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1. Introduction and Summary

The spectral theory of random graphs is a branch of mathematics that has been studied
intensively in the literature in recent decades. The asymptotic behavior of eigenvalues and
eigenvectors of matrices associated with graphs, adjacency matrices and Laplace matrices,
in particular (see definition below), as the number of vertices of the graph tends to infinity
is investigated. See for instance [1–8]. The adjacency matrix of the generalized Erdős–Rènyi
random graph is a special case of the generalized Wigner matrix (matrices with elements
that are independent up to symmetry, with zero means and different variances). Many deep
results have been obtained recently for such matrices. Methods of studying of the spectrum
asymptotics of the adjacency matrices are the same as for the spectrum asymptotics of
Wigner matrices—these are the method of moments and the Stieltjes transform method.
It should be noted that the most profound results for the spectrum of Wigner random
matrices were obtained by the methods related to the Stieltjes transform; see [3,9,10].

Laplace matrices have one significant difference—the dependence of the diagonal
elements on the remaining elements of the matrix. This significantly complicates the study.
For instance, the limit distribution of the empirical spectral function of the Laplace matrix
of a complete graph (non-random) was found firstly in 2006; see [11]. In most of the works
devoted to the study of the spectrum asymptotics of Laplace matrices of random graphs,
the method of moments is used; see [2,4,12]. In this paper, we consider the empirical
spectral distribution function of the Laplace matrices of both weighted and unweighted
generalized Erdős-Rényi random graphs. We have obtained simple sufficient conditions
for the convergence of the empirical spectral distribution function of the Laplace matrices
of random graphs to a distribution function that is a free convolution of the semicircular
law and the standard normal law. The conditions are expressed in terms of the properties
of the graph edge probability matrix and the weight variance matrix (for weighted graphs).
To prove the convergence, we exclusively use the Stieltjes transform method.

We consider a non-oriented simple graph (without loops and with simple edges)
{V, E} with vertices |V| = n and set of edges E such that edges e ∈ E are independent and
have probability pe. Consider the adjacency n× n matrix

A =
[
Ajk
]
, (1)
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where

Ajk =

{
0, if (j, k) /∈ E,
1, if (j, k) ∈ E.

Define a degree of vertex j ∈ V as

dj := ∑
k:(j,k)∈E

Ajk.

We shall assume that Ajk for 1 ≤ j ≤ k ≤ n are independent and EAjk = pjk
(n). Note that

Edj = ∑k:k 6=j pjk
(n). We have that matrix A is symmetric, i.e., Ajk = Akj, and that r.v.’s Ajk

for 1 ≤ j ≤ k ≤ n are independent. We introduce the quantity

ân =
1
n

n

∑
j,k=1

pjk
(n)(1− pjk

(n)). (2)

We introduce the diagonal matrix

D = diag(d1, . . . , dn),

normalized and centered Laplace matrix of not weighted graph G defined as

L̂ =
1√
ân

[
(D−A)−E(D−A)

]
.

We shall consider the weighted graphs G̃ = (V, E, w) as well with weight function
wjk = wkj = Xjk, where, for 1 ≤ j ≤ k ≤ n, there are independent random variables s.t.

EXjk = 0, EX2
jk = σ2

jk.

The distribution of Xjk may depend on n, but for brevity, we shall omit the index n in the
notations. We introduce the quantity

an =
1
n

n

∑
i,j=1

pij
(n)σ2

ij. (3)

The quantity an may be interpreted as the expected mean degree of graph G̃. With graph G̃,
we consider the adjacency matrix

Ã =
[
AijXij

]
and normalized Laplace or Markov matrix

L̃ =
1√
an

(D̃− Ã),

where
D̃ = diag(d̃1, . . . , d̃n) with d̃i = ∑

j:j 6=i
AijXij.

We shall denote by λ1(B) ≥ λ2(B) ≥ · · · ≥ λn(B) ordered eigenvalues of a symmetric
n× n matrix B. We shall consider the spectrum of matrices L̃, and L̂. For brevity of notation,
we shall write µ̃j = λj(L̃), and µ̂j = λj(L̂). We introduce the corresponding empirical
spectral distributions (ESDs)

Ĝn(x) :=
1
n

n

∑
j=1

I{µ̂j ≤ x}, G̃n(x) :=
1
n

n

∑
j=1

I{µ̃j ≤ x}. (4)
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In the paper [11], in 2006, it was shown under conditions pij
(n) ≡ 1 and σ2

ij ≡ 1, for any

1 ≤ i, j ≤ n, that ESD G̃n(x) weakly converges in probability to the non-random distri-
bution function G(x), which is defined as a free convolution of the Gaussian distribution
function and the semicircular distribution function (the definition of free convolution see,
for instance, in [13]).

In [4], in 2010, the authors considered the limit of G̃n(x) for weighted Erdös–Renyi
graphs (pij

(n) ≡ pn) with equivariance weights (σ2
ij ≡ σ2). Assuming that pn bounded away

from zero and one, and that random variables Xij have the fourth moment, they proved
that G̃n(x) weakly converges to the same function G(x).

In [14], in 2020, Yizhe Zhu considered the so-called graphon approach to the limiting
spectral distribution of Wigner-type matrices. The author described the moments of
the limit spectral measure in terms 2279–2375, of graphon of the variance profile matrix
Σ = (σ2

ij) and number of trees with a fixed number of vertices. Recently, Chatterjee and
Hazra published the paper [12] in which the approach of Zhu was developed.

In [15], in 2021, the author stated simple conditions on probabilities pij for the con-
vergence of ESD of adjacency matrices to the semicircular law. In the present paper, we
consider the convergence of ESD Ĝn(x) and G̃n(x) under similar conditions to the func-
tion G(x).

First, we formulate some conditions which we shall use in the present paper.

• Condition CP(0):
an → ∞, as n→ ∞. (5)

• Condition CP(0a): There exists a constant C0 s.t.

sup
n≥1

max
1≤j,k≤n

1
an

pjk
(n)σ2

jk ≤ C0 < ∞.

• Condition CP(1):

lim
n→∞

1
nan

n

∑
j=1

n

∑
k=1
|pjk

(n)σ2
jk −

an

n
| = 0.

• Condition CX(1): For any τ > 0

Ln(τ) :=
1

nan

n

∑
i,j=1

pij
(n)EX2

ijI{|Xij| > τ
√

an} → 0 as n→ ∞. (6)

Remark 1. Condition CP(1) is equivalent to the following two conditions together

• Condition CP(1a):

lim
n→∞

1
n

n

∑
j=1
| 1
an

n

∑
k=1

pjk
(n)σ2

jk − 1| = 0. (7)

• Condition CP(1b):

lim
n→∞

1
nan

n

∑
j=1

n

∑
k=1
|pjk

(n)σ2
jk −

1
n

n

∑
l=1

pjl
(n)σ2

jl | = 0.

The main result of the present paper is the following theorem.

Theorem 1. Let conditions CP(0), CP(0a), CP(1), CX(1) hold. Then, ESDs G̃n(x) converge in
probability to the distribution function G(x), which is the additive free convolution of the standard
normal distribution function and the semi-circular distribution function:
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lim
n→∞

G̃n(x) = G(x).

Corollary 1. Assume that σ2
jk ≡ σ2 and pjk

(n) ≡ pn for any 1 ≤ j, k ≤ n and any n ≥ 1. Assume

that npn → ∞ as n→ ∞ and assume that condition CX(1) holds. Then, ESDs G̃n(x) converge in
probability to the distribution function G(x), which is the additive free convolution of the standard
normal distribution function and the semi-circular distribution function:

lim
n→∞

G̃n(x) = G(x).

Proof of Corollary. Note that in the case pjk
(n) ≡ pn and σ2

jk = σ2, we have

an = npnσ2.

Condition CP(0) is fulfilled. Moreover, it is simple to see that all conditions of Theorem 1
are fulfilled.

Theorem 2. Let conditions
ân → ∞ as n→ ∞, (8)

and

lim
n→∞

1
nân

n

∑
j=1

n

∑
k=1
|pjk

(n)(1− pjk
(n))− ân

n
| = 0 (9)

hold. Then, ESDs Ĝn(x) converge in probability to the distribution function G(x), which is
the additive free convolution of the standard normal distribution function and the semicircular
distribution function,

lim
n→∞

Ĝn(x) = G(x).

