focuses on the literature
on modeling techniques with demand, the second focuses on models with deteriorating
items, and the third focuses on trade credit.

2.1. Literature Review on Inventory Models under Various Types of Demand

The most essential aspect of a business and enterprise is demand. The various forms
of demand have been explored by researchers over the past few years. As a result, the
researchers have taken into account various kinds of demand and developed inventory
models. In this way, [8] represents a model for advertisement-dependent demand with
a single-layered trade credit policy system. In [9], the authors prepared a mathematical
model under the exponentially declining demand by using the concept of an allowable
shortage. An economic order quantity (EOQ) model under time-linked quadratic demand
with constant deterioration was introduced by [10]. Further, the perishable commodities
inventory model with the preservation tool and price reduction problem under the stock-
and price-dependent demand is explained by [11]. An EOQ model under the ramp demand
for deteriorating products has been discussed in [12]. In recent times, a model with the
consideration of shortages under the time and selling price-dependent demand has been
established in [13]. An inventory model with a nonlinear stock-dependent demand for
non-instantaneously deterioration is developed in [14]. After this, the role of trapezoidal
demand in the inventory model for sustainable operations of fixed lifetime products is
discussed in [15]. This study extends the work of [2], which proposed a controllable
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deterioration rate linked model for the deterioration-dependent demand. There is very
little research that depends on the relationship between deterioration and demand. The
contribution of this study is that the demand is completely reliant on the deterioration rate.

2.2. Literature Review on Inventory Models under Deteriorating Inventories

Since managing deteriorating inventory affects so many businesses, academics have
published several articles to address the related difficulties in reality. Hence, the rate of
deterioration is an important factor for describing the essential characteristics of perishable
goods. Several products have a deteriorating nature over time such as fresh fruits and
vegetables, milk, juice, any dairy product, etc. The retailer aims to control the amount of
deterioration and stimulate demand. Therefore, the researchers took this into account and
established models to reduce the rate of deterioration. The review of a perishable inventory
since 2001 is reflected in [5]. Further, in [16], an inventory model under the quadratic
demand by applying a maximum fixed lifetime deterioration rate is extended. A model with
shortages for the constant deteriorating goods was derived by [17,18]. Furthermore, in [19],
a mathematical model in which the rate of deterioration is non-instantaneous and demand
is motivated by the price and stock of the product is derived. An inventory model for
continuously deteriorating goods with the scheme of payment in advance was formulated
by [20]. Later, a stock model for the time-dependent decline products under the demand
which is sensitive to both time and price was determined by [21]. A model for controllable
deterioration rate was developed by [22,23]. Further, the most significant contributions
in this study were elaborated upon by [2] who established a controllable deterioration
rate linked model. In [24], a concept related to the Weibull deterioration rate over the
finite time perspective was established. Recently, the inventory model with green-level-
dependent demand with constant deterioration has been derived in [25]. After this, [26]
and others have contributed notable contributions to this field of research. Therefore, all of
the researchers considered the various types of deterioration but this article focuses on the
controllable deterioration rate of the perishable products.

2.3. Literature Review on Inventory Models under Trade Credit Policy

Many stock models are developed that assume payment is paid at the moment the
order amount is received. However, in reality, the payment of purchase cost differs between
the following: (i) payment on delivery received [27], (ii) acceptable partial payment delay,
(iii) a partial deposit payment [28], and (iv) partial advance payment and allowing partial
payment delay [29]. For example, a mathematical model for deteriorating products under a
single-layered trade credit strategy is elaborated upon in [30]. Further, a stock model for
time-dependent deteriorating goods under the two-layered partial trade credit scheme is
developed in [31]. In [32], the impact of carbon emission of a supply chain under the two-
layered trade credit policy is established. In addition, the partial backlogged shortages and
multi-layered trade credit model are discussed in [33]. Additionally, a mathematical model
under the price- and advertisement-dependent demand for a single-layered trade credit
system was calculated in [34]. In this way, a stock model with two-layered trade credit
and dynamic demand is incorporated in [35]. Lately, a model under the price-sensitive
demand with investment in preservation equipment and single-layered trade credit policy
has been created in [36]. Other inventory models include a trade credit strategy provided
by [37–39]. Recently, the inventory model with partial linked-to-order upstream trade
credit and downstream full trade credit has been developed by [40]. Moreover, Table 1
provides a concise description of the existing literature relevant to the proposed model.

2.4. Gap Identification

According to the literature survey and Table 1, several studies have worked on differ-
ent combinations but the uniqueness of this research is that all of the combinations such
as deterioration-dependent demand, controllable deterioration, allowable shortages, and
trade credit policy which were previously not considered in any articles are examined. The
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work of [2] established an inventory model for the controllable rate of deterioration. In this
model, they only focused on the deterioration of the perishable product. In contrast to [2],
this article considers the fresh quality technology (FQT), trade credit policy, and allowable
shortages. Furthermore, in the literature, many authors used different techniques to control
the deterioration rate. The items deteriorate in nature as shown in [16]. To control the rate
of deterioration, the authors developed some technologies such as freshness preservation
effort (FPE) [2], fresh-keeping effort (FKE) investment strategies, and a fresh product supply
chain (FSC) system [3], as well as the freshness-keeping effort of third-party logistics service
providers (TPLSPs) [41]. This study significantly derives the relation between the fresh quality
technology (FQT) indicator and the deterioration rate which is the novelty of this work.

Table 1. An overview of similar studies on the EOQ model.

Source Demand Deterioration Shortages Trade Credit

[12] Ramp type Constant Yes Yes
[31] Constant No Yes Yes
[35] Constant Constant Yes Yes
[2] Deterioration-dependent Controllable deterioration No No

[22] Price- and stock-dependent Controllable deterioration Yes No
[24] Constant Weibull deterioration Yes No

3. Notation and Assumptions
Assumptions

The inventory system only applies to a single item.
The indicator of fresh quality technology (FQT) is γ = hθ

hc
, where hθ denotes the

controllable marginal cost of holding with preservation and hc is the maximum cost of
holding including preservation which denotes the highest-level effort of hθ . Additionally,
0 < hθ < hc and when hθ → hc the deterioration rate is minimized [2].

The higher the FQT indicator γ, the less the degradation rate of perishable food,
resulting in fresh items for longer periods. In [1], the impact of FQT on quality such as
a power function was represented. Since the rate of deterioration and quality of farming
products move in different paths, this article assumes that the controllable deterioration
rate is defined as:

θ = 1− γ
1
α (1)

The FQT indicator γ and the controlled marginal cost are expressed in the following
equations:

γ = (1− θ)α (2)

hθ = hc(1− θ)α (3)

According to Equation (2), decreasing the degradation rate, in general, implies a rise
in the amount of freshness technology expense. When the deterioration rate is minimized,
i.e., θ → 0 , the FQT indicator γ→ 1 and hθ becomes close to hc. Likewise, when θ → 1 ,
the FQT indicator γ→ 0 and hθ becomes close to 0.

This article presumes that demand is determined by the perishable product’s quality,
which is determined by the rate of deterioration. This hypothesis is premised on the reality
that when two products are provided at the same price, retailers are more interested in
choosing the freshest product available. Customers’ interest in purchasing fresh farming
items is also influenced by shelf product availability since more visible stock generates a
higher demand. Therefore, motivated by this reality, the demand rate is defined as

D(θ) = D0 − βθ (4)

where D0 is the constant demand, β is a demand-on-quality variable, and D(θ) = 0 when
D0 − βθ ≤ 0 [2].
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Consumers determine the quality of the product based on the rate of deterioration.
For illustration, customers are aware that when spots emerge on a banana, the rate of
deterioration is sure to increase. Likewise, if yellowing occurs on a calabrese top, the rate
of deterioration rises. Additionally, users can check the quality of packaged farmed com-
modities from the displayed stock, which is the deterioration rate’s direct time integration.
As a consequence, the deterioration rate may be directly utilized to reflect demand.

