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Abstract: Controlling an automotive suspension system using an actuator is a complex nonlinear
problem that requires both fast and precise solutions in order to achieve optimal performance. In
this work, the nonlinear model of a quarter-car active suspension is expressed in terms of a flat
output and its derivatives in order to embed the nonlinearities of the system in the flat output.
Afterward, a Model Predictive Controller based on the differential flatness derivation (MPC-DF)
of the quarter-car is proposed in order to achieve optimal control performance in both passenger
comfort and road holding without diminishing the lifespan of the wheel. This formulation results
in a linear optimization problem while maintaining the nonlinear behavior of the active suspension
system. Afterward, the optimization problem is solved by means of Quadratic Programming (QP),
enabling real-time implementation. Simulation results are presented using a realistic road disturbance
to show the effectiveness of the proposed control strategy.

Keywords: differential flatness; model predictive control; automotive suspension; nonlinear control;
predictive control; optimal control

MSC: 93B45

1. Introduction

Intelligent systems are now present in almost every section of a car. Automotive sus-
pensions are not the exception. Active suspension systems are present in cars to attenuate
disturbances present on the road, such as bumps or holes. Active suspension systems
are fundamental for preserving passenger comfort and maintaining safe road-holding
conditions. However, harsh road conditions or sudden road disturbances can cause a
difficult response for the active suspension controller and an optimal control law needs to
be designed which can provide a fast response with proper performance.

Several control strategies have been proposed in the literature in order to handle road
disturbances with an active suspension system. Some of these controllers are PID [1–5],
H2/H∞ controller [6–9], fuzzy logic controllers [10–12], LQR [13–15], and sliding mode
controllers [16–18]. These controllers are often designed using linear active suspension
models and they exhibit a tradeoff between passenger comfort and road holding, depending
on their design specifications.

Another control strategy widely used in industrial applications is Model Predictive
Control (MPC). This kind of controller is based on the prediction of the behavior of the
system along a prediction horizon as a function of the control input. Afterward, an opti-
mization problem is solved online at every iteration to define the optimal set of control
actions considering the desired performance of the system and a set of constraints that can
be both physical or performance-based.
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Several MPC solutions have been proposed for the control of active suspension systems.
In [19] an MPC is designed for a linear quarter-car active suspension system with a preview
of road disturbances. This work examines a linear model of the active suspension which
considers ideal springs and dampers. Further, the MPC is solved offline for every possible
set of states of the system and disturbances and stored in a set of critical regions in order to
allow real-time execution. The results showed an improvement in both comfort and road
holding when compared to a Skyhook controller; however, since it is an offline controller,
a relatively large memory storage space is needed to store all possible solutions for every
set of states and disturbances.

Another MPC work based on a linear representation of an active suspension system is
presented in [20]. In the previously mentioned work, a performance comparison between
an LQR and an MPC control strategy is made. Both controllers are designed based on
a linear ideal active suspension system and exposed to realistic road profiles acting as
disturbances. The results showed that the performance of the MPC is better in terms of
passenger comfort and with lower power requirements than the LQR controller, which
results in less actuator deterioration, extending the actuator life.

Other MPC works for active suspensions based on linear models are presented in [21–24].
These works improved the suspension performance when compared to passive suspensions
and other classic controllers; however, since all are based on linear representations of the
active suspension system, the prediction of the suspension behavior may not be accurate
and the performance on a real suspension may not be as effective as that seen in simulations.

MPC solutions for active suspension systems which consider nonlinearities in the
model have also been proposed; however, Nonlinear MPCs (NMPC), which consider all
nonlinearities of the system in the optimization problem results in a complex optimization
problem, which can take long times to be solved online and therefore, restricts real-time
implementation. Some works related to NMPC in active suspension systems are presented
in [25–28].

To overcome the limitations of NMPC, several MPCs based on the nonlinear model of
active suspension systems have been proposed, embedding the nonlinearities of the system
in a Linear Parameter Varying model. In this kind of approach, the nonlinearities of the
system are embedded in a scheduling parameter in order to make prediction of the system
states linear and a function of both the control action and the future scheduling parameters.
Some research works regarding this control strategy include [29–32].