In what follows, we shall omit the superscript (n) in the notations of p(n)ij , writing
pij instead.

2. Toy Example

Consider graph {V, E} with clique number d = d(n) where |V| = n. The clique
number of graph G is the size of the largest clique or a maximal clique of the graph. LetM
denote the clique of the graph. Define the weights of vertices as follows

Wi =

{
d, if i ∈ M
1, otherwise.

.

We introduce edge probabilities as follows

pij = WiWj/d2 =


1
d2 , if i /∈ M, j /∈ M,
1
d if i ∈ M, j /∈ M, or i /∈ M, j ∈ M,
1, if i, j ∈ M.

(10)

We assume that σ2
jk ≡ σ2 = 1, for 1 ≤ j, k ≤ n. In this case, we have

n

∑
j,k=1

pjk = (
n− d

d
+ d)2, (11)
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and

an =
n
d2 (1 + αn)

2, where αn =
d(d− 1)

n
. (12)

Proposition 1. Under condition

lim
n→∞

d2(n)
n

= 0 (13)

conditions CP(0), CP(0a) and CP(1) hold.

Proof. We have

1
nan

n

∑
j,k=1
|pjk −

an

n
| = 1

nan
(

1
d2 (2αn + α2

n)(n− d)2 + 2|1
d
− 1

d2 (1 + αn)
2|d(n− d)+

d2(1− 1
d2 (1 + αn)

2)

=
αn(1 + 2αn)(n− d)2

n2(1 + αn)2 + 2|1− 1
d
(1 + αn)

2| d2(n− d)
n2(1 + αn)2

+
d4

n2(1 + αn)2 (1−
1
d2 (1 + αn)

2). (14)

It is straightforward to check that for d = d(n) satisfying the condition (13), we have
αn = o(1), an → ∞ as n→ ∞ and

lim
n→∞

1
nan

n

∑
j,k=1
|pjk −

an

n
| = 0. (15)

That means that the conditions CP(0a) and CP(1) hold. Furthermore,

max
1≤k≤n

n

∑
l=1

pkl ≤
n
d
+ d. (16)

It is straightforward to check as well that

sup
n≥1

max1≤k,l≤n pkl

an
≤ C0. (17)

Thus, Proposition 1 is proved.

3. Proof of Theorem 1

We shall use the method of the Stieltjes transform for the proof of Theorem 1. Introduce
the resolvent matrix of matrix L̃,

R := RL̃(z) = (L̃− zI)−1,

where I := In denotes a n× n unit matrix. Let mn(z) denote the Stieltjes transform of the
empirical spectral distribution function of matrix L̃,

mn(z) =
∫ ∞

−∞

1
x− z

dG̃n(x) =
1
n

TrR.

For the proof of Theorem 1, it is enough to prove the convergence of the Stieltjes transforms
for any fixed z = u + iv with v > 0; moreover, it is enough to prove that mn(z) converges
to some function, say s(z), in some set with a non-empty interior. According to Lemma A2,



Mathematics 2023, 11, 764 6 of 25

it is enough to prove the convergence of the expected Stieltjes transform sn(z) = Emn(z) =
E 1

n TrR only. Using Lemma A1, the result of Theorem 1 follows from the relation

sn(z)− sg(z + sn(z))→ 0 as n→ ∞,

where sg(z) denotes the Stieltjes transform of the standard Gaussian distribution,

sg(z) =
1√
2π

∫ ∞

−∞

1
x− z

exp{− x2

2
}dx.

First, we need some additional notations. By L̃(j), we denote the matrix obtained from
L̃ by replacing diagonal entries L̃ll , l = 1, . . . , n with L̃(j)

ll = 1√
an

∑r 6=j AlrXlr. Note that the

diagonal entries of matrix L̃(j) (except L̃(j)
jj ) do not depend on the r.v. values Xjk, Ajk for

k = 1, . . . , n. We denote by D̃(j) the diagonal matrix with diagonal entries D̃(j)
ll = 1√

an
AjlXjl .

Denote by R̃(j) the resolvent matrix corresponding to the matrix L̃(j),

R̃(j) = (L̃(j) − zI)−1.

We have
R = R̃(j)−RD̃(j)R̃(j). (18)

Using this formula, we may write

Rjj = R̃(j)
jj −

1√
an

n

∑
r=1

AjrXjrRjrR̃(j)
rj . (19)

According to Lemma A5, we obtain

lim
n→∞

∣∣∣ 1
n

TrR− 1
n

n

∑
j=1

R̃(j)
jj

∣∣∣ = 0. (20)

Furthermore, let us denote by L̃(j,0) the matrix obtained from L̃(j) by deleting both the j-th
column and j-th row. R̃(j,0) denotes the resolvent matrix corresponding to the matrix L̃(j,0).
Using the Schur complement formula, we may write

R̃(j)
jj =

1

L̃(j)
jj − z−∑l,k:l 6=j,k 6=j[R̃(j,0)(z)]kl L̃jl L̃jk

. (21)

Introduce the following notations

ε j1 := ∑
l 6=k:l 6=j,k 6=j

[R̃(j,0)]kl L̃jl L̃jk, ε j2 =
1
an

∑
k:k 6=j

[R̃(j,0)]kk(Ajk − pjk)X2
jk,

ε j3 =
1
an

∑
k:k 6=j

[R̃(j,0)]kk pjk(X2
jk − σ2

jk),

ε j4 =
1
an

∑
k:k 6=j

[R̃(j,0)]kk(pjkσ2
jk −

1
n

n

∑
l=1

pjlσ
2
jl),

ε j5 =
1
n ∑

k:k 6=j
R̃(j,0)

kk
( 1

an

n

∑
l=1

pjlσ
2
jl − 1

)
,

ε j6 =
1
n ∑

k:k 6=j
R̃(j,0)

kk − 1
n

n

∑
k=1

Rkk,

ε j7 =
1
n

n

∑
k=1

[R]kk −E 1
n

n

∑
k=1

[R(z)]kk.
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Put ε j = ∑7
ν=1 ε jν. Let

ζ j := L̃(j)
jj =

1√
an

∑
k 6=j

AjkXjk.

In these notations, we may write

E[R̃(j)]jj = E 1
ζ j − z− sn(z)− ε j

.

We continue as follows

ER̃(j)
jj = E 1

ζ j − z− sn(z)
+E

ε j

ζ j − z− sn(z)
R̃(j)

jj . (22)

Summing the last equality in j = 1, . . . , n, we obtain

sn(z) = E 1
ζJ − z− sn(z)

+E
εJ

ζJ − z− sn(z)
R(J)
JJ +E(RJ,J − R̃(J)

J,J ), (23)

where J denotes a random variable which is uniform distributed on the set {1, . . . , n} and independent
on all other random variables. Denote by Fn(x) the distribution function of ζJ and let

∆n = sup
x
|Fn(x)−Φ(x)|,

where Φ(x) denotes the distribution function of the standard normal law. Denote the Stieltjes
transform of the standard normal law by sg(z),

sg(z) =
∫ ∞

−∞

1
x− z

dΦ(x).

Note that
E 1

ζJ − z− ŝn(z)
− sg(z + ŝn(z)) =

∫ ∞

−∞

1
x− z− ŝn(z)

d(Fn(x)−Φ(x)). (24)

Integrating by part, we obtain

|E 1
ζJ − z− ŝn(z)

− sg(z + ŝn(z))| ≤ 2v−2∆n. (25)

According to Lemma A3,

|E 1
ζJ − z− sn(z)

− sg(z + sn(z))| → 0 as n→ ∞. (26)

Note that
|E

εJ
ζJ − z− sn(z)

RJJ| ≤ v−2E|εJ|. (27)

It remains to prove that E|εJ| → 0 and E(RJ,J − R̃(J)
J,J ) → 0 as n → ∞. The last claim follows from

Lemmas A6–A11, Lemma A2 and equality (20).
Thus, Theorem 1 is proved.

