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Abstract: We consider the limit of the empirical spectral distribution of Laplace matrices of general-
ized random graphs. Applying the Stieltjes transform method, we prove under general conditions
that the limit spectral distribution of Laplace matrices converges to the free convolution of the
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1. Introduction and Summary

The spectral theory of random graphs is a branch of mathematics that has been studied
intensively in the literature in recent decades. The asymptotic behavior of eigenvalues and
eigenvectors of matrices associated with graphs, adjacency matrices and Laplace matrices,
in particular (see definition below), as the number of vertices of the graph tends to infinity
is investigated. See for instance [1-8]. The adjacency matrix of the generalized Erdés—-Renyi
random graph is a special case of the generalized Wigner matrix (matrices with elements
that are independent up to symmetry, with zero means and different variances). Many deep
results have been obtained recently for such matrices. Methods of studying of the spectrum
asymptotics of the adjacency matrices are the same as for the spectrum asymptotics of
Wigner matrices—these are the method of moments and the Stieltjes transform method.
It should be noted that the most profound results for the spectrum of Wigner random
matrices were obtained by the methods related to the Stieltjes transform; see [3,9,10].

Laplace matrices have one significant difference—the dependence of the diagonal
elements on the remaining elements of the matrix. This significantly complicates the study.
For instance, the limit distribution of the empirical spectral function of the Laplace matrix
of a complete graph (non-random) was found firstly in 2006; see [11]. In most of the works
devoted to the study of the spectrum asymptotics of Laplace matrices of random graphs,
the method of moments is used; see [2,4,12]. In this paper, we consider the empirical
spectral distribution function of the Laplace matrices of both weighted and unweighted
generalized Erd6s-Rényi random graphs. We have obtained simple sufficient conditions
for the convergence of the empirical spectral distribution function of the Laplace matrices
of random graphs to a distribution function that is a free convolution of the semicircular
law and the standard normal law. The conditions are expressed in terms of the properties
of the graph edge probability matrix and the weight variance matrix (for weighted graphs).
To prove the convergence, we exclusively use the Stieltjes transform method.

We consider a non-oriented simple graph (without loops and with simple edges)
{V, E} with vertices |V| = n and set of edges E such that edges ¢ € E are independent and
have probability p,. Consider the adjacency n x n matrix

A= [Agl, (1)
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where

Define a degree of vertex j € V as

d] = Z Ajk'
k:(jk)eE

We shall assume that Ajk for1 <j <k < n are independent and EA]-k = pjk(”). Note that
Ed; = Y kkzj pjk(”). We have that matrix A is symmetric, i.e., Ajp = Ayj, and that r.v.’s A
for1 < j <k < n are independent. We introduce the quantity

. 1 ¢
==Y pp" (1 - pi). 2
mik=

We introduce the diagonal matrix
D = diag(dy, ..., dn),

normalized and centered Laplace matrix of not weighted graph G defined as

-~ 1
L=—|(D-A)-E(D-A)]|.
T |(D-A)-ED-a)]
We shall consider the weighted graphs G = (V,E,w) as well with weight function
wjx = wyj = Xjk, where, for 1 < j < k < n, there are independent random variables s.t.

2 2

The distribution of Xj; may depend on 7, but for brevity, we shall omit the index 7 in the
notations. We introduce the quantity

1 n
= Y. pi"et. ®)
i=1

The quantity a, may be interpreted as the expected mean degree of graph G. With graph G,
we consider the adjacency matrix N
A= [4%]

and normalized Laplace or Markov matrix

where
D= diag(l;lvl, .. .,l;n) with IZ = Z A1]Xl]
Ji#
We shall denote by A1(B) > Ay(B) > --- > A,(B) ordered eigenvalues of a symmetric
n X n matrix B. We shall consider the spectrum of matrices L, and L. For brevity of notation,
we shall write i; = /\j(f), and ji; = /\j(f). We introduce the corresponding empirical
spectral distributions (ESDs)

Gn(x) == 1 i:l]l{ﬁj <x}, Gu(x):=

n

S|

Y I{E; < x}. 4)
=1
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In the paper [11], in 2006, it was shown under conditions pi]-(”) =land (71-2]- =1, for any

1 < i,j < n, that ESD G,(x) weakly converges in probability to the non-random distri-
bution function G(x), which is defined as a free convolution of the Gaussian distribution
function and the semicircular distribution function (the definition of free convolution see,
for instance, in [13]).

In [4], in 2010, the authors considered the limit of G, (x) for weighted Erdos—Renyi
graphs (pl] ") = p,) with equivariance weights (0' = 0?). Assuming that p, bounded away
from zero and one, and that random variables Xl j have the fourth moment, they proved

that G, (x) weakly converges to the same function G(x).

In [14], in 2020, Yizhe Zhu considered the so-called graphon approach to the limiting
spectral distribution of Wigner-type matrices. The author described the moments of
the limit spectral measure in terms 2279-2375, of graphon of the variance profile matrix
X = (O'izj) and number of trees with a fixed number of vertices. Recently, Chatterjee and
Hazra published the paper [12] in which the approach of Zhu was developed.

In [15], in 2021, the author stated simple conditions on probabilities p;; for the con-
vergence of ESD of adjacency matrices to the semicircular law. In the present paper, we
consider the convergence of ESD G, (x) and G, (x) under similar conditions to the func-
tion G(x).

First, we formulate some conditions which we shall use in the present paper.

e  Condition CP(0):
a, — 00, as 1 — 0. (5)

e Condition CP(0a): There exists a constant Cj s.t.

sup max —p 2 < Cp < oo.
n>1 1<jk<n an ]k ]k =0

e  Condition CP(1):

lim
n—eo ndy,

22”7]1( ‘7' _7|_0

j=1k=1

e Condition CX(1): Forany T > 0

2 pl](n EX? H{|X1]| > Ty/ay} — 0asn — oo. (6)

~ nay =
Remark 1. Condition CP(1) is equivalent to the following two conditions together
e Condition CP(1a):

il (mMg2 _
,}gr;onZI Zpk 1/ =0. @)

=1 Mn k=
e Condition CP(1b):
— 42 pr—
nh_I};o na, JX;;W ZP]Z /l| 0.

