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Abstract: In his 1842 lectures on dynamics C.G. Jacobi summarized difficulties with differential
equations by saying that the main problem in the integration of differential equations appears in
the choice of right variables. Since there is no general rule for finding the right choice, it is better to
introduce special variables first, and then investigate the problems that naturally lend themselves
to these variables. This paper follows Jacobi’s prophetic observations by introducing certain “meta”
variational problems on semi-simple reductive groups G having a compact subgroup K. We then
use the Maximum Principle of optimal control to generate the Hamiltonians whose solutions project
onto the extremal curves of these problems. We show that there is a particular sub-class of these
Hamiltonians that admit a spectral representation on the Lie algebra of G. As a consequence, the
spectral invariants associated with the spectral curve produce a large number of integrals of motion,
all in involution with each other, that often meet the Liouville complete integrability criteria. We
then show that the classical integrals of motion associated, with the Kowalewski top, the two-body
problem of Kepler, and Jacobi’s geodesic problem on the ellipsoid can be all derived from the
aforementioned Hamiltonian systems. We also introduce a rolling geodesic problem that admits
a spectral representation on symmetric Riemannian spaces and we then show the relevance of the
corresponding integrals on the nature of the curves whose elastic energy is minimal.
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1. Introduction

The theory of integrable systems begins with W.R. Hamilton who in 1835 pronounced
that the equations of motion of an n body system conform to the principle of least action,
and consequently can be represented as

dqi
dt

=
∂H
∂pi

,
dpi
dt

= −∂H
∂qi

, i = 1, . . . , n, (1)

under the transformation

pi =
∂T
∂q̇i

(q1, . . . , qn, q̇1, . . . , q̇n), q̇i =
dqi
dt

, i = 1, . . . , n, (2)

where H = T + V is the total energy, with T the kinetic and V the potential energy of the
system. He then observed that H is conserved along the solutions of the system. Hamilton’s
discovery gave rise to a new class of differential equations of the form

dx
dt

=
∂H
∂y

(x(t), y(t))
dy
dt

= −∂H
∂x

(x(t), y(t)). (3)

associated with any function H of 2n variables x = x1, . . . , xn and y = y1, . . . , yn. Such
equations became known as the canonical equations. Then the transformations (x, y) →
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(x′, y′) that preserved the canonical form of these equations were also called canonical,
and the functions whose values were conserved by canonical systems became known
as integrals.

Hamilton’s discovery had an immediate impact on the scientific community of the
nineteenth century. Canonical equations became the central object of study in the mathe-
matics of that period with the contributions of J. Liouville, S.D. Poisson, C.G. Jacobi and
H. Poincaré leading the way towards a new branch in mathematics known today as the
theory of integrable systems. This theory was principally driven by a lasting interest in
the existence of extra integrals of motion and the symmetries that are accountable for the
existence of these integrals. Its defining moment may be attributed to S.D. Poisson who in
1809 [1] introduced his bracket (known since as the Poisson bracket)

{ f , g} =
n

∑
i=1

∂ f
∂xi

∂g
∂yi
− ∂ f

∂yi

∂g
∂xi

(4)

for functions f and g in the canonical variables x1, . . . , xn, y1, . . . , yn.
The introduction of the Poisson bracket greatly facilitated the emerging theory of that

period. It provided an alternative definition of canonical systems as differential systems
that satisfy

dxi
dt

= {xi, H}, and
dyi
dt

= {yi, H}, i = 1, . . . , n (5)

and it also redefined integrals of motion associated with H as functions F that satisfy
{F, H} = 0. It was Jacobi, however, who noticed the fundamental property of the Pois-
son bracket

{ f , {g, h}}+ {h, { f , g}}+ {g, {h, f }} = 0, (6)

that has been known ever since as the Jacobi’s identity. It is then an easy consequence of
Jacobi’s identity that F3 = {F1, F2} is a third integral of motion for H for any two integrals
F1 and F2 (known as Poisson’s theorem [2]). Alternatively integrals of motion were detected
through a suitable change of canonical coordinates. Jacobi characterized such changes of
coordinates through a generating function S(x, y′). According to Jacobi (x, y) → (x′, y′)
is canonical if and only if yi = ∂S

∂xi
, x′i = ∂S

∂y′ . Poincaré characterized canonical change
of coordinates in terms of differential forms: (x, y) → (x′, y′) is canonical if and only if
∑n

i=1 xidyi − x′idy′i = dS for some function S.
From contemporary perspectives the theory of integrable systems begins with C.G.

Jacobi and his seminal book Lectures in Dynamics [3]. Jacobi demostrated that the canonical
Equation (3) can be integrated with the aid of a partial differential equation

H(x1, . . . , xn,
dS
dx1

, . . . ,
dS
dxn

) = c, (7)

in terms of an unknown function S. He showed that if a particular solution of (7) can be
found in terms of n arbitrary constants of motion h1, . . . , hn then c = φ(h1, . . . , hn) for some
function φ, and the transformation

yi =
∂S
∂xi

, h′ =
∂S
∂hi

(8)

transforms the canonical coordinates (x, y) into new canonical coordinates (h′, h) relative
to which the canonical Equation (3) are transformed into the equations

dh′

dt
=

dφ

dh
,

dh
dt

= − dφ

dh′
= 0,
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whose solutions are given by

h′(t) = c2t + c3, h(t) = c1, c2 =
dφ

dh
. (9)

Canonical coordinates whose solutions are given by (9) are called action-angle coordi-
nates [4].

Equation H(x1, . . . , xn, ∂S
∂x1

, . . . , ∂S
∂xn

) = c is known as Jacobi’s equation. Poincaré referred
to the above result as the first theorem of Jacobi in his treatise of celestial mechanics [2].
Jacobi’s solution of the above partial differential equation in terms of the elliptic coordinates
stands out as the most original and, perhaps, the most enigmatic contribution to the theory
of canonical systems. Jacobi’s use of elliptic coordinates suggested the existence of a special
class of variational problems whose solutions can be described by Abelian integrals in some
privileged system of coordinates, exemplified by the geodesic problem on the ellipsoid. In
the absence of any apparent symmetries on the ellipsoid that account for the integrability
of the geodesic problem, this result of Jacobi seemed particularly mysterious.

In Jacoby summary, the main problem in the integration of differential equations
appears in the choice of right variables. Given no general rule for finding the right choice, it
is better to introduce special variables first, and then investigate the problems that naturally
lend themselves to these variables [3]. Jacobi, however, does not comment on another
exceptional aspect of his discovery, namely the mysterious presence of partial differential
equations for the problems of variational calculus, an issue that remained open for a
long time.

Almost a hundred years later, C. Carathéodory in the introduction to his famous book
on the calculus of variations [5] remarks that “neither Jacobi, nor his students, nor the many
other prominent men who so brilliantly represented and advanced this discipline during
the nineteenth century, thought in any way of the relationship between the calculus of
variations and partial differential equation”. H. Poincaré also sidestepped this issue by
treating canonical systems as the solutions of a dynamical system

d
dt

2n

∑
k=1

xi
dyi
dαk
− d

dαk

2n

∑
k=1

xi
dyi
dt

=
dF
dαk

, k = 1, . . . , 2n, (10)

where α1, . . . , α2n denote the constants xi(t0) = αi, yi(t0) = αi+n, i = 1, . . . , n. Since dF
dαk

=

∑n
i=1

∂F
∂xi

∂xi
∂αk

+ ∂F
∂yi

∂yi
∂αk

the above differential equation can be reformulated as

n

∑
i=1

(
dxi
dt
− ∂F

∂yi
)

dyi
dαk
− (

dyi
dt

+
∂F
∂xi

)
dxi
dαk

= 0,

which shows that Equations (3) and (10) have the same solutions. Poincaré equation used
Equation (10) to show that a transformation (x, y)→ (x′, y′) is canonical if and only if the
differential form ∑n

i=1 yidxi satisfies ∑n
i=1 yidxi − y′idx′i = dS for some function S(x, x′).

Among many other stellar advancements of that epoch, the following result of J. Liou-
ville, reported in 1855 [6], seemed particularly influential for the present mathematics [4].
Liouville considered a differential system

dx
dt

=
∂

∂y
F(t, x(t), y(t)),

dy
dt

= − ∂

∂x
F(t, x(t), y(t)) (11)

associated with a function F(t, x1, . . . , xn, y1, . . . , yn). He then assumed the existence of n
integrals of motion h1(t, x, y), . . . , hn(t, x, y) such that the system of equations

h1 = h1(t, x, y), h2 = h2(t, x, y), . . . , hn = hn(t, x, y)
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can be solved for y1, . . . , yn in the variables t, x1, . . . , xn, h1, . . . hn. He also imposed the
condition that h1, . . . , hn are in involution, that is,

{hi, hj} =
n

∑
k=1

∂hi
∂xk

∂hj

∂yh
− ∂hi

∂yk

∂hj

∂xk
= 0, 1 ≥ i, j ≤ n. (12)

Liouville interpreted dxi
dt = ∂

∂yi
F(t, x(t), y(t)) as the exactness condition for the differ-

ential form ∑n
i=1 yi(t, x, h)dxi − F(t, x, p(t, x, h))dt and concluded that there is a function

S(t, x, h) such that

n

∑
i=1

yidxi − F(t, x, p(t, x, h))dt =
∂S
∂xi

dxi +
dS
dt

dt,

that is, yi =
∂S
∂x , dS

dt + F(t, x, ∂S
∂x ) = 0. But then S can be used as the generating function for

the canonical transformation (x, y)→ (h, h′) where h′ = − ∂S
∂h . Liouville refers to

yi =
∂S
∂xi

, h′i = −
∂S
∂hi

, i = 1, . . . , n (13)

as a complete system. Indeed, in the new coordinates h1, . . . , hn remain constants of motion
and therefore dhi

dt = 0, i = 1, . . . , n. Since dhi
dt = ∂F

∂h′ , F is independent of h′, that is, F is
a function of t and h. But then − ∂F̃

∂h is a given function of time, and h′(t) is given by its
integral. When F is a function of x and y, and not explicitly dependent on time, then F̃ is
only a function of h. Therefore, the general solution is given by

h(t) = h(0), h′(t) = ωt + h′(0), ω = −∂F̃
∂h

. (14)

This heritage from 19-th century mathematics forms a core of knowledge indispensable
for problems of mathematical physics, symplectic geometry, calculus of variations and
optimal control theory, and its unanswered questions still motivate much of the current
research in integrable systems.

This paper will address the “hidden” symmetries that account for the existence of
extra integrals of motion. We will show that the canonical integrable systems, such as
Jacobi’s geodesic problem on the ellipsoid, Neumann’s mechanical problem on the sphere,
Euler’s top, and the associated heavy tops, all derive their constants of motion from certain
“meta” systems on Lie groups that admit isospectral representations of the form

dLλ

dt
(t) = [Mλ(t), Lλ(t)] (15)

on the Lie algebra g of G.
We will confine our attention to semi-simple Lie groups G having a compact subgroup

K, for then the Lie algebra g admits a decomposition g = k+ p, where k the Lie algebra
of K and p is the orthogonal complement of k relative to the Killing form Kl(A, B) =
Tr(adA ◦ ad(B). But then [p, k] ⊆ p] and therefore g as a vector space also carries the
semi-direct Lie algebra gs associated with the semi-direct product Gs = po K. We will
then single out a class of left-invariant variational problems on G that admit an isospectral
representation with

Lλ,s = Lp − λLk + (λ2 − s)A, (16)

where s = 0 in the semi-direct case and s = 1 in the semi-simple case, L = Lk + Łp,
Lk ∈ k, Lp ∈ p, and where A is a fixed element in p. It is then known that the spectral
invariants φk

λ,s(L) = Tr(Lk
λ,s) are in involution relative to the canonical Poisson bracket on g,

respectively on gs. We will show that these invariants shed light on the hidden symmetries
that surround many of the aforementioned integrable systems. In the process we will be able
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to demonstrate that the quest for the geometric origins behind the “mysterious” integrals
of motions also leads to new and unexpected encounters with problems of Riemannian and
sub-Riemannian geometry in which geometric control theory plays a major role.

2. Symplectic Background, Hamiltonian Systems

The theoretic framework upon which above claims are made is rooted in symplec-
tic geometry. Below is a brief summary of the theoretical ingredients required for our
main results.

Recall that a manifold M together with a non-degenerate and closed 2-form ω is called
symplectic. The symplectic form yields a correspondence between functions and vector
fields: to every function f there is a vector field ~f defined by ω(~f , X) = d f (X) for all
vector fields X on M. Then ~f is called the Hamiltonian vector field generated by f . Every
symplectic manifold is even dimensional, and at each point of M there is a neighbourhood
with coordinates (x1, . . . , xn, p1, . . . , pn) on which Hamiltonian vector fields are given by

~f =
n

∑
i=1

∂ f
∂pi

∂

∂xi
− ∂ f

∂xi

∂

∂pi
. (17)

This choice of coordinates in which ~f is given by (17) is called symplectic, or canonical
in the terminology of the 19-th century.

Every cotangent bundle T∗M is a symplectic manifold with its canonical symplectic
form, ω = dp ∧ dx in terms of the symplectic coordinates (x1, . . . , xn, p1, . . . , pn). As a
symplectic manifold the cotangent bundle is special, in the sense that it is also a vector
bundle. Hence every vector field X on M can be lifted to a unique Hamiltonian vector
field ~fX in T∗M via the function fX(ξ) = ξ(X(x)), ξ ∈ T∗x M. Vector field ~fX is called the
Hamiltonian lift of X. The same procedure is applicable to any time varying vector field, and
by extension to any differential system on M. Thus any differential system in M can be
lifted to a Hamiltonian system in T∗M. This fact is also important for problems of optimal
control where the Maximum Principle singles out the appropriate Hamiltonian lifts that
govern the optimal solutions [7].

When the base manifold is a Lie group G, and when the underlying differential system
is either left or right invariant, then there is a special system of coordinates based on the
representation of T∗G as G× g∗, with g∗ the dual of g. This coordinate system preserves
the left invariant symmetries and elucidates the conserved quantities of the associated
Hamiltonian systems. The passage to these coordinates and the associated formalism was
amply documented in my earlier publications [7–9]. Below we will highlight the main
points in this theory required for our results.

2.1. Left-Invariant Trivializations and the Symplectic Form

Having in mind applications that involve left-invariant variational systems the cotan-
gent bundle T∗G and the tangent bundle TG will be viewed as the products G× g∗ and
G× g via the left-translations. More explicitly, tangent vectors v ∈ TgG will be identified
with pairs (g, X) ∈ G× g via the relation v = Lg∗X, where Lg∗ denotes the tangent map
associated with the left translation Lg(h) = gh. Similarly, points ξ ∈ T∗g G will be identified
with pairs (g, `) ∈ G× g∗ via ξ = ` · Lg

−1
∗ . Then T(T∗G), the tangent bundle of the cotan-

gent bundle T∗G, will be identified with (G× g∗)× (g× g∗), with the understanding that
an element ((g, `), (A, a)) ∈ (G× g∗)× (g× g∗) denotes the tangent vector (A, a) at the
base point (g, `).

We will make use of the fact that G× g∗ is a Lie group in its own right since g∗, as a
vector space, is an abelian Lie group. Then left-invariant vector fields V in G× g∗ will be
denoted by V(g, `) = (gA, a), (g, `) in G× g∗. In this setting the canonical symplectic form
on T∗G is given by

ω(g,`)(V1, V2) = a2(A1)− a1(A2)− `([A1, A2]) (18)
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for any left-invariant vector fields V1 = (gA1, a1) and V2 = (gA2, a2) [7]. The above
form is invariant under the left-translations in G× g∗, and is especially revealing for the
Hamiltonian vector fields generated by left-invariant functions on G× g∗.

A function H on G× g∗ is left-invariant if H(hg, `) = H(g, `) for all g, h ∈ G and all
` ∈ g∗. That is, left-invariant functions coincide with functions of g∗. Each left-invariant
vector field X(g) = gA on G lifts to a linear function `→ `(A) on g∗ because

hX(ξ) = ξ(X(g)) = ` ◦ Lg
−1
∗ ◦ (Lg)∗(A) = `(A), ξ ∈ T∗g G.

Functions H on g∗ generate Hamiltonian vector fields ~H on G × g∗ whose integral
curves are the solutions of

dg
dt

(t) = g(t)dH`(t),
d`
dt

(t) = −ad∗dH`(t)(`(t)). (19)

In a more general case, where H depends on both g ∈ G and ` ∈ g∗, the integral
curves of ~H are the solutions of

dg
dt

(t) = g(t)dH`(t),
d`
dt

(t) = −ad∗dH`(t)(`(t))− dHg ◦ Lg∗, (20)

that can be easily shown through the relations

b(dH`) + dHg ◦ Lg∗B = b(A)− a(B)− `[A, B].