4. The Proof of Theorem 2

Similar to the previous section, we may write that diagonal entries of matrix L̂

ζ̂ j =
1√
ân

∑
k 6=j

(Ajk − pjk). (28)

Let R̂ = (L̂ − zI)−1 denote the resolvent matrix of the matrix L̂. Let j ∈ {1, . . . , n} be fixed. We
denote by L̂(j) the matrix obtained from L̂ by replacing diagonal entries L̂ll , l = 1, . . . , n with

L̂(j)
ll = 1√

ân
∑r 6=j(Alr − plr). Let D̂(j) = L̂ − L̂(j). By definition, D̂(j) = diag(d̂(j)

1 , . . . , d̂(j)
n ) is a

diagonal matrix with d̂(j)
ll = 1√

ân
(Ajl − pjl), for l = 1, . . . , n. Note that diagonal entries of matrix L̂(j)

(except L̂(j)
jj ) do not depend on the r.v. values Ajk for k = 1, . . . , n. By L̂(j,0), we denote the matrix

obtained from L̂(j) by deleting both the j-th column and j-th row. R̂(j,0) denotes the resolvent matrix
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corresponding to the matrix L̂(j,0). Analogously to (21), we represent the diagonal entries of resolvent
matrix R̂(j) = (L̂(j) − zI)−1 in the form

R̂(j)
jj =

1

L̂(j)
jj − z−∑l,k:l 6=j,k 6=j R̂(j,0)

kl L̂jl L̂jk

. (29)

Introduce the following notations

ε̂ j1 := ∑
l 6=k:l 6=j,k 6=j

[R̂(j,0)]kl L̂jl L̂jk, ε̂ j2 =
1
ân

∑
k:k 6=j

[R̂(j,0)]kk((Ajk − pjk)
2 − pjk(1− pjk))

ε̂ j3 =
1
ân

∑
k:k 6=j

R̂(j,0)
kk
(

pjk(1− pjk)−
ân

n
)
,

ε̂ j4 =
1
n ∑

k:k 6=j
R̂(j,0)

kk − 1
n

n

∑
k=1

R̂kk,

ε̂ j5 =
1
n

n

∑
k=1

R̂kk −E 1
n

n

∑
k=1

R̂kk.

Put ε̂ j = ∑5
ν=1 ε̂ jν. Let

ζ̂ j := L̂(j)
jj =

1√
ân

∑
k 6=j

(Ajk − pjk).

In these notations, we may write

E[R̂(j)]jj = E 1
ζ̂ j − z− ŝn(z)− ε̂ j

,

where ŝn(z) = E 1
n TrR̂. We continue as follows

E[R̂(j)]jj = E 1
ζ̂ j − z− ŝn(z)

+E
ε̂ j

ζ j − z− ŝn(z)
R̂(j)

jj (z). (30)

Summing the last equality in j = 1, . . . , n, we obtain

ŝn(z) = E 1
ζ̂J − z− ŝn(z)

+E
ε̂J

ζ̂J − z− ŝn(z)
R̂(J)
JJ +E(R̂JJ − R̂J

JJ), (31)

where J denotes a random variable which is uniform distributed on the set {1, . . . , n} and independent
on all other random variables. Similar to inequality (25), we have

|E 1
ζ̂ j − z− ŝn(z)

− sg(z + ŝn(z))| ≤
1
v2 ∆̂n. (32)

According to Lemma A12∣∣∣∣∣E 1
ζ̂ j − z− ŝn(z)

− sg(z + ŝn(z))

∣∣∣∣∣→ 0 as n→ ∞. (33)

Furthermore, since Im z + Im sn(z) ≥ v and |R̂(J)
JJ | ≤ v−1, we have

|E
ε̂J

ζ̂J − z− ŝn(z)
R̂(J)
JJ | ≤ v−2E|ε̂J|. (34)

By Lemmas A13–A17,
lim

n→∞
E|ε̂J| = 0. (35)

Furthermore, we note that
R̂ = R̂(J) − R̂(J)D̂(J)R̂. (36)
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This relation implies that

|E(R̂JJ − R̂(J)
JJ ) ≤ max

1≤j≤n
E‖R̂− R̂(j)‖ ≤ v−2 max

1≤j≤n
E‖D̂(j)‖. (37)

It is straightforward to check that

E‖D̂(j)‖ ≤ 1√
ân

E max
1≤l≤n

|Ajl − pjl | ≤
1√
ân
→ 0 as n→ ∞. (38)

Combining relations (33), (35), (38), we obtain

κn(z) := sn(z)− sg(z + sn(z))→ 0 as n→ ∞. (39)

The last relation and Lemma A1 completed the proof of Theorem 2. Thus, Theorem 2 is proved.
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Appendix A

Definition of Additive Free Convolution

We give the definition of the additive free convolution of distribution functions following the
paper [16] (Section 5).

Definition A1. A pair (A, ϕ) consisting of a unital algebra A and a linear functional ϕ : A → C with
ϕ(1) = 1 is called the free probability space. Elements of A are called random variables, the numbers
ϕ(ai(1)· · ·ai(n)) for such random variables a1, . . . , ak ∈ A are called moments, and the collection of all mo-
ments is called the joint distribution of a1, . . . , ak. Equivalently, we may say that the joint distribution of
a1, . . . , ak is given by the linear functional µa1,...,ak : C〈X1, . . . , Xk〉 → C with µa1,...,ak (P(X1, . . . , Xk)) =
ϕ(P(a1, . . . , ak)), where C〈X1, . . . , Xk〉 denotes the algebra of all polynomials in k non-commutative indeter-
minantes X1, . . . , Xk.

If for a given element a ∈ A there exists a unique probability measure µa on R such that∫
tkdµa(t) = ϕ(ak) for all k ∈ N, we identify the distribution of a with the probability measure µa.

Definition A2. Let (A, ϕ) be a non-commutative probability space.

(1) Let (Ai)i∈I be a family of unital sub-algebras of A. The sub-algebras Ai are called free independent if,
for any positive integer k, ϕ(a1 · · · ak) = 0 whenever the following set of conditions holds: aj ∈ Ai(j)
(with i(j) ∈ I) for j = 1, . . . , k, ϕ(aj) = 0 for all j = 1, . . . , k and neighboring elements are from taken
different sub-algebras, i.e., i(1) 6= i(2), i(2) 6= i(3), . . . , i(k− 1) 6= i(k).

(2) Let (A′i)i∈I be a family of subset of A. The subsets A′i are called free or freely independent if their
generated initial sub-algebras are free, i.e., if (Ai)i∈I are free, where for each i ∈ I, Ai is the smallest
initial sub-algebra of A which contains A′i .

(3) Let (ai)i∈I be a family of elements from A. The elements ai are called free independent if the subsets
({ai})i∈I are free.

Consider two random variables a and b which are free. Then, distributions of a + b (in the sense
of linear functionals) depend only on the distribution of a and b.

Definition A3. For free random variables a and b, the distribution of a + b is called the free additive
convolution of µa and µb and is denoted by

µa�b = µa � µb.
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To compute the free convolution of concrete distributions, we may use the so-called R-transform
introduced by Voiculescu [17]. Let s(z) be the Stieltjes transform of some distribution function F(x).
Denote by s−1(z) the inverse function of s(z) in the science of composition. Define R-transform
as follows

R(z) = −s−1(z)− 1
z

.

Let F(x) be the semicircle distribution function. Its Stieltjes transform satisfies the equation

s2(z) + zs(z) + 1 = 0

Denote by Rsc(z) the R-transform of the semicicular law. Simple calulations show that

Rsc(z) = z.

We denote dy R f c(z) the R-transform of the free convolution semicircular law and Gaussian law. Let
Rg denote the R-transform of the standard normal law. Then

R f c(z) = Rsc(z) + Rg(z).

See for instance, refs. [18,19]. Using the definition of the R-transform via the Stieltjes transform,
we obtain

−s−1
f c (z) = z− s−1

g (z).

It is straightforward to show that this equality implies

s f c(z) = sg(z + s f c(z)). (A1)

We prove the following simple but important lemma.