The main result of the present paper is the following theorem.

Theorem 1. Let conditions CP(0), CP(0a), CP(1), CX(1) hold. Then, ESDs G, (x) converge in
probability to the distribution function G(x), which is the additive free convolution of the standard
normal distribution function and the semi-circular distribution function:
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lim G,(x) = G(x).

n—00

Corollary 1. Assume that (7]2k = o2 and ij(") = puforanyl < j,k < nandanyn > 1. Assume

that np, — oo as n — oo and assume that condition CX (1) holds. Then, ESDs G, (x) converge in
probability to the distribution function G(x), which is the additive free convolution of the standard
normal distribution function and the semi-circular distribution function:

lim G, (x) = G(x).

n—o0

Proof of Corollary. Note that in the case p]-k(”) = pn and ‘szk = 02, we have

ay = nppo>.

Condition CP(0) is fulfilled. Moreover, it is simple to see that all conditions of Theorem 1
are fulfilled. O

Theorem 2. Let conditions

Gy —00asn — oo, (8)
and
limLii\p(”)(l—p»(”))—a—"\zo )
n—oo nﬁn j=1k=1 ik jk n

hold. Then, ESDs G, (x) converge in probability to the distribution function G(x), which is
the additive free convolution of the standard normal distribution function and the semicircular
distribution function,

lim G,(x) = G(x).

n—oo

(n)

In what follows, we shall omit the superscript (1) in the notations of p; i writing

pij instead.

2. Toy Example

Consider graph {V, E} with clique number d = d(n) where |V| = n. The clique
number of graph G is the size of the largest clique or a maximal clique of the graph. Let M
denote the clique of the graph. Define the weights of vertices as follows

1, otherwise.

Wi_{d,ifiej\/l

We introduce edge probabilities as follows

&, ifi ¢ M,j ¢ M,
pij = WW,;/d> =S Lifie M,j¢ M, ori g M,j e M, (10)
1, ifi,j € M.

We assume that (7]2,( =¢2=1,forl< j, k < n. In this case, we have

_ n—d
Y Pk = (=5 +d)?, (11)
jk=1
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and d(d 1)
n R
a, = ﬁ(l + a,)?, where a, = — (12)
Proposition 1. Under condition
2
lim ©0) (13)
n—,oo n
conditions CP(0), CP(0a) and CP(1) hold.
Proof. We have
L o T i@(zan +a2)(n — d)>? +z|f ~ Lt w)dn - ay+
nan 42 J na,  d? n a2
1
d*(1 - d2(1+an) )
wn (14 20,)(n —d)? _1 d*>(n —d)
TE R R L GRS P T B
P AR SR (14)
7’12(1 + 0671)2 d? ne

It is straightforward to check that for d = d(n) satisfying the condition (13), we have
ay, =0(1),a, — o0 asn — oo and

lim
n—o Ny,

Yo lp k—f|—0. (15)
k=

jk=1

That means that the conditions CP(0a) and CP(1) hold. Furthermore,

< d. 16
121,?@12% it 16)

It is straightforward to check as well that

sup maxj<k,1<n Pkl <. (17)

n>1 an
Thus, Proposition 1 is proved. [

3. Proof of Theorem 1

We shall use the method of the Stieltjes transform for the proof of Theorem 1. Introduce
the resolvent matrix of matrix L,

R:=R;(z) = (L—z1)7,

where I := I, denotes a n x n unit matrix. Let n,(z) denote the Stieltjes transform of the
empirical spectral distribution function of matrix L,

()= [ -Gy (x) = SR
= = —TrR.
" o x—z n
For the proof of Theorem 1, it is enough to prove the convergence of the Stieltjes transforms
for any fixed z = u + iv with v > 0; moreover, it is enough to prove that m,(z) converges
to some function, say s(z), in some set with a non-empty interior. According to Lemma A2,
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it is enough to prove the convergence of the expected Stieltjes transform s, (z) = Em,(z) =
E%TrR only. Using Lemma A1, the result of Theorem 1 follows from the relation

$n(z) —sg(z+su(z)) — 0asn — oo,

where s¢(z) denotes the Stieltjes transform of the standard Gaussian distribution,

s(z)—i/w L (=T ydx
ST 7oox—Zep 2 '

First, we need some additional notations. By LU/), we denote the matrix obtained from
L by replacing diagonal entries Lll/ I=1,...,nwith Ll(l) = f Yr#j A1rXjy. Note that the
diagonal entries of matrix LU) (except L ) do not depend on the r.v. values Xji, Ajx for

k=1,...,n. We denote by DU) the dlagonal matrix with diagonal entries Dl(l) = \/TjAlejl'

Denote by RU) the resolvent matrix corresponding to the matrix LU/,
RU) = (L) —z1)~1

We have
R =RO_RDDIRD. (18)

Using this formula, we may write

T IR < U 1)
Rjj =R~ N r; Ajp X Rjp R, (19)
According to Lemma A5, we obtain
lim‘fTrR—fZR ‘_0 (20)

n—oo

Furthermore, let us denote by LU the matrix obtained from LU/) by deleting both the j-th
column and j-th row. RU0) denotes the resolvent matrix corresponding to the matrix LU-0).
Using the Schur complement formula, we may write

1

() _
Ry = i

— — (21)
;2 Y1t IRUO (2)] i Lin Lk

Introduce the following notations

gjl = Z [E(iﬂ)]kliﬂfjk, E' ; Z P]k) ik
Iyékhéjk#j " Kk
€3 = ; Y [RUO)gepin(X '~ %),
n kk#]
gy = — Z Nk (Piko - Y. pici),
M ok =1
1 =0y, 1 1 5
& =4 L Ry (;Zvﬂ%z*l)
Kk =1
1 n
5]‘6**ZR *EZRkkz
" k) k=1

&7 = Z[R]kk - E% i[R(Z”kk
k=1 k=1
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Put g = Zzzl €jy- Let
Gj = Z](]” = Xk
In these notations, we may write
s 1
ERN. = R0 =
R (i —z—sn(z) —¢;
We continue as follows
~(i 1 £ i
ERY = E L1 2
7 gj—z—sn(z)Jr gj—z—su(z) /I @2)
Summing the last equality in j = 1,...,n, we obtain
1 € ~
sn(z) =E +E L RY +E(Ryy - RY)), 23)

{r—z—sn(z) {y—z—sn(z)

where J denotes a random variable which is uniform distributed on the set {1, ..., n} and independent
on all other random variables. Denote by F;,(x) the distribution function of {j and let

Ap = sup |Fy(x) — P(x)],
X

where ®(x) denotes the distribution function of the standard normal law. Denote the Stieltjes
transform of the standard normal law by s¢(z),

sg(z)z/oo L o).