This strategy allows the MPC to predict the behavior of the system considering its non-
linearities while solving a linear optimization problem, allowing real-time implementations.
However, since the prediction of the future states is a function of the scheduling parameters,
these parameters need to be estimated prior to optimization or bounded at a certain rate of
change in order to predict the behavior of the system and solve the optimization problem.
This often leads to conservative performance due to the uncertainty of the values of the
scheduling parameters along the prediction horizon.

Another strategy to find global linearization and solve nonlinear differential systems
is Differential Flatness [33]. Flatness is a property of differential systems in which a flat
output can be defined and the solution of all the states of the system can be expressed as
a function of the flat output and its derivatives. Therefore, knowing the value of the flat
output and its derivatives, every state of the system can be derived. Using this property,
several flatness-based controllers have been proposed for nonlinear active suspension
systems. In [34] a feedforward controller based on a differential flatness representation of
the active suspension is proposed. The performance of the controller was defined using the
characteristic polynomial of the closed loop differential flatness system and using an L∞
norm that guarantees the flat output and its derivatives to be globally asymptotically stable.
The results proved to be an efficient controller and to mitigate the effects of a realistic road
disturbance. However, performance definition is only based on the minimization of the
values of the flat outputs, rather than on passenger comfort and road holding.
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Some other controllers based on differential flatness have also been proposed for
nonlinear active suspension systems, such as LQR [35,36], PI and PID [37,38], sliding mode
controllers [39–41] and active disturbance rejection [42,43]. All these controllers have proven
to be efficient in mitigating the effects of road disturbances while maintaining both comfort
and road holding, however, actuator effort is not considered while designing the controller,
which may lead to actuator deterioration in order to achieve the desired performance.

In this research work, a Model Predictive Control strategy based on a differential flat-
ness representation of the nonlinear active suspension system of a quarter car is proposed.
This strategy aims to maintain passenger comfort and preserve safe road holding conditions
for the driver against realistic road disturbances such as bumps and potholes. The control
effort imposed on the actuators is also considered in order to build a smooth control action
and avoid sudden force changes. The rest of the work is structured as follow: Section 2
describes the dynamic model of the active suspension system for a quarter car, Section 3
shows the differential flatness representation of the proposed model. Afterwards, Section 4
shows the Model Predictive Control strategy for the differential flatness representation by
building a cost function that can be solved by means of QP. Section 5 presents the results of
the proposed control strategy applied to a quarter-car active suspension system against
realistic road disturbances. Finally, Section 6 concludes the paper.

2. Nonlinear Quarter-Car Active Suspension System

The active suspension system of a quarter-car adds an actuator to the passive elements,
consisting of a sprung mass, an unsprung mass, a spring, and a damping element. Figure 1
presents a model of a quarter-car active suspension system. In this model, the objective of
the actuator is to create a force FA to reduce the movement and accelerate the sprung mass
ms and the unsprung mass mus. The sprung mass represents the chassis body, while the
unsprung mass is the wheel and suspension unit attached to it. The force FA is created by an
ideal actuator, which can produce forces in both directions in order to reduce the movement
of both masses. Reducing the movement of the sprung mass results in more comfort for the
passengers. Also, reducing the distance between the sprung and unsprung masses, which
is called suspension deflection, is important to maintain proper road-holding conditions.

Figure 1. Quarter-Car Active Suspension System.

The mathematical model of the quarter-car active suspension system is described by
the coupled nonlinear differential equations presented in (1)

ms z̈s(t) + fcs(t) + fks(t) = FA(t)

mu z̈u(t) + kt(zu(t)− zr(t))− fks(t)− fcs(t) = −FA(t)
(1)



Mathematics 2023, 11, 1067 4 of 14

where zs denotes the vertical displacement of the sprung mass, zu the displacement of
the unsprung mass, kt is the stiffness of the tire. Both, fks and fcs represent the forces
generated by the spring and damping component, respectively. These forces are shown in
Equations (2) and (3), respectively.

fks(zs(t), zu(t)) = ks(zs(t)− zu(t)) + kns(zs(t)− zu(t))3 (2)

fcs(żs(t), żu(t)) = cs(żs(t)− żu(t)) + cns(żs(t)− żu(t))2sgn(żs(t)− żu(t)) (3)

where sgn denotes the signum function. Both forces exhibit a linear and nonlinear compo-
nent, the spring force depends both linearly and nonlinearly on the suspension deflection
(zs − zu). ks is the linear spring constant while kns the nonlinear. Similarly, the damping
force depends linearly on the difference in velocities of both masses by a linear damping
constant cs and a nonlinear cns.