The credit duration of M years is given by a supplier to a retailer. During the interval
of time [0, M], the retailer will earn interest Ie on sold items and will be charged interest Ic
for unsold items throughout the interval [M, T].

The proportion of partially backlogged shortages is represented by ς(t), which is a
decreasing function that is also differentiable with respect to time t.

For the negative inventory, the sum of the exponential partial backlogging is identified
as e−ς(T−t), where ς > 0 is the backlogging parameter and (T − t) is the waiting time for
the next replacement.

There is no waiting period and the replenishment rate is infinite.

4. Mathematical Model

The mathematical model for perishable products with exponentially partially back-
logged shortages under the demand based on the deterioration is presented in this section.
Additionally, per cycle time the level of inventory drops according to both the deterioration
rate and demand for the product. Furthermore, the graph of the level of inventory against
cycle time T is represented in Figure 1.
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Now, because of the deterioration-dependent rate of demand, the level of inventory
decreases in time [0, t1] and the inventory level vanishes at a time t1. Thus, the level of
inventory during the time [0, t1] can be obtained as

dI1(t)
dt

= −θ I1(t)− D(θ), 0 ≤ t ≤ t1 (5)

Under the boundary condition I1(t1) = 0, the stock level at any time t ∈ [0, t1] from
Equation (5) can be obtained as

I1(t) =
D0 − βθ

θ

[
eθ(T−t) − 1

]
, 0 ≤ t ≤ t1 (6)

Next, at a time t = t1, the inventory level vanishes, resulting in shortages of the
structure that increase exponentially e−ς(T−t), ς > 0 with the T − t wait time until the
next shipment arrives in the system. Additionally, the maximum shortages level might be
attained at the time t = T as indicated by Bl . Therefore, the level of inventory during the
interval [t1, T] can be evaluated as follows:

dI2(t)
dt

= D(θ)e−ς(T−t), t1 ≤ t ≤ T (7)

As per the boundary condition I2(t1) = 0, the level of stock at any time t ∈ [t1, T] from
Equation (7) is:

I2(t) =
D0 − βθ

ς

(
e−ς(T−t) − e−ς(T−t1)

)
(8)

Additionally, another boundary condition I2(T) = Bl gives

Bl = Bl(T) =
D0 − βθ

ς

(
1− e−ς(T−t1)

)
(9)

Since I1(0) = Q− Bl , as per the replenishment time T, the order quantity is obtained
via Equations (6) and (9).

Q− Bl =
D0−βθ

θ

[
eθT − 1

]
Q = Bl +

D0−βθ
θ

[
eθT − 1

]
Q = (D0 − βθ)

(
(1−e−ς(T−t1))

ς +
(eθT−1)

θ

) (10)

Next, the amount of sales that are lost at a time t ∈ [t1, T] is derived as:

Nl(t) =
t∫

t1

D(θ)
(

1− e−ς(T−t)
)

dt, t1 ≤ t ≤ T

Nl(t) =
(D0−βθ)(ς(t−t1)+e−ς(T−t1)−e−ς(T−t))

ς

(11)

Now, in this model, a supplier provides goods to a retailer with allowable payment
delay which is the trade credit policy. The interest received, interest charge, and total
cost function are analyzed and also optimize the deterioration rate as follows in various
circumstances:

Case (I): (0 < M < t1)
During this situation, the credit phase arises before the inventory vanishes in the

system which means a supplier allots a period of credit M to a retailer before a time t1.
Throughout the time [0, M], the retailer receives interest on the profit earned through
sustaining shortages in the preceding cycle (see Figure 2).
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Hence, the earned interest by a retailer can be estimated as:

IE1 = SIe
M∫
0

tD(θ)dt + SIe
M∫
0

Bl(T)dt

IE1 = SIe(D0 − βθ)M
[

1
2 M +

(1−e−ς(T−t1))
ς

] (12)

The retailer earns interest throughout the interval [0, M], but after the credit time M a
retailer charges for the interest on unsold goods in the time period [M, t1]. Therefore, the
interest charge of a retailer can be calculated as:

IC1 = PIc

t1∫
M

I1(t)dt

IC1 = PIc

(
D0−βθ

θ

)(
−eTθ−t1θ+e−Mθ+Tθ

θ − t1 + M
) (13)

Case (II): (0 < t1 < M)
In this situation, the credit period occurs after the inventory vanishes in the system

which means a supplier provides a credit period M to a retailer after a time t = t1. So, all
the products received from the supplier were sold on credit by the retailer throughout the
time [0, M]. Thus, the interest charged to a retailer was zero (i.e., IC2 = 0) in the system.
The retailer only receives interest on sold products throughout the time [0, M] and also
earns interest on additional inventory throughout the interval [t1, M] (see Figure 3).
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As an outcome, the earned interest by a retailer is calculated as:

IE2 = SIe

t1∫
0

tD(θ)dt + SIe
M∫
0

Bl(T)dt + SIeD(θ)(M− t1)t1

IE2 = 1
2 SIe(D0 − βθ)t2

1 +
SIe(1−e−ς(T−t1))(D0−βθ)M

ς + SIe(M− t1)(D0 − βθ)t1

(14)

IC2 = 0 (15)

Now, the total cost components per cycle time T are identified as:

• Cost of ordering per order: OC = K

• Cost of holding per unit per unit time: HC =
[
h + hc(1− θ)α] t1∫

0
I1(t)dt

=
[h+hc(1−θ)α](D0−βθ)(eθT−eθ(T−t1)−t1θ)

θ2

• Cost of deterioration per cycle time T: DC = cp

(
Q−

t1∫
0

D(θ)dt

)
= cp(D0 − βθ)

(
1−e−ς(−Ta+T)

ς + eθT

θ − 1− t1

)
• Cost of backlogging per unit: BC = cb

T∫
t1

I2(t)dt

=
cb(D0−βθ)(−e−ς(T−t1)(ςT−ςt1+1)−1)

ς2

• Cost of lost sales per cycle time T: LC = c0D(θ)
T∫

t1

(
1− e−ς(T−t)

)
dt

=
c0(D0−βθ)(ς(T−t1)+e−ς(T−t1)−1)

ς

Hence, the total cost function per cycle time T of a retailer is stated as
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TCi(T, θ) = 1
T (OC + HC + DC + BC + LC + ICi − IEi); i = 1, 2

TCi(T, θ) =

{
TC1(T, θ) if 0 < M < t1 < T
TC2(T, θ) if 0 < t1 < M < T

(16)

in which

TC1 = 1
T



K +
(h+hc(1−θ)α)(D0−βθ)(−eθ(T−t1)−t1θ+eθT)

θ2

+cp(D0 − βθ)
(

1−e−ς(−Ta+T)

ς + eθT

θ − 1− t1

)
+

cb(D0−βθ)(−e−ς(T−t1)(ςT−ςt1+1)−1)
ς2

+
c0(D0−βθ)(ς(T−t1)+e−ς(T−t1)−1)

ς

+PIc

(
D0−βθ

θ

)(
−eTθ−t1θ+e−Mθ+Tθ

θ − t1 + M
)

−SIe(D0 − βθ)M
(

1
2 M +

(1−e−ς(T−t1))
ς

)



TC1(T, θ) = 1
T


K + (D0 − βθ)



(h+hc(1−θ)α)
((

1+θT+ θ2T2
2

)
−aTθ−e−Taθ+Tθ

)
θ2

−cb

(
e−ς(−Ta+T)(T(1− a)ς + 1)− 1

)
+
(

1−e−ς(−Ta+T)

ς

)(
cp − SIe M− c0

)
+cpT

(
1− a + θT

2

)
+ c0T(1− a)− 1

2 SIe M2

+ PIc
θ

(
−e−Taθ+Tθ+e−Mθ+Tθ

θ − aT + M
)