—oc0o X — Z
Note that

mﬁg(z +5u(2)) :/_OO L d(R(x) - (). 24)

Integrating by part, we obtain
1

‘Em —sg(z+5u(2))] < 207%A, (25)
According to Lemma A3,
1
|Em—sg(z+sn(z))| — 0asn — oo. (26)
n
Note that
ey a2
N O R @7)

It remains to prove that Elej| — 0 and E(Ryy — RJ(H%) — 0asn — oo. The last claim follows from
Lemmas A6-A11, Lemma A2 and equality (20).
Thus, Theorem 1 is proved.

4. The Proof of Theorem 2
Similar to the previous section, we may write that diagonal entries of matrix T

=~ 1
gj= N k;(Ajk — Pjk)- (28)

LetR = (L — zI)~! denote the resolvent matrix of the matrix L. Let j € {1,...,n} be fixed. We
denote by LU) the matrix obtained from L by replacing diagonal entries L;;, l = 1,...,n with
il(l]) \/37 Yrtj(Ay — pip). Let D) = L —LU). By definition, D) = dlag(ﬂ]),...,(ﬂ[)) is a

an —

diagonal matrix with d;;” = %( 1 — pji), for I =1,...,n. Note that diagonal entries of matrix LU

(except L ) do not depend on the r.v. values Aj fork =1,...,n. By L LU0, we denote the matrix
obtained from LY) by deleting both the j-th column and j-th row. R( i) denotes the resolvent matrix
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corresponding to the matrix LU/). Analogously to (21), we represent the diagonal entries of resolvent
matrix RU) = (L) — zI)~1 in the form

ﬁf‘;j):w) 1 2007 7 @9
L =2 = Lkajrz R LitLjk

Introduce the following notations

~ . - N 1 .
g1 = Z '[RU'O)}kl LiLj, €= = Z'[R(]’O)}kk((Ajk —pi)* — pik(1 = pix)
I#k'l#] k#j " kek#j
- a
51'3:an )y R kal_ka) n)'
k:k#j
N 1 =0 1 & 5
Ga= ) R,(J()—EZRM,
kek#j k=1
- 1 & - 1 & -
E]'5 = E E Rkk _EE Z Rkk'
k=1 k=1
Putg =Y, &, Let
_ 70 1
C Ly = —= (A k)
1=y = U Ak
In these notations, we may write
yy 1
E[RU)]jj =F——

gj—Z—/S\n(Z) —/8\]

where 5, (z) = E%Trf{. We continue as follows

RO — 1 & ()
E[R]]JJ_EZ]-—Z—§"(z) s @ (30)

Summing the last equality in j = 1,...,n, we obtain

~

~ 1 £y ) 5 &)
Sq.(z) =E= — +E= +E(Ryy — Ryy), (31)
) Cg—z—53n(z)  Cy—z—5u(2) R gt

where J denotes a random variable which is uniform distributed on the set {1, ..., n} and independent
on all other random variables. Similar to inequality (25), we have

1 1~
Ex————— —5,(z2+5,(2))| < HA,. 32
B o SIS b @
According to Lemma A12
1 ~
Eﬁ—Sg(Z“rSn(z)) — 0asn — oo. (33)
gj—z— sn(z)

Furthermore, since Im z + Im s,(z) > v and |R \ < v~ *, wehave

~

€ ~(J o~
\]Eig . I e R <o 2Efgy). (34)
J — 4 75°%n
By Lemmas A13-A17,
lim Eley| =0. (35)

Furthermore, we note that
R=RY —RUDUR. (36)
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This relation implies that
R _pWy < R_RW| <2 D)
IE(Ryy — Rjy) < gjaganllR RV <o fgj.aSXnEIID I 37)
It is straightforward to check that
E|[DY)|| <L]E max |Aj — pil <L%Oasn%oo. (38)
= a, 1<i<n' ! M=\,
Combining relations (33), (35), (38), we obtain
s (2) 1= su(z) —sg(z+su(z)) = 0asn — oco. 39)

The last relation and Lemma A1 completed the proof of Theorem 2. Thus, Theorem 2 is proved.

Funding: This research received no external funding.
Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A
Definition of Additive Free Convolution

We give the definition of the additive free convolution of distribution functions following the
paper [16] (Section 5).

Definition Al. A pair (A, ¢) consisting of a unital algebra A and a linear functional ¢ : A — C with
¢(1) = 1 is called the free probability space. Elements of A are called random variables, the numbers
@(aj1y" - “aj(yy) for such random variables ay, ..., ar € A are called moments, and the collection of all mo-
ments is called the joint distribution of ay,...,ay. Equivalently, we may say that the joint distribution of
ai, ..., ax is given by the linear functional yg,,. a0 : C(Xq,..., Xx) = C with g, 0 (P(X1,...,Xy)) =
¢(P(ay, ..., a;)), where C(Xy, ..., Xy) denotes the algebra of all polynomials in k non-commutative indeter-
minantes Xy, ..., Xk.

If for a given element a € A there exists a unique probability measure j; on R such that
[ t*dua(t) = (a*) for all k € N, we identify the distribution of a with the probability measure j,.

Definition A2. Let (A, ¢) be a non-commutative probability space.