This situation occurs in problems of mechanics in the presence of potential functions.
For example, the movements of a three-dimensional rigid body with a potential function
V : SO(3)→ R are described by the Hamiltonian

H(R, `) = H0(`) + V(α1, α2, α3)

on the cotangent bundle of SO(3), where α1, α2, α3 denote the columns of the matrix
transpose of the rotation R in SO(3). For then the directional derivative of V in the
direction RX is given by

dV(RX) =
3

∑
i=1
〈 ∂V

∂αi
∧ αi, X〉

where 〈 , 〉 denotes the standard inner product − 1
2 Tr(XY) in so(3). Thus dHg ◦ dLg =

∑3
i=1

∂V
∂αi
∧ αi and the equations of motion for H are given by

dg
dt

(t) = g(t)dH0(`(t)),
d`
dt

(t) = −ad∗dH0(`(t))(`(t)) +
3

∑
i=1

αi ∧
∂V
∂αi

. (21)

These equations extend to an “n-dimensional rigid body” with the Hamiltonian
H(R, `) = H0(`) + V(α1, . . . , αn) where

dR
dt = R(t)Ω(t), dM

dt = [Ω(t), M(t)] + ∑n
i=1 αi ∧ ∂V

∂αi
(22)

P(Ω(t)) = M(t), αi(t) = RT(t)ei, i = 1, . . . , n.

In this context, M(t) is the generalization of the angular momentum, Ω(t) is the
generalization of the angular velocity, P is the generalized inertia tensor, and ∑n

i=1 αi ∧ ∂V
∂αi

is the external torque.
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2.2. Poisson Manifolds, Coadjoint Orbits

Equation (19) lend themselves to an insightful description in terms of the Poisson
structure on g∗ inherited from the symplectic form ω. Recall that a manifold M together
with a bilinear, skew-symmetric form

{ , } : C∞(M)× C∞(M)→ C∞(M)

that satisfies

{ f g, h} = f {g, h}+ g{ f , h}, (Leibniz’s rule), and

{ f , {g, h}}+ {h, { f , g}}+ {g, {h, f }} = 0, (Jacobi’s identity),

for all functions f , g, h on M, is called a Poisson manifold.
Every symplectic manifold is also a Poisson manifold with the Poisson bracket given

by { f , g}(p) = ωp(~f (p),~g(p)), p ∈ M. However, the converse may not be true due to the
fact that the Poisson bracket may be degenerate at some points of M. Nevertheless, each
function f on M induces a Poisson vector field ~f through the formula ~f (g) = { f , g} as in
the symplectic case. Poisson vector fields clarify the relation with symplectic manifolds
through the following fundamental fact: every Poisson manifold is foliated by the orbits of
its family of Poisson vector fields and each orbit is a symplectic submanifold of M with its
symplectic form ωp(~f ,~h) = { f , h}(p) [7].

The dual g∗ of a Lie algebra g is a Poisson manifold with the Poisson bracket

{ f , h}(`) = `([dh, d f ]) (23)

for any functions f and h on g∗. In the literature on integrable systems the bracket
{ f , h}(`) = `([d f , dh]) is known as the Lie-Poisson bracket [10]. We have taken its negative
to be compatible with the projections of left-invariant Hamiltonian vector fields on g∗ (and
also to agree with the sign conventions in [7]).

It follows that each function H on g∗ defines a Poisson vector field ~H on g∗ via the
formula ~H( f )(`) = {H, f }(`) = −`([dH, d f ]) in which case the integral curves of ~H are
the solutions of

d`
dt

(t) = −ad∗dH`(t)(`(t)). (24)

Thus, as we already mentioned above, each function H on g∗ may be simultaneously
viewed as a Hamiltonian on T∗G, and a function on the Poisson space g∗. Of course,
Poisson equations coincide with the projections of the Hamiltonian equations on g∗ .

Solutions of Equation (24) are intimately linked with the coadjoint orbits of G through
the following proposition. due to of A.A. Kirillov [11] (the proof is also given in [7]).

Proposition 1. Let F denote the family of Poisson vector fields on g∗ and let M = OF (`0) denote
the orbit of F through a point `0 ∈ g∗. Then M is equal to the connected component of the coadjoint
orbit of G that contains `0. Consequently each coadjoint orbit is a symplectic submanifold of g∗.

Recall that the coadjoint orbit of G through a point ` ∈ g∗ is given by Ad∗g(`) =
{` ◦Adg−1 , g ∈ G}.

The fact that the Poisson equations can be naturally restricted to coadjoint orbits
implies useful reductions in the theory of Hamiltonian systems.

2.3. Representation of Coadjoint Orbits on Lie Algebras

On semi-simple Lie groups Poisson Equation (24) can be expressed on g as

dL
dt

= [dH, L], (25)
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because the Killing form, or any scalar multiple of it 〈 , 〉 is non-degenerate, and invariant,
in the sense that, 〈X, [Y, Z]〉 = 〈[X, Y], Z〉, X, Y, Z ∈ g, and can be used to identify g with g∗

via the formula
〈L, X〉 = `(X), ` ∈ g∗, X ∈ g.

Then coadjoint orbits are identified with the adjoint orbits and the Poisson vector fields
~fX(`) = −ad∗X(`) are identified with vector fields ~X(L) = [X, L]. Each vector field [X, L]
is tangent to an orbit at L, and ωL([X, L], [Y, L]) = 〈L, [Y, X]〉, X, Y in g is the symplectic
form on each orbit O(L0).

In a reductive semi-simple Lie group G there is also the semi-direct product G0 = poK
described earlier which generates its own coadjoint orbits on the dual of the Lie algebra
g0 of G0. Recall that the Lie algebra g0 of G0 consists of pairs (A, B), A ∈ p, B ∈ k together
with the Lie bracket

[(A1, B1), (A2, B2)] = ([A1, B2]− [A2, B1], [B1, B2]).

When the elements (A, B) ∈ g0 are identified with the sums the sums A + B in g, g as
a vector space, carries a double Lie algebra; the semi-direct product Lie algebras g0, and the
semi-simple Lie algebra g1 = g. We then have

[A + B, C + D] = [A, B]s + [A, D + [B, C] + [A, D], s = 0, 1,

for any A, C in p and any B, D in k, with s = 0 in the semi-direct case, and s = 1 in the
semi-simple case.

Since both g and g0 Lie algebras over the same vector space, the Poisson equations on
g∗0 can be also represented on g0 via the quadratic form 〈 , 〉, but the resulting expression
takes a slightly different form. To see the difference, let dH = dHp + dHk and L = Lp + Lk

denote the decompositions of dH and L onto the factors p and k. On the semi-direct product
Poisson equations reduce to

dLk

dt
= [dHk, Lk] + [dHp, Lp],

dLp

dt
= [dHk, Lp]. (26)

This equation can be combined with the equations for the semi-simple case in terms of
the parameter s as

dLk

dt
= [dHk, Lk] + [dHp, Lp],

dLp

dt
= [dHk, Lp] + s[dHp, Lk], s = 0, 1. (27)

One can show that

P = Adh(P0), Q = [Adh(P0), X] + Adh(Q0), (X, h) ∈ G0 (28)

is the coadjoint orbit through P0 ∈ p, Q0 ∈ k under the action of G0 = p o K when
`0 ∈ g∗s is identified with L0 = P0 + Q0 in g0, and when ` = Ad∗(X,h)(`0) is identified with
L = P + Q [7].

The adjoint orbits of a non-compact semi-simple Lie groups G can be realized as the
cotangent bundles of flag manifolds [12], and the same has been shown recently for the
coadjoint orbits under the action of the semi-direct products [13,14]. We will make use of
that fact later on in the paper.

3. Affine-Quadratic Problems

As stated earlier, we will restrict our attention to semi-simple Lie groups G and
compact subgroups K with zero centre. We refer to (G, K) as a reductive pair. Then g and
k will denote their Lie algebras, and p will denote the orthogonal complement of k in g
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relative to the Killing Kl(A, B) = Tr(adA ◦ ad(B)) in g. Recall that Kl is non-degenerate
and satisfies

Kl(A, [B, C]) = Kl([A, B], C), A, B, C in g.

Hence p is well defined and satisfies [p, k] ⊆ p ( in fact, [p, k] = p because g is semi-
simple). We will also assume that [p, p] = k. Note that the Killing form is negative-definite
on k because K has zero centre [15], hence any negative scalar multiple 〈 , 〉 of it is positive
definite on k. We shall assume that such a scalar product is fixed.

An affine quadratic problem is defined through a positive definite quadratic form Q
on k, and a regular element A in the Cartan space p. An element A in p is called regular
if {X ∈ p : [A, X] = 0} is an abelian subalgebra in p. The corresponding affine-quadratic
problem consists of finding the solutions g(t) in G of the affine control system

dg
dt

= g(t)(A + U(t)), (29)

generated by a square-integrable control U(t) in k that transfers a given state g0 in G to
a given terminal state g1 in time T with a minimal energy 1

2

∫ T
0 Q(U(s))ds. Any positive

definite quadratic form Q is of the form Q(U) = 1
2 〈P(U), U〉 for some self-adjoint and

positive linear operator P on k. Then there exists an orthonormal basis U1, . . . , Uk in k

such that P is diagonal relative to it. That is, if U(t) = ∑k
i=1 ui(t)Ui then P(U(t)) =

∑k
i=1 ciui(t)Ui for some constants c1, . . . , ck. Then (29) can be rewritten as as

dg
dt

= X0(g) +
k

∑
i=1

ui(t)Xi(g), (30)

where X0, . . . , Xk are the left-invariant vector fields with X0(g) = gA and Xi(g) = gUi, i =
1, . . . , k, with 1

2

∫ T
0 ∑k

i=1 ciu2
i (t) dt. the energy associated with each solution. The most

natural case occurs when P = I, that is, when ci = 1, i = 1, . . . , k. We will refer to this case
as the canonical affine-quadratic problem.

When A is regular, then (29) is controllable, a consequence of our assumption [p, p] = k,
that is, any terminal state g1 can be reached in some finite time T > 0 from any initial state
g0. But then there is an optimal solution (ḡ(t), Ū(t)) on the interval [0, T] for which the
energy of transfer

∫ T
0 Q(Ū(s))ds is minimal (see [7] for the proof). Therefore the above

optimal control problem is well-posed.
To each affine-quadratic problem there is an analogous “shadow problem” defined on

the semi-direct product Go = pn K defined by the same data as in the original problem. It
follows that every affine space Γ = {A + U : U ∈ k} that defines an affine left-invariant
system on G also defines a corresponding left-invariant affine system on the semi-direct
product G0. Thus behind every affine quadratic optimal problem on G there is a corre-
sponding affine-quadratic “shadow” problem on the semi-direct product Gs. The shadow
problem is also well defined in the sense that optimal solutions exist on some interval [0, T]
for each pair of boundary points g(0) = g0 and g(T) = g1.

According to Pontriyagin’s Maximum Principle every optimal trajectory generated by
a bounded and measurable control is the projection of an extremal curve, and each extremal
curve is an integral curve of a suitable Hamiltonian system on the cotangent bundle of the
ambient space. The Maximum Principle is also valid for optimal problems with L2 controls
over affine systems with quadratic costs ([16]).

Let now g(t) be an optimal trajectory generated by a control u(t). According to the
Maximum Principle, g(t) is the projection of an extremal curve ξ(t) in T∗G along which
the cost extended Hamiltonian

−λ

2

k

∑
i=1

ciu2
i (t) + H0(ξ) +

k

∑
i=1

ui(t)Hi(ξ(t)), λ = 0, 1
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is maximal at u(t) relative to all competing controls u(t). In this notation, each Hi is
the Hamiltonian lift of Xi, i.e., Hi(ξ(t)) = ξ(t)(Xi(g(t))). In the abnormal case, which
we will not treat here, λ = 0, and the Maximum principle results in the constraints
Hi(ξ(t)) = 0, i = 1, . . . , k. In the normal case, λ = 1, the maximality condition implies
that the optimal controls are of the form ui(t) = 1

ci
Hi(ξ(t)), i = 1, . . . , k. Consequently,

optimal solutions are the projections of solution curves of a single Hamiltonian vector field
~H generated by the Hamiltonian

H(ξ) =
1
2

k

∑
i=1

1
ci

H2
i (ξ) + H0(ξ) =

1
2

k

∑
i=1

1
ci
(`(Ui))

2 + `(A). (31)

Recall that each lift Hi(ξ) is a linear function on g∗ given by Hi(ξ) = `(Ui) with
H0(ξ) = `(A). Thus H is left-invariant, hence its Hamiltonian equations are given by

dg
dt

= X0(g) +
n

∑
i=1

1
ci

Hi(`(t))Xi(g(t)),
d`
dt

= −ad∗dH(`(t))(`(t)).

The associated Poisson equations can be now written in g as

dLk

dt
= [P−1(Lk), Lk] + [A, Lp],

dLp

dt
= [P−1(Lk), Lp] + s[A, Lk], s = 0, 1, (32)

after the identification of ` ∈ g∗ with L ∈ g via the scalar product 〈 , 〉, and the decomposi-
tion L = Lk + Lp, Lk ∈ k, Lp ∈ p (Equation (27)). In the canonical case (P = I) the preceding
equations reduce to

dLk

dt
= [A, Lp],

dLp

dt
= [Lk, Lp] + s[A, Lk], s = 0, 1. (33)

Note that s〈Lk, Lk〉+ 〈Lp, Lp〉 is an integral for (32). This integral is a universal integral
of motion in the sense that it remains constant for any left-invariant Hamiltonian on gs.

3.1. Isospectral Representations

We now single out a remarkable class of affine-quadratic Hamiltonians that plays
a prominent role in the theory of integrable systems. It consists of Hamiltonians H =
1
2 〈P−1Lk, Lk〉+ 〈Lp, A〉 that admit a spectral representation of the form

dLλ
dt = [Mλ, Lλ], (34)

with Mλ = P−1(Lk)− λA, and Lλ,s(L) = Lp − λLk + (λ2 − s)B,

for some element B ∈ p that comutes with A, where Lp and Lk are the solutions of the
Poisson Equation (32). Such a class is called isospectral and Lλ(s) is called the associated
spectral curve. This terminology has origins in J. Zimmerman’s PhD thesis in 2002, in
which he showed that the rolling sphere problem is isospectral [17]. We will return to
Zimmerman’s problem and relate its results to the canonical affine-quadratic problem [18].

For Hamiltonian systems that admit an isospectral representation, the discrete spectral
invariants of L are replaced by the functional invariants φ

(k)
λ,s (L) = Trace(Lk

λ,s(L)). Remark-
ably, the functional invariants φk

λ,s are in involution with each other, both with respect to
the semi-simple and the semi-direct product Lie bracket, and in some instances generate
a sufficient number of integrals of motion to ensure complete integrability ([7], 9.2). For
instance, the family of functions

F0 = {φk
λ,0, k ≥ 1, λ ∈ R} ∪ {hX : [X, B] = 0, X ∈ k}

is completely integrable on each coadjoint orbit in po K [19]. This means that H is com-
pletely integrable on each coadjoint orbit in po k whenever H is in involution with the
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Hamiltonian lifts hX(L) = 〈L, X〉, X ∈ k, [X, B] = 0. This implies that the canonical affine
Hamiltonian is completely integrable on coadjoint orbits since each left-invariant vector
field with values in the isotropy group of A is a symmetry for the canonical system. It is
reasonable to expect that the analogous family of functions is also completely integrable on
coadjoint orbits of G, but, to the best of my knowledge, the proofs have not yet appeared in
the literature.

The focus on the affine-quadratic problem and the associated Hamiltonians allows for
the following characterization of isospectral Hamiltonians (proved in [7]).

Theorem 1. An affine Hamiltonian H = 1
2 〈P−1Lk, Lk〉 + 〈Lp, A〉 is isospectral if and only

[P−1(Lk), B] = [Lk, A] for some element B ∈ p that commutes with A. In the isospectral case,
Lp = sB is an invariant set for Equation (32). On this set (32) are given by

dLk

dt
= [P−1(Lk), Lk], (35)

and admit the reduced spectral representation

d
dt
(Lk − λB) = [P−1(Lk)− λA, Lk − λB]. (36)

This theorem shows that the fundamental results A.T. Fomenko, A. S. Mischenko, and
V.V. Trofimov on integrable left-invariant Riemannian metrics on compact Lie groups [20,21]
based on Manakov’s seminal work on the n-dimensional Euler’s top [22] are subordinate
to the isospectral properties of the affine Hamiltonian system, in the sense that the spectral
invariants of Lk − λB on k are always in involution with a larger family of functions
generated by the spectral invariants of Lλ = −Lp + λLk + (λ2 − s)B on gs associated with
an affine Hamiltonian H.

3.2. Affine Hamiltonians and Mechanical Tops

Let us now draw comparisons between the semi-direct Poisson equations

dLk

dt
= [P−1(Lk(t)), Lk(t)] + [A, Lp(t)],

dLp

dt
= [P−1(Lk(t)), Lp(t)] (37)

and the “top-like” equations:

dR
dt

= R(t)(P−1(M(t))),
dM
dt

= [P−1(M(t)), M(t)] +
n

∑
i=1

αi(t) ∧
∂V
∂αi

, (38)

associated with the Hamiltonian H = 1
2 〈P−1(M), M〉+ V(α1, . . . , αn). We will consider

two cases- tops with linear potentials and tops with quadratic potentials.
Linear potentials. Equation (38) will be referred to heavy top-like equations when the po-

tential energy V is generated by a linear Newtonian field, that is, when V = −∑n
i=1 ci(αi, a),

where a is a vector in Rn, and c1, . . . , cn are constants. When a = 0, the external torque
∑n

i=1 αi(t) ∧ ∂V
∂αi

is equal to zero, and Equation (38) reduces to the Hamiltonian equation
associated with a left-invariant Riemannian metric induced by the operator P (called the
n-dimensional Euler’s top in some Russian literature [20]).