(17)

and

TC2 = 1
T



K +
(h+hc(1−θ)α)(D0−βθ)(−eθ(T−t1)−t1θ+eθT)

θ2

+cp(D0 − βθ)
(

1−e−ς(−Ta+T)

ς + eθT

θ − 1− t1

)
+

cb(D0−βθ)(−e−ς(T−t1)(ςT−ςt1+1)−1)
ς2

+
c0(D0−βθ)(ς(T−t1)+e−ς(T−t1)−1)

ς

−SIe(D0 − βθ)

(
1
2 t1

2 +
M(1−e−ς(T−t1))

ς + (M− t1)t1

)



TC2(T, θ) = 1
T


K + (D0 − βθ)



(h+hc(1−θ)α)


(

1 + θT + θ2T2

2

)
−aTθ − e−Taθ+Tθ


θ2

−cb

(
e−ς(−Ta+T)(T(1− a)ς + 1)− 1

)
+
(

1−e−ς(−Ta+T)

ς

)(
cp − SIe M− c0

)
+cpT

(
1− a + θT

2

)
+ c0T(1− a)

−SIeaT
(

M− aT
2

)





(18)

After converting the exponential forms into the linear forms in the function of total
cost, the first derivative with respect to T and θ for both cases can be evaluated as:

∂TC1(T, θ)

∂T
=

1
2
(D0 − βθ)

(
2a2cb + h + hc(1− θ)α − 4cba

+2cb + cpθ + M2 IeS
2T2

)
− K

T2 = 0 (19)
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∂TC2(T, θ)

∂T
=

1
2
(D0 − βθ)

(
IeSa2 + 2a2cb + h + hc(1− θ)α

+4cba + 2cb + cpθ

)
− K

T2 = 0 (20)

∂TC1(T, θ)

∂θ
=

1
2T

 −(D0 − βθ)(1− θ)α−1T2hcα− 2MIeSTβ(a− 1)
−2T2βcb(a− 1)2 + SIeβM2 − (1− θ)αT2βhc
−2T2βcpθ + T2cpD0 − T2βh + 4Tβcp(a− 1)

 = 0 (21)

∂TC2(T, θ)

∂θ
=

 − 1
2 (1− θ)α−1Tαhc(D0 − βθ)− 1

2 IeSTa2β

−Tβcb(a− 1)2 + MIeSβ− 1
2 (1− θ)αTβhc

−Tβcpθ − 1
2 Tβh + 1

2 TcpD0 + 2βcp(a− 1)

 = 0 (22)

Theorem 1: For any given θ defined in the interval (0, 1) we have:

Case (I) (0 < M < t1): the total cost TC1(T, θ) in Equation (19) is convex in T and
achieves its global minimum with regard to

T∗1 =

√√√√ (M2SIe(D0 − βθ)− 2K)

(βθ − D0)
(

2cb(a− 1)2 + hc(1− θ)α + cpθ + h
) (23)

the optimal order quantity

Q∗1 = (a− 2)

√√√√ (βθ − D0)(M2SIe(βθ − D0) + 2K)(
2cb(a− 1)2 + hc(1− θ)α + cpθ + h

) (24)

and optimum minimum cost

TC∗1 =

√
K(βθ−D0)

(E1+hc(1−θ)α+cpθ)

(
X1

(
2cphc(1− θ)α + E2 + 2c2

pθ
)

+E3 + MIeScpθ + MIeShc(1− θ)α

)
√

K(E1+hc(1−θ)α+cpθ)
(βθ−D0)

(25)

where X1 = (a− 1), E1 = IeSa2 + 2cb(a + 1)2 + h, E2 = 2cph + 2IeScpa2, and
E3 = 2MIeScb(a + 1)2 + 4cpcb(a− 1)3 + MIe

2S2a2 + MIeSh in Equation (25).
Case (II) (0 < t1 < M): the total cost TC2(T, θ) in Equation (20) is convex in T and

achieves its global minimum with regard to

T∗2 =

√√√√ 2K

(D0 − βθ)
(

IeSa2 + 2cb(a + 1)2 + hc(1− θ)α + cpθ + h
) (26)

the optimal order quantity

Q∗2 = (a− 2)

√√√√ 2K(D0 − βθ)(
IeSa2 + 2cb(a + 1)2 + hc(1− θ)α + cpθ + h

) (27)
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and the optimum minimum cost

TC∗2 =



(D0 − βθ)X1E4



(βθ − D0)
(
2Kcpθ + 2K(1− θ)αhc + E5

)
+X1

2

(
2M2 IeSD0

2cb − 2M2 IeSβ2θ2cb

−4M2 IeSβθD0cb

)
+
(

D0
2 + β2θ2)(M2 IeSh + M2 IeShc(1− θ)α)

−2M2 IeSβcpθ2D0 + M2 IeSβ2cpθ3

−2M2 IeSβθD0hc(1− θ)α + θE6√√√√√ (D0 − βθ)
(

2cb(a− 1)2 + h + hc(1− θ)α + cpθ
)

(
M2SIe(βθ − D0) + 2K

)





(28)

where X1 = (a− 1), E4 =
(

MIeS− 2cp
)
, E5 = 4Ka2cb + 4Kcb + 2Kh − 8aKcb, and

E6 =
(

M2 IeScpD0
2 − 2M2 IeSβhD0

)
in Equation (28).

Proof: See Appendix A. �

Discussion on the Different α Values

The rate of deterioration θ = 1− γ
1
α is controlled by two factors which are fresh

quality technology indicator γ and the deterioration rate preservation factor α. For the
different farmed items, the rate of deterioration will not be the same under identical storage
conditions and the same preservation effort due to their different natural perishability
characteristics. If the ideal rate of deterioration is known, then the FQT for managing the
deterioration rate can be obtained via Equation (2).

Now, the discussion on the different α values is explained below.

1. When α = 0 then 1
α becomes infinite which is not possible and the equation θ = 1−γ

1
α

is not solvable. Therefore, α = 0 is not conceivable.
2. When α < 1, then from Figure 4 it is observed that θ is not in the optimal range.

Therefore, α < 1 is also not considered.
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3. When 0 < α < 1, it is noticed that deterioration rates for various items vary even
when they are kept at the same freshness level. For various goods, the relationship
coefficient between θ and α takes on different values. For illustration, with the same
FQT and preservation cost, the rate of deterioration is different for oranges and grapes.
Table 2 shows this, where α is as in Equation (1) and the FQT indicator γ is set to 0.4.

Table 2. Rate of deterioration for different values of α .

α . . . 1
3

1
2 1 2 3 . . .

θ . . . 0.963 0.84 0.6 0.367 0.263 . . .

From Table 2, it is reflected that the higher the rate of α, the lower the rate of deteriora-
tion. If the value α is smaller than the product, then it is more susceptible to deterioration.
As a result, 0 < α < 1 signifies situations during which perishable qualities are more
significant than when α = 1.

4. When α ≥ 1: from Figure 5 it is observed that the conceivable value α is greater or
equal to 1. To verify that Equation (1) and other equations based on Equation (1)
are reliable against changes in α values, the range α might be restricted to [1,+ ∝).
Therefore, in this model, the optimal rate of deterioration is discussed only for α = 1
and α > 1. Furthermore, this portion concludes some managerial outcomes.
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α = 1: Steps to make a decision

The second derivative of total cost function with respect to θ for Case (I) 0 < M < t1 is

∂2TC1(T, θ)

∂θ2 =
T
2

(
(D0 − βθ)(α− 1)

(
(1− θ)α−2αhc

)
+ 2(1− θ)α−1αβhc − 2βcp

)
(29)

It is difficult to identify the nature of the second derivative equation so when α = 1
the derivative becomes

∂2TC1(T, θ)

∂θ2 = Tβ
(
hc − cp

)
(30)

Additionally, it is the same for Case (II): 0 < t1 < M

∂2TC2(T, θ)

∂θ2 =
T
2

(
(D0 − βθ)(α− 1)

(
(1− θ)α−2αhc

)
+ 2(1− θ)α−1αβhc − 2βcp

)
(31)
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and at α = 1 the second derivative becomes

∂2TC2(T, θ)

∂θ2 = Tβ
(
hc − cp

)
(32)

Now, Equations (30) and (32) allow for a simpler evaluation of the optimum solution.