In order to build a state-space model, the following state variables are defined as
x1 = zs, x2 = żs, x3 = zu, x4 = żu, and u = FA. This results in the following state-
space model

ẋ1(t) = x2(t)

ẋ2(t) = −
1

ms
(Fks(t) + Fcs)(t) +

1
ms

u(t)

ẋ3(t) = x4(t)

ẋ4(t) = −
kt

mu
x3(t) +

1
mu

(Fks(t) + Fcs(t))−
1

mu
u(t) +

kt

mu
zr(t)

(4)

with Fks(t) and Fcs(t) being the state representation of fks(t) and fcs(t), respectively.

3. Differential Flatness Representation

It is noticeable that the state-space model of the active suspension presented in (4) is
completely controllable and observable. However, it exhibits nonlinear behavior, represent-
ing a linear controller design challenge. System (4) can be expressed as a differentially flat
system. The definition of a differentially flat system is the following:

Definition 1 (Rigatos et al. [44]). A system ẋ = f (x, u) with a state vector x ∈ Rn, input vector
u ∈ Rm, where f is a continuously differentiable function or a smooth vector field, is differentially
flat if there exists a vector L ∈ Rm in the form:
L = h(x, u, u̇, ü, . . . , u(r))
Such that:
x = φ(L, L̇, L̈, . . . , L(q))
u = α(L, L̇, L̈, . . . , L(q))

The state-space model (4) is differentially flat, with the following flat output as shown
in [34]

L(t) = msx1(t) + mux3(t) (5)

With this flat output, all the state variables and the control input can be expressed in
terms of the flat output and its derivatives. Obtaining the derivatives up to the fourth order,
the following expressions are obtained.
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L(t) = msx1(t) + mux3(t)

L̇(t) = msx2(t) + mux4(t)

L̈(t) = kt(zr − x3(t))

L(3)(t) = kt(żr − x4(t))

L(4)(t) =
kt

mu
u(t) +

k2
t

mu
x3(t)−

kt

mu
(Fks(t) + Fcs(t))−

k2
t

mu
zr(t) + kt z̈r(t)

(6)

Having the flat output and its derivatives (6), the following parametrization of the
states can be made

x1(t) =
mu

ktms
L̈(t) +

1
ms

L(t)− mu

ms
zr(t)

x2(t) =
mu

ktms
L(3)(t) +

1
ms

L̇(t)− mu

ms
żr(t)

x3(t) = −
1
kt

L̈(t) + zr(t)

x4(t) =
1
kt

L(3)(t) + żr(t)

(7)

Further, renaming system (6) derivatives by the following: L = L1, L̇ = L2, L̈ = L3,
L(3) = L4, and L(4) = v; the following matrix representation can be performed.

L̇1(t)
L̇2(t)
L̇3(t)
L̇4(t)

 =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0




L1(t)
L2(t)
L3(t)
L4(t)

+


0
0
0
1

v(t) (8)

where v represents an auxiliary control action to the flat-system.
With the equations presented in (7) and (8), a linear representation of the nonlinear

active suspension system shown in (4) can be derived by knowing the values of the flat
output L and its derivatives.

The matrix representation of the flat-output and its derivatives presented in (8) can be
expressed in a compact form by defining matrices A and B. Therefore, system (8) can be
written as:

L̇(t) = AL(t) + Bv(t) (9)

for continuous-time and as:

L(k + 1) = AdL(k) + Bdv(k) (10)

for discrete-time representation where Ad and Bd are the discrete representation of matrices
A and B, respectively, using sampling time Ts.