(1) Let (A;)ie be a family of unital sub-algebras of A. The sub-algebras A; are called free independent if,
for any positive integer k, ¢(ay - - - ax) = 0 whenever the following set of conditions holds: a; € Ay,
(withi(j) € 1) forj=1,...,k, @(a;) =0 forall j =1,...,k and neighboring elements are from taken
different sub-algebras, i.e., i(1) #i(2),i(2) #i(3),...,i(k—1) # i(k).

(2)  Let (Al)ie; be a family of subset of A. The subsets Aj are called free or freely independent if their
generated initial sub-algebras are free, i.e., if (A;)ic] are free, where for each i € I, A; is the smallest
initial sub-algebra of A which contains A..

(3)  Let (a;)jcy be a family of elements from A. The elements a; are called free independent if the subsets

({ai})ie1 are free.

Consider two random variables a and b which are free. Then, distributions of a + b (in the sense
of linear functionals) depend only on the distribution of a and b.

Definition A3. For free random variables a and b, the distribution of a + b is called the free additive
convolution of yu, and py, and is denoted by

Hamp = Ha B pip.
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To compute the free convolution of concrete distributions, we may use the so-called R-transform
introduced by Voiculescu [17]. Let s(z) be the Stieltjes transform of some distribution function F(x).
Denote by s~!(z) the inverse function of s(z) in the science of composition. Define R-transform
as follows

R(z) = —s 1(z) — o

Let F(x) be the semicircle distribution function. Its Stieltjes transform satisfies the equation
s2(z) +zs(z) +1=0
Denote by Rsc(z) the R-transform of the semicicular law. Simple calulations show that
Rsc(z) = z.

We denote dy Ry, (z) the R-transform of the free convolution semicircular law and Gaussian law. Let
Rq denote the R-transform of the standard normal law. Then

Rye(z) = Rec(z) + Rg(2).

See for instance, refs. [18,19]. Using the definition of the R-transform via the Stieltjes transform,
we obtain

—s/?cl (z2) =z— sgl(z).

It is straightforward to show that this equality implies
sfe(2) = sg(z + 57c(2))- (AT)

We prove the following simple but important lemma.

Lemma Al. Let a sequence of Stieltjes transforms of the distribution functions Fy,(x) satisfy the equations
sn(z) = s¢(z +5u(2)) + 2n(z), (A2)
where
»n(z) = 0asn — oo.

Then, the distribution functions F,(x) weakly converge to the distribution function Fs.(x), which is free
convolution of the semicircular law and the standard normal law.

Proof. Itis enough to prove that the Stieltjes transform s, (z) converges in some region with non-
empty interior to the Stieltjes transform s¢.(z), which satisfies equation (A1). We shall consider the
region of z = u + iv with v > /2. Since the derivative of 5¢(z) does not exceed the level 1/ v?, we
may write

[5n(2) = sm(2)| + [5 (2)| + [50m ()]

N —

|sn(z) = sm(z) <
or
|sn(z) = sm(2)] < 2|5en(2)| + 2|52m(2)] — 0as n,m — . (A3)

The sequence of the Stieltjes transforms s, (z) is Cauchy; consequently, there exists a limit say s¢.(z)
of this sequence,
nlgrolo sn(z) = sfc(2).

Taking the limit in the equation (A2), we obtain

sfe(z) = sg(z +57c(2))-

The last equality implies that s¢.(z) is the Stieltjes transform of the semicircular law and the standard
Gaussian law. Thus, Lemma is proved. [

Appendix B. Weighted Graphs

Appendix B.1. Variance of Stieltjes Transform of Empirical Measure

In this section, we estimate the variance of #1,(z) = 1 TrR, where R := Ry (z) = (L — zI) 1. We

o
prove the following Lemma.
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Lemma A2. Forany z = u + iv with v > 0, the following inequality holds
. 1 1
lim E|=TrR — —ETrR| = 0. (A4)
n—eoo 1 n

Proof. The proof of this lemma is using the martingale representation of ¢ — E¢. This method in
Random Matrix Theory was firstly used by Girko, see for instance [20]. We introduce the sequence of
o-algebras 90 generated by random variables X;; for 1 < j,I < k. It is easy to see that Mt C My 4.
Denote by Ey, the conditional expectation with respect to o-algebra 9. For k = 0, Eg = E. Introduce
random variables

1 1
Y = Eg ETrR —Er_q ETrR. (A5)
The sequence of vy, for k = 1, ..., n is martingale difference and

1TrR — ElTrR = i
n n - = s

Introduce the sub-matrices L() obtained from L by deleting both the k-th row and k-th column.
Denote by R) = R()(z) the corresponding resolvent matrix, R¥)(z) = (L(*) — zI)~1. Note that
the matrix LK) depends on the random variables Xy;, I = 1,...,n via diagonal entries. To overcome
this difficulty, we introduce the matrix L(*0) obtained from L) by replacing diagonal entries with

7k (k,0)

. 1 . . . .
i = Y114k1#j AjiXji- The corresponding resolvent matrix is denoted via R¥*). We have now

E, TrR*0) = g, RKO),
This allows us to write
7 =Ex( (TR — TrR®) — By (1 (TR~ TrR®))
B (TRE —TrRE)) — By ((TRE — TRED)) = oV 4 2,

By the overlapping theorem, for z = u + iv,

1 1 1

- _ Z1er® < =
nTrRL(z) nTrR (2)| < pet (A6)
From here, we immediately obtain
W 2
|'Yk | < s
and
3 2. 4 A7
E —.
k:Zl |r)/k| = I’IUZ ( )
To complete the proof, it remains to show that
- (2)2
nlgrgol;Elvk |>=0. (A8)
Note that 1 1
Ely\ P2 < 2E| TR — ~TREOP (A9)
Introduce the diagonal matrix D) with diagonal entries
1
DM =~ AuXy, 1#k
11 \/E k1Kl ?é
In these notations, we have
RO I mREY) = CGREDEOREO = R AyxgREY. (a10)