Lemma A1. Let a sequence of Stieltjes transforms of the distribution functions Fn(x) satisfy the equations

sn(z) = sg(z + sn(z)) +κn(z), (A2)

where
κn(z)→ 0 as n→ ∞.

Then, the distribution functions Fn(x) weakly converge to the distribution function Ff c(x), which is free
convolution of the semicircular law and the standard normal law.

Proof. It is enough to prove that the Stieltjes transform sn(z) converges in some region with non-
empty interior to the Stieltjes transform s f c(z), which satisfies equation (A1). We shall consider the
region of z = u + iv with v >

√
2. Since the derivative of sg(z) does not exceed the level 1/v2, we

may write

|sn(z)− sm(z) ≤
1
2
|sn(z)− sm(z)|+ |κn(z)|+ |κm(z)|.

or
|sn(z)− sm(z)| ≤ 2|κn(z)|+ 2|κm(z)| → 0 as n, m→ ∞. (A3)

The sequence of the Stieltjes transforms sn(z) is Cauchy; consequently, there exists a limit say s f c(z)
of this sequence,

lim
n→∞

sn(z) = s f c(z).

Taking the limit in the equation (A2), we obtain

s f c(z) = sg(z + s f c(z)).

The last equality implies that s f c(z) is the Stieltjes transform of the semicircular law and the standard
Gaussian law. Thus, Lemma is proved.

Appendix B. Weighted Graphs

Appendix B.1. Variance of Stieltjes Transform of Empirical Measure

In this section, we estimate the variance of mn(z) = 1
n TrR, where R := RL(z) = (L̃− zI)−1. We

prove the following Lemma.
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Lemma A2. For any z = u + iv with v > 0, the following inequality holds

lim
n→∞

E| 1
n

TrR− 1
n
ETrR| = 0. (A4)

Proof. The proof of this lemma is using the martingale representation of ξ − Eξ. This method in
Random Matrix Theory was firstly used by Girko, see for instance [20]. We introduce the sequence of
σ-algebras Mk generated by random variables Xj,l for 1 ≤ j, l ≤ k. It is easy to see that Mk ⊂Mk+1.
Denote by Ek the conditional expectation with respect to σ-algebra Mk. For k = 0, E0 = E. Introduce
random variables

γk := Ek
1
n

TrR−Ek−1
1
n

TrR. (A5)

The sequence of γk, for k = 1, . . . , n is martingale difference and

1
n

TrR−E 1
n

TrR =
n

∑
k=1

γk.

Introduce the sub-matrices L̃(k) obtained from L̃ by deleting both the k-th row and k-th column.
Denote by R(k) = R(k)(z) the corresponding resolvent matrix, R(k)(z) = (L̃(k) − zI)−1. Note that
the matrix L̃(k) depends on the random variables Xkl , l = 1, . . . , n via diagonal entries. To overcome
this difficulty, we introduce the matrix L̃(k,0) obtained from L̃(k) by replacing diagonal entries with

L̂(k)
jj := 1√

an
∑l:l 6=k,l 6=j Ajl Xjl . The corresponding resolvent matrix is denoted via R(k,0). We have now

EkTrR(k,0) = Ek−1R(k,0).

This allows us to write

γk =Ek(
1
n
(TrR− TrR(k))−Ek−1(

1
n
(TrR− TrR(k)))

+Ek(
1
n
(TrR(k) − TrR(k,0)))−Ek−1(

1
n
(TrR(k) − TrR(k,0))) =: γ

(1)
k + γ

(2)
k .

By the overlapping theorem, for z = u + iv,∣∣∣∣ 1
n

TrRL(z)−
1
n

TrR(k)(z)
∣∣∣∣ ≤ 1

nv
. (A6)

From here, we immediately obtain

|γ(1)
k | ≤

2
nv

,

and
n

∑
k=1

E|γk|2 ≤
4

nv2 . (A7)

To complete the proof, it remains to show that

lim
n→∞

n

∑
k=1

E|γ(2)
k |

2 = 0. (A8)

Note that
E|γ(2)

k |
2 ≤ 2E| 1

n
TrR(k) − 1

n
TrR(k,0)|2. (A9)

Introduce the diagonal matrix D(k) with diagonal entries

D(k)
ll =

1√
an

Akl Xkl , l 6= k.

In these notations, we have

1
n

TrR(k) − 1
n

TrR(k,0) =
1
n

TrR(k)D(k,0)R(k,0) =
1

n
√

an
∑

l 6=k,j 6=k
R(k)

l j AkjXkjR
(k,0)
jl . (A10)
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This implies that
n

∑
k=1

E|γ(2)
k |

2 ≤ 4
n2an

n

∑
k=1

E|∑
j 6=k

AkjXkj
(

∑
l 6=k

R(k)
l j R(k,0)

jl
)
|2. (A11)

We continue this inequality as follows

n

∑
k=1

E|γ(2)
k |

2 ≤ 8
n2an

n

∑
k=1

E
∣∣∣ ∑

j 6=k
AkjXkj

(
∑
l 6=k

R(k)
l j R(k,0)

jl I{Akj|Xkj| ≤ τ
√

an}
)∣∣∣2

+
8

n2an

n

∑
k=1

E|∑
j 6=k

AkjXkj
(

∑
l 6=k

R(k)
l j R(k,0)

jl
)
I{Akj|Xkj| > τ

√
an}
∣∣∣2. (A12)

Applying Cauchy’s inequality to the second term in the right-hand side of the last inequality, we obtain

8
n2an

n

∑
k=1

E|∑
j 6=k

AkjXkj
(

∑
l 6=k

R(k,0)
l j R(k)

jl
)
I{Akj|Xkj| > τ

√
an}|2

≤ 8
nan

n

∑
k=1

∑
j 6=k

EAjkX2
kj
∣∣ ∑

l 6=k
R(k)

l j R(k,0)
jl

∣∣2I{Akj|Xkj| > τ
√

an}. (A13)

It is straightforward to check that ∣∣ ∑
l 6=k

R(k)
l j R(k,0)

jl

∣∣2 ≤ v−4. (A14)

Using this bound, we obtain

8
n2an

n

∑
k=1

E|∑
j 6=k

AkjXkj
(

∑
l 6=k

R(k)
l j R(k,0)

jl
)
I{Akj|Xkj| > τ

√
an}|2 ≤ 8v−4Ln(τ). (A15)

We estimate now the first term in the r.h.s. of (A12). Using that

R(k) = R(k,0) + R(k,0)D(k)R(k), (A16)

we may write

8
n2an

n

∑
k=1

E
∣∣∣ ∑

j 6=k
AkjXkj

(
∑
l 6=k

R(k)
l j R(k,0)

jl
)
I{Akj|Xkj| ≤ τ

√
an}
∣∣∣2

≤ 8
n2an

n

∑
k=1

E
∣∣∣ ∑

j 6=k
AkjXkj

(
∑
l 6=k

R(k,0)
l j R(k,0)

jl
)
I{Akj|Xkj| ≤ τ

√
an}
∣∣∣2

+
8

n2a2
n

n

∑
k=1

E
∣∣∣ ∑

j 6=k
AkjXkj

(
∑
l 6=k

n

∑
s=1

Xks AksR(k,0)
ls R(k)

sj R(k,0)
jl

)
I{Akj|Xkj| ≤ τ

√
an}
∣∣∣2. (A17)

By the independence of random variables AjkXjk for j = 1, . . . , n and matrix R̂(k,0), we have

8
n2an

n

∑
k=1

E
∣∣∣ ∑

j 6=k
AkjXkj

(
∑
l 6=k

R(k,0)
l j R(k,0)

jl
)
I{Akj|Xkj| ≤ τ

√
an}
∣∣∣2

≤ 8
n2anv4

n

∑
k=1

∑
j 6=k

pjkσ2
jk +

1
n2a2

nτ2v4

n

∑
k=1

(
n

∑
j=1

pjkEX2
jkI{|Xjk| > τ

√
an})2

≤ 8
nv4 +

( Ln(τ)

τv2

)2
. (A18)