4. Model Predictive Control Based on Differential Flatness

In order to design an MPC controller based on the differential flatness representation
presented in (10), a prediction of the future values of the flat output and its derivatives
must be performed in order to predict the value of the future states as a function of the
control input. The prediction of the future values of the flat output and its derivatives along
the prediction horizon Np is shown in the following matrix equation.

Lp(k) = Φ ∗ L(k) + Ψ ∗V(k) (11)

With:
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Lp(k) =


L(k + 1)
L(k + 2)

...
L(k + Np)



Φ =


Ad
A2

d
...

A
Np
d



Ψ =


Bd 0nx·nu . . . 0nx·nu 0nx·nu

AdBd Bd . . . 0nx·nu 0nx·nu

A2
dBd AdBd . . . 0nx·nu 0nx·nu
...

...
. . .

...
...

A
Np−1
d Bd A

Np−2
d Bd . . . AdBd Bd



V(k) =


v(k)

v(k + 1)
...

v(k + Np − 1)


Having the prediction of the future values of the flat output and its derivatives,

a prediction of the future states can be performed. The states parametrization shown in (7)
can be expressed compactly in a discrete matrix form as the following:

x(k) = S ∗ L(k) + Dr ∗
[

zr(k)
zrd(k)

]
(12)

with zrd(k) = (zr(k)− zr(k− 1))/Ts and:

x(k) =


x1
x2
x3
x4



S =


1

ms
0 mu

ktms
0

0 1
ms

0 mu
ktms

0 0 − 1
kt

0
0 0 0 − 1

kt



Dr =


−mu

ms
0

0 −mu
ms

1 0
0 1


Therefore, a conversion from the flat output and its derivatives can be performed at

every sampling time k.
The objective of the MPC controller is to minimize the deviation of the system states

when encountering a disturbance zr(k) along a prediction horizon Np. In order to achieve
this, an optimization problem is performed in order to minimize a cost function defined as
the following:

J =(σ ∗ (Φ ∗ L(k) + Ψ ∗V))T ∗Q ∗ (σ ∗ (Φ ∗ L(k) + Ψ ∗V))

+ VT ∗ R ∗V
(13)
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With Q and R being weight matrices of dimensions Np · nx × Np · nx and Np · nu ×
Np · nu, respectively, with nx being the number of states and nu the number of controllable
control inputs. The disturbance matrix Dr is omitted, since the future disturbance and its
derivative is known along the prediction horizon; thus, it is assumed to be zero. Matrix σ is
an augmented version of the matrix S for predicting the future values of the states and is
defined as the following:

σ =


S 0nx·nx . . . 0nx·nu

0nx·nu S . . . 0nx·nu
...

...
. . .

...
0nx·nu 0nx·nu . . . S


Therefore, the objective function is defined as the following:

min
V

(k)J

s.t.

vmin ≤ V(k) ≤ vmax

(14)

Therefore, solving the optimization problem (14) will get the optimal set of auxiliary
control actions v(k) along the prediction horizon Np. In order to obtain the optimal control
action u(k) to be inputted into the active suspension system, a transformation using the
expression of L(4) = v(k) from Equation (6) needs to be performed. Therefore, the control
action u(k) can be obtained by v(k) using the following feedforward control law:

u(k) =
mu

kt
v(k)−muzr2d(k)− ktx3(k) + Fcs(k) + Fks(k) + ktzr(k) (15)

With zr2d(k) being the discrete representation of the second derivative of the road
disturbance, obtained by Euler discretization. Therefore, the optimal control action u(k) to
be inputted into the system can be obtained through v(k).

It is noticeable that the optimization problem shown in (14) is a Quadratic Program-
ming (QP) problem. Thus, it can be solved in a short time by using any QP-solver. Solving
the optimization problem as a function of the auxiliary control variable v(k) instead of the
actual control input u(k) allows the differential flatness representation to build a QP prob-
lem instead of a nonlinear optimization problem, which will result in longer optimization
times and restrict real-time implementation.

Figure 2 presents the block diagram of the proposed differential flatness-based MPC
control strategy.

Figure 2. Block diagram of the proposed differential flatness-based Model Predictive Controller.