Heavy top-like equations can be written more compactly as

dR
dt

= R(t)Ω(t),
dM
dt

= [Ω(t), M(t)] + a ∧ p(t), (39)

where Ω(t) = P−1M(t), and p(t) = ∑n
i=1 ciαi(t). Since αi(t) = R(t)Tei, p(t) is a solution of

dp
dt = −Ω(t)p(t). Hence each solution resides on the sphere {p ∈ Rn : ||p(t)|| = ||p(0)||}.
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Our theorems below relate Equation (39) to the Poisson Equation (37) on the reductive
Lie algebras so(n + 1) and so(1, n) associated with reductive pairs (SOε, K) where SOε is
SO(n + 1) when ε = 1 and SO(1, n) when ε = −1, and K = {1} × SO(n).

We will tackle both cases simultaneously but first we will need to introduce additional
notation and terminology. We will use soε to denote the Lie algebra of SOε endowed with
the trace form 〈A, B〉 = − 1

2 Tr(AB). Relative to SOε we define its invariant bilinear form
(x, y)ε = x0y0 + ε ∑n

i=1 xiyi in the ambient space Rn+1.
Then a⊗ε b, a ∈ Rn+1, b ∈ Rn+1, will denote the matrix defined by

(a⊗ε b)x = (a, x)εb, x ∈ Rn+1.

and a ∧ε b denotes the matrix a⊗ε b− b⊗ε a. Since

((a ∧ε b)x, y)ε + (x, (a ∧ε b)y)ε = 0,

a ∧ε b belongs to soε(n + 1) for any a, b in Rn+1. We then have

Theorem 2. Heavy top-like Equation (39) are isomorphic to the Poisson Equation (37) on the

coadjoint orbit through P0 = p(0) ∧ε e0, Q0 =

(
0 0
0 M(0)

)
under the coadjoint action of pε n

SO(n). The passage to the affine Hamiltonian is via the following correspondences

A = εa ∧ε e0, Lp = p ∧ε e0, Lk =

(
0 0
0 M

)
,P−1(Lk) =

(
0 0
0 P−1(M)

)
. (40)

For a proof see [14]. The preceding theorem clarifies the presence of heavy tops in the
Hamiltonian equations on Lie algebras [10]. It also clarifies the relation between the tops
and elastic rods initiated by G. Kirchhoff known as the “kinetic analogues” [23,24]. It also
proves that the classification of completely integrable elastic rods in [7,8] carries over to the
heavy tops.

Quadratic potentials. We will now show that the tops with quadratic potential V are
also present in the equations of affine Hamiltonians, but this time on the tangent bundle of
SL(n), or more precisely on the tangent bundle of the semi-direct product sym0(n)o SO(n)
where sym0(n) denotes the space of symmetric n× n matrices with zero trace. For that
purpose let

H(R, M) =
1
2
(P−1(M), M) +

1
2

n

∑
i=1

ai〈Sαi, αi〉,

with R ∈ SO(n), M ∈ so(n), RTei = αi, and S a symmetric n× n. In accordance with (38)
the Hamiltonian equations of ~H are given by

dR
dt

= R(t)Ω(t),
dM
dt

= [Ω(t), M(t)] +
n

∑
i=1

aiαi(t) ∧ Sαi(t), (41)

where Ω(t) = P−1(M(t)).

Theorem 3. Top-like Equation (41) are isomorphic with the Poisson equations generated by
the affine Hamiltonian H = 1

2 〈P−1(Lk), Lk〉 + 〈Lp, S〉 on the coadjoint orbit through P0 =

∑n
i=1 ai(ei ⊗ ei) − ( 1

n ∑n
i=1 ai)I and Q0 = M(0) under the action of the semi-direct product

sym0(n)o SO(n).
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Proof. Every solution (M(t), R(t)) of (41) generates symmetric matrices Lp(t) and X(t)
given by

Lp(t) = Adh(t)P0 = ∑n
i=1 ai(αi(t)⊗ αi(t))− 1

n ∑n
i=1 ai I,

X(t) = Adh(t)Y(t), Y(t) = −
∫ t

0 Adh−1(s)S ds,

with h(t) = RT(t). Then,

dLp

dt = −∑n
i=1 ai(Ωαi ⊗ αi + αi ⊗Ωαi) = [Ω, Lp],

dX
dt = [Ω(t), X(t)] + Adh(t)Ẏ = [Ω(t), X(t)]− S.

Additionally,

[S, Lp(t)] = ∑n
i=1(ai(αi ⊗ αi)S− Sai(αi ⊗ αi)) =

∑n
i=1 aiαi ⊗ Sαi − aiSαi ⊗ αi = ∑n

i=1 ai(αi ∧ Sαi),

which in turn implies that (41) can be written as

dR
dt

= R(t)Ω(t),
dM
dt

= [Ω(t), M(t)] + [S, Lp(t)].

Let now Q(t) = [Adh(t)(P0), X(t)] + Adh(t)Q0 = [Lp(t), X(t)] + Adh(t)Q0. Note
first that

[[Ω, Lp], X] = −[[X, Ω], Lp]− [[Lp, X], Ω]

= −[[X, Ω], Lp] + [Ω, Q]− [Ω, AdhQ0].

Then,

dQ
dt = [[Ω(t), Lp(t)], X(t)] + [Lp(t), dX

dt (t)] + [Ω(t), Adh(t)(Q0] =

[Ω(t), Q(t)] + [Lp, [X, Ω(t)]] + [Lp, dX
dt ] =

[Ω(t), Q(t)] + [S, Lp].

Therefore Q(t) and M(t) satisfy the same differential equation. Hence Q(t) = M(t)
whenever Q0 = M(0). If we now rename Q(t) as Lk(t) we get the Poisson equations for
the shadow Hamiltonian H = 1

2 〈P−1(Lk), Lk〉+ 〈S, Lp〉.

The preceding theorem links isospectral Hamiltonians to the equations of the top
under quadratic potentials and paves a way to the n-dimensional generalization of O.
Bogoyavlensky’s famous result on integrability of three-dimensional mechanical tops in
the presence of a quadratic potential [25]. The path to isospectral Hamiltonians is provided
by Manakov’s observation that the inertia tensor 〈P(U), U〉 for a rigid body is confined
to the transformations P(U) = SU + US, for some positive definite matrix S. For then,
[P−1(M), S2] = [M, S]. Indeed, in this situation P(U) = SU + US = M, and

[P−1M, S2] = [U, S2] = [SU + US, S] = [M, S].

Hence the corresponding affine Hamiltonian Ĥ = 1
2 〈P−1Lk, Lk〉+ 〈S, Lp〉 is isospectral

on sl(n) (Theorem 1). Since the equations of the Hamiltonian

H =
1
2
〈P−1M, M〉+

n

∑
i=1

ai(αi, Sαi)
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corresponding to the top with quadratic potential V = 1
2 ∑n

i=1 ai(Sαi, αi) can be identified
with the Poisson equations of Ĥ on the coadjoint orbit through Lp = P0, Lk = M(0), the
isospectral invariants of

Lλ =
n

∑
i=1

aiαi − λM + λ2S (42)

are integrals of motion for the top. (Theorem 3). Since {X ∈ so(n) : [X, S] = 0} = 0 for
each non-singular symmetric matrix S, the spectral invariants of

Lλ(s) =
n

∑
i=1

ai(αi ⊗ αi − λM + (λ2 − s)S (43)

form a completely integrable family of functions on each coadjoint orbit in sl(n) (semi-
simple and semi-direct). the top with a quadratic potential is completely integrable in
all dimensions.

3.3. Three-Dimensional Tops- Kirchhoff-Kowalewski Type

We will now turn our attention to the class of affine-quadratic systems of Kirchhoff-
Kowalewski type on complex Lie algebras with a particular interest on the symmetries
that account for the existence of Kowalewski’s integral reported in her seminal paper on
the motions of a rigid body around a fixed point under the influence of gravity [26]. We
will follow our recent paper [27] and show that there is a natural Hamiltonian on sp(4,C)
that answers the fundamental questions raised by Kowalewki’s paper, namely, what is the
geometric rational behind her approach in which all the variables were treated as complex
quantities, and secondly. what are the symmetries that account for the existence of not only
her integral of motion, but also of similar integrals, known as Kowalewski type integrals,
that subsequently appeared in the literature on integrable systems [8,28–31].

Theorem 2 suggests that the search for the answers to the above questions should
begin with the Poisson equations associated with an affine-quadratic Hamiltonian on
so(4,C) since both so(1, 3) and so(4) are real forms for so(4,C) (see also [24]). We will
show that Kowalewski’s “mysterious” change of variables appear naturally in the passage
from so(4,C) to sl(2,C)× sl(2,C) an important intermediate step towards the right Hamil-
tonian on sp(4,C). The journey from so(4,C) to sp(4,C) to this remarkable Hamiltonian
begins with

H =
1
2
(

m1

λ1
+

m2

λ2
+

m3

λ3
) + b1 p1 + b2 p2 + p3b3, (44)

where L = m1 A1 + m2 A2 + m3 A3 + p1B1 + p2B2 + p3B3 is the coordinate representation
of a point L in so(4,C) relative to an orthonormal basis A1, A2, A3, B1, B2, B3 that conforms
to the following Lie bracket Table 1:

Table 1. Lie brackets for s = 0, 1.

[ , ] A1 A2 A3 B1 B2 B3
A1 0 −A3 A2 0 −B3 B2
A2 A3 0 −A1 B3 0 −B1
A3 −A2 A1 0 −B2 B1 0
B1 0 −B3 B2 0 −sA3 sA2
B2 B3 0 −B1 sA3 0 −sA1
B3 −B2 B1 0 −sA2 sA1 0

Then

dLk

dt
= [dHk, Lk] + [B, Lp],

dLp

dt
= [dHk, Lp] + s[B, Lk], s = 0, 1, (45)
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are the Poisson equations generated by H, where B = b1B1 + b2B2 + b3B3 denote the drift
element in p, dHk = ∑3

i=1
mi
λi

Ai, Lk = ∑3
i=1 mi Ai, and Lp = ∑3

i=1 piBi. The same equations
can be also expressed as

dm1
dt = m2m3(

1
λ3
− 1

λ2
) + p2b3 − p3b2,

dm2
dt = m1m3(

1
λ1
− 1

λ3
) + p3b1 − p1b3,

dm3
dt = m1m2(

1
λ2
− 1

λ1
) + p1b2 − p2b1,

dp1
dt = 1

λ3
p2m3 − 1

λ2
p3m2 + s(m2b3 −m3b2),

dp2
dt = 1

λ1
p3m1 − 1

λ3
p1m3 + s(m3b1 −m1b3),

dp3
dt = 1

λ2
p1m2 − 1

λ1
p2m1 + s(m1b2 −m2b1).

(46)

When s = 0 the above equations formally coincide with the equations of the top:
dM
dt = [Ω(t), M(t)] + b ∧ p, dp

dt = −Ω(t)p(t) (Equation (21)).
On gs there are two Casimirs:

I1 = 〈Lp, Lp〉+ s〈Lk, Lk〉 = (p, p) + s(m, m), I2 = 〈Lk, Lp〉 = (m, p),

Hence generic coadjoint orbits in gs are four-dimensional. Since each coadjoint orbit is
symplectic, integrable cases occur whenever there is an extra integral of motion functionally
independent of H, I1, and I2. Since the motion of the top is subordinate to the Poisson
system of H on se(3,C), the search for integrable tops reduces to the search for an additional
integral of motion functionally independent from I1,I2 and H.

Let us now come to the conditions of Kowalewski

λ = λ1 = λ2 = 2λ3, b3 = 0. (47)

and her “mysterious” variables

z1 = m1 + im2, z2 = m1 − im2, w1 = p1 + ip2,
w2 = p1 − ip2, z3 = im3, w3 = ip3,
b = b1 + ib2, b̄ = b1 − ib2.

(48)

After the substitutions, Equation (46) become

dz1
dt = − 1

λ z1z3 + bw3, dz2
dt = 1

λ z2z3 − b̄w3
dz3
dt = 1

2 (bw2 − b̄w1)
dw1
dt = 1

λ z1w3 − 2
λ z3w1 + sbz3, dw2

dt = − 1
λ z2w3 +

2
λ z3w2 − sb̄z3

dw3
dt = 1

2λ (z1w2 − z2w1) +
s
2 (bz2 − b̄z1),

(49)

from which it can be easily extracted that

I = (
z2

1
2λ
− bw1 +

1
2

sλb2)(
z2

2
2λ
− b̄w2 +

1
2

sλb̄2), (50)

is an integral of motion. Following the terminology in [7] we will refer refer to this integral
as the Kirchhoff-Kowalewski integral. It is only in the special case s = 0 and λ = 2 that
this integral coincides with the integral of motion found by Kowalewski. The real versions
of the Kirchhoff-Kowalewski integral were originally discovered by V. Kuznetsov and I.V.
Komarov in their studies of the hydrogen atom [28,29].

Let us reveal the geometric rational behind Kowalewski’s change of variables. The
explanations are most naturally articulated through the root system in so(4,C). Recall that
any maximal commutative sub-algebra h of a Lie algebra g is called a Cartan subalgebra.
All Cartan subalgebras in a semi-simple Lie algebra are conjugate, and hence all have the
same dimension. The dimension of any Cartan algebra is the rank of g. The rank of so4(C)
is two. Evidently each pair (Ai, Bi), i = 1, 2, 3, in Table 1 generates a Cartan algebra in
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so(4,C). Since these algebras are conjugate, there is no preferential choice. However, in
regard to the equations of the top, there is a preferential choice when two moments of
inertia are equal. In the case that λ1 = λ2 the natural choice is the Cartan algebra generated
by the pair {A3, B3}.

An element α in the dual h∗ of a Cartan algebra h is called a root if for some v ∈ g,
[h, v] = α(h)v for all h ∈ h. An easy calculation shows that there are four roots ±α1, ±α2
given by

α1(xA3 + yB3) = −i(x + y), α2(xA3 + yB3) = −i(x− y), x, y ∈ C. (51)

The corresponding root spaces are one dimensional, and are generated by

C1 = 1
2 (A1 − iA2) +

1
2 (B1 − iB2), α = α1,

C2 = 1
2 (A1 + iA2) +

1
2 (B1 + iB2), α = −α1,

D1 = 1
2 (A1 − iA2)− 1

2 (B1 − iB2), α = α2,
D2 = 1

2 (A1 + iA2)− 1
2 (B1 + iB2), α = −α2.

(52)

Together with C3 = i
2 (A3 + B3) and D3 = i

2 (A3 − B3) these matrices form a basis for
so(4,C). A simple calculation shows that

α1(C3) = 1, α2(D3) = 1, α1(D3) = α2(C3) = 0, hence,

[C3, C1] = C1, [C3, C2] = −C2, [D3, D1] = D1, [D3, D2] = −D2.

Furthermore, [C1, C2] = −2C3, [D1, D2] = −2D3, and [Ci, Dj] = 0, for all i and j.
The Lie algebras g1 and g2 spanned by C1, C2, C3, and D1, D2, D3 satisfy [g1, g2] = 0.

and each is isomorphic to sl(2,C) under the identification

C1, D1 →
(

0 1
0 0

)
, C2, D2 →

(
0 0
−1 0

)
, C3, D3 →

1
2

(
−1 0
0 1

)
. (53)

An easy calculation shows that the coordinates a1, a2, a3, b1, b2, b3 of an arbitrary
point X ∈ so(4,C) relative to the basis A1, A2, A3, B1, B2, B3 are transformed to the co-
ordinates c1, c2, c3, d1, d2, d3 relative to the basis C1, C2, C3, D1, D2, D3 according to the
following formulas:

c1 =
1
2
(a1 + ia2) +

1
2
(b1 + ib2), d1 =

1
2
(a1 + ia2)−

1
2
(b1 + ib2),

c2 =
1
2
(a1 − ia2) +

1
2
(b1 − ib2), d2 =

1
2
(a1 − ia2)−

1
2
(b1 − ib2).

c3 = −i(a3 + b3), d3 = −i(a3 − b3).