1 ¢
n Mg
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This implies that

n
Y ElP2 < ZEI Y Ak X ( ZR!; TP (A11)
k=1

L

We continue this inequality as follows

n 2
Y ElyPR < Z ]E‘ Y A ( 2 R RV A Xl < Tv/a})|
k=1

nk=1 ' jZk

(A12)

0 e = Xk] Z Rl] ]1 H{Ak]|Xk]| > T\/E}
]

Applying Cauchy’s inequality to the second term in the right-hand side of the last inequality, we obtain

Y Bl Y A ZR RN Al Xig| > Tv/an)

2
”a"k 1 jk

k,0),2
< 7;1 ;(EA}J{XI%]’ ZRIJ (-1 PI{ Ay Xyl > Tv/an}. (A13)
j

It is straightforward to check that

IZRI, TP <o (A14)

Using this bound, we obtain

nZan k2E|§kAk]Xk, ZR,] AR Xl > TV/and < 8074 La(7), (A15)
]

We estimate now the first term in the r.h.s. of (A12). Using that

RK) = R(KO) L RO pKRIR(K) (A16)
we may write
8
2, E} ZAk]Xk] ZRl] ]z )H{Ak]|Xk]| < T\/E}
n k= ]#
: E] Y Ak ( ZR )1 Ay1Xy] < Tyan)|
nian =
=z 3 E) Y AgX( L 2 X ARV RO R A X < /)| (a17)
” In k=1 'j#k I#ks=1

By the independence of random variables A]-kX]-k forj=1,...,n and matrix ﬁ(k'o), we have

8 kO k0 2
2 E) Y AkiXii( ):R ))H{Akj|xkj| < tVan}
k= ﬁék
< —nzw 2 Zp,ko]ﬁ I Z; Ep]kE 2| X > T/an})?
k=
8 Ln( )
<t () (A18)

For the second term in the r.h.s. of (A17), we have
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8 - k0) 1 (k) 1 (k0 2
22 E) Y AGXi (Y ) XisAgsR!! )jo)R](, ))H{Akj|xkj| < tVan}
k=1 ];ék 17k s=1
__8_ R0 R(k0) 2
= E‘ Y Ak Xis ( Z Xij Ak Z Ri R Riy ™ I{ Agj Xy < T\/E})‘
n2a; {4 sk
1n
k,0 2
2 Y E Y AplXis | Z Xyj Akj Z R ]('1 )H{Akj\xkﬂ < tv/an}|". (A19)
n k=1 sk
Note that
= RO RORM < (3 ROR)E (Y 13
LIRS RIRP < (L RPP)T (L IREOT )" <o (A20)
r=1 1#k r=1 r=1
Using this inequality, we obtain
RO REON P T =
E‘ ZAk]Xk] Z Z XkrAkr rj Rﬂ, )‘ H]I{Akrlxkr‘ <t Hn}
a3 k= ]#k I£kr=1 r=1
2
< Y Y pc = (A21)
mz,,v6 P e J
Combining inequalities (A7), (A12), (A20), we obtain
E|TiR — ETrR | < £ $ CT ClnlD) (A22)
v v
Passing to the limit first in n — oo and then in T — 0, we obtain
lim F| 1(TrR —ETrR)|? = 0. (A23)
n—o00 n
Thus, lemma is proved. O
In what follows, we shall assume that z = u + iv is fixed.
Appendix B.2. Convergence of Diagonal Entries Distribution Functions of Laplace Matrices to the
Normal Law
Lemma A3. Under conditions CP(0) and CX(0), we have
2
1 L MaXj<k<y Pik0;
lim = Z _iskEn Pk (A24)
n = ay
j=1
Proof. We fix arbitrary T > 0. We may write
1 & maXj<k<n PjkV, k
-y —’ XjePI{ | Xl < Tv/an}- (A25)
n 4
j=1 mj=1k=1
By condition CX(0), we obtain
2
" Maxi<k<n Pjk0;
limsup — e < 2,
n—oo M3 an
]
Because T is arbitrary, we obtain the claim. [
Lemma A4. Under conditions CP(0), CP(2) and CX(0), CX(1), we have
lim sup |Fy(x) —®(x)| =0 (A26)

n—oo
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Proof. Let J be an independent on Aj and Xj random variable uniform distributed on the set
{1,...,n}. We consider the characterictic function of {j = \/%7 Yie1 Api Xy fu(t) = Eexp{itly} =
% 2;7:1 Eexp{it;}. Introduce the following set of indices

M= MiNMynMs, (A27)
where
. 1
My = {]e{l,...,n}: —\Zp]k ik~ 1 < 16}
Mzzz{je{l,...,n}:—zp]km Xl > TV < 1¢ b

. 1 1
Mz = {] e{1,...,n}: alr?&xnpjktszk < 167} (A28)

We denote by A° the complement set of A and by |.A|, we denote the cardinality of set .A. Note that
by condition CP(1)

‘Mi‘ ii| 02— T 50, asn - 0o (A29)
n na,,.z = Pk~ ’ ’
Analogously, by CX(1),
MC
| | <16L,(t) — 0, asn — oo. (A30)
Finally, by Lemma A3
‘Mg’ | < 16221 ”— glr?ax pike k — 0asn — oo. (A31)

Combining the last three relations, we obtain

c
Jim M

n—oo n

=0. (A32)

Note that by the independence of Aj and Xj,

fnj() *Eexp{\/f HEGXP{W ]kX]k}* an]k

Furthermore,
fujie(t) =1+ P]k(EeXP{ \ﬁ Xje} —1), (A33)
and by condition CP(0)
2 2
|fuj(t) = 1] < Epjkgjzk 20y 1005, ik, % = 0asn — co. (A34)

Without loss of generality, we may assume that

1
1< A
1<]mk<n [fuje(5) =11 < 4’ (A35)

and applying Taylor’s formula, we write that

In fujx(t) = pjk (EGXP{\/%Xjk} - 1) +20(1)p% EQXP{ (A36)