For the second term in the r.h.s. of (A17), we have
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8
n2a2

n

n

∑
k=1

E
∣∣∣ ∑

j 6=k
AkjXkj

(
∑
l 6=k

n

∑
s=1

Xks AksR(k,0)
ls R(k)

sj R(k,0)
jl

)
I{Akj|Xkj| ≤ τ

√
an}
∣∣∣2

=
8

n2a2
n

n

∑
k=1

E
∣∣∣ ∑

s 6=k
AksXks

( n

∑
j=1

Xkj Akj ∑
l 6=k

R(k,0)
ls R(k)

sj R(k,0)
jl I{Akj|Xkj| ≤ τ

√
an}
)∣∣∣2

≤ 8
na2

n

n

∑
k=1

E ∑
s 6=k

Aks|Xks|2
∣∣ ∑

j=1
Xkj Akj ∑

l 6=k
R(k,0)

ls R(k)
sj R(k,0)

jl I{Akj|Xkj| ≤ τ
√

an}
∣∣2. (A19)

Note that

n

∑
r=1
|R(k)

rj ||∑
l 6=k

R̂(k)
lr R̂(k)

jl | ≤
( n

∑
r=1
|R(k)

jr |
2
) 1

2
( n

∑
r=1
|[R(k,0)]2jr|

2
) 1

2 ≤ v−3. (A20)

Using this inequality, we obtain

8
n2a2

n

n

∑
k=1

E
∣∣∣ ∑

j 6=k
AkjXkj

(
∑
l 6=k

n

∑
r=1

Xkr AkrR(k,0)
lr R(k)

rj R(k,0)
jl

)∣∣∣2 n

∏
r=1

I{Akr|Xkr| ≤ τ
√

an}

≤ 8τ2

nanv6

n

∑
k=1

∑
j 6=k

pjkσ2
jk =

8τ2

v6 . (A21)

Combining inequalities (A7), (A12), (A20), we obtain

E|TrR−ETrR|2 ≤ C
nv2 +

Cτ2

v6 +
CLn(τ)

v4 . (A22)

Passing to the limit first in n→ ∞ and then in τ → 0, we obtain

lim
n→∞

E| 1
n
(TrR−ETrR)|2 = 0. (A23)

Thus, lemma is proved.

In what follows, we shall assume that z = u + iv is fixed.

Appendix B.2. Convergence of Diagonal Entries Distribution Functions of Laplace Matrices to the
Normal Law

Lemma A3. Under conditions CP(0) and CX(0), we have

lim
1
n

n

∑
j=1

max1≤k≤n pjkσ2
jk

an
= 0. (A24)

Proof. We fix arbitrary τ > 0. We may write

1
n

n

∑
j=1

max1≤k≤n pjkσ2
jk

an
≤ τ2 +

1
nan

n

∑
j=1

n

∑
k=1

pjkE|Xjk|2I{|Xjk| < τ
√

an}. (A25)

By condition CX(0), we obtain

lim sup
n→∞

1
n

n

∑
j=1

max1≤k≤n pjkσ2
jk

an
≤ τ2.

Because τ is arbitrary, we obtain the claim.

Lemma A4. Under conditions CP(0), CP(2) and CX(0), CX(1), we have

lim
n→∞

sup
x
|Fn(x)−Φ(x)| = 0 (A26)
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Proof. Let J be an independent on Ajk and Xjk random variable uniform distributed on the set
{1, . . . , n}. We consider the characterictic function of ζJ =

1√
an

∑n
k=1 AJ,kXJ,k, fn(t) = E exp{itζJ} =

1
n ∑n

j=1 E exp{itζ j}. Introduce the following set of indices

M =M1 ∩M2 ∩M3, (A27)

where

M1 :=
{

j ∈ {1, . . . , n} :
1
an
|

n

∑
k=1

pjkσ2
jk − 1| ≤ 1

16

}
,

M2 :=
{

j ∈ {1, . . . , n} :
1
an

n

∑
k=1

pjkEX2
jkI{|Xjk| > τ

√
an} ≤

1
16

}
,

M3 :=
{

j ∈ {1, . . . , n} :
1
an

max
1≤k≤n

pjkσ2
jk ≤

1
16t2

}
. (A28)

We denote by Ac the complement set of A and by |A|, we denote the cardinality of set A. Note that
by condition CP(1)

|Mc
1|

n
≤ 16

1
nan

n

∑
j=1

n

∑
k=1
|pjkσ2

jk −
an

n
| → 0, as n→ ∞. (A29)

Analogously, by CX(1),
|Mc

2|
n
≤ 16Ln(τ)→ 0, as n→ ∞. (A30)

Finally, by Lemma A3

|M3
c|

n
≤ 16t2 1

nan

n

∑
j=1

max
1≤k≤n

pjkσ2
jk → 0 as n→ ∞. (A31)

Combining the last three relations, we obtain

lim
n→∞

|Mc|
n

= 0. (A32)

Note that by the independence of Ajk and Xjk,

fnj(t) := E exp{ it√
an

ζ j} =
n

∏
k=1

E exp{ it√
an

AjkXjk} =:
n

∏
k=1

fnjk(t).

Furthermore,

fnjk(t) = 1 + pjk(E exp{ it√
an

Xjk} − 1), (A33)

and by condition CP(0)

| fnjk(t)− 1| ≤ t2

2an
pjkσ2

jk ≤
t2

2an
max

1≤j,k≤n
pjkσ2

jk → 0 as n→ ∞. (A34)

Without loss of generality, we may assume that

max
1≤jmk≤n

| fnjk(t)− 1| ≤ 1
4

, (A35)

and applying Taylor’s formula, we write that

ln fnjk(t) = pjk

(
E exp{ it√

an
Xjk} − 1

)
+ 2θ(t)p2

jk

∣∣∣∣E exp{ it√
an

Xjk} − 1
∣∣∣∣2, (A36)
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where θ(t) denotes some function such that |θ(t)| ≤ 1. Futhermore, by Taylor’s formula

E exp{ it√
an

Xjk} − 1 = − t2

2an
σ2

jk + θ1(t)
|t|3

6a
3
2
n

E|Xjk|3I{|Xjk| ≤ τ
√

an}

+ θ2(t)|E
∣∣∣∣exp{ it√

an
Xjk} − 1− it√

an
Xjk +

t2

2an
X2

jk

∣∣∣∣I{|Xjk| > τ
√

an}, (A37)

where θi(t), i = 1, 2 denotes some functions such that |θi(t)| ≤ 1. Using this equality, we may write

ln fnjk(t) =−
t2

2an
pjkσ2

jk + θ1(t)
τ|t|3
6an

pjkσ2
jk

+ θ2(t)
t2

an
pjkE|Xjk|2I{|Xjk| ≥ τ

√
an}+ θ3(t)

t4

4a2
n

p2
jkσ4

jk. (A38)

Summing this equality by k = 1 . . . , n, we obtain

ln fnj(t) =−
t2

2
1
an

n

∑
k=1

pjkσ2
jk + θi(t)τ

|t|3
6an

n

∑
k=1

pjkσ2
jk

+ θ2(t)
t2

an

n

∑
k=1

pjkE|Xjk|2I{|Xjk| ≥ τ
√

an}

+ θ3(t)
t4

4

max1≤j,k≤n pjkσ2
jk

an

1
an

n

∑
k=1

pjkσ2
jk. (A39)

For 8
17|t| > τ > 0, we have

| ln fnj(t) +
t2

2
| ≤ t2

3
. (A40)

This implies that for j ∈ M

| fnj(t)− exp{− t2

2
}| ≤ C

(
t2(∣∣ 1

an

n

∑
k=1

pjkσ2
jk − 1

∣∣+ 1
an

n

∑
k=1

pjkE|Xjk|2I{|Xjk| > τ
√

an}
)

+ τ|t|3 +
t4 max1≤j,k≤n pjkσ2

jk

an

)
. (A41)

From this inequality, it follows that

| fn(t)− exp{− t2

2
}| ≤ 2|Mc|

n

+
1
n

n

∑
j=1

(
t2(∣∣ 1

an

n

∑
k=1

pjkσ2
jk − 1

∣∣+ 1
an

n

∑
k=1

pjkE|Xjk|2I{|Xjk| > τ
√

an}
)

+ τ|t|3 +
t4 max1≤j,k≤n pjkσ2

jk

an

)
. (A42)

By conditions CP(0) and CX(0), relation (A32) and Lemma A3, we obtain

lim
n→∞

fn(t) = exp{− t2

2
}. (A43)

Thus, the lemma is proved.