Let us now Φ : so(4,C)→ sp(4,C) be given by

Φ(∑3
i=1(ciCi + diDi)) =

(
1 0
0 0

)
⊗
(
− c3

2 c1
−c2

c3
2

)
+

(
0 0
0 1

)
⊗
(
− d3

2 d1

−d2
d3
2

)
=

I ⊗ 1
2

(
− 1

2 (c3 + d3) c1 + d1
−(c2 + d2)

1
2 (c3 + d3)

)
+

(
1 0
0 −1

)
⊗ 1

2

(
− 1

2 (c3 − d3) c1 − d1
−(c2 − d2)

1
2 (c3 − d3)

)
=

I ⊗ 1
2

(
ia3 a1 + ia2

−a1 + ia2 −ia3

)
+

(
1 0
0 −1

)
⊗ 1

2

(
ib3 b1 + ib2

−b1 + ib2 −ib3

)
.

where A⊗ B denotes the Kronecker product of matrices A and B.
To see that Φ(so(4,C)) ⊂ sp(4,C) recall first that sp(4,C) consists of matrices M that

satisfy JMJ−1 = −MT , where J is the matrix that defines the symplectic form (z, Jw) on

C4, i.e., J2 = −I. It is easy to check that both I ⊗ 1
2

(
ia3 a1 + ia2

−a1 + ia2 −ia3

)
and

(
1 0
0 −1

)
⊗
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1
2

(
ib3 b1 + ib2

−b1 + ib2 −ib3

)
satisfy JMJ−1 = −MT with J =

(
1 0
0 −1

)
⊗
(

0 1
−1 0

)
. Since

J2 = −I2 ⊗ I2 = −I, our claim follows.
We will identify sl(2,C) with pure complex quaternions Q via the correspondence

q = q1~i + q2~j + q3~k⇔ Q = q1E1 + q2E2 + q3E3 =

(
iq3 q1 + iq2

−q1 + iq2 −iq3.

)
Then the standard basis~i,~j,~k in Q is identified with the matrices

E1 =

(
0 1
−1 0

)
, E2 =

(
0 i
i 0

)
, E3 =

(
i 0
0 −i

)
,

and any element X =

(
a b
c −a

)
in sl(2,C) is represented by the quaternion X =

1
2

(
ia3 a1 + ia2

−a1 + ia2 −ia3

)
, a1 = b− c, a2 = −(b + c), a3 = −2ia.

Let now Ai =
1
2 Ei, Ai = I ⊗Ai,Bi = E3 ⊗Ai, so that Φ(Ai) = Ai and Φ(Bi) = Bi for

each i, i = 1, 2, 3, and let so4 = Φ(so(4,C)). MatricesAi,Bi, i = 1, 2, 3. form an orthonormal
basis in so4 relative to the inner product 〈X, Y〉 = −Tr(XY) on sp(4,C).

It is easy to verify that Φ : so(4,C)→ so4 is a Poisson map. Therefore

H̃( ˜̀) = H(Φ∗( ˜̀)) = H(`), Φ∗( ˜̀) = `, ˜̀ ∈ so4, (54)

for any function H on so∗(4,C), where Φ∗ denotes the dual map of Φ. After the identifi-
cation of so∗4 with so4 via the trace form, the Poisson equations of H̃ associated with H
in (44) become

d
dt (I ⊗ Z) = [I ⊗Ω, I ⊗ Z] + [E3 ⊗ B, E3 ⊗W] = I ⊗ ([Ω, Z] + [B, W]),

d
dt (E3 ⊗W) = [I ⊗ Z, E3 ⊗W] + s[E3 ⊗ B, I ⊗ Z] = E3 ⊗ ([Ω, W] + s[B, Z]),

or, in simpler form,

dZ
dt

= [Ω, Z] + [B, W],
dW
dt

= [Ω, W] + s[B, Z], (55)

where Z = 1
2

(
im3 m1 + im2

−m1 + im2 −im3

)
, W = 1

2

(
ip3 p1 + ip2

−p1 + ip2 −ip3

)
,

Ω = 1
2

(
1

λ3
z3

1
λ1

m1 +
i

λ2
m2

− 1
λ1

m1 +
i

λ2
m2 − 1

λ3
z3

)
, and B = 1

2

(
ib3 b1 + ib2

−b1 + ib2 −ib3

)
.

Now we see Kowalewski variables z1 = m1 + im2, z2 = m1− im2, w1 = p1 + ip2, w2 =
p1 − ip2 as the natural coordinates in this Poisson representation. Under Kowalewski’s
conditions λ = λ1 = λ2 = 2λ3, b3 = 0, Equation (55) reduce to Equation (49). The passage
from H to H̃ reveals the geometric rational behind the ad-hoc change of variables in (48)
and serves as a natural segue to our ultimate Hamiltonian on sp(4,C).

3.4. Kowalewski’s Conditions and Isospectral Representations

We now address the origins of the “enigmatic” conditions (47) through an extended
affine-quadratic Hamiltonian

H =
3

∑
i=1

m2
i

2λi
+ bi pi + ciqi (56)
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on sp∗(4,C) defined by complex numbers λ1, λ2, λ3, b1, b2, b3, and c1, c2, c3 and an extended
basis Ai,Bi, i = 1, 2, 3, A4 = 1

2 E2 ⊗ I, and C1 = E1 ⊗ A1, C2 = E1 ⊗ A2, C3 = E1 ⊗ A3,

where E1 =

(
0 1
−1 0

)
, E2 =

(
0 1
1 0

)
, and E3 =

(
1 0
0 −1

)
.

The reader can easily verify that g = sp(4,C) has the following decomposition

g = k⊕ p, p = p1 ⊕ p2, k = k0 ⊕CA4 (57)

where k0 is the Lie algebra spanned by A1,A2,A3 and where p1 and p2 are respectively the
linear spans of Bi, i = 1, 2, 3 and Ci, i = 1, 2, 3. These spaces conform to the following Lie
algebraic relations:

[A4, k0] = 0, [A4, p1] = p2, [A4, p2] = p1, [ko, p1] = p1, [k0, p2] = p2,

[p1, p1] = k0, [p2, p2] = k0, [p1, p2] = CA4.

After g∗ is identified with g via the scalar product 〈X, Y〉 = − 1
2 Tr(XY) the above

Hamiltonian can be written as

H =
1
2
〈P(L0

k), L0
k〉+ 〈Lp,A〉, (58)

where L0
k = m1A1 + m2A2 + m3A3, Lp = ∑3

i=1 piBi − qiCi and A = B + C , B = ∑3
i=1 biBi ,

C = ∑3
i=1 ciCi (note that 〈 , 〉 is negative on p2 which accounts for the negative signs in

the expression for Lp).
Since g = sp(4,C) is semi-simple the Poisson equations forH are given by

dLk

dt
= [dHk, Lk] + [A, Lp],

dLp

dt
= [dHk, Lp] + s[A, Lk], s = 0, 1.

These equations can be written in a more succinct form as

dZ
dt = [Ω, Z] + [B, W] + [C, S],

dm4
dt = −(C ·W + B · S),

dW
dt = [Ω, W] + s([B, Z]−m4C),
dS
dt = [Ω, S]− s([C, Z]−m4B).

(59)

in terms of the following notations:

Lk = I ⊗ Z + m4A4, Lp = E3 ⊗W− E1 ⊗ S,

dH = I ⊗Ω + E3 ⊗ B + E1 ⊗ C, Ω = ∑3
i=1

mi
˘i

Ai,

B = ∑3
i=1 biAi, C = ∑3

i=1 ciAi.

Z = 1
2

(
z3 z1
−z2 −z3

)
, W = 1

2

(
w3 w1
−w2 −w3

)
, z1,2 = m1 ± im2, z3 = im3,

w1,2 = p1 ± ip2, , w3 = ip3, as in the previous section, and S = 1
2

(
s3 s1
−s2 −s3

)
, with

s1,2 = q1 ± iq2, , s3 = iq3.
We now come to the crux of the matter, the existence of integrals of motion for the

above system. The intermediate question is the existence of an integral I of the form
I = α1m1 + α2m2 + α3m3 + βm4 for some constants α1, α2, α3, and β.

Proposition 2. I = α1m1 + α2m2 + α3m3 + βm4 is an integral of motion for H in exactly two
cases: when λ1 = λ2 and b1 = b2 = c1 = c2 = 0, then I = m3, and in the second case, when
λ1 = λ2, b3 = c3 = 0, b1 = ±ic2, b2 = ∓ic1, then I = im3 + m4. (for the proof see [27]).
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This first condition singles out the top of Lagrange, while the second condition is
a precursor to Kowalewski’s top as will be demonstrated below. Note that the second
condition b1 = ic2 and b2 = −ic1 can be also written as b = c, and b̄ = −c̄ where

b = b1 + ib2, b̄ = b1 − ib2, c = c1 + ic2 and c̄ = c1 − ic2. Then C = 1
2

(
0 b
b̄ 0

)
, and since it is

orthogonal to B = 1
2

(
0 b
−b̄ 0

)
, it will be denoted by B⊥.

We will say that (59) satisfies the preliminary condition of Kowalewski whenever λ1 =
λ2 and C = B⊥. It follows that the preliminary condition of Kowalewski is synonymous
with the integral of motion I = im3 + m4 = z3 + m4. (This integral of motion was also
discovered earlier by A.M Savu in [32]).

We will now assume that the preliminary condition holds and we will pursue condi-
tions on the ratio δ = λ

λ3
, where λ = λ1 = λ2, that guarantee extra integrals of motion for

system (59). Note that in this situationA = B+ C = E3⊗B+ E1⊗B⊥. Systems that satisfy
the preliminary condition of Kowalewski and also satisfy δ = 2 will be said to satisfy the
Kowalewsky conditions. The following proposition provides an important characterization
of Kowalewski’s conditions for both s = 0 and s = 1.

Proposition 3. Assume that (59) satisfies the preliminary condition of Kowalewski and is restricted
to the manifold z3 + m4 = 0. ThenH satisfies the isospectrality condition [dHk, B] = [Lk,A](as
in Theorem 1) for some matrix B ∈ p, with [A, B] = 0 if only if (59) satisfies the Kowalewski
conditions. In fact, B = λ(E1 ⊗ B⊥ + E3 ⊗ B) = λA [27].

Indeed, under Kowalewski’s conditions

Ω =
1
λ

Z +
1

2λ
z3E3 and Lk = I ⊗ Z− z3A4.

Therefore,

[dHk, B] = [I ×Ω, B] = [I × Z,A] + z3

2
[I × E3,A], and [Lk, A] = [I ⊗ Z,A]− z3[A4,A].

Since [ z3
2 I ⊗ E3,A] = −z3[A4,A], [I ⊗Ω, B] = [Lk,A].

It follows from Theorem 1 that Kowalewski’s condition is necessary and sufficient for
the existence of isospectral representation

dLµ

dt
= [Mµ, Lµ], Lµ = Lp − µ(L0

k − z3A4) + (µ2 − s)λA

on the invariant manifold z3 + m4 = 0. Consequently, φk = Tr(L2k
µ ) = 〈Lk

µ, Lk
µ〉 are integrals

of motion for (59), in involution with each other for each s = 0, or s = 1. Remarkably,
the prototype of Kowalewski’s integrals of motion is found among the above spectral
invariants. (see also [33,34] for other spectral representations).

We will show the existence of Kowalewki’s integral of motion directly from the equations

dZ
dt = [Ω, Z] + [B, U] + [B⊥, V],
dU
dt = [Ω, U], dV

dt = [Ω, V],
(60)

obtained from (59) under the change of variables U = W− sλB,V = S + sλB⊥. Equation (60)
may be seen as a semisimple extension of the Kowalewski-type gyrostat in two constant fields
introduced in [35].
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Equations (60) may be also expressed in terms of the coordinates as

dz1
dt = − 1

λ z1z3 + b(u3 + v3),
dz2
dt = 1

λ z2z3 − b̄(u3 − v3),
dz3
dt = 1

2 (bu2 − b̄u1 + bv2 + b̄v1),
du1
dt = u3z1

λ −
2u1z3

λ , du2
dt = 2u2z3

λ − z2u3
λ ,

du3
dt = 1

2λ (z1u2 − u1z2)
dv1
dt = v3z1

λ −
2v1z3

λ , dv2
dt = 2v2z3

λ − z2v3
λ ,

dv3
dt = 1

2λ (z1v2 − v1z2).

(61)

One readily obtains the following fundamental equalities

d
dt (u1 + v1) =

z1
λ (u3 + v3)− 2z3

λ (u1 + v1),
d
dt (u2 − v2) =

2z3
λ (u2 − v2)− z2

λ (u3 − v3)
(62)

Let now

e1 =
z2

1
2λ
− b(u1 + v1), and e2 =

z2
2

2λ
− b̄(u2 − v2).

Then

de1
dt = d

dt (
z2

1
2λ − b(u1 + v1)) =

z1
λ (− 1

λ z1z3 + b(u3 + v3))− b( z1
λ (u3 + v3)− 2z3

λ (u1 + v1)) =

− 2z3
λ (

z2
1

2λ − b(u1 + v1)) = − 2z3
λ e1,

and

de2
dt = d

dt (
z2

2
2λ − b̄(u2 − v2)) =

z2
λ ( 1

λ z2z3 − b̄(u3 − v3))− b̄( 2z3
λ (u2 − v2)− z2

λ (u3 − v3) =

2z3
λ (

z2
2

2λ − b̄(u2 − v2)) =
2z3
λ e2.

Hence, c = e1e2 is an integral of motion for (61) since

d
dt

c =
d
dt

e1e2 =
de1

dt
e2 + e1

de2

dt
= 0.

An interested reader may want to show that the following are also integrals of motion

c0 = ||V2||, c1 = ||U||2, c2 = 〈U, V〉,

c3 = [U, V] · (λ([B, V] + [B⊥, U])− z3Z) +
1
2
((V · Z)2 − (U · Z)2).

The preceding calculation also draws attention to the following general fact:

Proposition 4. c = (
z2

1
2λ − b(u1 + v1))(

z2
2

2λ − b̄(u2 − v2)) is a constant of motion for any differ-
ential system in the variables zi, ui, vi, i = 1, 2, 3 that satisfy

dz1
dt = − 1

λ z1z3 + b(u3 + v3),
dz2
dt = 1

λ z2z3 − b̄(
¯
u3 − v3),

d
dt (u1 + v1) =

z1
λ (u3 + v3)− 2z3

λ (u1 + v1),
d
dt (u2 − v2) =

2z3
λ (u2 − v2)− z2

λ (u3 − v3),

(63)

independently of the equations that govern the evolution of u3 and v3.
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To come back to the top of Kowalewski, note that V = 0 is an invariant subsystem
for (60). On this set, S = −λsB⊥, and c reduces to

c = (
z2

1
2λ
− bu1)(

z2
2

2λ
− b̄u2) = (

z2
1

2λ
− bw1 + sλb2)(

z2
2

2λ
− ābw2 + sλb̄2), (64)

and remains an integral of motion for the reduced system

dZ
dt

= [Ω, Z] + [B, U],
dU
dt

= [Ω, U]), (65)

with its fundamental relations (63)

dz1
dt = − 1

λ z1z3 + bu3, dz2
dt = 1

λ z2z3 − b̄u3,
d
dt u1 = z1

λ u3 − 2z3
λ u1, d

dt u2 = 2z3
λ u2 − z2

λ u3.
(66)

This reduced system coincides the Kirchhoff-Kowalewski system on se(3,C) (Equation (49),
s = 0, after u is replaced by w). Then

c = (
z2

1
2λ
− bu1)(

z2
2

2λ
− b̄u2)

coincides with the integral of motion discovered by Kowalewski. The remaining isospectral
integrals of motion c1 = ||U||2 and c3 = (U · Z) coincide with the Casimirs on se(3,C).

To recover the semi-simple form of the Kirchhoff-Kowalewski integral, let Y = U +
s
2 λB. In terms of Z and Y the preceding system becomes

dZ
dt

= [Ω, Z] + [B, Y],
dY
dt

= [Ω, Y]− sλ

2
[Ω, B]. (67)

This system satisfies the same equations as the Kirchhoff-Kowalewski system except
for dy3

dt . Indeed,

− sλ
2 [Ω, B] = − s

2 ([Z, B] + z3[A3, B]) =

−s[Z, B] + s
2 ([Z, B] + z3B⊥) = s[B, Z] + s

2 (b̄z1 − bz2)A3.

The remaining equations given by

dz1
dt = − 1

λ z1z3 + by3, dz2
dt = 1

λ z2z3 − b̄y3,
dy1
dt = z1

λ y3 − 2z3
λ y1 + sbz3,

dy2
dt = 2z3

λ y2 − z2
λ y3 − sb̄z3,

(68)

are the same as (66), and consequently yield

c = (
z2

1
2λ
− by1 +

s
2

λb2)(
z2

2
2λ
− b̄y2 +

s
2

λb̄2)

as an integral of motion for the preceding system, as well as for the Kirchhoff-Kowalewski
system (Equation (49)) when Y is replaced by W.

The papers of V. Dragović and K. Kukić [30] and V. V. Sokolov [31] produce differential
systems which admit Kowalewski type integrals different from the ones in this paper
and yet follow the same integration procedure used by S. Kowalewski in her original
paper. Remarkably, all these systems satisfy the fundamental relations (63) from which the
existence of their extra integrals of motion could be easily ascertained.
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4. Kepler, Jacobi, Neumann and Moser

Let us now return to G = SL(n + 1) and its Lie algebra sl(n + 1) endowed with the
trace form 〈X, Y〉 = 1

2 Tr(XY). As a vector space V, the set of (n + 1)× (n + 1) matrices
with zero trace admits several kinds of Lie algebras and each of these Lie algebras induces
its own Poisson structure on V. The most common Lie algebra is sl(n + 1) itself. Then
K = SO(n + 1) induces the orthogonal decomposition sl(n + 1) = sym0 ⊕ so(n + 1) where
sym0 denotes the vector space of symmetric matrices in V. But then V also carries the
semi-direct product structure sym0 o so(n + 1).