\/7 ]k}
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where 6() denotes some function such that |6(¢)| < 1. Futhermore, by Taylor’s formula
Eexp{ X} ~1= — £ o2 1+ 0,0 DB, P1{|x,] < Tvan)
P\/f]k 2a, Tk T 6a 7k Kkl = n
n
+62(t)|E eXP{\F X} — \ﬁ ]k"’ X5 | H{IX| > Tv/an}, (A37)

| fu(t) =

where 6;(t), i = 1,2 denotes some functions such that |6;(t)| < 1. Using this equality, we may write

t2 t
In f(t) = — Epjkajzk +01(t) 7~ | i P]k

t2
+92(f);ijE\Xjk|2H{| ikl = TVan} + 03(t )4 ZP]k 2 (A38)
n

Summing this equality by k = 1...,n, we obtain

||3n

Z P]k ]k

n
+ 6 (t Z PikEIX P | Xje| > Tv/an}

lnfn] —Eazp]k k+6

4 Maxq<jk<n P]k 1 &
+03(t) Y poh (A39)
n =
For 17“‘ > T > 0, we have
2 2
[In fug(6) + 5| < 5. (A40)

This implies that for j € M

2 1 & 1 &
|fnj(t) —exp{—+} < C(tz(}f Y- i — 1+ — Y paBI Xl PI{| Xje| > tv/an})
2 an = In 2

4 2
t*maxg <jr<y ijtfjk)

+T)tP + (A41)
n
From this inequality, it follows that
2| M|
exp(~ Ly < 2
1 & /01 & o2 1 & >
+ Y (f (’; Y pirci — 1] + - Y PikEIX PI{ | X | > Tv/an})
j=1 k=1 n =1
t4 maxy < k<p k0%
P+ EAS g ”‘). (A42)
an
By conditions CP(0) and CX(0), relation (A32) and Lemma A3, we obtain
t2
Jim fu(t) = exp{—7}. (A43)
Thus, the lemma is proved. O
Lemma A5. Under the conditions of Theorem 1, we have
lim — Z E[Rj; — =0. (A44)

n—co 11 =
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Proof. By || V|, we shall denote the operator norm of matrix V. Matrices RU) and DU are defined in
the beginning of Section 3 before the relation (18). Note that

IRDYRY | < 02D (A45)
It is easy to check that
1y g <1y R0)
ZZE|Rjj—R].], |§EZ]E||R—RJ B (A46)
j=1 j=1
Using that
R = RO_RDWRD, (A47)
we obtain . o
IR - RW|| <o 2D (A48)
Futhermore, for any T > 0, we have
E|DY)| < LB max {1Xq]Aq} < T+ L Xn:p-lEXZHHX,\ > T/an}. (A49)
T Van agisulzic T ey g PR

Summing this inequality inj = 1, ..., 7, we obtain
71 En E|R;; — ﬁ(i) <v%(t+ 71 L A50
n & |R;j ij | <v™(7 = n(7))- (A50)

Since T is arbitrary, this inequality and condition CX(0) together imply (A44). Thus, Lemma A5 is
proved. O

Appendix B.3. The Bounds of 1 E}“:l Elejy | forv=1,...,7

Lemma A6. Under the conditions of Theorem 1, we have

1
2\ 2
1 & T 1 [ MaXi<jk<n PjkCjk 1
Y Eleg| < -4+ = | ==K )
n}; len| < v+v< . Lu(7)? (A51)
Proof. By definition of ¢ 1, we may write
1 .
8]'1 = Z [R(]’O)}klA]‘kAﬂXijﬂ. (A52)

I 1kl Ziki
Applying the Cauchy inequality, we obtain
1
2

(A53)

|

n 1 n 5
ZIE\&M S ZE|€/1|
h n’

]:] ]:1

Simple calculations show that

[T

1 n 1 n . ,/0
- Y Elejy| < (2 Yy Z]E|R;(<]l )|2ijle<7]-2;ch21) , (A54)
n

J=LkA £

We introduce the following notations

(7.0
Wi = (REOP) iy Hi= (0. pjuc)”

20T, (A55)

In these notations, we write
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Using that
no_. 1
YRR < 25, (A56)
v
I=1
we obtain that the spectral norm of matrix W) satiesfies the inequality
i < L
WY < —, (A57)
v
and ;
N Tl ' e < L 2 4
1O WOHO | < [WO P < 5 ) pha (A58)

Using the last bound, we obtain

1 1 & & 5 4 :
*ZE|511| > ﬁzzpjk‘fjk . (A59)

Furthermore, we apply the bound

0% < Ty + EXRI{|Xj| > T/an}. (A60)
We obtain 1

Ly 1r 2 SR 2 2

w L Blenl < (P L X PR X > Ty} ) (A61)

We continue as follows
2\ 3
1 X T 1 ( MaXy<jk<n PjkTik 1
ZEMﬂ<+<’]f La(7)%.
ni= U0 an

Thus, Lemma is proved. [

Lemma A7. Under the conditions of Theorem 1, we have
1 & 1 T
0 ; lejp| < EL"(T) t5 (A62)

Proof. We recall the definition of ¢ 2/

=— Z — pin) X (A63)

=t

Using triangle inequality and Cauchy’s inequality, we may write

1 n
” Y Elep| <M Z ): PREXGI{| X > tv/an}
j=1 nv j=1k=
1
2\ 2
ZE Y- RUON(Aje = pi) X3I{ | Xjel > T/an} (A64)
kk jk = Pjk) A jkl = T+ an .

nay (5 ki

Since IEI[INQ(f'O)]kk(Ajk - pjk)XJZk]I{ |Xx| > T\/an} = 0 and random variables A, Xj; are independent
for k = 1,...n and independent on [RU:0)], we obtain

j=1 j=1kik#j

1
2
1 & 1 T 1 &
o Y Elejl SgLn(T) +5 ( Yy ij‘fj2k>

= Lu(t)+ (A65)

ISHE

Thus, the lemma is proved. O
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Lemma A8. Under the conditions of Theorem 1, we have
1 & T
- ; leja| < L,, (M) + = (A66)
Proof. By definition of ¢ i3, We have
1 .
e =), [RUD (2)]epc (X5 — 03), (A67)
" ek
We may write
1 n n n 2
CY Bl | 2 — AI{|Xp] > T/}
=1 ni=1k=
1 1 1 &
E Z Z ]kR )H{| k‘ < Tan} (A68)
]: k=1
Furthermore,
1 n n 5 5
s Y. Y PREIXG — ol TI{ | Xj| > Tv/an} < La(7)
j=1k=1
1 1n n
o Z”; PikOREI{| Xj| > Tv/an}. (A69)
]