5. Results and Discussion

In order to observe the advantages and performance of the proposed differential
flatness-based Model Predictive Control strategy described in the previous section, the fol-
lowing simulations were performed. The simulations were made using the quarter-car
nonlinear active suspension model described in Section 2. Table 1 shows the physical
values of the different elements of the suspension model obtained from [45].



Mathematics 2023, 11, 1067 8 of 14

Table 1. Constant Values of the Active Suspension system.

Symbol Value Units

ms 216.75 kg
mu 28.85 kg
ks 21,700 N/m
cs 1200 N·s/m

kns 2170 N/m
cns 120 N·s/m
kt 184,000 N/m

The simulations were performed in the Matlab-Simulink® environment. A discretiza-
tion of the active suspension model was done using a sampling time of Ts = 5 ms. A pre-
diction horizon of Np = 5 was defined after several simulations with different prediction
horizons were performed. The control objective is to steer the states to the origin while
maintaining passenger comfort (chassis acceleration) and keeping safe driving conditions
through proper road holding, measured through the suspension deflection (zs − zu) while
complying with the following constraint:

−3000 ≤ V(k) ≤ 3000

To test the performance of the control strategy, a road profile representing a realistic
road disturbance consisting of two bumps of 10 cm in opposite directions. This road profile
is defined using the following piece-wise function found in [46] and is shown in Figure 3:

Figure 3. Road Profile.

zr(t) =



f1(t) + f (t) t ∈ [3.5, 5)
f2(t) + f (t) t ∈ [5, 6.5)
f3(t) + f (t) t ∈ [8.5, 10)
f4(t) + f (t) t ∈ [10, 11.5)
f (t) else
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with:
f (t) = 0.002 sin (2πt) + 0.002 sin (7.5πt)

f1(t) = −0.0592(t− 3.5)3 + 0.1332(t− 3.5)2

f2(t) = 0.0592(t− 6.5)3 + 0.1332(t− 6.5)2

f3(t) = 0.0592(t− 8.5)3 − 0.1332(t− 8.5)2

f4(t) = −0.0592(t− 11.5)3 − 0.1332(t− 11.5)2

The effect of the previous road disturbance on the quarter-car active suspension system
is shown in Figures 4–7. Results obtained by a differential flatness-based feedforward (DF-
FF) control strategy presented in [34] are also included to compare the performance of the
proposed strategy. Figure 4 presents the vertical displacement of the chassis while Figure 5
presents the acceleration of the chassis. Figure 6 shows the suspension deflection (zs − zu)
while Figure 7 presents the tire deflection (zu − zr). Finally, Figure 8 presents the control
action u(k) used throughout the simulation.

Figure 4. Chassis Displacement (Blue–Road Disturbance, Red–MPC-DF, Yellow–DF-FF).

Figure 5. Chassis Acceleration (Blue–MPC-DF, Red–DF-FF).
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Figure 6. Suspension Deflection (Blue–Road Disturbance, Red–MPC-DF, Yellow–DF-FF).

Figure 7. Tire Deflection (Blue–MPC-DF, Red–DF-FF).

The performance of the proposed flatness-based MPC is better in terms of displacement
of the chassis while maintaining similar values on the acceleration when compared to the
flatness-based feedforward linearization control strategy, thus resulting in better comfort
for the passengers of the vehicle. Suspension deflection also shows similar performance,
while the MPC-DF significantly outperforms on tire deflection, which will result in the
maintainence of proper road-holding conditions, ensuring safety for drivers in case of
sudden changes in steering direction and also reducing tire damage, which enhances
its lifespan.

The performance of both control strategies is shown in Table 2 in terms of the peak
values of the different state values, while Table 3 presents its RMS values. It is noticeable
that the proposed MPC strategy outperforms the flatness-based feedforward linearization
control strategy, in terms of both the peak values and the RMS values it exhibits an im-
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provement of around 60% in the chassis displacement, 7% in suspension deflection, 90% in
tire deflection with a detriment in suspension acceleration of less than 1%.

Figure 8. Input Force (Blue–MPC-DF, Red–DF-FF).

Table 2. Peak Value Performances.