However, K = SO(p, q), p + q = n + 1, is also a closed subgroup of G and hence the
pair (SL(n + 1), SO(p, q)) induces its own Cartan decomposition V = p⊗ k, where p is
the orthogonal complement to k = so(p, q). In fact K is the set of points in G fixed by
the automorphism σ(g) = DgT−1D−1 where D denotes diagonal matrix with its first p
diagonal entries equal to 1 and the remaining q diagonal entries equal to −1. The set of
points g ∈ G such that σ(g) = g satisfies D = gDgT , that is, g ∈ SO(p, q). It follows that
its tangent map σ∗ induces the above decomposition with

k = {X ∈ V : DXDT = −X}, p = {X ∈ V : DXT D = X}. (69)

Consequently, matrices in p are symmetric relative to the scalar product (x, y)p,q =
(x, Dy), x, y in Rn+1.

We will now return to the canonical Hamiltonians

H(L) =
1
2
〈Lk, Lk〉+ 〈A, Lp〉

and their Poisson Equation (33) restricted to the coadjoint orbits through rank one matrices
X0 in sl(n + 1). We will consider two cases: the coadjoint orbit through a symmetric rank-
one matrix X0 of unit length under the action of G1 = sym0 o SO(n + 1), and the second
case, the coadjoint orbit through rank-one matrix X0 of unit length, symmetric relative to
the Lorentzian inner product in Rn+1 under the action of po SO(1, n). The above matrices
can be naturally expressed in terms of the notations introduced earlier, the scalar product
(x, y)ε = x0y0 + ε ∑n

i=1 xiyi, ε = ±1, in the ambient space Rn+1, and matrices a⊗ε b and
a ∧ε b = a⊗ε b− b⊗ε a. For then

X0 = x0 ⊗ε x0 −
(x0, x0)ε

n + 1
I.

If (x0, x0)ε > 0 then let Sn
ε = {x ∈ Rn+1 : (x, x)ε = (x0, x0)ε, x0.0}. It follows that Sn

ε

is the Euclidean sphere of radius ||x0|| when ε = 1 and a hyperboloid of two sheets when
ε = −1. We have chosen Sn

−1 to be the sheet defined by x0 > 0.

Proposition 5. The coadjoint orbit through X0 = x0 ⊗ε x0 − (x0,x0)ε
n+1 I is symplectomorphic to the

cotangent bundle of the real projective space Pn+1 in the semi-simple case, and it is symplectomorphic
to the cotangent bundle of Sn

ε in the semi-direct case.

For the proof see [36]. Here it is implicitly understood that the cotangent bundles
are identified with the tangent bundles via the ambient inner product ( , )ε. Then each
tangent vector (x, y), x ∈ Sn

ε , (x, y)ε = 0 is identified with Lp = x⊗ε x− (x0,x0)ε
n+1 I in pε and

Lk = x ∧ε y in kε.
On the orbit through X0, H = 1

2 (x, x)ε(y, y)ε − 1
2 (Ax, x)ε, and the associated Poisson

equations are of the form

d
dt
(x ∧ε y) = [A, x⊗ε x],

d
dt
(x⊗ε x) = [x ∧ε y, x⊗ε x] (70)
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A simple calculation show that

ẋ = (x, x)εy, ẏ = Ax− (
Ax, x)ε

(x, x)ε
+ (y, y)ε)x. (71)

On the unit sphere, Equation (71) after A is replaced by−A coincide with the equations
for the mechanical problem of C. Neumann for a particle on the sphere moving under
a quadratic potential [37]. The preceding equations for ε = −1 could be analogously
interpreted as the equations on the hyperboloid for a particle moving under quadratic
potential [7].

The canonical affine-quadratic problem illuminates deep and beautiful connections
between Kepler’s gravitational problem, Jacobi’s geodesic problem on the ellipsoid, and
Neumann’s mechanical problems.

Let us first examine the isospectral integrals associated with the spectral curve Lλ =
Lp − λLk + λ2 A on the coadjoint orbit through rank-one matrices. The zero trace require-
ment is inessential for the calculations below and will be disregarded. Additionally, A will
be replaced by −A and Lλ will be rescaled by dividing by −λ2 to read

Lλ = − 1
λ2 Lp +

1
λ

Lk + A. = − 1
λ2 x⊗ε x +

1
λ

x ∧ε y + A.

The spectrum of Lλ is then given by

0 = Det(zI − Lλ) = Det(zI − A)Det(I − (zI − A)−1(− 1
λ2 Lp +

1
λ

Lk)),

Matrix M = I − (zI − A)−1(− 1
λ2 Lp +

1
λ Lk) is of the form .

M = I +
1

λ2 Rzx⊗ε x− 1
λ
(Rzx⊗ε y− Rzy⊗ε x),

where Rz = (zI − A)−1. We then have the following proposition

Lemma 1. Det(M) = 1
λ2 ((Rzx, x)ε + (Rzx, x)ε(Rzy, y)ε − (Rzx, y)2

ε) + 1.

For the proof see [7] (p. 200).

Corollary 1. Function F(z) = (Rzx, x)ε + (Rzx, x)ε(Rzy, y)ε − (Rzx, y)2
ε, z ∈ R is an integral

of motion for H.

Function F is a rational function with poles at the eigenvalues of the matrix A. Hence,
F(z) is an integral of motion for H if and only if the residues of F are constants of motion
for H.

In the Euclidean case the eigenvalues of A are real and distinct since A is symmetric
and regular. Hence there is no loss in generality in assuming that A is diagonal. Let
a0, . . . , an denote its diagonal entries Then

F(z) =
n

∑
k=0

Fk
z− ak

,

where F0, . . . , Fn denote the residues of F. It follows that

F(z) = ∑n
k=0

x2
k

z−ak
+ ∑n

k=0 ∑n
j=0

x2
k y2

j
(z−ak)(z−aj)

− (∑n
k=0

xkyk
z−ak

)2 =

∑n
k=0

x2
k

z−ak
+ ∑n

k=0 ∑n
j=0,j 6=k

x2
k y2

j
(z−ak)(z−aj)

− 2 ∑n
k=0 ∑n

j=0,j 6=k
xkykxjyj

(z−ak)(z−aj)
.
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Hence,

Fk = limz→ak (z− ak)F(z) =

x2
k + ∑n

j=0,j 6=k
x2

j yk+x2
k y2

j
(ak−aj)

− 2 ∑n
j=0,j 6=k

xkykxjyj
(ak−aj)

=

x2
k + ∑n

j=0,j 6=k
(xjyk−xkyj)

2

(ak−aj)
, k = 0, . . . , n.

The preceding calculation yields the following proposition.

Proposition 6. Each residue Fk = x2
k + ∑n

j=0,j 6=k
(xjyk−xkyj)

2

(ak−aj)
, k = 0, . . . , n is an integral of

motion for Newmann’s spherical system, and functions F0, . . . , Fn are in involution.

These results coincide with the ones reported in [38–40], but the connection with the
affine-quadratic problem shows that similar integrals of motion exist for the hyperbolic
Neumann problem [7] (p. 191).

In the literature on integrable systems the integrals of motion for Neumann’s problem
are related to the integrals of motion for Jacobi’s problem on the ellipsoid through the
transformation of H. Knörrer that transforms the Neumann’s equations on energy level
H = 0 onto the equations of Jacobi on the ellipsoid [39,41]. Our exposition takes another
route: we will instead show that an “elliptic” problem on the sphere is completely integrable
with its integrals of motion as in Neumann’s problem, and then we will show that the
Hamiltonian equations for the elliptic problem on the sphere and Jacobi’s problem on the
ellipsoid are symplectomorphic. We will then use this symplectomorphism to show the
existence of Jacobi’s integrals of motion on the ellipsoid.

Let nowH = 1
2 〈D−1(Lk)D−1, Lk〉+ 〈D−1, Lp〉 denote an affine-quadratic Hamiltonian

on G = SL(n + 1) defined by a diagonal matrix D with positive diagonal entries. As
before, we will dispense with zero-trace requirements since they are inessential. The above
Hamiltonian is generated by a positive definite operator P(X) = DXD, X ∈ so(n + 1) and
the drift A = D−1. We will call this Hamiltonian elliptic for reasons that will be made clear
later on. Let B = −D. Then

[P−1(Lk), B] = [P−1(Lk),−D] = −LkD−1 + D−1Lk = [Lk, D−1] = [Lk, A].

Therefore H is isospectral (Proposition 1) and its Hamiltonian equations admit
a representation

dLλ

dt
= [Mλ, Lλ], Lλ = Lp − λLk − (λ2 − s)A.

Since Lλ = Lp − λLk − (λ2 − s)A is a spectral curve for the canonical affine Hamilto-
nian H = 1

2 〈Lk, Lk〉 − 〈A, Lp〉 we have the following corollary.

Corollary 2. The spectral invariants of Lp − λLk − (λ2 − s)A are common integrals of motion
for both the canonical Hamiltonian H = 1

2 〈Lk, Lk〉 − 〈A, Lp〉 and the elliptic Hamiltonian H =
1
2 〈A−1LkA−1, Lk〉+ 〈A−1, Lp〉.

As before, on coadjoint orbit through X0 = x0 ⊗ε x0, (x0, x0)ε = 1, the Poisson equa-
tions ofH ( the semi-direct version) are given by

d
dt (x ∧ε y) = [A−1(x ∧ε y)A−1, x ∧ε y] + [A−1, x⊗ε x],

d
dt (x⊗ε x) = [A−1(x ∧ε y)A−1), x⊗ε x].

(72)

We then have

〈A−1LkA−1, Lk〉 = 〈A−1x ∧ yA−1, x ∧ y〉 = (A−1x · x)(A−1y · y)− (A−1x · y)2,

〈A−1, Lp〉 = − 1
2 (x · A−1x).
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which shows that the Hamiltonian H = 1
2 〈A−1LkA−1, Lk〉+ 〈A−1, Lp〉 is given by

H =
1
2
((A−1y · y)− (A−1x · y)2

(A−1x · x) − 1)(A−1x · x).

The correspondence (x, y)→ x ∧ε y + x⊗ε x defines a symplectomorphism between
the cotangent bundle of Sn

ε with its canonical Poisson bracket and the coadjoint orbit
through X0 (Proposition 5).

Proposition 7. On energy level H = 0 Equation (72) correspond to

dx
dt = (A−1x · x)(A−1y− (A−1x·y)

(A−1x·x) A−1x)

dy
dt = (A−1x · x)( (A−1x·y)

(A−1x·x) A−1y− (A−1x·y)2

(A−1x·x)2 A−1x− x.)

under the correspondence (x⊗ x, x ∧ y)→ (x, y).

These equations can be reparametrized by a parameter s =
∫
(A−1x(t) · x(t)) dt to read

dx
ds = dx

dt
dt
ds = A−1y− (A−1x·y)

(A−1x·x) A−1x
dy
ds = dy

dt
dt
ds = (A−1x·y)

(A−1x·x) (A−1y− (A−1x·y)
(A−1x·x) A−1x)− x.

(73)

We will presently show that Equation (73) are Hamiltonian equations that correspond
to the geodesic problem on the sphere relative to the elliptic metric 1

2 (Aẋ, ẋ).
As an intermediate step we will now derive the Hamiltonian equations associated

with the geodesic problem on the quadric surface (A−1x, x) = 1 induced by the scalar
product 1

2 (Dẋ, ẋ). We will follow the procedure based on the version of the Maximum
Principle for variational problems with constraints outlined in [7] (p. 218) and identify the
quadric surface with the submanifold N = {x ∈ Rn+1 : (x, A−1x) = 1}. Then its cotangent
bundle will be defined in terms of the constraints

G1 = {(x, A−1x)− 1 = 0}, and G2 = {(x, A−1 p) = 0}.

The Hamiltonian lift of a curve ẋ = u(t) that belongs to Tx(t)N is given by

hu(t)(x, p) = −1
2
(Du, u) + (p, u) + λ1G1 + λ2G2

for the multipliers λ1 and λ2 that satisfy {hu(t), G1} = {hu(t), G2} = 0. If h0
u = − 1

2 (Du, u) +
(p, u), then

{hu, G1} = {h0
u, G1}+ λ2{G2, G1}, {hu, G2} = {h0

u, G2}+ λ1{G1, G2}.

It follows that

{h0
u, G1} = −2u · A−1x, {h0

u, G2} = −u · A−1 p, {G1, G2} = 2A−1x · A−1x.

Hence,

λ1 = − 1
{G1, G2}

{h0
u, G2} =

1
2

(u, A−1 p)
(A−1x, A−1x)

, λ2 = − 1
{G2, G1}

{h0
u, G1} = −

(u, A−1x)
(A−1x, A−1x)

.

According to the Maximum Principle an extremal control u(t) must optimize

h0
u = −1

2
(u · Du) + p · u
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on G1 = G2 = 0 over all controls that satisfy u · A−1x = 0. Hence extremal controls are the
critical points of − 1

2 (u, Du) + (p, u)− α0(u, A−1x) for some multiplier α0, that is, they are
solutions of −Du + p− α0 A−1x = 0. It follows that the extremal controls are of the form

u = D−1(p− α0 A−1x), But then (u, A−1x) = 0 implies that α0 = (A−1x,D−1 p)
(D−1 A−1x,A−1x) . For this

choice of controls
hu = H + λ1G1 + λ2G2,

where H = 1
2 (D−1(p− α0 A−1x), p)). An easy calculation shows that

H =
1
2
((D−1 p, p)− (D−1 p, A−1x)2

(A−1x, A−1x)
).

Then the extremal curves are the solutions of the following differential equation:

dx
dt = ∂H

∂p = D−1(p− α0 A−1x),
dp
dt = − ∂H

∂x − 2λ1
∂G1
∂x = α0(A−1(D−1(p− α0 A−1x))− 2λ1 A−1x,

(74)

which emanate from H = 1
2 , that is, satisfy

(D−1 p, p)(D−1 A−1x, A−1x)− (D−1 p, A−1x)2 = (D−1 A−1x, A−1x). (75)

We will now single out the cases relevant for our earlier claims.
The geodesic problem on the ellipsoid. In this classic case initiated by C. Jacobi

D = I and (A−1x, p) = 0. Hence

α0 =
(A−1x, p)

(A−1x, A−1x)
= 0, λ1 =

1
2

(p, A−1 p)
(A−1x, A−1x)

.

Then Equation (74) reduce to

dx
dt

= p,
dp
dt

= − (p, A−1 p)
(A−1x, A−1x)

A−1x. (76)

The preceding equation agree with the equations in J. Moser [39].
The elliptic problem on the sphere. Here the ambient metric is defined by a positive-

definite matrix D and A = I. In such a case Equation (74) are given by

(D−1 p, p)− (D−1 p, x)2

(D−1x, x)
= 1.

Furthermore,

λ1 =
1
2

D−1(p− α0x), p) =
1
2
(D−1 p, p)− (x, D−1 p)2

(D−1x, x)
) =

1
2

, α0 =
(D−1x, p)
(D−1x, x)

.

The Hamiltonian equations are then given by

dx
dt = D−1 p− (D−1x,p)

(D−1x,x) D−1x,
dp
dt = (D−1x,p)

(D−1x,x) (D−1 p− (D−1x,p)
(D−1x,x) D−1x))− x,

(77)

which agrees with Equation (73) when D = A.

Proposition 8. The Hamiltonian systems that correspond to the elliptic problem on the sphere and
the geodesic problem on the ellipsoid are symplectomorphic.
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Proof. Let (x, y) denote the coordinates on the tangent bundle of the sphere and let (q, p)
denote the coordinates on the tangent bundle of the ellipsoid E = {q ∈ Rn+1 : (q, A−1q)−
1 = 0}. In these coordinates the systems in question are given by

dx
dt

= u,
dy
dt

= αu− x, and
dq
dt

= p,
dp
dt

= − (A−1 p, p)
(A−1q, A−1q)

A−1q, (78)

where u = A−1(y− αx) and α = (A−1x,y)
(A−1x,A−1x) .

Let Φ denote the mapping from the cotangent bundle of the sphere to the cotangent
bundle of E defined by

q = A
1
2 x, p = A−

1
2 (y− αx) = A

1
2 u.

Let θ = ∑n
i=0 pidqi = (p, dq), (dq, A−1q) = 0, denote the Liouville-Poincaré canonical

form on T∗E. Then

Φ∗θ = (A−
1
2 (y− αx), A

1
2 dx) = (y, dx)− α(x, dx) = (y, dx),

because 0 = dq · A−1q = A
1
2 dx · A−1 A

1
2 x = dx · x. Since Φ∗ takes the Liouville form on

T∗E to the Liouville form on T∗Sn, it also takes the canonical symplectic form on T∗E to
the canonical symplectic for on T∗Sn and hence is a symplectomorphism.

It now follows from (78) that du
dt = −(1 + dα

dt )A−1x and that 1 + dα
dt = (u,u)

(A−1x,x) . Then,

dq
dt = A

1
2 dx

dt = A
1
2 u = p,

dp
dt = A

1
2 du

dt = −( (u,u)
(A−1x,x) )A−1q = − (A−1 p,p)

(A−1q,A−1q) A−1q,

and thus Φ∗ takes the Hamiltonian flow on the sphere onto the Hamiltonian flow on
the ellipsoid.