Using inequality (A60), we obtain

1
nay

n
ZP]k‘szkEHﬂX]H > T\/E} <L, (T)

1k=1

-

]

1 n n
” Y Y paBIXPI{ | X| > tv/a B[ Xje| > t/an} < 2Ln(7).
=1k=1

We estimate now the second term in the right-hand side of (A68). Applying triangle inequality,
we obtain

(X3, — 2| Xi| < Tv/an}

1 n n ~(i,0
3 el Lof

n

1 n
s Z Z P;kER >E(X]2k ‘7]'2]<)H{|Xjk| < tan}
]:
1
n n . 2 :
Ly gL v RUO x2nfx, | < CEX2I{| Xy < A70
+ nZ unZ w (X[ Xl < Tv/an} Xk < Tv/an}) (A70)
j=1 k=1
Simple calculations show that
2
*ZEWZR XA X < tv/an} — EXGI{|X kIST\/ﬂ})‘
j k=
1 n 1n 2 4
< ni ;klejkEIXjkl {1 Xj| < tv/an}
]: —
T2 1 n o n 5 T2
.1 i A71
~ v2 nay ];kg:lp]k k2 (A71)
Finally, we note that
E(XG — o)W X| < tv/an} = E(XG — o) I{ | Xx| > tv/an}. (A72)
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Combining inequalities (A68), (A70), (A71), we obtain the result of the lemma. Thus, the lemma is

proved. O

Lemma A9. Under the conditions of Theorem 1, we have

1 1 &
0 ZE|5]’4| < Z Z |P;k Zz; le‘szz|-

Proof. By definition of ¢ 4, we have
o 2
- Z Ry P]kUZ ZPﬂsz)-
l:l

Using that |I§g{’0>| < %, we obtain

n n n 1 n

Y Elejs| < X ) Pk - Y- picil-
' i=1

O

Lemma A10. Under the conditions of Theorem 1, we have
*ZE\€;5|<*Z‘*ZP11 ’

Proof. Recall that
_l v g0y o
&5 = 2 R (alzipﬂ =1

Ly

Using that |I§}((jk’0>| < v~ 1, we obtain

1 & 1 &1 &
~ ) Elesl < — ) *ijztszzfl‘~

Thus, the lemma is proved. O

Lemma A11. Under the conditions of Theorem 1, we have

— ZE|£]6| < nvz n (7).
Proof. By definition of ¢ j6s We have
e 1 y. [RUO] — 1 i[m
jo =7 2 [ kk
k:k#j k=1
By the triangle inequality, we obtain
1 iﬂﬂs | < 1 iE\lTrf{U'O) TrR ZIE| TrRU)
n &= ]6_11].:1 n n i

By the overlapping theorem, we have
Lrr09 ~ lpgo < L
n n no’
It remains to estimate the second term in the r.h.s. of (A81). Note that

RO —R =RODUIR,

(A73)

(A74)

(A75)

(A76)

(A77)

(A78)

(A79)

(A80)

(A81)

(A82)

(A83)
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This equality implies that
0 1 vy ()
TrRY — TrR = Yo Y RuApXpRy - (A84)
==t
Summing this equality in j, we obtain
Ly g lyR0)
- 2E|;TrR - TrR| < — Z E| Z Z Ry ApXjRY . (A85)
=
Using that
1
). IszRkl)l <= (A86)
=1 v
we obtain
1f L R0) 1TrR| ZZ E| X |I{| Xi| < T/an}
n = I n T 2\ﬁ] 1= ikl &kl Rjkl = TV an
1
nzvzll,ﬂ’ Z Z p]kEX Xk > Tv/an} R e (7). (A87)
Thus, the lemma is proved. O
Appendix C. Unweigthed Graphs
Appendix C.1. Convergence of Diagonal Entries Distribution Functions of Laplace Matrices to the
Normal Law
We denote by F,(x) the distribution function of random variable {j and
Ay = sup |Fy(x) — ®(x)]. (A88)
X
Lemma A12. Under the conditions of Theorem 2, we have
Jlim sup |Fu(x) — @(x)[ = 0. (A89)

Proof. We consider the characteristic function of j, f,(t) = %Z?:1 Eexp{itfj}. Introduce the
following set of indices

—~

. 1 1
M=={je{t,.n :a—gp]kl—p]k ”\SE}. (A90)

We denote by A° a complement set of A and by |.A|, we denote the cardinality of set .A. Note that,
by condition CP(1),

M

n nan

H'M:

n
Z p]kojzk — %n| — 0, asn — oo. (A91)
Note that, by independence of A]-k,
n
(1) i= Eexp{—— E exp{—— (Aje = pjr)} = k()
Juj P \ﬁ H p f P kr:Ilf"]
Applying the Taylor formula, we may write
[t

t2 (1= p:
PO o) M — (A92)

Fuje(t) =
2ay, 62

where 6(t) denotes some function such that |6(¢)| < 1.
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Using this equality, we may write

~ 2 |t)3
In fi(t) = — ﬁpjk(l —pix) + 910)7%17]%(1 — Pjx)
64}
tp2 (1 — pjr)? top% (1 —pi)?

an n

Summing this equality by k = 1...,n, we obtain

~ 2?21 ¢ n It &
In f,(t) = — 2727, Y (pi(1—pj) — ;) +61(H)— Y k(1= pix)
k=1 607 k=1
t4 n 5 2 t6 n 2 2
+92(t)ﬁ*2 Y Pi(1—pix) +93(t)f3 Y Pl —pp)* (A94)
n k=1 n k=1
Note that for j € M,
1 & 17 .=
— Y pi(1—pj) < 7=, forj e M, (A95)
an k=1 16
and e
[
lim M 0. (A96)
n—oo n
Similar to (A42), we may write
ot —exp(— oy <ML L g - 2
" Pimoi =7 2 niy f | Pik Pik n
CltP ¢t CJt°
+ =t =+ =5 A97
VT E o
This inequality implies that
I >
Jim fu(t) = exp{—7}. (A98)

Thus, Lemma A12 is proved. O

In what follows, we shall assume that z = u + iv is fixed.