Controller
Chassis

Displacement
(m)

Suspension
Deflection (m)

Chassis
Acceleration

(m/s2)

Tire Deflection
(cm)

MPC-DF 0.0050 0.1054 1.3896 0.0056
DF-FF 0.0126 0.1129 1.3872 0.0549

Table 3. RMS Value Performances.

Controller
Chassis

Displacement
(m)

Suspension
Deflection (m)

Chassis
Acceleration

(m/s2)

Tire Deflection
(cm)

MPC-DF 0.0021 0.0436 0.7935 0.0024
DF-FF 0.0053 0.0471 0.7903 0.0269

The proposed controller also exhibits fast optimization times, allowing real-time execu-
tion. The average optimization time is 1.98 ms on a Matlab-Simulink® R2019-b running on a
Macbook Air with a dual-core Intel® Core i5 1.8 GHz processor and RAM of 8 GB 1600 MHz
DDR3. These execution times are suitable for the proposed sampling time of 5 ms.

6. Conclusions

In this research work, a novel differential flatness-based model predictive control
strategy for a nonlinear quarter-car active suspension system was presented. This controller
is based on a flatness representation of the nonlinear active suspension model in order
to provide fast optimization times to allow real-time implementations. The nonlineari-
ties of the active suspension system were embedded in a linear representation of the flat
output of the system and its derivatives to build a cost function that can be solved by
QP. The results proved that the proposed controller is better in terms of road holding,
reducing suspension deflection by 7% and tire deflection by 90% when compared to a
flatness-based feedforward controller. Passenger comfort is also improved by a reduction in
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the chassis displacement by 60% while maintaining similar values for chassis acceleration
when compared to the flatness-based feedforward controller. The execution times averaged
1.98 ms per iteration, which allows real-time implementation while sampling every 5 ms.
Future research on stability and robustness conditions for the proposed algorithm is con-
sidered as well as a generalization of the strategy for every nonlinear system with flatness
properties. Experimental tests on real active suspension test benches are also considered as
future work.
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12. Yatak, M.Ö.; Şahin, F. Ride comfort-road holding trade-off improvement of full vehicle active suspension system by interval
type-2 fuzzy control. Eng. Sci. Technol. Int. J. 2021, 24, 259–270. [CrossRef]

13. Anh, N.T. Control an active suspension system by using PID and LQR controller. Int. J. Mech. Prod. Eng. Res. Dev. 2021, 10,
7003–7012.

http://doi.org/10.3390/app7101055
http://dx.doi.org/10.1088/1742-6596/1748/3/032028
http://dx.doi.org/10.1007/s40032-022-00821-z
http://dx.doi.org/10.1109/ACCESS.2022.3171580
http://dx.doi.org/10.1049/iet-cta.2017.0970
http://dx.doi.org/10.3311/PPtr.20076
http://dx.doi.org/10.1177/09596518221124001
http://dx.doi.org/10.3390/vibration1010003
http://dx.doi.org/10.4273/ijvss.11.5.13
http://dx.doi.org/10.1016/j.jestch.2020.10.006


Mathematics 2023, 11, 1067 13 of 14

14. Yu, W.; Li, J.; Yuan, J.; Ji, X. LQR controller design of active suspension based on genetic algorithm. In Proceedings of the 2021
IEEE 5th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), Xi’an, China, 15 October
2021; Volume 5, pp. 1056–1060.

15. Thi Thu Huong, T.; Tuan Anh, N.; Thang Binh, H.; Duc Ngoc, N.; Ngoc Duyen, D. Optimizing the Parameter of the LQR
Controller for Active Suspension System. In Proceedings of the The AUN/SEED-Net Joint Regional Conference in Transportation,
Energy, and Mechanical Manufacturing Engineering, RCTEMME 2021, Singapore, 1 June 2022.