Proposition 9. Jacobi’s problem on the ellipsoid is completely integrable. Functions

Gk = p2
k +

n+1

∑
j=1,j 6=k

(qj pk − qk pj)
2

(ak − aj)
, k = 1, . . . , (n + 1)

are constants of motion, all in involution with each other, for the Hamiltonian system dq
dt = p, dp

dt =

− (A−1 p,p)
(A−1q,A−1q) A−1q on the cotangent bundle of the ellipsoid.

Proof. We have shown that

Fk = x2
k +

n

∑
j=0,j 6=k

(xjyk − xkyj)
2

(αk − αj)
, k = 0, . . . , n (79)

are an involutive family of integrals of motion for the elliptic-geodesic problem on the
sphere. We have also shown that the above integrals of motion are the residues of
the function

F(z) = (Rzx, x) + (Rzx, x)(Rzy, y)− (Rzx, y)2, Rz = (zI − A)−1.

We will now show that functions (79) are the residues of the pull-back of F under the
symplectomorphism Φ. First note that F remains unchanged if the variable y is replaced

by y + αx with α an arbitrary number. Since A
1
2 p = y− (A−1x,y)

(A−1x,x) x, we may replace y by
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A
1
2 p and x by A−

1
2 q. Also note that (p, p) = (A−1y, y)− (A−1x,y)2

(A−1x,x) = 1 (use Equation (75)).
Then,

1 + (Rzy, y) = 1 + (Rz Ap, p) = 1 + ∑n
k=0

ak p2
k

z−ak
=

∑n
k=0 p2

k +
ak p2

k
z−ak

= z ∑n
k=0

p2
k

z−ak
= z(Rz p, p),

(Rzx, x) = (Rz A−1q, q) = ∑n
k=0

q2
k

ak(z−ak)
= 1

z ∑n
k=0

qk
ak
+

q2
k

z−ak
= 1

z (1 + (Rzq, q),

and (Rzx, y) = (Rzq, p).

It follows that
F(z) = (Rz p, p)(1 + Rzq, q)− (Rzq, p)2

is constant along the solutions of Jacobi’s equations.. A calculation identical to the one used
for Neumann’s system shows that

Gk = p2
k +

n

∑
j=0,j 6=k

(qj pk − qk pj)
2

(ak − aj)
, k = 1, . . . , (n + 1)

are the residues of F, and hence are integrals of motion for Jacobi’s equations.

Degenerate Case A = 0 and Kepler’s Problem

Let us now return to the Hamiltonian equations generated by the canonical affine
Hamiltonian H = 1

2 (x, x)ε(y, y)ε − 1
2 (Ax, x)ε on the coadjoint orbit through X0 = a⊗ε a

for some a ∈ Rn+1 with

d
dt
(x ∧ε y) = [A, x⊗ε x],

d
dt
(x⊗ε x) = [x ∧ε y, x⊗ε x], (80)

and their equivalent formulation on the tangent bundle of Sn
ε :

ẋ = (x, x)εy, ẏ = Ax− (
Ax, x)ε

(x, x)ε
+ (y, y)ε)x. (81)

When A = 0 the Hamiltonian H reduces to H = 1
2 (x, x)ε(y, y)ε and the corresponding

equations reduce to

d
dt
(x ∧ε y) = 0,

d
dt
(x⊗ε x) = [x ∧ε y, x⊗ε x]. (82)

Then Equation (82) yield an integral of motion x ∧ε y = const, and Equation (81)
reduce to

ẋ = ||x||2εy, ẏ = −||y||2εx, where ||x||2ε = (x, x)ε, ||y||2ε = (y, y)ε.

Upon differentiating we get

ẍ + ||x||2ε||y||2εx = 0. (83)

We will now assume that (a, a)ε = h2 so that Sn
−1 is the hyperboloid x2

0 = h2 +

∑n
i=1 x2

i , x0 ≥ 0. On energy level H = ε
2h2 , ||x||2ε||y||2ε = ε

h2 the solutions of (83) are given
by x(t) = c1 cos t

h
√

ε + c2 sin t
h
√

ε where c1 and c2 are constant vectors (complex when
ε = −1) that satisfy ||c||2ε = ||c||2ε = h2, (c1, c2)ε = 0.

For ε = 1 the above curves trace great circles on the sphere ||x||2 = ||x0||2 and for
ε = −1 the solutions trace great hyperbolas on the hyperboloid ||x||2−1 = ||x0||2−1 (an
immediate consequence of the fact that x(t) ∧ε ẋ(t) = a ∧ε b). That is, solutions are the
geodesics on spaces of constant non-zero curvature. The zero curvature case may be
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obtained by considering ε as a continuous parameter and then letting it tend to zero (as
will be explained below).

We will now show that there exists a canonical change of coordinates {(x0, . . . , xn,
y0, . . . , yn), (x, x)ε = h2, (x, y)ε = 0} → (p1, . . . , pn, q1, . . . , qn) in which p is the stereo-
graphic projection through the point x0 = he0 given by

λ(x− he0) + he0 = (0, p) with λ =
h

h− x0
, x ∈ Sn

ε (84)

such that in the new coordinates the preceding geodesic differential system is transformed
into the n-dimensional Kepler’s system, an n-dimensional generalization of the Hamilto-
nian equations that describe the motion of a planet around an immovable planet in the
presence of the gravitational force.

Equation (84) yields p = h
h−x0

x̄, where x̄ = (x1, . . . , xn). Therefore the inverse map
x = Φε(p) is given by

x0 =
h(||p||2 − εh2)

||p||2 + εh2 , x̄ =
2εh2

||p||2 + εh2 p. (85)

Assume that the cotangent bundle of Rn is identified with its tangent bundle Rn ×Rn

via the Euclidean inner product ( · ), and let (p, q) denote the points of Rn ×Rn. We will
next find q = Ψ(x, y) such that (dx, y)ε = (dp · Ψ(x, y)), for all (x, y) with x ∈ Sn

ε (h)
and (x, y)ε = 0. For then the transformation (p, q) ∈ Rn × Rn → (x, y) ∈ TSn

ε (h) is a
symplectomorphism since it pulls back the Liouville form (dx, y)ε on TSn

ε (h) onto the
Liouville form (dp · q) in Rn ×Rn (The symplectic form is the exterior derivative of the
Liouville-Poincaré form). It follows that

(y, dx)ε = ∑n
j=1 y0

∂x0
∂pj

dpj + ε ∑n
i=1 ∑n

j=1 yi
∂xi
∂pj

dpj =

∑n
j=1(y0

∂x0
∂pj

+ ε ∑n
i=1 yi

∂xi
∂pj

)dpj = ∑n
j=1 qjdpj = (dp · q).

Therefore,

qj =
∂x0

∂pj
y0 + ε

n

∑
i=1

yi
∂xi
∂pj

, j = 1, . . . , n.

After the appropriate differentiations in (85) we get

q =
2h2

||p||2 + εh2 (
2εhy0

||p||2 + εh2 p + ȳ− 2(ȳ · p)
||p||2 + εh2 p), ȳ = (y1, . . . , yn).

Hence,

||p||2 + εh2

2h2 (q · p) = 2εhy0

||p||2||+ εh2 ||p||
2 − ||p||

2 − εh2

||p||2 + εh2 (ȳ · p).

Since y is orthogonal to x, (ȳ · p) = − y0
2h (||p||

2 − εh2). Therefore,

y0 =
1
h

q · p, ȳ =
||p||2 + εh2

2h2 q− q · p
h2 p. (86)

After the substitutions ||p||2 = h2

h−x0
||x̄||2 into the preceding equation we get

q =
2(h− x0)

||x̄||2 + (h− x0)
((h− x0)

2ȳ + y0 x̄).
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To pass to the problem of Kepler, write the Hamiltonian H = 1
2 ||x||2ε ||y||2ε in the

variables (p, q). An easy calculation in (86) yields (y, y)ε = ε
(||p||2+εh2)2

4h4 ||q||2. Therefore,

H =
1
2

h2ε
(||p||2 + εh2)2

4h4 ||q||2 =
1
2

ε
(||p||2 + εh2)2

4h2 ||q||2.

The corresponding flow is given by

dp
ds

=
∂H
∂q

= ε
(||p||2 + εh2)2

4h2 q,
dq
ds

= −∂H
∂p

= −ε
||p||2 + εh2

2h2 ||q||2 p

On energy level H = ε
2h2 , (||p||

2+εh2)2

4 ||q||2 = 1, and the preceding equations reduce to

dp
ds

= ε
q

h2||q||2 ,
dq
ds

= −ε
||q||
h2 p.

After the reparametrization t = −−ε
h2

∫ s
0 ||q(τ)||dτ Equation (23) become

dp
dt

=
dp
ds

ds
dt

= − q
||q||3 ,

dq
dt

=
dq
ds

ds
dt

= p.

On H = ε
h2 , (||p||2+εh2)2

4 ||q||2 = 1 and

E =
1
2
||p||2 − 1

||q|| =
1

2||q|| (||p||
2||q|| − 2) =

1
2||q|| (2− εh2||q|| − 2) = −1

2
εh2.

So E < 0 in the spherical case and E > 0 in the hyperbolic case.
The Euclidean case E = 0 can be obtained by a limiting argument in which ε is

regarded as a continuous parameter which tends to zero.
To explain in more detail, let

w0 = lim
ε→0

= h, w = lim
ε→0

1
2εh2 x̄ =

1
||p||2 .

The transformation p→ w with w = 1
||p||2 p is the inversion about the circle ||p||2 = 1

in the affine hyperplane w0 = h, and ||dw||2 = 1
||p||4 ||dp||2 is the corresponding transforma-

tion of the Euclidean metric ||dp||2. The Hamiltonian H0 associated with this metric is equal

to 1
2
||p||4

4 ||q||2. This Hamiltonian can be also obtained as the limit of ( h2

ε )
1
2
(||p||2+εh2)2

4h2 ||q||2

when ε → 0. On energy level H = 1
2 , ||p||2||q|| = 2 and therefore, E = 0. Of course,

the solutions of (12) tend to the Euclidean geodesics as ε tends to zero. Consequently,
w(t) = limε→0

1
2h2ε

(x̄(t)) is a solution of d2w
dt2 = 0, and hence, is a geodesic corresponding

to the standard Euclidean metric.
Let us also note that the angular momentum L = q ∧ p and the Laplace-Runge-Lenz

vector F = Lp− q
||q|| for Kepler’s problem have simple geometric interpretation on the

coadjoint orbits according to the following proposition.

Proposition 10. Let x = x0e0 + x̄ and y = y0e0 + ȳ. On energy level H = ε
2h2 ,

L = (ȳ ∧ε x̄) and F = h(y0(e0 ∧ x̄)ε − x0(e0 ∧ ȳ)ε)e0.

For a proof see [7].
This remarkable discovery that the solutions of Kepler’s problem are intimately related

to the geometry of spaces of constant curvature goes back to A.V. Fock’s paper of 1935 [42]
in which he reported that the symmetry group for the motions of the hydrogen atom is



Mathematics 2023, 11, 1063 31 of 44

O4(R) for negative energy, E3 oO3(R) for zero energy and O(1, 3) for positive energy. It is
then not altogether surprising that similar results apply to the problem of Kepler since the
energy function for Kepler’s problem is formally the same as the energy function for the
hydrogen atom.

This connection between the problem of Kepler and the geodesics on the sphere
was reported by J. Moser in 1970 [43], while Y. Osipov [44] reported similar results later
for geodesics on spaces of negative constant curvature. In spite of their brilliance, these
papers did not attempt any explanations in regard to this enigmatic connection between
planetary motions and geodesics on space forms. This issue later inspired V. Guillemin
and S. Sternberg to take up the problem of Kepler in a larger geometric context, with
Moser’s observation as the background, in a paper titled Variations on a theme by Kepler [45].
The introduction of Kepler’s problem through the canonical affine-quadratic problem
exemplifies, once again, this fascinating and recurrent interplay between mathematical
physics, geometry and integrable systems.

5. Homogeneous Riemannian Manifolds and Rolling Geodesics

Our overview of integrable systems raises a natural question: what is the geometric
origin behind the affine-quadratic problem that accounts for its ubiquitous presence in
the theory of integrable systems? A partial answer to this question comes, somewhat
unexpectedly, from a new class of variational problems, called rolling problems. We will
take up this issue next. Since the underlying variational problems require new concepts
and terminology, we will be obliged to make a slight detour into an earlier paper [9] in
order to introduce the necessary ingredients.

The general setting is defined by a reductive pair (G, K) with G semi-simple and K
compact. We assume that the Lie algebra decomposition g = p⊕ k, with p the orthogonal
complement of k relative to the Killing form on g satisfies the strong Cartan conditions

[p, k] = p, [p, p] = k, [k, k] ⊆ k. (87)

We will also assume the Killing form is of definite sign on p in which case 〈 , 〉 will
denote a scalar multiple of the Killing form that is positive on p. We recall that the Killing
form is invariant under any linear automorphism of g and hence the quadratic form 〈 , 〉 is
AdG invariant [15].

We consider G a semi-Riemannian manifold relative to the left-invariant metric
〈〈gX, gY〉〉g = 〈X, Y〉, X, Y ∈ g induced by 〈 , 〉 (the Killing form is not necessarily positive
on g, hence the metric is in general of indefinite sign, i.e., it is semi-Riemannian [46]).
The left-invariant distributions D(g) = {gX : X ∈ p} and V(g) = {gX) : X ∈ k} are
called horizontal and vertical respectively. Then curves that are tangent to D, i.e., satisfy
dg
dt ∈ D(g(t)) are called horizontal. Likewise curves that are tangent to V are called vertical.
It follows that

D(g)⊕ V(g) = TgG, g ∈ G. (88)

We will assume that M = G/K consisting of the left coset gK is endowed with a
manifold structure so that the natural projection π(g) = gK is a smooth surjection [46].
A curve g(t) in G is called a lift of a curve p(t) ∈ M if π(g(t)) = p(t). A lift is called
horizontal when g(t) is a horizontal curve. Every curve p(t) in M is the projection of a
horizontal curve g(t). If a curve g(t) is a solution of dg

dt = g(t)U(t) for some curve U(t) ∈ p

then dg(t)π(g(t)U(t)) = dp
dt . The correspondence D(g)→ Tπ(g)M given by dgπ(gU) = dp

dt
is an isomorphism and induces a metric on M

(dgπ(gV), dgπ(gW)π(g) = 〈gV, gW〉〉g = 〈V, W〉, V, W ∈ p. (89)

Let now {τg : g ∈ G} denote the group of diffeomorphisms defined by the left action

π(Lg(h)) = τg(π(h)), h ∈ G, Lg(h) = gh.
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We then have

Proposition 11. The metric (89) is invariant under {τg : g ∈ G}, that is,

(doτg(V(p), doτg(W(p))τg(p) = (V(p), W(p))p, (90)

for any g ∈ G and any tangent vectors V(p) and W(p) in Tp M.

For a proof see [47].
It follows that each τg is an isometry. Since G acts transitively on M, M can be

represented by the orbit {τg(o) : g ∈ G} where o = π(e) and e is the group identity in
G. It follows that π((exp tU)g) = τexp tU(π(g)) for any U ∈ g. Note that g → (exp tU)g
is the flow generated by a right-invariant vector field Ur(g) = Ug. Therefore the flow of
Ur is π-related to the flow {τexp tU : t ∈ R} in M. We will let ~U denote the infinitesimal
generator of the flow {τexp tU : t ∈ R}.

It follows that each ~U is a Killing vector field on M. A vector field whose flow acts
on M by isometries is called a Killing vector field (see [46] for additional details). The
correspondence Ur(g) → ~U(π(g)) is one to one and onto Tπ(g)M. Since the Lie brackets
of vector fields related by a mapping F are also F-related, the Lie brackets [Ur, Vr] are
dπ-related to [~U, ~V]. Therefore the correspondence Ur(g) → ~U(π(g)) is a Lie algebra
homomorphism, and hence F = {~U : U ∈ g} is a finite dimensional Lie algebra of Killing
vector fields that satisfies F (p) = Tp M for each p ∈ M.

Note that π(exp tU) = τetU (o) = exp t~U(o). So if U ∈ k then π(exp tU) = o and
therefore ~U(o) = 0. It then follows that deπ(U) = ~U(o) is an isometric isomorphism from
p onto To M. More generally if g(t) is any horizontal curve then p(t) = π(g(t)) = τg(t)π(e)
implies that

dp
dt

= dg(t)(π(g(t)U(t))) = doτg(t)deπ(U(t)) = doτg(t)~U(t)(o), (91)

and
(doτg(t)~U(t)(o), doτg(t)~V(t)(o))p(t) = (~U(o), ~V(o))o.