Lemma A5. Under the conditions of Theorem 1, we have

lim
n→∞

1
n

n

∑
j=1

E|Rjj − R̃(j)
jj | = 0. (A44)
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Proof. By ‖V‖, we shall denote the operator norm of matrix V. Matrices R̃(j) and D̃(j) are defined in
the beginning of Section 3 before the relation (18). Note that

‖RD̃(j)R̃(j)‖ ≤ v−2‖D̃(j)‖. (A45)

It is easy to check that
1
n

n

∑
j=1

E|Rjj − R̃(j)
jj | ≤

1
n

n

∑
j=1

E‖R− R̃(j)‖. (A46)

Using that
R = R̃(j)−RD̃(j)R̃(j), (A47)

we obtain
‖R− R̃(j)‖ ≤ v−2‖D̃(j)‖. (A48)

Futhermore, for any τ > 0, we have

E‖D̃(j)‖ ≤ 1√
an

E max
1≤l≤n,l 6=j

{|Xjl |Ajl} ≤ τ +
1

τan

n

∑
l=1

pjlEX2
jlI{|Xjl | > τ

√
an}. (A49)

Summing this inequality in j = 1, . . . , n, we obtain

1
n

n

∑
j=1

E|Rjj − R̃(j)
jj | ≤ v−2(τ +

1
τ

Ln(τ)). (A50)

Since τ is arbitrary, this inequality and condition CX(0) together imply (A44). Thus, Lemma A5 is
proved.

Appendix B.3. The Bounds of 1
n ∑n

j=1 E|ε jν|, for ν = 1, . . . , 7

Lemma A6. Under the conditions of Theorem 1, we have

1
n

n

∑
j=1

E|ε j1| ≤
τ

v
+

1
v

(
max1≤j,k≤n pjkσ2

jk

an

) 1
2

Ln(τ)
1
2 . (A51)

Proof. By definition of ε j1, we may write

ε j1 :=
1
an

∑
l 6=k:l 6=j,k 6=j

[R̃(j,0)]kl Ajk Ajl XjkXjl . (A52)

Applying the Cauchy inequality, we obtain

1
n

n

∑
j=1

E|ε j1| ≤

 1
n

n

∑
j=1

E|ε j1|2
 1

2

. (A53)

Simple calculations show that

1
n

n

∑
j=1

E|ε j1| ≤

 1
na2

n

n

∑
j=1

∑
k 6=j

∑
l 6=j

E|R̃(j,0)
kl |

2 pjk pjlσ
2
jkσ2

jl

 1
2

, (A54)

We introduce the following notations

Wj = (|R̃(j.0)
kl |

2)n
k,l=1, Hj = (pj1σ2

j1, . . . , pjnσ2
jn)

T . (A55)

In these notations, we write

1
n

n

∑
j=1

E|ε j1| ≤

 1
na2

n

n

∑
j=1

H(j)T
W(j)H(j)

 1
2

.
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Using that
n

∑
l=1
|R̃(j,0)

kl |
2 ≤ 1

v2 , (A56)

we obtain that the spectral norm of matrix W(j) satiesfies the inequality

‖W(j)‖ ≤ 1
v2 , (A57)

and

‖H(j)T
W(j)H(j)‖ ≤ ‖W(j)‖‖H(j)‖2 ≤ 1

v2

n

∑
k=1

p2
jkσ4

jkj. (A58)

Using the last bound, we obtain

1
n

n

∑
j=1

E|ε j1| ≤
1
v

 1
na2

n

n

∑
j=1

n

∑
k=1

p2
jkσ4

jk

 1
2

. (A59)

Furthermore, we apply the bound

σ2
jk ≤ τ2an +EX2

jkI{|Xjk| > τ
√

an}. (A60)

We obtain
1
n

n

∑
j=1

E|ε j1| ≤
1
v

(
τ2 +

1
na2

n

n

∑
j=1

n

∑
k=1

p2
jkσ2

jkE|Xjk|2I{|Xjk| > τ
√

an}
) 1

2
. (A61)

We continue as follows

1
n

n

∑
j=1

E|ε j1| ≤
τ

v
+

1
v

(
max1≤j,k≤n pjkσ2

jk

an

) 1
2

Ln(τ)
1
2 .

Thus, Lemma is proved.

Lemma A7. Under the conditions of Theorem 1, we have

1
n

n

∑
j=1

E|ε j2| ≤
1
v

Ln(τ) +
τ

v
. (A62)

Proof. We recall the definition of ε j2,

ε j2 =
1
an

∑
k:k 6=j

[R̃(j,0)]kk(Ajk − pjk)X2
jk. (A63)

Using triangle inequality and Cauchy’s inequality, we may write

1
n

n

∑
j=1

E|ε j2| ≤
1

nanv

n

∑
j=1

n

∑
k=1

pjkEX2
jkI{|Xjk| ≥ τ

√
an}

+

 1
na2

n

n

∑
j=1

E

∣∣∣∣∣∣ ∑
k:k 6=j

[R̃(j,0)]kk(Ajk − pjk)X2
jkI{|Xjk| ≥ τ

√
an}

∣∣∣∣∣∣
2


1
2

. (A64)

Since E[R̃(j,0)]kk(Ajk − pjk)X2
jkI{|Xjk| ≥ τ

√
an} = 0 and random variables Ajk, Xjk are independent

for k = 1, . . . n and independent on [R̃(j,0)]kk, we obtain

1
n

n

∑
j=1

E|ε j2| ≤
1
v

Ln(τ) +
τ

v

 1
nan

n

∑
j=1

∑
k:k 6=j

pjkσ2
jk

 1
2

=
1
v

Ln(τ) +
τ

v
(A65)

Thus, the lemma is proved.
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Lemma A8. Under the conditions of Theorem 1, we have

1
n

n

∑
j=1

E|ε j3| ≤
3
v

Ln(τ) +
τ

v
. (A66)

Proof. By definition of ε j3, we have

ε j3 =
1
an

∑
k:k 6=j

[R̃(j,0)(z)]kk pjk(X2
jk − σ2

jk), (A67)

We may write

1
n

n

∑
j=1

E|ε j3| ≤
1
v

1
nan

n

∑
j=1

n

∑
k=1

pjkE|X2
jk − σ2

jk|I{|Xjk| > τ
√

an}

+
1
n

n

∑
j=1

E
∣∣∣ 1

an

n

∑
k=1

pjk R̃(j,0)
kk (X2

jk − σ2
jk)I{|Xjk| ≤ τ

√
an}
∣∣∣ (A68)

Furthermore,

1
nan

n

∑
j=1

n

∑
k=1

pjkE|X2
jk − σ2

jk|I{|Xjk| > τ
√

an} ≤ Ln(τ)

+
1

nan

n

∑
j=1

n

∑
k=1

pjkσ2
jkEI{|Xjk| > τ

√
an}. (A69)

Using inequality (A60), we obtain

1
nan

n

∑
j=1

n

∑
k=1

pjkσ2
jkEI{|Xjk| > τ

√
an} ≤ Ln(τ)

+
1

nan

n

∑
j=1

n

∑
k=1

pjkE|Xjk|2I{|Xjk| > τ
√

an}EI{|Xjk| > τ
√

an} ≤ 2Ln(τ).