Theorem 2: For the first case (0 < M < t1) when α = 1 and cp > hc , the value of θ (noted
as θ∗1 ) is

θ∗1 =
D0

2β
− (h + hc)

2
(
cp − hc

) + (a− 1)
(
2cp −MSIe

)
T
(
cp − hc

) − cb(a− 1)2(
cp − hc

) +
M2SIe

2T2
(
cp − hc

) (33)

and the total cost function TC1(T, θ) follows a saddle face, and for the case (0 < t1 < M) when
α = 1 and cp > hc , the value of θ (noted as θ∗2 ) is

θ∗2 =
D0

2β
− (h + hc)

2
(
cp − hc

) − cb(a− 1)2(
cp − hc

) +
2cp(a− 1)
T
(
cp − hc

) − Sa2 Ie

2
(
cp − hc

) + MSIe

T
(
cp − hc

) (34)

and the total cost function TC2(T, θ) follows a saddle face.

Proof: See Appendix B. �

Theorem 3: For the case (0 < M < t1) when θ∗1 ≥ 1 , the optimum rate of deterioration

tends to be 0, the equivalent optimum cycle time is T∗1 =

√
(2K−M2SIeD0)

D0(2cb(a−1)2+hc+h)
, and the opti-

mum quantity of the order is Q∗1 = (a− 2)
√

D0(M2SIeD0−2K)
(2cb(a−1)2+hc+h)

, and for the case (0 < t1 < M)

when θ∗2 ≥ 1, the optimum deterioration rate tends to be 0, the equivalent optimum cycle time is

T∗2 =
√

2K
D0(IeSa2+2cb(a+1)2+hc+h)

, and the optimum order quantity is

Q∗2 = (a− 2)
√

2KD0

(IeSa2+2cb(a+1)2+hc+h)
.

Proof: See Appendix C. �

Theorem 4: For the case (0 < M < t1) when θ∗1 ≤ 0, the optimal rate of deterioration tends

to be 1, the equivalent optimal cycle time is T∗1 =

√
(M2SIe(D0−β)−2K)

(β−D0)(2cb(a−1)2+cp+h)
, and the opti-

mum order quantity is defined as Q∗1 = (a− 2)
√

(β−D0)(M2SIe(β−D0)+2K)
(2cb(a−1)2+cp+h)

, and for the case

(0 < t1 < M) when θ∗2 ≤ 0, the optimum rate of deterioration tends to be 1, an equivalent op-

timal cycle time is T∗2 =
√

2K
(D0−β)(IeSa2+2cb(a+1)2+cp+h)

, and the optimum order quantity is

Q∗2 = (a− 2)
√

2K(D0−β)

(IeSa2+2cb(a+1)2+cp+h)
.

Proof: See Appendix D. �

The expressions of T∗i and Q∗i , i = 1, 2 in Theorems 3 and 4 are similar to each other.
The main difference between them is that in Theorem 3 there is no term for the deterioration
cost and in Theorem 4 there is no term related to the marginal holding cost. Theorem 3
concludes that retailers should give full efforts to preserving the product to attain minimum
deterioration and that this is applicable to high-value perishable products. Theorem 4
specifies that retailers should not try to preserve the product and that this is applicable to
low-price products.
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Now, for Theorem 5, values X's, Y's, Z's, and W's are shown in Table 3:

Table 3. Values of X's, Y's, Z's, and W's.

(a− 1) = X1

(a− 2) = X2(
cp − hc

)
= X3

(h + hc) = X4(
h2 + hc

2) = X5(
2M3S2βIe

2 − 4M2Sβcp Ie
)
= Y1(

4K−M2SIeD0
)
= Y2

M2S2βIe
2 = Y3(

2MSβIe − 4βcp
)
= Y4

M2SβIe = Y5(
β2hcb + β2hccb + βcpD0cb − βcbD0hc

)
= Y6(

−M3S2β2 Ie
2 + 2M2Scpβ2 Ie

)
= Y7

(βhD0 + βhcD0) = Y8(
−β2X5 − D0

2X3
2 − 4β2cb

2X1
4 − 2β2hhc

)
= Y9(

M2S2β2 Ie
2 − 4MSβ2cp Ie + 4β2c2

p

)
= Y10

(
β2cbhc − βcpD0cb + βD0cbhc + β2hcb

)
= Z1(

−6M2SβIeD0 + 8Kβ
)
= Z2

βD0
(
cph− hc

2) = Z3

β2hhc = Z4(
Sa2βIe + 2βcbX1

2 + βX4 + D0X3
)
= Z5(

−Sa2βIe − 2βcbX1
2 − βX4 − D0X3

)
= −Z5

4βcpX1 + 2MSβIe = Z6(
−2Sβ2hIea2 − 4β2cbX1

2 − 2βD0X3
)
= Z7(

−2SβD0 Iea2 − 4βD0cbX1
2) = Z8(

D0
2X3

2 − β2X4
2) = Z9

16MSβ2cp IeX1 + 4M2S2β2 Ie
2 + 16β2c2

pX1
2 = Z10

−2Sa2β2 IeD0 + 4βD0cbX1
2 − 2βD0hc + 8Kβ = W1

2Sa2β2 Ie + 4β2cbX1
2 + 4β2 = W2

2βD0
(
hc

2 + cph
)
= W3(

S2a4β2 Ie
2 + 4Sβ2 Iecb(aX1)

2 + 4β2cb
2X1

4
)
= W4

Theorem 5: For the case (0 < M < t1) when 0 < θ∗1 < 1:

1. θ∗1 and Q∗11 are not the global optimal solutions, where

Q∗11 =

1
2

√2βT2X2

√√√√√ 1
X3

2 βT6

 (
−TX1Y1 + T2X3Y2 − 2M2T2SβIecbX1

2 −M2T2SβIeX4 + Y3
)(

−TX1Y4 − 2T2βcbX1
2 + Y5 − T2βX4 − T2D0X3

) 


(−TX1Y4+2T2 βcb X1
2+Y5−T2 βX4+T2D0X3)

is and the value of Q∗1 is at θ = θ∗1 .
2. γ∗ → 0 or γ∗ → 1

For case (0 < t1 < M) when 0 < θ∗2 < 1:

1. θ∗2 and Q∗22 are not the global optimal solutions, where Q∗22 =

(√
2βTX2

√
K(−TZ5+Z6)

X3βT2

)
TZ5+Z6

is the
value of Q∗2 at θ = θ∗2 .

2. γ∗ → 0 or γ∗ → 1

Proof: See Appendix E. �

Theorem 5 reflects the situation that falls in between the two extreme conditions.
Based on their current management conditions, the enterprise can select the appropriate
management technique. Theorem 5 concludes that when 0 < θ∗i < 1 ; i = 1, 2 there are some
points where the overall cost attains its extreme at the specific value of Q or T. The total cost
rises with the increasing rate of deterioration when 0 < θ∗i < 1 ; i = 1, 2 and the total cost
decreases with the increasing rate of deterioration when θ > θ∗i ; i = 1, 2. Therefore, for Case

(I) except for when θ∗1 = D0
2β −

(h+hc)

2(cp−hc)
+

(a−1)(2cp−MSIe)
T(cp−hc)

− cb(a−1)2

(cp−hc)
+ M2SIe

2T2(cp−hc)
, at two

different θ there should be two equivalent overall costs. For Case (II) except for the value

of θ∗2 = D0
2β −

(h+hc)

2(cp−hc)
− cb(a−1)2

(cp−hc)
+

2cp(a−1)
T(cp−hc)

− Sa2 Ie
2(cp−hc)

+ MSIe
T(cp−hc)

, at two different θ there

should be two equivalent overall costs. This suggests that under the same controlled-cost
conditions, a retailer may sometimes decrease waste.
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As a result, when α = 1 and cp > hc, the optimal deterioration rate that minimizes the

total cost implies γ∗ →


1 θ1 or θ2 ≥ 1

1 or 0 0 < θ1 or θ2 < 1

0 θ1 or θ2 ≤ 0
.