Therefore doτg(t) is an isometry that maps To M onto Tp(t)M.
A homogeneous manifold M = G/K with a G-invariant metric defined by a reductive

pair (G,K) with G semi-simple and K compact, will be referred to as semi-simple (it is
defined by a semi-simple Lie group G, a compact subgroup K, and the metric induced by
the Killing form). It can be shown that any symmetric Riemannian space with no Euclidean
factors can be reduced to a semi-simple manifold (so that [p, p] = k holds). Conversely, every
semi-simple manifold is locally symmetric. It is symmetric when G is simply connected
(see [48], Proposition 6.27). We will not pursue further proximities with symmetric spaces
since the present exposition makes no use of geodesic symmetries.

We now come to the main topic of this section, rolling of semi-simple manifolds on
their tangent spaces. We begin by recalling the basic definition.

Definition 1. A curve α(t) on a Riemannian manifold M rolls on a curve α̂(t) on another Rie-
mannian manifold M̂ if there exists an isometry A(t) : Tα(t)M→ Tα̂(t)M̂ that satisfies:

dα̂

dt
= A(t)

dα

dt
, (92)

and also satisfies the condition that A(t)v(t) is a parallel vector field in M̂ along α̂(t) for each
parallel vector field v(t) along α(t) in M.

This intrinsic definition of rolling was introduced in [49], and later used in [50,51]. In
this context the triple (α(t), α̂(t), A(t)) is called a rolling curve. It is clear that rolling is
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reflexive in the sense that if α(t) is rolled on α̂(t) by an isometry A(t) then α̂(t) is rolled on
α(t) by the isometry A−1(t), and therefore (α̂(t), α(t), A−1(t)) is also a rolling curve.

We will now examine rollings of semi-simple manifolds on their tangent planes. It
comes as a pleasant surprise that such rollings are essentially described by Equation (91)
reinterpreted in terms of rolling. So the passage to rolling becomes largely a question of
semantics, as demonstrated in the text below.

We will consider rollings of M on M̂ = To M with its metric (u, v)o defined by (89).
The rollings on other tangent spaces are conjugate to the rollings on To M [47]. Let α(t)
be an arbitrary curve in M and let α̂(t) be a curve in M̂ that α(t) is rolled on. It follows
that α(t) = π(g(t)) = τg(t)(o) for some horizontal curve g(t). If g(t) is a solution of
dg
dt = g(t)U(t), U(t) ∈ p then according to (91)

dα(t)
dt

= dg(t)π(g(t)U(t)) = doτg(t)~U(t)(o),

If we now let α̂(t) be any solution in M̂ of dα̂(t)
dt = ~U(t)(o) then A(t) = doτg(t) is an

isometry that rolls α̂(t) on α(t) since the parallel transport condition is satisfied (for proofs
see [47]). Of course, then A−1(t) rolls α(t) on α̂(t).

It follows that each horizontal curve g(t) in G defines a family of curves α̂(t) in M̂,
each a solution of dα̂

dt = ~U(t)(o), with ~U(t) induced by U(t) = g−1(t) dg
dt , that roll on α(t) =

π(g(t)). The converse is also true: every solution (g(t), α̂(t)) of the differential system

dg
dt

= g(t)U(t),
dα̂(t)

dt
= ~U(t)(o), U(t) ∈ p (93)

defines a curve α(t) = π(g(t)) in M on which α̂(t) in M̂ is rolled by the isometry doτg(t).
We will regard (93) as the fundamental object in rolling defined on G = G× M̂, M̂ =

To M, a Lie group with its group operation

gh = (g, p)(h, q) = (gh, p + q), g = (g, p), h = (h, q).

ThenG = g×To M will denote the Lie algebra of G with the Lie bracket [(X, ~U(o)), (Y, ~V(o)]
= ([X, Y], 0).

Let now H(g, p) = {(gU, ~U(o)) : U ∈ p}, (g, p) ∈ G. We will view H as a left-
invariant distribution on G defined by the left-translates of vector space Γ = {(U, ~U(o)) :
U ∈ p} in G. The distributionH is called the rolling distribution and its integral curves are
called rolling motions. Any rolling motion g(t) = (g(t), p(t)) is a solution of

dg
dt

= g(t)U(t),
dp
dt

= ~U(t)(o), (94)

and can be associated with the rolling curve (α̂(t), α(t)), doτg(t)), where α(t) = τg(t)(o) and
α̂(t) = p(t).

Since p and k satisfy strong Cartan conditions [p, k] = p and [p, p] = k, Γ satisfies
[Γ, Γ] = (k, 0), and [Γ, [Γ], Γ]] = (p, 0). Therefore,

Γ + [Γ, Γ] + [Γ, [Γ, Γ]] = G, (95)

Hence the Lie algebra generated by the left-invariant vector fields tangent to H is
equal to G, therefore any two points in G can be connected by a rolling motion, and each
rolling motion inherits a natural length

∫ T
0

√
〈U(t), U(t)〉 dt from G. It is then known that

any pair of points in G can be connected by an integral curve of H of minimal length
because vector fields inH are complete [50]. The above shows that G with the above metric
is a sub-Riemannian manifold. We will refer to the associated sub-Riemannian geodesics as
the rolling geodesics.
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We will now turn to the Maximum principle to find the necessary conditions that
the rolling geodesics must satisfy. To put the matter in the control theoretic context, let
A1, . . . , Am be an orthonormal basis in p so that (Ai, ~Ai(o)) becomes an orthonormal basis
in Γ. Then an absolutely continuous curve g(t) = (g(t), p(t)) is a rolling motion if and
only if

dg
dt

=
m

∑
i=1

ui(t)g(t)Ai,
dp
dt

=
m

∑
i=1

ui(t)~Ai(o), (96)

for some bounded and measurable control functions u1(t), . . . , um(t), in which case the

length of g(t) is given by
∫ T

0

√
u2

1(t) + · · ·+ u2
m(t)dt. The rolling problem is an optimal

control problem and consists of finding the solutions g(t) = (g(t), p(t)) on a fixed time
interval [0, T] that satisfy the given boundary conditions g(0) = g0 and g(T) = g1 along
which the energy of transfer 1

2

∫ T
0 ∑m

i=1 u2
i (t) dt is minimal. It is known that each rolling

geodesic is locally optimal and hence is a solution to the above control problem [7,50].

5.1. Rolling Hamiltonians

To emphasize the invariant properties of the problem we will rewrite (96) as

dg
dt

=
m

∑
i=1

ui(t)Xi(g), (97)

where each Xi a left-invariant vector field Xi(g) = (gAi, ~Ai(o)), g = (g, p). If g(t) is an
optimal trajectory then, according to the Maximum Principle, g(t) is the projection of an
extremal curve ξ(t) in T∗G along which the cost extended Hamiltonian

−λ

2

m

∑
i=1

u2
i (t) +

m

∑
i=1

ui(t)Hi(ξ(t)), λ = 0, 1

is maximal relative to all other control functions. Here Hi is the Hamiltonian lift of Xi,
i.e., Hi(ξ(t)) = ξ(t)(Xi(g(t)).

There are two kinds of extremal curves depending whether λ = 0 (abnormal case) or
λ = 1 (normal case). In the abnormal case the Maximum principle results in the constraints

Hi(ξ(t)) = 0, i = 1, . . . , m, (98)

and beyond that gives no further information about the optimal control in question. In the
normal case, however, the above maximum yields ui(t) = Hi(ξ(t)), i = 1, . . . , m, where ξ(t)
is a solution curve of a single Hamiltonian vector field corresponding to the Hamiltonian

H(ξ) =
1
2

m

∑
i=1

H2
i (ξ). (99)

Each optimal solution g(t) is either the projection of an abnormal or a normal extremal
curve. If g(t) is the projection of a normal extremal curve ξ(t) then ξ(t) is an integral curve
of ~H and the control u(t) that generates g(t) is of the form ui(t) = Hi(ξ(t)), i = 1, . . . , m.

We will not concern ourselves with the abnormal extremals. It is very likely that every
optimal trajectory is the projection of a normal extremal curve, as in [52], in which case the
abnormal extremals could be ignored. Instead we will turn to the normal Hamiltonian H
and its Hamiltonian equations

dg
dt

=
n

∑
i=1

Hi(`(t))Xi(g(t)),
d`
dt

= −ad∗dH(`(t))(`(t)).
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Let us first consider the solutions of the associated Poisson equation

d`
dt

= −ad∗dH(`(t))(`(t)) (100)

and the structure of the coadjoint orbits.
Since M̂ is a Euclidean vector space, its tangent space at the origin can be identified

with M̂. Then the Lie algebra G will be identified with g× M̂, and its dual with G∗ =
g∗ ⊕ M̂∗, where

g∗ = {` ∈ G∗ : `( ṗ) = 0, ṗ ∈ M̂}, M̂∗ = {` ∈ G∗ : `(g) = 0}.

It then follows that every ` ∈ G∗ can be written as ` = `1 + `2 with `1 ∈ g∗ and
`2 ∈ M̂∗. Since M̂ is an abelian algebra the projection `2 on M̂∗ is constant on each
coadjoint orbit of G. The argument is straightforward:

Ad∗g(`)(X + ṗ) = `(Adg−1(X + ṗ)) = `(Adg−1(X) + ṗ) = `1(Adg−1(X)) + `2( ṗ),

for any g = (g, p) ∈ G. It follows that the coadjoint orbits in G are of the form

{Ad∗g(`1) : g ∈ G}+ `2, for any ` = `1 + `2.

This fact can be also verified directly from Equation (100): we have

d`
dt

V = −`[dH, V], for any V = X + ṗ in G,

where dH = ∑m
i=1 Hi(`)(Ai + ~Ai(o)) and Hi(`) = `1(Ai) + `2(~Ai(o)). Therefore,

d`1

dt
(X) +

d`2

dt
( ṗ) = −(`1 + `2)([dH, X + ẋ]) = −

m

∑
i=1

Hi(`i)[Ai, X].

from which follows that

d`1

dt
(X) = −

n

∑
i=1

Hi(`i)[Ai, X], X ∈ g,
d`2

dt
( ṗ) = 0.

Since ṗ is arbitrary d`2
dt = 0.

To uncover other constants of motion identify G∗ with G via the natural quadratic
forms on each of the factors, and then recast the preceding equations on G. More precisely,
identify each `2 in M̂∗ with a tangent vector l = ∑m

i=1 li ~Ai(o) via the formula `2( ṗ) =
(l, ṗ), ṗ ∈ M̂. Similarly, identify `1 ∈ g∗ with L ∈ g via the formula `1(X) = 〈L, X〉, X ∈ g.
Then decompose L ∈ g into the sum L = Lp + Lk, Lp ∈ p and Lk ∈ k. Relative to the basis
A1, . . . , Am in p, Lp = ∑m

i=1 Pi Ai where Pi = `1(Ai) = 〈L, Ai〉. It follows that

Hi(ξ) = `(Ai + ~Ai(o)) = `1(Ai) + `2(~Ai(o)) = Pi + li,

and

d`1
dt (X) = 〈 dL

dt , X〉 = −〈L, [∑m
i=1(li + Pi)Ai, X]〉 = −〈[L, ∑m

i=1(li + Pi)Ai], X〉,

( dl
dt , ṗ) = d`2

dt (t)( ṗ) = 0

Since X and ṗ are arbitrary,

dL
dt

= [
m

∑
i=1

(li + Pi)Ai, L] = [A + Lp, L], A =
m

∑
i=1

li Ai,
dl
dt

= 0. (101)
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Coupled with

dg
dt

= g(t)(A + Lp),
dp
dt

=
n

∑
i=1

(li + Pi)~Ai(o), (102)

Equation (101) constitute the Hamiltonian equations on G× G generated by the Hamilto-
nian H = 1

2 ∑m
i=1 H2

i = 1
2 ∑m

i=1(li + Pi)
2.

Each extremal curve projects onto a geodesic g(t) = (g(t), p(t)), and each geodesic
further projects onto the pair of curves α(t) = τg(t)(o) in M and β(t) = p(t) in M̂ that
are rolled upon each other by g(t).Note that in this identification of the Lie algebras with
their duals, coadjoint orbits {Ad∗g(`1) + `2 : g ∈ G} are identified with the affine sets
{Adg(L) + l : g ∈ G}.

Recall now the Hamiltonian equations associated with the canonical affine-quadratic
problem (Equation (33)):

dg
dt

= g(t)(A + Lk(t)),
dLk

dt
= [A, Lp],

dLp

dt
= [Lk, Lp] + s[A, Lk], s = 0, 1.

The propositions below reveal a remarkable fact that the Poisson equations of a
canonical affine-quadratic Hamiltonian are subordinate to the Poisson equations associated
with a rolling Hamiltonian. This connection identifies the drift term in the affine-quadratic
system with a coadjoint invariant of the rolling Poisson system. To keep the systems apart
we will use bold letters when referring to the variables in the rolling Hamiltonian in contrast
to the variables in the affine-quadratic Hamiltonian which will remain the same.

Proposition 12. Let (g(t), p(t)), Lp(t), Lk(t) be an integral curve of the rolling Hamiltonian
H = 1

2 ||A + Lp||2, that is,

dg
dt = g(t)(A + Lp(t)),

dp
dt = ∑m

i=1(li + Pi)~Ai(o),
dLk
dt = [A, Lp],

dLp

dt = [A + Lp, Lk], A = ∑m
i=1 liAi

Then

g̃(t) = g(t)h(t), Lp(t) = Adh−1(t)(Lp(t)), Lk = Adh−1(t)(Lk(t)) (103)

is an integral curve of the affine Hamiltonian H = 1
2 〈Lk, Lk〉+ 〈A, Lp〉, where A = Adh−1(t)(A +

Lp(t)), and h(t) is the solution of dh
dt = Lk(t)h(t) with h(0) = I.

Moreover, if x(t) a solution of dx
dt = A + Lp(t) then g̃(t) = (x(t), h(t)) in po K is the

projection of an extremal curve

Lk(t) = Adh−1(t)Lk(t), Lp(t) = Adh−1(t)(Lp(t))− A, A = Adh−1(t)(A + Lp(t))

associated with the shadow Hamiltonian H = 1
2 〈Lk, Lk〉+ 〈A, Lp〉.

The converse also holds according to the following proposition.

Proposition 13. Suppose that (g̃(t), Lp(t), Lk(t)) is an extremal curve of the affine Hamiltonian
H = 1

2 〈Lk, Lk〉+ 〈A, Lp〉. Let

g(t) = g̃(t)h−1(t), Lp(t) = Adh(t)(Lp(t)), Lk(t) = Adh(t)(Lk(t)), A = Adh(t)(A− Lp(t))

where h(t) is a solution of dh
dt = h(t)(Lk(t)) and let p(t) be a solution of dp

dt = ~A(o) +~Lp(t)(o).
Then (g(t), p(t)) together with

Lp(t) = Adh(t)(Lp(t)), Lk(t) = Adh(t)(Lk(t)), A = Adh(t)(A− Lp(t))
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is an extremal curve of the rolling Hamiltonian H = 1
2 〈A + Lp, A + Lp〉.

However, if g̃(t) = (x(t), R(t)), Lp(t) + Lk(t)) is an extremal curve of the shadow Hamilto-
nian H, then (g(t), p(t)), solutions of

dg
dt

= g(t)AdR(t)(A)),
dp
dt

=
~dx
dt

(o),

together with

Lp(t) = AdR(t)(A + Lp(t)), Lk(t) = AdR(t)(Lk(t)), A = −AdRLp

define an extremal curve of the rolling Hamiltonian H = 1
2 〈A + Lp, A + Lp〉.

The proofs follow by straightforward calculations (also done in [9]).
Let us now come back to isospectral representations and Zimmerman’s method [17,52].

For that purpose let X0(t) = A + Lp(t), X1(t) = Lk(t), X2(t) = −A, X3 = 0. Then Poisson’s
equations for the rolling problem can be written as

dXi
dt

= [X0(t), Xi+1(t)], i = 0, 1, 2. (104)

These equations are invariant under a dilational change of variables Xi → λi−1Xi. It
then follows that

Lλ =
3

∑
i=0

λiXi = Lp(t) + λLk(t) + (1− λ2)A (105)

satisfies the equation

dLλ

dt
= [Mλ(t), Lλ(t)], Mλ(t) =

1
λ
(A + Lp(t)). (106)

Therefore Lλ is the spectral curve for H. But then the Poisson system associated with the
affine-quadratic Hamiltonian also admits an isospectral representation after the substitutions

A = Adh(t)(A− Lp), Lk = Adh(t)(Lk), Lp = Adh(t)(Lp),
dh
dt

= h(t)Lk(t).

For then (Lp(t), Lk(t)) are the extremal curves for the Poisson system associated with
the affine-quadratic system (Proposition 13) and further satisfy

Lλ = Adh(t)(Lp) + λAdh(t)(Lk) + (1− λ2(Adh(t)(A− Lp) =

Adh(t)(λ
2Lp + λLk + (1− λ2)A) = Adh(t)Lλ.

But then

Adh(t)[
1
λ A, Lλ] = [ 1

λ (A + Lp), Lλ] =

dLλ
dt = d

dt (Adh(t)(Lλ) = Adh(t)[Lλ, Lk] + Adh(t)
dLλ
dt

implies
dLλ

dt
= [Lk, Lλ] + [

1
λ

A, Lλ] = [
1
λ

A + Lk, Lλ].