We estimate now the second term in the right-hand side of (A68). Applying triangle inequality,
we obtain

1
n

n

∑
j=1

E
∣∣∣ 1

an

n

∑
k=1

pjk R̃(j,0)
kk (X2

jk − σ2
jk)I{|Xjk| ≤ τ

√
an}
∣∣∣

≤ 1
n

n

∑
j=1

∣∣∣ 1
an

n

∑
k=1

pjkER̃(j,0)
kk E(X2

jk − σ2
jk)I{|Xjk| ≤ τ

√
an}
∣∣∣

+

 1
n

n

∑
j=1

E
∣∣∣ 1

an

n

∑
k=1

R̃(j,0)
kk (X2

jkI{|Xjk| ≤ τ
√

an} −EX2
jkI{|Xjk| ≤ τ

√
an})

∣∣∣2
 1

2

. (A70)

Simple calculations show that

1
n

n

∑
j=1

E
∣∣∣ 1

an

n

∑
k=1

R̃(j,0)
kk (X2

jkI{|Xjk| ≤ τ
√

an} −EX2
jkI{|Xjk| ≤ τ

√
an})

∣∣∣2
≤ 1

v2na2
n

n

∑
j=1

n

∑
k=1

p2
jkE|Xjk|4I{|Xjk| ≤ τ

√
an}

≤ τ2

v2
1

nan

n

∑
j=1

n

∑
k=1

pjkσ2
jk =

τ2

v2 . (A71)

Finally, we note that

E(X2
jk − σ2

jk)I{|Xjk| ≤ τ
√

an} = E(X2
jk − σ2

jk)I{|Xjk| > τ
√

an}. (A72)
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Combining inequalities (A68), (A70), (A71), we obtain the result of the lemma. Thus, the lemma is
proved.

Lemma A9. Under the conditions of Theorem 1, we have

1
n

n

∑
j=1

E|ε j4| ≤
1

vnan

n

∑
j=1

n

∑
k=1
|pjkσ2

jk −
1
n

n

∑
l=1

pjlσ
2
jl |. (A73)

Proof. By definition of ε j4, we have

ε j4 =
1
an

∑
k:k 6=j

R̃(j,0)
kk
(

pjkσ2
jk −

1
n

n

∑
l=1

pjlσ
2
jl
)
. (A74)

Using that |R̃(j,0)
kk | ≤

1
v , we obtain

1
n

n

∑
j=1

E|ε j4| ≤
1

vnan

n

∑
j=1

n

∑
k=1
|pjkσ2

jk −
1
n

n

∑
l=1

pjlσ
2
jl |. (A75)

Lemma A10. Under the conditions of Theorem 1, we have

1
n

n

∑
j=1

E|ε j5| ≤
1

vn

n

∑
j=1

∣∣∣ 1
an

n

∑
l=1

pjlσ
2
jl − 1

∣∣∣. (A76)

Proof. Recall that

ε j5 =
1
n ∑

k:k 6=j
R̃(j,0)

kk
( 1

an

n

∑
l=1

pjlσ
2
jl − 1

)
. (A77)

Using that |R̃(j,0)
kk | ≤ v−1, we obtain

1
n

n

∑
j=1

E|ε j5| ≤
1

vn

n

∑
j=1

∣∣∣ 1
an

n

∑
l=1

pjlσ
2
jl − 1

∣∣∣. (A78)

Thus, the lemma is proved.

Lemma A11. Under the conditions of Theorem 1, we have

1
n

n

∑
j=1

E|ε j6| ≤
τ

v2 +
1

nv2τ
Ln(τ). (A79)

Proof. By definition of ε j6, we have

ε j6 =
1
n ∑

k:k 6=j
[R̃(j,0)]kk −

1
n

n

∑
k=1

[R]kk. (A80)

By the triangle inequality, we obtain

1
n

n

∑
j=1

E|ε j6| ≤
1
n

n

∑
j=1

E| 1
n

TrR̃(j,0) − 1
n

TrR̃(j)|+ 1
n

n

∑
j=1

E| 1
n

TrR̃(j) − TrR|. (A81)

By the overlapping theorem, we have

| 1
n

TrR̃(j,0) − 1
n

TrR̃(j)| ≤ 1
nv

. (A82)

It remains to estimate the second term in the r.h.s. of (A81). Note that

R̃(j) − R = R̃(j)D(j)R. (A83)



Mathematics 2023, 11, 764 20 of 25

This equality implies that

TrR̃(j) − TrR =
1√
an

n

∑
l=1

n

∑
k=1

Rkl AjkXjk R̃(j)
lk . (A84)

Summing this equality in j, we obtain

1
n

n

∑
j=1

E| 1
n

TrR̃(j) − 1
n

TrR| ≤ 1
n2√an

n

∑
j=1

E|
n

∑
l=1

n

∑
k=1

Rkl AjkXjk R̃(j)
lk |. (A85)

Using that
n

∑
l=1
|Rkl R̃

(j)
kl | ≤

1
v2 , (A86)

we obtain

1
n

n

∑
j=1

E| 1
n

TrR̃(j) − 1
n

TrR| ≤ 1
v2n2√an

n

∑
j=1

n

∑
k=1

pjkE|Xjk|I{|Xjk| ≤ τ
√

an}

+
1

n2v2anτ

n

∑
j=1

n

∑
k=1

pjkEX2
jkI{|Xjk| > τ

√
an} ≤

τ

v2 +
1

nv2τ
Ln(τ). (A87)

Thus, the lemma is proved.

Appendix C. Unweigthed Graphs

Appendix C.1. Convergence of Diagonal Entries Distribution Functions of Laplace Matrices to the
Normal Law

We denote by F̂n(x) the distribution function of random variable ζ̂J and

∆̂n := sup
x
|F̂n(x)−Φ(x)|. (A88)

Lemma A12. Under the conditions of Theorem 2, we have

lim
n→∞

sup
x
|F̂n(x)−Φ(x)| = 0. (A89)

Proof. We consider the characteristic function of ζ̂J, f̂n(t) = 1
n ∑n

j=1 E exp{itζ̂ j}. Introduce the
following set of indices

M̂ =:=
{

j ∈ {1, . . . , n} :
1
ân

n

∑
k=1
|pjk(1− pjk)−

ân

n
| ≤ 1

16

}
. (A90)

We denote by Ac a complement set of A and by |A|, we denote the cardinality of set A. Note that,
by condition CP(1),

|M̂c|
n
≤ 16

1
nan

n

∑
j=1

n

∑
k=1
|pjkσ2

jk −
an

n
| → 0, as n→ ∞. (A91)

Note that, by independence of Ajk,

f̂nj(t) := E exp{ it√
ân

ζ̂ j} =
n

∏
k=1

E exp{ it√
ân

(Ajk − pjk)} =:
n

∏
k=1

f̂njk(t)

Applying the Taylor formula, we may write

f̂njk(t) = 1−
t2 pjk(1− pjk)

2ân
+ θ(t)

|t|3

6â
3
2
n

pjk(1− pjk), (A92)

where θ(t) denotes some function such that |θ(t)| ≤ 1.
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Using this equality, we may write

ln f̂njk(t) =−
t2

2ân
pjk(1− pjk) + θ1(t)

τ|t|3

6â
3
2
n

pjk(1− pjk)

+ θ2(t)
t4 p2

jk(1− pjk)
2

â2
n

+ θ3(t)
t6 p2

jk(1− pjk)
2

â3
n

. (A93)

Summing this equality by k = 1 . . . , n, we obtain

ln f̂nj(t) =−
t2

2
− t2

2
1
ân

n

∑
k=1

(pjk(1− pjk)−
ân

n
) + θ1(t)

|t|3

6â
3
2
n

n

∑
k=1

pjk(1− pjk)

+ θ2(t)
t4

â2
n

n

∑
k=1

p2
jk(1− pjk)

2 + θ3(t)
t6

â3
n

n

∑
k=1

p2
jk(1− pjk)

2. (A94)

Note that for j ∈ M̂,
1
an

n

∑
k=1

pjk(1− pjk) ≤
17
16

, for j ∈ M̂, (A95)

and

lim
n→∞

|M̂c|
n

= 0. (A96)

Similar to (A42), we may write

| f̂n(t)− exp{− t2

2
}| ≤2|M̂c|

n
+

t2

2
1

nân

n

∑
j=1

n

∑
k=1
|pjk(1− pjk)−

ân

n
|

+
C|t|3√

ân
+

Ct4

ân
+

C|t|6

â2
n

(A97)

This inequality implies that

lim
n→∞

f̂n(t) = exp{− t2

2
}. (A98)

Thus, Lemma A12 is proved.

In what follows, we shall assume that z = u + iv is fixed.