The previously stated results can help to improve a retailer’s ability to make relevant
decisions. There are three steps to finding the decision.

First step: Correlate the cost of purchase cp with the maximum cost of holding hc
which is relevant to keeping the product fresh.

Second step: If cp > hc, analyze the rate of θ∗i for i = 1, 2. If θ∗i ≥ 1, the optimal value
of the fresh quality technology indicator γ moves towards 1; if θ∗i ≤ 0, the optimal value of
fresh quality technology indicator γ attempts 0; when 0 < θ∗i < 1, follow the third step.

Third step: This step consists of determining the overall cost when θ → 0 or θ → 1 ,
and the lower value is selected by the retailer.

When the optimal FQT indicator attains 0 for both cases, the optimal cycle time is

T∗1 =

√
(M2SIe(D0−β)−2K)

(β−D0)(2cb(a−1)2+cp+h)
and T∗2 =

√
2K

(D0−β)(IeSa2+2cb(a+1)2+cp+h)
,

and the optimal order quantities are Q∗1 = (a− 2)
√

(β−D0)(M2SIe(β−D0)+2K)
(2cb(a−1)2+cp+h)

and

Q∗2 = (a− 2)
√

2K(D0−β)

(IeSa2+2cb(a+1)2+cp+h)
.

Additionally, the minimum total cost functions are TC∗1 =

√
K(β−D0)
(E1+cp)

(X1(E2+2c2
p)+E3)√

K(E1+cp)
(β−D0)

and TC∗2 =


(D0 − β)X1E4



(β− D0)
(
2Kcp + E5

)
+X1

2(2M2 IeSD0
2cb − 2M2 IeSβ2cb − 4M2 IeSβD0cb

)
+
(

D0
2 + β2)(M2 IeSh

)
+ E6 − 2M2 IeSβcpD0 + M2 IeSβ2cp√

(D0−β)(2cb(a−1)2+h+cp)(M2SIe(β−D0)+2K)




.

Furthermore, when the optimal FQT indicator attains 1, for both cases the optimal order

quantities are Q∗1 = (a− 2)
√

D0(M2SIeD0−2K)
(2cb(a−1)2+hc+h)

and Q∗2 = (a− 2)
√

2KD0

(IeSa2+2cb(a+1)2+hc+h)
,

the cycle times are T∗1 =

√
(2K−M2SIeD0)

D0(2cb(a−1)2+hc+h)
, and T∗2 =

√
2K

D0(IeSa2+2cb(a+1)2+hc+h)
, and the

minimum total costs are TC∗1 =

√
KD0

(E1+hc)
(X1(2cphc+E2)+E3+MIeSh0)√

K(E1+hc)
D0

, and

TC∗2 =

(
(D0)X1E4

(
(−D0)(2Khc+E5)+X1

2(2M2 IeSD0
2cb)+(D0

2)(M2 IeSh+M2 IeShc)√
(D0)(2cb(a−1)2+h+hc)(M2SIe(−D0)+2K)

))
.

As an outcome, Figure 6 shows the decision support system for the retailer.
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5. Numerical Study and Sensitivity Analysis
5.1. Numerical Study

This model is applicable to perishable products such as fresh foods, dairy products,
and some bakery items. To authenticate this model, two numerical examples are presented
for both of the cases of trade credit policy. The comparable parameters’ values are extended
from [2] to adapt the prototype.

Illustration 1: For Case I (0 < M < t1 < T)
Let α = 4, D0 = 100 units/year, K = 40 USD/order, β = 15, cb = 0.6 USD/unit time,

a = 0.8, cp = 10/units, ς = 0.7, Ie = 0.1/USD/year, c0 = 0.6 USD/unit time,
h = 10/unit/unit time, S = 30 USD/unit, hc = 8/unit/unit time, M = 0.1 years,
Ic = 0.12/USD/year, P = 20 USD/unit.

After solving this system, the optimum evaluates of decision variables are
T∗ = 0.219 years, θ∗ = 0.64, and total cost per cycle TC1

∗(T, θ) = 696.23 USD; the initial
optimal quantity of order Q∗ = 25.17 units including the backorder quantity B∗l = 4 units.
Additionally, t1

∗ = aT = 0.175 years, and γ∗ = 0.016.
The characteristic of convexity for the overall cost function TC∗1 (T, θ) is obtained in

Figure 7.

Illustration 2: For Case II (0 < t1 < M < T)
Use a similar set of statistics as with Illustration 1, with the exception of M = 0.2 years.

The optimal evaluates of decision variables are T∗ = 0.224 years and θ∗ = 0.58, the
total cost per cycle TC2

∗(T, θ) = 666.24 USD, and the initial optimal quantity of order
Q∗ = 25.92 units including backorder quantity B∗l = 4 units. Additionally,
t1
∗ = aT = 0.179 years, and γ∗ = 0.028.

The convexity tendency of the overall cost function TC2
∗(T, θ) is determined in Figure 8.
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5.2. Sensitivity Analysis

In this section, sensitivity analysis is performed on Illustration 2 and shows a variation
in decision variables by varying parameters of inventory values up to −20%, −10%, 10%,
and 20%.

The following observations are obtained from Table 4:

• When the rate of deterioration preservation factor (α) increases, the FQT indicator
(γ), cycle time (T), quantity of order (Q), and the time considered for inventory level
to drop to zero (t1) increase slowly while the deterioration rate (θ) decreases slowly.
However, total cost (TC) decreases gradually.

• There is a negative effect of fixed demand rate (D0) on total cost (TC) and FQT
indicator (γ). They all are increased rapidly. Further, order quantity (Q) increases
slowly, and cycle time (T), deterioration rate (θ), and time considered for inventory
level to drop to zero (t1) decrease slowly.
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• If ordering cost (K) increases, the deterioration rate (θ) decreases slowly while order
quantity (Q) and time considered for inventory level to drop to zero (t1) increase slowly.
However, total cost (TC), FQT indicator (γ), and cycle time (T) increase rapidly.

• Change in the parameter’s sales price (S) and interest earned (Ie), total cost (TC), the
time considered for inventory level to drop to zero (t1), cycle time (T), order quantity
(Q), and FQT indicator (γ) decrease slowly. However, there are no changes in the rate
of deterioration (θ).

• As the demand-on-quantity variable (β) changes, cycle time (T), total cost (TC), order
quantity (Q), and the time considered for inventory level to drop to zero (t1) decrease
slowly, whereas the FQT indicator (γ) decreases rapidly and the deterioration rate (θ)
increases rapidly.

• The FQT indicator (γ) increases slowly and total cost (TC) decreases rapidly. Further,
cycle time (T), order quantity (Q), the time considered for inventory level to drop
to zero (t1), and deterioration rate (θ) decrease slowly whenever the upstream trade
credit period (M) changes.

• As the holding parameter (h) increases, quantity of order (Q) decreases slowly and to-
tal cost (TC) decreases rapidly. On the other hand, cycle time (T), the time considered
for the stock level to drop to zero (t1), and FQT indicator (γ) decrease rapidly and the
rate of deterioration (θ) increases slowly.