To be consistent with my earlier publications, replace λ by − 1
λ to get

dLλ

dt
= [Mλ, Lλ], (107)

where Mλ = Lk − λA, and Lλ = Lp − λLk + (λ2 − 1)A. Equation (107) agrees with the
isospectral representation (34).
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To get the spectral curve Lλ for the shadow Hamiltonian, use relations Lk = Adh(Lk),
Lp = Adh(Lp + A) and A = −AdhLp from Proposition 13. Then

Lλ = Lp + λLk + (1− λ2)A = AdhLλ, Lλ = λ2Lp + λLk + A.

Then a calculation analogous to the one above gives dLλ
dt = [ 1

λ A + Lk, Lλ]. After the
rescaling λ→ − 1

λ we get a modified Lax pair

dLλ

dt
= [Mλ, Lλ], Mλ = Lk − λA, Lλ = Lp − λLk + λ2 A. (108)

5.2. Rolling Problem on Spaces of Constant Curvature

We will now introduce another optimal problem intertwined with the rolling problem.
It consists of finding a continuously differentiable curve p(t) in M in an interval [0, T], with
its tangent vector ṗ(t) of unit length and its covariant derivative bounded and measurable
in [0, T] that satisfies fixed tangential directions ṗ(0) = v0, v0 ∈ Tp(0)M and ṗ(T) = v1, v1 ∈
Tp(T)M along which the integral 1

2

∫ T
0 κ2(s) ds minimal among all other curves that satisfy

the same boundary conditions. Here κ(t) = || dDp(t)
dt ( ṗ(t))||, where

dDp(t)
dt denotes the

covariant derivative along p(t). The integral 1
2

∫ T
0 κ2(s) ds is known as the elastic energy

of the curve p(t) [24]. Curves p(t) defined on some interval [0, T] are called elastic if for
each t ∈ (0, T) there exits an interval [t0, t1] ⊂ [0, T] over which the elastic energy of p(t) is
minimal relative to the boundary conditions ṗ(t0) and ṗ(t1) [7].

On semi-simple manifolds the curvature problem can be lifted to the unit tangent
bundle of G, and it is this lifted version of the problem that will be of interest for this
paper. In this formulation of the problem the tangent bundle of G is realized as the product
G× g with (g, X) ∈ G× g identified with gX ∈ TgG. Then each tangent vector v ∈ Tp M
is the projection of a manifold V = {(gh, Adh(U)), h ∈ K} in G× g where p = π(g) and
v = dgπ(g)U, U ∈ p. The lifted curvature problem consists of finding a curve (g(t), Λ(t))
in G× Sp, Sp = {Λ ∈ p : 〈Λ, Λ〉 = 1}, a solution of

dg
dt

= g(t)Λ(t),
dΛ
dt

= U(t), 〈U(t), Λ(t)〉 = 0, (109)

that originates in the manifold V0 = {(g0h, Adh−1 Λ0), h ∈ K, Λ0 ∈ p} at t = 0 and
terminates at the manifold V1 = {(g1h, Adh−1 Λ1) : h ∈ K, Λ1 ∈ p} at t = T for which the
energy of transfer 1

2

∫ T
0 ||U(s)||2 ds is minimal. If p(t) = π(g(t)) = τg(t)(o) is the projected

curve, then p(t) is the solution of

ṗ(t) = dg(t)π(g(t))Λ(t) = doτg(t)~Λ(t)(o).

that satisfies || ṗ(t)|| = 1 and the boundary conditions

p(0) = π(g(0)), ṗ(0) = dg(0)π(V0) = dg(0)π(g(0)Λ0),

p(T) = π(g(T)), ṗ(T) = dg(T)π(V1) = dg(T)π(g(T)Λ1).

It is a simple exercise to show that a curve p(t) is elastic if and only if it is the projection of
a solution of the lifted curvature problem on a fixed interval [0, T].

The Hamiltonian system for the curvature problem (Equation (109)) can also be
obtained through the Maximum principle properly modified to account for the con-
straints, as outlined in ([7], Chapter 11). To go into these details would take us away
from the central theme of the paper, so instead, we will just quote the relevant equations
from [7] (pp. 354–355).
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The curvature Hamiltonian H is given by H = 1
2 ||X||2 + 〈Λ, P〉 together with the

associated Hamiltonian equations

dg
dt = gΛ(t), dP

dt = [Λ, Q], dQ
dt = [Λ, P],

dΛ
dt = X(t), dX

dt = −P− (||X||2 − 〈P, Λ〉)Λ,

subject to the transversality condition Q(t) + [Λ(t), X(t)] = 0. The transversality condition
can be incorporated into the above equations to yield an equivalent system

dg
dt = gΛ(t), dΛ

dt = X(t), dX
dt = −P− (||X||2 − 〈P, Λ〉)Λ,

dP
dt = −[Λ, [Λ, X]], dQ

dt = [Λ, P].
(110)

We will now confine our attention to spaces of constant curvature, with a particular
interest on the connections between the rolling problems and the elastic curves reported
in [52]. For those reasons let us return to the “spheres” Sn

ε (ρ) = {x ∈ Rn+1 : (x, x)ε =
ρ2, x0 > 0 when ε = −1} and their rollings on the isometry groups groups SOε, ε =
±1 endowed with the quadratic form 〈A, B〉ε = − 1

2 ερ2Tr(AB). The rolling equations
associated with the rollings of Sn

ε (ρ) on the tangent plane M̂ = Tρe0 Sn
ε (ρ) are given by

dg
dt

= g(t)(u(t) ∧ε e0)),
dp
dt

(t) = ρu(t). (111)

In what follows we will make use of the following isospectral integrals of motion
associated with the preceding rolling problem extracted from the functions f2,λ = Tr(L2

λ)
and f4,λ = Tr(L4

λ)

I0 = 2H = ||A + Lp||2, I1 = ||Lp||2 + ε||Lk||2
I2 = |k|||Lk||2||Lp||2 − ||[Lp, Lk]||2 + ε

2 (k||Lk||4 − ||L2
k||2),

I4 = |k|||Lk||2||A + Lp||2 − ||[A + Lp, Lk]||2.
(112)

These integrals of motion are rescaled variants of the integrals of motion in [52] after
the metric is replaced by 〈A, B〉ρ = ρ〈A, B〉ε (the metric in this paper is a scalar multiple of
the metric used in [52]).

Recall that on spaces of constant Riemannian curvature the curvature k is defined by

[V, [V, X]] = −kX, (113)

for any V and X in p that satisfy ||V|| = 1 and 〈V, X〉 = 0. In particular k is equal to ε
ρ2 on

Sn
ε (ρ). Note that − 1

2 Tr(AB) = k〈A, B〉.

Proposition 14. Rolling geodesics that are the projections of the extremal curves on H = 1
2 and

I4 = 0 project on the elastic curves in Sn
ε (ρ). Conversely each elastic curve in Sn

ε (ρ) is the projection
of such an extremal curve.

Proof. Each elastic curve on Sn
ε (ρ) is the projection of an extremal curve corresponding to

the curvature problem (Equation (110)). On spaces of constant Riemannian curvature

[Λ, [Λ, X]] = −kX. (114)

Therefore, Equation (110) can be written as

dg
dt = gΛ(t), dΛ

dt = X(t), dX
dt = −P− (||X||2 − 〈P, Λ〉)Λ,

dP
dt = kX, dQ

dt = [Λ, P].
(115)
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It follows that k dΛ
dt −

dP
dt = 0, and therefore, kΛ− P = kA for some constant element A

in p. The transversality condition Q + [Λ, X] = 0 can be recast as 0 = [Λ, Q] + [Λ, [Λ, X]] =
[Λ, Q]− kX. These observations can be incorporated in the preceding equations to get

dg
dt = g(t)Λ(t) = g(t) 1

k (kA + P),
dP
dt = kX = [Λ, Q] = 1

k [kA + P, Q],
dQ
dt = [Λ, P] = 1

k [kA + P, P] = 1
k [kA, P].

(116)

If we now identify 1
k P with Lp, and 1

k Q with Lk, then the preceding equations reduce
to the rolling Hamiltonian system. Moreover,

Λ = A +
1
k

P = A + Lp, and Lk =
1
k

Q =
1
k
[A + Lp, X].

Hence ||A + Lp|| = 1 so the first constraint is satisfied. To verify the second constraint
note that Lk =

1
k [A + Lp, X], and therefore

||Lk||2 =
1
k2 ||[A + Lp, X]||2 =

1
k2 〈[[A + Lp, X], A + Lp], X〉 = 1

|k| ||X||
2,

and ||[A + Lp, Lk]||2 = 1
k2 ||[A + Lp, [A + Lp, X]]|2 = ||X||2. Therefore,

I4 = ||Lk||2|k|||A + Lp||2 − ||[A + Lp, Lk]||2 = ||X||2 − ||X||2 = 0.

To prove the converse assume that g(t), p(t), A, Lk(t), Lp(t) is a rolling extremal curve
on I4 = 0. As a geodesic it satisfies H = 1

2 , or ||A + Lp|| = 1. We need to show that
Lk(t) = [A + Lp(t), X(t)] for some X(t) ∈ p such that 〈X(t), A + Lp(t)〉 = 0.

Let

Λ(t) = A + Lp(t), p⊥Λ(t) = {X(t) ∈ p : 〈X(t), Λ(t)〉 = 0},

kΛ(t) = {Q(t) ∈ k : [Q(t), Λ(t)] = 0}, k⊥Λ(t) = {Q ∈ k; : 〈Q, kΛ〉 = 0}.

Then Λ(t) = λ(t) ∧ε e0, (λ(t), e0)ε = 0 for some vector λ(t) ∈ Rn+1. It then follows
that p⊥Λ(t) = {u(t) ∧ε e0 : (u(t), e0)ε = (λ(t), u(t))ε = 0}, and k⊥Λ(t) = {λ(t) ∧ε u(t) :
(u(t), λ(t))ε = (e0, u(t))ε = 0}.

Hence, dim(p⊥Λ(t)) = dim(k⊥Λ). The mapping F(t)X = adΛ(t)(X), X ∈ p⊥Λ(t) satisfies

F(p⊥Λ(t)) ⊆ k⊥Λ(t) because 〈[Λ, X], kΛ〉 = 0 . On spaces of non-zero constant curvature, the

kernel of this mapping is zero because adΛ(t)X = 0 implies that 0 = ad2Λ(t)(X(t)) =
−ερ2X(t). Since p⊥Λ(t) and k⊥Λ(t) have the same dimension, F maps p⊥Λ(t) onto k⊥Λ(t). So

every curve L(t) ∈ k⊥Λ(t) is of the form L(t) = [Λ(t), X(t)] for some X(t) ∈ p perpendicular
to Λ(t).

It remains to show that Lk(t) belongs to k⊥Λ(t) when the rolling geodesic is on I4 = 0,

that is, when ||Lk||2 = 1
k ||[Λ(t), Lk(t)||2. Now assume that Lk(t) = U1(t) + U2(t), U1(t) ∈

kΛ(t) and U2(t) ∈ k⊥Λ(t). It follows from above that U2(t) = [Λ(t), X(t)], and therefore

||U2(t)||2 = ||[Λ(t), X(t)], [Λ(t), X(t)]||2 = |〈ad2Λ(t)(X), X(t)〉| = |k|||X||2

Hence,

1
|k| ||[Λ(t), U1(t) + U2(t)]||2 =

1
|k| ||[Λ(t), U2(t)]||2 = |k|||X||2 = ||Lk||2.

But ||Lk(t)||2 = ||U1||2 + ||U2(t)||2 = ||U1(t)||2 + |k|||X||2, and therefore
U1(t) = 0.
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The following proposition characterizes elastic curves [7].

Proposition 15. Let κ(t) and τ(t) denote the geodesic curvature and the torsion of the projection
curve p(t) associated with an extremal curve of the curvature problem. Then ξ(t) = κ2(t) is the
solution of the following equation

(
dξ

dt
)2 = −ξ3 + 4(H − ε)ξ2 + 4(I1 − H2)ξ − 4I2, (117)

and (κ2(t)τ(t))2 = kI2. All other curvatures in the Serret-Frenet frame along p(t) are zero.

I believe that the proof given below is more to the point than similar proofs given
elsewhere [7,52].

Proof. We leave it to the reader to verify that k||Lk||4− ||L2
k||2 = 0 when Lk =

1
k [A+ Lp, X].

Let P(t) = kLp(t) and let Q(t) = kLk(t). Then

I2k2 = k2(|k|||Lk||2||Lp||2 − ||[Lp, Lk]||2) = ||P||2||X||2|| − ||[Lp, Q]||2 =

||P||2||X||2 − ||[Lp, [A + Lp, X]]||2 = ||P||2||X||2 − 〈A + Lp, Lp〉2||X||2 − 〈P, X〉2.

Also

I1k2 = k2(||Lp||2 + ε||Lk||2) = ||P||2 + εk2||Q||2 = ||P||2 + k||X||2.

Since κ2(t) = ||X||2, dξ
dt = 2〈X, Ẋ〉 = 2〈X, P〉. Therefore,

( dξ
dt )

2 = 4〈P, X〉2 = 4(||P||2||X||2 − 〈A + Lp, P〉2||X||2)− 4k2 I2

= 4((I1k2 − k||X||2)||X||2 − (H − 1
2 ||X||2)2||X||2)− 4k2 I2

= 4(I1k2 − kξ)ξ − 4(H − 1
2 ξ)2ξ − 4k2 I2 = −ξ3 + 4(H − k)ξ2 + (I1k2 − H2)ξ − 4k2 I2.

As to the second part, let T = A + Lp(t). Since ||A + Lp(t)|| = 1, T(t) is a unit vector
that projects onto the tangent vector ṗ(t). Then

dT
dt

= [A + Lp(t), Lk(t)] = [A + Lp(t),−[A + Lp(t),
1
k

X(t)]] = X(t).

Therefore dT
dt = κ(t)N(t) where N(t) = 1

||X(t)||X(t) is a unit vector in p that projects
onto the unit normal n(t) along p(t). Continuing,

dN
dt = 1

||X(t) ||(−P− (||X||2 − 〈Λ, P〉(A + Lp))− 1
||X||2 〈X, Ẋ〉X) =

−||X||(A + Lp) +
1
||X|| (−P + 〈A + Lp, P〉(A + Lp)) +

1
||X||2 〈P, X〉X) =

−κ(t)T(t) + Y(t),

where
Y(t) =

1
||X|| (−P(t) + 〈T(t), P(t)〉T(t)) + 1

||X||2 〈P(t), X(t)〉X.

Since Y(t) is is orthogonal to A + Lp and X, it is in the direction of the binormal vector
B(t). So if we define τ(t) = ||Y(t)|| and B(t) = 1

||Y||Y then dN
dt = κ(t)T(t) + τB(t) and B(t)

projects onto the binormal vector b(t) along p(t). Hence,

||X||2τ2 = ||P||2 − 〈A + Lp, P〉2 − 1
||X||2 〈P, X〉2,

or
|(κ2τ)2 = ||X||4τ2 = ||P||2||X||2 − 〈A + Lp, P〉2 − 〈P, X〉2 = k2 I2,
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Evidently dB
dt is in the linear span of T(t), N(t), B(t), hence the Serret-Frenet frame

along p(t) terminates.

Corollary 3. Elastic curves in Mε = Sn
ε (ρ) are rolled on the elastic curves in the tangent space

M̂ = Te M.

Proof. Since the geodesic curvature is preserved under rolling, the elastic curves in Sn
ε (ρ)

are rolled on the elastic curves in M̂ relative to the Euclidean metric inherited from the
metric on p. So the statement follows from the rolling definition.

This remarkable relation between the elastic curves and the rolling geodesics breaks down
on spaces of non-constant Riemannian curvature, as it becomes evident when one compares
Equation (110) for the curvature problem to the Equation (101) for the rolling problem. It
is interesting to note that the solutions of either of these two Equations (101) and (110) are
not known beyond the spaces of constant curvature. While the curvature equation seems
particularly challenging beyond the spaces of constant curvature, the rolling geodesic equations
remain integrable on all semi-simple spaces and should be “solvable” according to the general
theory of integrable systems.

Apart from the above remarks, there is another spectacular property of elastic curves
that makes them special: elastic curves appear as soliton solutions in the non-linear
Schroedinger equation [53]. More generally it was shown in [53] that the space of pe-
riodic horizontal curves of fixed length L in the isometry group G over a three dimensional
space of constant curvature can be given a structure of an infinite dimensional Poisson
manifold relative to which some famous equations of mathematical physics appear as
Poisson equations associated with geometric invariants of curves on the base space. In par-
ticular, Heisenberg’s magnetic equation and Schroedinger’s non-linear equation appear as
Poisson equation associated with f0(g(s)) = 1

2

∫ L
0 ||

dΛ
ds (s)||

2 ds where Λ(s) = g−1(s) dg
ds (s),

||Λ(s)|| = 1. Since this function can be also expressed as 1
2

∫ L
0 κ2(s) ds where κ(s) is the

geodesic curvature of the projected curve in the underlying symmetric space, elastic curves
appear naturally in this setting (see also [54–57] for related results). This leap to infinite
dimensional Hamiltonians and related hierarchies of commuting Hamiltonians further
illustrates the relevance of Lie algebraic methods in the theory of integrable systems.
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