Appendix C.2. The Bounds of 1
n ∑n

j=1 E|ε̂ jν|, for ν = 1, . . . , 5

Lemma A13. Under conditions of Theorem 1, we have

1
n

n

∑
j=1

E|ε̂ j1| ≤
(

1
4anv2

) 1
2

. (A99)

Proof. By definition of ε j1 we may write

ε̂ j1 :=
1
ân

∑
l 6=k:l 6=j,k 6=j

[R̂(j,0)]kl(Ajk − pjk)(Ajl − pjl). (A100)

Applying the Cauchy inequality, we obtain

1
n

n

∑
j=1

E|ε j1| ≤

 1
n

n

∑
j=1

E|ε j1|2
 1

2

. (A101)
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Simple calculations show that

1
n

n

∑
j=1

E|ε̂ j1| ≤

 1
na2

n

n

∑
j=1

∑
k 6=j

∑
l 6=j

E|R̂(j,0)
kl |

2 pjk pjl(1− pjk)(1− pjl)

 1
2

≤

 1
4na2

n

n

∑
j=1

∑
k 6=j

∑
l 6=j

E|R̂(j,0)
kl |

2 pjk(1− pjk)

 1
2

≤

 1
4na2

nv2

n

∑
j=1

∑
k 6=j

pjk(1− pjk)

 1
2

≤
(

1
4anv2

) 1
2

. (A102)

Thus, Lemma A13 is proved.

Lemma A14. Under the conditions of Theorem 1, we have

1
n

n

∑
j=1

E|ε̂ j2| ≤
1√
ânv

. (A103)

Proof. We recall the definition of ε̂ j2,

ε̂ j2 =
1
ân

∑
k:k 6=j

[R̂(j,0)]kk((Ajk − pjk)
2 − pjk(1− pjk)). (A104)

Using the triangle inequality and the Cauchy inequality, we may write

1
n

n

∑
j=1

E|ε̂ j2| ≤

 1
nâ2

n

n

∑
j=1

n

∑
k=1

E|R̂(j,0)
kk |

2 pjk(1− pjk)(1− 2pjk)
2

 1
2

≤

 1
ânv2

1
nân

n

∑
j=1

n

∑
k=1

pjk(1− pjk)

 1
2

=

(
1

ânv2

) 1
2

. (A105)

Thus, Lemma A14 is proved.

Lemma A15. Under conditions of Theorem 1, we have

1
n

n

∑
j=1

E|ε̂ j3| ≤
1
v

1
nan

n

∑
j=1

n

∑
k=1
|pjk(1− pjk)−

ân

n
|. (A106)

Proof. By definition of ε̂ j3, we have

ε̂ j3 =
1
an

∑
k:k 6=j

[R̂(j,0)]kk(pjk(1− pjk)−
ân

n
). (A107)

We may write

1
n

n

∑
j=1

E|ε̂ j3| ≤
1
v

1
nân

n

∑
j=1

n

∑
k=1
|pjk(1− pjk)−

ân

n
|. (A108)

Thus, Lemma A15 is proved.

Lemma A16. Under the conditions of Theorem 1, we have

1
n

n

∑
j=1

E|ε̂ j4| ≤
1

v2
√

ân
. (A109)
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Proof. Recall that

ε̂ j4 =
1
n ∑

k:k 6=j
R̂(j,0)

kk − 1
n

n

∑
k=1

R̂kk. (A110)

Note that
| 1
n

TrR̂(j) − 1
n

TrR̂(j,0)| ≤ 1
nv

. (A111)

Furthermore,
R̂− R̂(j) = R̂D̂(j)R̂(j). (A112)

Recall that ‖A‖ denotes the operator norm of matrix A. The last equality and inequality
max{‖R̂‖, ‖R̂(j)‖} ≤ v−1 implies that

| 1
n

Tr(R̂− R̂(j))| ≤ ‖R̂− R̂(j)‖ ≤ ‖R̂‖‖D̂(j)‖‖R̂(j)‖ ≤ v−2‖D̂(j)‖. (A113)

Note that
E‖D̂(j)‖ ≤ 1√

ân
E max

1≤k≤n
|Ajk − pjk| ≤

1√
ân

. (A114)

Combining the last two inequalities, we obtain the claim. Thus, Lemma A16 is proved.

Appendix C.3. Variance of 1
n TrR̂

In this section, we estimate the variance of mn(z) = 1
n TrR̂, where R̂ = R̂(z) = (L̂− zI)−1. We

prove the following lemma.

Lemma A17. For any v > 0 and z = u + iv, the following inequality holds

lim
n→∞

E| 1
n

TrR̂−E 1
n

TrR̂| = 0. (A115)

Proof. The proof of this lemma is similar to the proof of Lemma A2. We introduce the sequence of
σ-algebras Mk generated by random variables Aj,l for 1 ≤ j, l ≤ k. It is easy to see that Mk ⊂Mk+1.
Denote by Ek the conditional expectation with respect to σ-algebra Mk. For k = 0, E0 = E. Introduce
random variables

γ̂k := Ek(
1
n

TrR̂)−Ek−1(
1
n

TrR̂). (A116)

The sequence of γ̂k, for k = 1, . . . , n is a martingale difference and

1
n

TrR̂−E 1
n

TrR̂ =
n

∑
k=1

γ̂k.

Furthermore, introduce the sub-matrices L̂(k) obtained from L̂ by replacing the diagonal entries with

L̂(k)
ll := 1√

an
∑l:l 6=k,l 6=j(Ajl − pjl). Denote by R̂(k)(z) the corresponding resolvent matrix, R̂(k)(z) =

(L̂(k) − zIn−1)
−1. We introduce the matrix L̂(k,0) obtained from L̂(k) by deleting both the k-th row

and k-th column. The corresponding resolvent matrix we denote via R̂(k,0). We have now

EkTrR̂(k,0) = Ek−1R̂(k,0).

This allows us to write

γ̂k =Ek(
1
n
(TrR̂− TrR̂(k)))−Ek−1(

1
n
(TrR̂− TrR̂(k)))

+Ek(
1
n
(TrR̂(k) − TrR̂(k,0)))−Ek−1(

1
n
(TrR̂(k) − TrR̂(k,0))) =: γ̂

(1)
k + γ̂

(2)
k .

By the overlapping theorem ∣∣∣∣ 1
n

TrR̂(k) − 1
n

TrR̂(k,0)
∣∣∣∣ ≤ 1

nv
. (A117)

From here, we immediately obtain

|γ̂(2)
k | ≤

2
nv

,
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and
n

∑
k=1

E|γ̂(2)
k |

2 ≤ 4
nv2 . (A118)

To complete the proof, it remains to show that

lim
n→∞

n

∑
k=1

E|γ̂(1)
k |

2 = 0. (A119)

Note that
E|γ̂(1)

k |
2 ≤ 2E| 1

n
TrR̂− 1

n
TrR̂(k)|2. (A120)

Introduce the diagonal matrix D̂(k) with diagonal entries

D̂(k)
ll =

1√
an

(Akl − pkl), l 6= k.

In these notations, we have

1
n

TrR̂− 1
n

TrR̂(k) = − 1
n

TrR̂D̂(k)R̂(k) = − 1
n
√

ân
∑

l 6=k,j 6=k
R̂(k)

l j (Akl − pkl)R̂(k)
jl . (A121)

This implies that
n

∑
k=1

E|γ̂(1)
k |

2 ≤ 4
n2 ân

n

∑
k=1

E|∑
j 6=k

(Akj − pkj)
(

∑
l 6=k

R̂l jR̂
(k)
jl
)
|2. (A122)

We continue this inequality as follows

n

∑
k=1

E|γ̂(1)
k |

2 ≤ 8
n2 ân

n

∑
k=1

E
∣∣∣ ∑

j 6=k
(Akj − pkj)

(
∑
l 6=k

R(k)
l j R̂(k)

jl
)∣∣∣2

≤ 8
n2v4 ân

n

∑
k=1

∑
j 6=k

pjk(1− pjk) ≤
8

nv2 . (A123)

Inequalities (A118) and (A123) completed the proof. Thus, Lemma A17 is proved.
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