• As the cost of procurement
(
cp
)

varies, the deterioration rate (θ) increases slowly,
while cycle time (T), order quantity (Q), and time considered for inventory level to
drop to zero (t1) decrease slowly. Furthermore, total cost (TC) increases rapidly and
the FQT indicator (γ) increases slowly; after that, it increases rapidly.

• The cycle time (T) and time considered for level of inventory to drop to zero (t1)
decrease slowly, the total cost (TC) increases rapidly, and then both become constant.
However, order quantity (Q) decreases slowly, the deterioration rate (θ) increases
slowly, and FQT indicator (γ) decreases rapidly when the maximum cost of holding
parameter (hc) fluctuates.

5.3. Managerial Implications

• A retailer should take a long credit period from the supplier to receive more benefits
since the credit period significantly reduces the total cost per cycle time rapidly while
the cycle time drops slowly.

• Based on Theorem 3, a retailer should not invest in the preservation factor because the
rate of deterioration is θi ≥ 1; i = 1, 2 which implies that the product fully deteriorates.
So, there is no need to preserve and increase the total cost. For example, if all of the
tomatoes, lemons, bread, flowers, and other perishable items fully deteriorate then the
retailer should not invest to sustain that kind of product.

• According to Theorem 4, if θi ≥ 1; i = 1, 2 then the retailer should not invest in
preservation because the product is non-deteriorating. For example, if dry inventory,
coffee powder, tea powder, etc., have zero deterioration rate then the retailer should
not invest in the preservation factor to raise the cost.

• According to Theorem 5, if the range of deterioration is 0 < θi < 1; i = 1, 2 then the
retailer should invest in the preservation factor to preserve the perishable product
and fulfill the demand of consumers. Dairy products, cooked leftovers, vegetables,
fruits, and so on need a preservation and temperature environment according to
their freshness. So, if the product is not fully deteriorated or non-deteriorating then
the retailer should invest in the preservation factor because the demand is quality-
dependent on the perishable product.

• As Table 4 shows, the retailer should decrease the cost of holding parameter, reduce
the ordering cost, focus on the quality of the perishable product, and adjust the sales
price to generate more revenue and less expenditure.

• If the rate of deterioration is low and demand is high, the retailer should buy additional
inventory before the shortages occur. If the flowers are fresh, retailers will buy them,
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and demand will rise gradually. Therefore, before all of the flowers are sold, the
retailer should order more flowers.

• To achieve the optimal rate of deterioration, the value of the rate of the deterioration
preservation factor α must be restricted [1, ∝). If the value of the rate of the dete-
rioration preservation factor is less than 1, the optimal deterioration rate increases,
implying a rise in the overall cost of a retailer. (See Table 2).

Table 4. Sensitivity analysis.

Parameters Values T
(in Years)

θ
(in %)

Q
(in Units)

t1
(in Years)

TC
(in USD)

γ
(in %)

α

3.2 0.220 0.70 25.16 0.176 667.84 0.021

3.6 0.222 0.64 25.57 0.178 667.05 0.026

4.4 0.226 0.55 26.23 0.181 665.45 0.031

4.8 0.228 0.51 26.49 0.182 664.68 0.033

D0

80 0.236 0.66 23.94 0.189 606.97 0.011

90 0.236 0.66 24.14 0.189 611.95 0.014

110 0.214 0.55 27.45 0.171 719.16 0.041

120 0.205 0.52 28.84 0.164 771.01 0.051

K

32 0.166 0.65 22.73 0.159 628.49 0.015

36 0.212 0.61 24.39 0.170 647.94 0.023

44 0.236 0.57 27.36 0.189 683.61 0.034

48 0.247 0.56 28.73 0.198 700.17 0.039

β

12 0.225 0.49 26.61 0.180 674.78 0.066

13.5 0.225 0.53 26.33 0.180 670.71 0.048

16.5 0.222 0.69 25.15 0.178 661.14 0.009

18 4.847 4.42 9.24 3.877 41019.31 136.543

cp

8 0.216 1.21 23.64 0.172 584.01 0.002

9 0.210 1.24 22.89 0.162 618.44 0.003

11 0.196 1.34 21.00 0.157 712.13 0.013

12 0.190 1.38 20.22 0.152 754.20 0.020

h

8 0.240 0.55 27.85 0.192 645.88 0.043

9 0.232 0.57 26.85 0.185 656.24 0.036

11 0.222 0.60 25.66 0.178 669.17 0.026

12 0.212 0.65 24.24 0.169 685.23 0.016

hc

6.4 0.226 0.55 26.21 0.181 665.69 0.043

7.2 0.226 0.57 26.01 0.180 666.06 0.033

8.8 0.206 1.14 22.61 0.164 669.83 0.0005

9.6 0.206 1.15 22.59 0.164 669.83 0.0005

M

0.16 0.224 0.60 25.84 0.179 677.14 0.025

0.18 0.224 0.60 25.88 0.179 671.70 0.027

0.22 0.225 0.58 25.96 0.180 660.79 0.031

0.24 0.225 0.57 26.00 0.180 655.33 0.033
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Table 4. Cont.

Parameters Values T
(in Years)

θ
(in %)

Q
(in Units)

t1
(in Years)

TC
(in USD)

γ
(in %)

Ie

0.08 0.227 0.59 26.21 0.182 673.20 0.028

0.09 0.226 0.59 26.06 0.181 669.73 0.028

0.11 0.223 0.59 25.79 0.179 662.75 0.030

0.12 0.222 0.59 25.69 0.178 660.30 0.030

S

24 0.227 0.59 26.21 0.182 673.20 0.028

27 0.226 0.59 26.06 0.181 669.73 0.028

33 0.223 0.59 25.79 0.179 662.75 0.030

36 0.222 0.59 25.69 0.178 660.30 0.030

6. Conclusions

This study is inspired by a farmed product deterioration problem faced by a supplier
selling vegetables or fresh fruits to a retailer, in which retailers are more willing to purchase
at a given fixed price for better quality, less deteriorated, and more storable perishable items.
This study is premised on prior research on perishable inventory control by investigating
deterioration rate as a decision parameter and its consequences for perishable quality con-
trol indicators, associated customer demands, and a variable operational cost. In addition,
this article assumes that demand is influenced by quality deterioration over a certain period.
This work also assumes that the rate of deterioration can be controlled using FQT and
effort as cost factors. In addition, the supplier offers its retailer a mutually acceptable trade
credit. This advantages both the retailer and the supplier. Additionally, shortages are
allowed. Furthermore, considering controlled deterioration/freshness-dependent demand,
product quality indication, and manageable DR to analyze its dynamic behavior with
several parameters including trade credit under allowable partially backlogged shortages,
this EOQ model is a theoretical extension and an example of innovation with practical
interpretations and implementations. This study has analytically analyzed this situation
and conducted sensitivity analysis to develop managerial consequences.

Finally, this research concludes that the retailer should invest in the preservation factor
when the rate of deterioration of the perishable product is between 0 and 1. If the rate of
deterioration is 0, then the product is non-deteriorating and the retailer does not need to
invest in the FQT indicator. Similarly, for the deterioration rate of 1 whereby the product
already deteriorates, there is no need to spend on preservation. The value of the deterioration
rate preservation factor must be in the interval of [1, ∝) to obtain the optimum value of the
deterioration rate as proved in the model. The retailer should order the inventory before the
shortages occur in the system and the retailer should use the trade credit policy to minimize the
total cost and earn more profit per cycle time. In addition, this model includes the correlation
between the fresh quality indicator and the deterioration rate.

This approach is used in all areas that deal with the deterioration and quality of
perishable goods, for example, fresh food items, frozen food items, fresh flowers, dairy
products, seafood, cooked foods, fresh vegetables and fruits, etc., but this inventory model
is derived under the following limitations:

• This model discussed the relation between the fresh quality technology (FQT) indi-
cator and controllable rate of deterioration. However, preservation technology was
not applied to reduce the rate of deterioration. Additionally, the fluctuating rate of
deterioration and the functional relationship between the rate of deterioration and the
quality indicator are not considered in this model.