Appendix C.2. The Bounds of 1 T ElEyl forv=1,...,5
Lemma A13. Under conditions of Theorem 1, we have

1

Vg < (1) A99
Py el < (gozz) - (499)

Proof. By definition of ¢;; we may write
= [RUO ) (A — pix) (Aj — pj)- (A100)
" I#k# k]

Applying the Cauchy inequality, we obtain

1

1 & 1 9 :
;;E\ems ;gﬂﬂem : (A101)
= =
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Simple calculations show that

%
n .
Y3 ZE|R;(<]{0>|2P]‘1<P]‘1(1 —pi)(1 - le))

C=iey

n
Ly EE < (
n“

=1

=

1

( i ZZE|R Pk 1—P]k)) Z

naj; (357,17

IN
i~

1
2 1
1 2
< E E < . A102
> (411&”172 P;k — Pjk ) = (4‘17102) (A102)

j=1k#j

Thus, Lemma A13 is proved. O

Lemma A14. Under the conditions of Theorem 1, we have

1 & 1
— 2 EfEpl < —. (A103)
n ]; 72 \/EU
Proof. We recall the definition of Ejz,
- Z A= pjx)* = pi(1 = pii))- (A104)

e kkZj

Using the triangle inequality and the Cauchy inequality, we may write

Ly g, <[ Ly Y BRI Pps(1 — pi) (1 — 2p)2
Z |€]2‘ ) Z | Kk | P]k( P]k)( P]k)
2 4

1
2 1
1 1 & & 1 \?2
< — 1- === . A105
< (Envz 1o ];]; P]k( P]k)) (anvz) ( )
Thus, Lemma Al4 is proved. O
Lemma A15. Under conditions of Theorem 1, we have
1 & 11 & & a
EZ]E\EM <o Y 2|ij(1fpjk)*;n\- (A106)
j=1 mj=1k=1
Proof. By definition of € 3, we have
N a
3= - Y RV (pie(1 = pje) ;n)- (A107)
n kok£j
We may write
1 & 11 & & an
— )V Elgg| < =— w(1—pa) — —|. A108
n/; ‘ ]3|7 v 1y ];k:ZlW]k( p]k) " ( )

Thus, Lemma A15 is proved. [

Lemma A16. Under the conditions of Theorem 1, we have

1 n
— € < = A109
" ; €4l 2o ( )
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Proof. Recall that
o1 560 _ 1y 5
&= Y Ry - - ) Ri- (A110)
kek#j k=1
Note that . 1 1
|=TrRU) — ZTrRUY) | < — (A111)
n n no
Furthermore, , o
R-RY) = RDVRD, (A112)

Recall that ||AH denotes the operator norm of matrix A. The last equality and inequality
max{|[R||, [RY||} < o~ implies that

TR~ RO)| < [R RO < [RIIDY RO < 02DV, (A113)
Note that

1 1
E A —pal < ——. All4
i @?gxn' jk = Pjkl < T (A114)

Combining the last two inequalities, we obtain the claim. Thus, Lemma A16 is proved. [

E|DY| <

Appendix C.3. Variance of %Trf{

In this section, we estimate the variance of m,(z) = %Trf{, where R = R(z) = (L —zI)~1. We
prove the following lemma.

Lemma A17. Forany v > 0and z = u + iv, the following inequality holds
. 1. = 1=
lim E|-TrR — E-TrR| = 0. (A115)
n—»o0 n n

Proof. The proof of this lemma is similar to the proof of Lemma A2. We introduce the sequence of
o-algebras 90 generated by random variables A;, for 1 < j,I < k. It is easy to see that Mt C My 4.
Denote by Ey, the conditional expectation with respect to o-algebra 9. For k = 0, Eg = E. Introduce
random variables 1 .
Fp 1= Ek(ETrIA{) — ey (ZTrIA{). (A116)

The sequence of 7y, for k = 1,...,n is a martingale difference and

1TrIA{ — ]ElTrIA{ = i 0%

n no A e

Furthermore, introduce the sub-matrices L) obtained from L by replacing the diagonal entries with

El(lk) = \/% Yr1£k1#(Aji — pji). Denote by R(®)(z) the corresponding resolvent matrix, R%)(z) =

(L®) — 21, _1)~1. We introduce the matrix L&) obtained from LK) by deleting both the k-th row
and k-th column. The corresponding resolvent matrix we denote via R*?), We have now

E, TR = E,_,R*0).
This allows us to write
T =Ex( (TR — TrRM)) — By (- (TR ~ TrR1)
B (RO —TRED)) — By (L (TRE — TRED)) = 70 4 52

By the overlapping theorem

Ipro _ Ipreo| < 1 (A117)
n n no
From here, we immediately obtain
72| < 2
kb= o’
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and

n
4
Y EFPPR < = All
171" < o2 (A118)

To complete the proof, it remains to show that

n
Tim Y B3V 2 =0. (A119)
k=1
Note that 1 ,
El5V 2 < 2E|- TrR — - TrRW 2, (A120)

Introduce the diagonal matrix DK with diagonal entries

s _ 1 _
D, = W(Akl pa), L#k.
In these notations, we have
IR - Lor® = _lyrpwgre — — 1 Y R¥ (A —p)RY. (A121)
e " Vg :
This implies that
n
(1
Y EFUE < YR Y (A pig) ZRu )2, (A122)
k=1 an o £k

We continue this inequality as follows
a2
Y ElF )P < Z E‘ 2 (Ak = pij) ZRZ/ ]z ‘
k=1 n = £k

Z Zp]k p]k

. A123
- n204un = no? ( )

Inequalities (A118) and (A123) completed the proof. Thus, Lemma A17 is proved. O
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