• The proposed inventory model is developed with deterioration-dependent demand.
This can be expanded for different kinds of demand such as fuzzy demand as shown
in [43], freshness-dependent demand as discussed in [44], etc.
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• This study allows for a one-layered trade credit policy and partially backlogged
shortages. In spite of this, one can consider a two-layered trade credit policy and fully
backlogged shortages as shown in [45].
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Nomenclature
This article consists of the following notation and assumptions to emerge a mathematical model

of a proposed problem.

Parameters

K Ordering cost; (in USD/order)

P Purchasing cost; (in USD/unit)

h Holding cost; (in USD/unit/unit time)

hc The maximum cost of holding including preservation; (in USD/unit/unit time)

hθ The controllable marginal cost of holding including preservation; 0 < hθ < hc

γ Indicator of fresh quality technology; 0 < γ < 1

α Rate of deterioration with the factor of preservation; α > 0

D0 Fixed rate of demand

β The factor of quality-related variation in demand; β > 0

D Total demand; (in years)

M Upstream trade credit; (in years)

Ie Earned interest of a retailer; (in %/year)

Ic Charged interest of a retailer; (in %/year)

ς Backlogging factor; ς > 0

Bl The total volume of backlog based on demand; (in units)

Q Retailer’s quantity of order per cycle time; (in units)

cp Procurement cost; (in USD/unit)

cb Backlogging cost; (in USD/unit time)

c0 Cost of unit opportunity due to lost sale; (in USD/unit time)

S The product’s sales price; (in USD/unit)

Decision variables

T Cycle time; (in years)
θ Deterioration rate; 0 < θ < 1

Functions

t1(T) = aT; time considered for a stock level to drop to zero, where a > 0 (in years)

I1(t) The on-hand stock level at a time t; 0 ≤ t ≤ t1 (units)
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I2(t) Backlogged level of stock at a time t; t1 ≤ t ≤ T (units)

Nl(t) Lost sales number at a time t; (units)

TCi(T, θ) The function of total profit per unit time t for i = 1, 2; (in USD)

Appendix A. Proof of Theorem 1

For Case (I) (0 < M < t1), for any given θ ∈ (0, 1), the optimal cycle time

T∗1 =

√
(M2SIe(D0−βθ)−2K)

(βθ−D0)(2cb(a−1)2+hc(1−θ)α+cpθ+h)
can be derived by solving Equation (19). After

that, for finding the optimal order quantity, replace the value of T with T∗1 in Equation (10).

So, the optimal order quantity is derived as Q∗1 = (a− 2)
√

(βθ−D0)(M2SIe(βθ−D0)+2K)
(2cb(a−1)2+hc(1−θ)α+cpθ+h)

. Ad-

ditionally, check the second-order derivative ∂2TC1(T,θ)
∂T2 = M2SIe(βθ−D0)+2K

T3 > 0 which
indicates that the total cost function achieves its global minimum; it can be derived after
substituting T∗1 back to Equation (17). Hence, the optimum total cost function is specified as

TC∗1 =

√
K(βθ−D0)

(E1+hc(1−θ)α+cpθ)

(
X1

(
2cphc(1− θ)α + E2 + 2c2

pθ
)

+E3 + MIeScpθ + MIeShc(1− θ)α

)
√

K(E1+hc(1−θ)α+cpθ)
(βθ−D0)

where X1 = (a− 1), E1 = IeSa2 + 2cb(a + 1)2 + h, E2 = 2cph + 2IeScpa2, and
E3 = 2MIeScb(a + 1)2 + 4cpcb(a− 1)3 + MIe

2S2a2 + MIeSh
For Case (II) (0 < t1 < M):
The proof of Case (II) is parallel to Case (I) and the determined optimum value of cycle

time is T∗2 =
√

2K
(D0−βθ)(IeSa2+2cb(a+1)2+hc(1−θ)α+cpθ+h)

, order quantity is

Q∗2 = (a− 2)
√

2K(D0−βθ)

(IeSa2+2cb(a+1)2+hc(1−θ)α+cpθ+h)
, and the total cost is defined as

TC∗2 =


(D0 − βθ)X1E4



(βθ − D0)
(
2Kcpθ + 2K(1− θ)αhc + E5

)
+X1

2(2M2 IeSD0
2cb − 2M2 IeSβ2θ2cb − 4M2 IeSβθD0cb

)
+
(

D0
2 + β2θ2)(M2 IeSh + M2 IeShc(1− θ)α)− 2M2 IeSβcpθ2D0
+M2 IeSβ2cpθ3 − 2M2 IeSβθD0hc(1− θ)α + θE6√

(D0 − βθ)
(

2cb(a− 1)2 + h + hc(1− θ)α + cpθ
)
(M2SIe(βθ − D0) + 2K)




where X1 = (a− 1), E4 =

(
MIeS− 2cp

)
, E5 = 4Ka2cb + 4Kcb + 2Kh − 8aKcb, and

E6 =
(

M2 IeScpD0
2 − 2M2 IeSβhD0

)
.

Appendix B. Proof of Theorem 2

For Case (I) (0 < M < t1):
When α = 1 and cp > hc, the value of θ∗1 can be calculated using Equation (21):

θ∗1 =
D0

2β
− (h + hc)

2
(
cp − hc

) + (a− 1)
(
2cp −MSIe

)
T
(
cp − hc

) − cb(a− 1)2(
cp − hc

) +
M2SIe

2T2
(
cp − hc

)
Additionally, from the second derivative ∂2TC1(T,θ)

∂θ2 = −Tβ
(
cp − hc

)
< 0, it is observed

that the function of the total cost has a saddle face. The optimum deterioration rate can
easily be estimated to be 0 or 1.

For Case (II) (0 < t1 < M) the proof is parallel to Case (I).
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Appendix C. Proof of Theorem 3

For Case (I) (0 < M < t1):
Here, θ∗1 ≥ 1 which is above the deterioration rate’s normal range. Hence, the optimum

solution cannot be reached with θ∗1 , and it should be calculated using alternative methods.
The overall cost function’s first partial derivative with respect to θ when α = 1 is derived

as ∂TC1(T,θ)
∂θ = 1

2

(
−2MSaβIe + 2MSβIe + 4Taβcb − 2Tβθcp + Tβθhc
−Tβh− 2Tβcb − Tβhc + TcpD0 − TD0hc + 4aβcp − 4βcp

)
.

The first derivative of a function of total cost ∂TC1(T,θ)
∂θ is a linear function of θ. As

an outcome, if a line 1
2

(
−2MSaβIe + 2MSβIe + 4Taβcb − 2Tβθcp + Tβθhc
−Tβh− 2Tβcb − Tβhc + TcpD0 − TD0hc + 4aβcp − 4βcp

)
has a

positive slope, then the optimal value of deterioration rate θ∗ → 0 , which directs γ∗ → 1 .
Otherwise, the optimal value is at θ∗ → 1 which indicates that γ∗ → 0 as θ∗1 ≥ 1, i.e.,
D0
2β −

(h+hc)

2(cp−hc)
+

(a−1)(2cp−MSIe)
T(cp−hc)

− cb(a−1)2

(cp−hc)
+ M2SIe

2T2(cp−hc)
≥ 1. From this equation, one can see( (

cp − hc
)
T2D0 + 4Tβcp(a− 1)− T2β(h + hc)

−2T2βcb(a− 1)2 − 2MSTβIe(a− 1) + M2SβIe

)
≥ 2T2β

(
cp − hc

)
. In Equation (21), T

is replaced by T∗ with cp > hc and it is observed that

∂TC1(T∗ ,θ)
∂θ > 1

2

 −2MSaβIe + 2MSβIe + 4T∗aβcb
−2T∗βθcp + T∗βθhc − T∗βh− 2T∗βcb
−T∗βhc + T∗cpD0 − T∗D0hc + 4aβcp − 4βcp

 ≥ 0 which denotes that

the slope of a line 1
2

(
−2MSaβIe + 2MSβIe + 4T∗aβcb − 2T∗βθcp + T∗βθhc
−T∗βh− 2T∗βcb − T∗βhc + T∗cpD0 − T∗D0hc + 4aβcp − 4βcp

)
is

always positive. As a result, as θ and its related optimal fixed quantity of order increase
the total cost increases. In this case, θ∗ → 0 . If the retailer wants to keep the product fresh,
then they must attempt to preserve as much as possible. So, for this case of hθ → hc , the
fresh quality technology indicator γ∗ → 1 .

From Theorem 1 Case (I), the optimal cycle time and order quantity, respectively, are

T∗1 =

√
(2K−M2SIeD0)

D0(2cb(a−1)2+hc+h)
and Q∗1 = (a− 2)

√
D0(M2SIeD0−2K)
(2cb(a−1)2+hc+h)

.

For Case (II) (0 < t1 < M), the proof is analogous to Case (I).
The result is that to keep the product fresh, a retailer must perform all that is necessary

to preserve it. For this case of hθ → hc , a fresh quality technology indicator γ∗ → 1 .
The optimum values of cycle time and quantity of the order from Theorem 1 Case (II)

are T∗2 =
√

2K
D0(IeSa2+2cb(a+1)2+hc+h)

and Q∗2 = (a− 2)
√

2KD0

(IeSa2+2cb(a+1)2+hc+h)
.

Appendix D. Proof of Theorem 4

For Case (I) (0 < M < t1):
Here, the rate of deterioration is θ∗1 ≤ 0; from Equation (33), one can obtain( (

cp − hc
)
T2D0 + 4Tβcp(a− 1)− T2β(h + hc)

−2T2βcb(a− 1)2 − 2MSTβIe(a− 1) + M2SβIe

)
≤ 0. The total cost function’s first

derivative with respect to θ after the replaced value of T with T∗ is
∂TC1(T∗ ,θ)

∂θ < 1
2

(
−2MSaβIe + 2MSβIe + 4T∗aβcb − 2T∗βθcp + T∗βθhc
−T∗βh− 2T∗βcb − T∗βhc + T∗cpD0 − T∗D0hc + 4aβcp − 4βcp

)
≤ 0

which indicates that the slope is always negative. As a result, as θ and its related optimal
fixed quantity of order decrease, the overall cost decreases. In this case, θ∗ → 1 . Therefore,
the most effective way for a retailer to reduce the overall cost is to do nothing to keep the
inventory fresh. So, for this case of hθ → 0 , the indicator of fresh quality technology is
γ∗ → 0 . According to Theorem 1 Case (I), the equivalent optimum cycle time and the order

quantity are T∗1 =

√
(M2SIe(D0−β)−2K)

(β−D0)(2cb(a−1)2+cp+h)
and Q∗1 = (a− 2)

√
(β−D0)(M2SIe(β−D0)+2K)

(2cb(a−1)2+cp+h)
.

For Case (II) (0 < t1 < M) the proof is similar to Case (I).
As a result, the most effective way for a retailer to reduce the overall cost is to do

nothing to keep the inventory fresh. So, for this case of hθ → 0 , an indicator of fresh
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quality technology is γ∗ → 0 . From Theorem 1 Case (II), the optimum cycle time is

T∗2 =
√

2K
(D0−β)(IeSa2+2cb(a+1)2+cp+h)

and the optimum order quantity is

Q∗2 = (a− 2)
√

2K(D0−β)

(IeSa2+2cb(a+1)2+cp+h)
.

Appendix E. Proof of Theorem 5

For Case (I) (0 < M < t1):
When 0 < θ∗1 < 1, the necessary condition for the lowest overall cost is

θ∗1 = D0
2β − (hc+h)

2(cp−hc)
+

(a−1)(2cp−MSIe)
T(cp−hc)

− cb(a−1)2

(cp−hc)
+ M2SIe

2T2(cp−hc)
and

Q∗11 =

1
2

√2βT2X2

√√√√√√ 1
X3

2 βT6


(
−TX1Y1 + T2X3Y2 − 2M2T2SβIecbX1

2 −M2T2SβIeX4 + Y3
)(

−TX1Y4 − 2T2βcbX1
2 + Y5 − T2βX4 − T2D0X3

) 


(−TX1Y4+2T2 βcb X1
2+Y5−T2 βX4+T2 D0X3)

T∗11 =

√2βT4X3

√√√√√√√ 1
X3

2 βT6


(
−TX1Y1 + T2X3Y2 − 2M2T2SβIecbX1

2 −M2T2SβIeX4 + Y3
)(

−TX1Y4 − 2T2βcbX1
2 + Y5 − T2βX4 − T2D0X3

)(
−TX1Y4 + 2T2βcbX1

2 + Y5 − T2βX4 + T2D0X3
)




4X1
2T2(Y10 − T2Y6) + 4TX1Y7 − 2X3T4Y8 + T4Y9 + Y52


(Q∗11 and T∗11 are the values of order quantity and cycle time at θ = θ∗1 ).

Now, at this point
(
θ∗1 , Q∗11/T∗11

)
, the hessian matrix for the local minimum

H1 =

[
∂2TC1(T,θ)

∂θ2
∂2TC1(T,θ)

∂θ∂T
∂2TC1(T,θ)

∂T∂θ
∂2TC1(T,θ)

∂T2

]
is positive and satisfies the following conditions:

∂2TC1(T,θ)
∂θ2 = −T∗11β

(
cp − hc

)
< 0, ∂2TC1(T,θ)

∂T2 = 1
T∗11

3

(
M2SIe(βθ − D0) + 2K

)
> 0. Addition-

ally, the value of the hessian matrix is

− 1
4T4


(
4T4β2cb

2X1
4)+ 4X1

2(M2ST2β2 Iecb + 2β2T4cpθcb − 2T4β2θcbhc + T4Z1
)

+X3
(
8M2T2Sβ2θ Ie + 4β2T2cpθ2 + T2Z2 − 2T4βD0hc

)
+T4X3

2(D0
2 − 4βθD0

)
+ X4

(
4T4β2cpθ + 2M2ST2β2 Ie

)
+T4β2X5 + 4T4β2θhc

2(θ − 1)− 2T4Z3 − 4T4β2hθhc + 2T4Z4 + Y5

 < 0.

Therefore,
(
θ∗1 , Q∗11/T∗11

)
becomes a saddle point.

From the above proof, T∗ can be obtained by the fixed value of θ∗; θ∗ cannot equal θ∗1
because ∂2TC1(T,θ)

∂θ2 < 0. θ∗1 is the point of maximum cost; the lower the total cost, the greater
the distance from this point, and the best deterioration rate should be closer to 0 or 1 which
indicates that γ∗ → 1 or γ∗ → 0 .

For Case (II) (0 < t1 < M), the proof is similar to Case (I).
The optimum values of cycle time and order quantity when θ = θ∗2 are

T∗22 =

(
2βT2X3

√ √
2

X3βT2 K(TZ5+Z6)(−TZ5+Z6)

)
−S2T2a4β2 Ie2−4ST2β2 Iecb(aX1)

2−4T2β2cb
2X1

4+T2(X3Z8−Z9+X4Z7)+Z10
and

Q∗22 =

(√
2βTX2

√
K(−TZ5+Z6)

X3βT2

)
TZ5+Z6

. In this case, (θ∗2 , Q∗22/T∗22) becomes a saddle point.
Here, θ∗2 is the point of maximum cost; the lower the total cost, the greater the distance

from this point, and the optimal deterioration rate should be closer to 0 or 1 which indicates
that γ∗ → 1 or γ∗ → 0 .
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