16. Taghavifar, H.; Mardani, A.; Hu, C.; Qin, Y. Adaptive robust nonlinear active suspension control using an observer-based
modified sliding mode interval type-2 fuzzy neural network. IEEE Trans. Intell. Veh. 2019, 5, 53–62. [CrossRef]

17. Aljarbouh, A.; Fayaz, M. Hybrid Modelling and Sliding Mode Control of Semi-Active Suspension Systems for Both Ride Comfort
and Road-Holding. Symmetry 2020, 12, 1286. [CrossRef]

18. Aljarbouh, A.; Fayaz, M.; Qureshi, M.S.; Boujoudar, Y. Hybrid sliding mode control of full-car semi-active suspension systems.
Symmetry 2021, 13, 2442. [CrossRef]

19. Theunissen, J.; Sorniotti, A.; Gruber, P.; Fallah, S.; Ricco, M.; Kvasnica, M.; Dhaens, M. Regionless explicit model predictive control
of active suspension systems with preview. IEEE Trans. Ind. Electron. 2019, 67, 4877–4888. [CrossRef]

20. Narayan, J.; Gorji, S.A.; Ektesabi, M.M. Power reduction for an active suspension system in a quarter car model using MPC.
In Proceedings of the IEEE International Conference on Energy Internet (ICEI), Sydney, Australia, 24–28 August 2020; pp. 140–146.

21. Piñón, A.; Favela-Contreras, A.; Félix-Herrán, L.C.; Beltran-Carbajal, F.; Lozoya, C. An ARX Model-Based Predictive Control of a
Semi-Active Vehicle Suspension to Improve Passenger Comfort and Road-Holding. Actuators 2021, 10, 47. [CrossRef]

22. Yao, J.; Wang, M.; Li, Z.; Jia, Y. Research on model predictive control for automobile active tilt based on active suspension. Energies
2021, 14, 671. [CrossRef]

23. Enders, E.; Burkhard, G.; Munzinger, N. Analysis of the Influence of Suspension Actuator Limitations on Ride Comfort in
Passenger Cars Using Model Predictive Control. Actuators 2020, 9, 77. [CrossRef]

24. Göhrle, C.; Schindler, A.; Wagner, A.; Sawodny, O. Model predictive control of semi-active and active suspension systems with
available road preview. In Proceedings of the 2013 European Control Conference (ECC), Zurich, Switzerland, 17–19 July 2013;
pp. 1499–1504.

25. Rathai, K.M.M.; Alamir, M.; Sename, O.; Tang, R. A parameterized NMPC scheme for embedded control of semi-active suspension
system. IFAC-PapersOnLine 2018, 51, 301–306. [CrossRef]

26. Dalboni, M.; Tavernini, D.; Montanaro, U.; Soldati, A.; Concari, C.; Dhaens, M.; Sorniotti, A. Nonlinear model predictive control
for integrated energy-efficient torque-vectoring and anti-roll moment distribution. IEEE/ASME Trans. Mechatronics 2021, 26,
1212–1224. [CrossRef]

27. Pedro, J.O.; Nhlapo, S.M.; Mpanza, L.J. Model predictive control of half-car active suspension systems using particle swarm
optimisation. IFAC-PapersOnLine 2020, 53, 14438–14443. [CrossRef]

28. Wang, D.; Zhao, D.; Gong, M.; Yang, B. Research on robust model predictive control for electro-hydraulic servo active suspension
systems. IEEE Access 2017, 6, 3231–3240. [CrossRef]

29. Rodriguez-Guevara, D.; Favela-Contreras, A.; Beltran-Carbajal, F.; Sotelo, D.; Sotelo, C. Active Suspension Control Using an
MPC-LQR-LPV Controller with Attraction Sets and Quadratic Stability Conditions. Mathematics 2021, 9, 2533. [CrossRef]

30. Rodriguez-Guevara, D.; Favela-Contreras, A.; Beltran-Carbajal, F.; Sotelo, C.; Sotelo, D. An MPC-LQR-LPV Controller with
Quadratic Stability Conditions for a Nonlinear Half-Car Active Suspension System with Electro-Hydraulic Actuators. Machines
2022, 10, 137. [CrossRef]

31. Morato, M.M.; Normey-Rico, J.E.; Sename, O. Novel qLPV MPC design with least-squares scheduling prediction. IFAC-
PapersOnLine 2019, 52, 158–163. [CrossRef]

32. Morato, M.M.; Normey-Rico, J.E.; Sename, O. Short-sighted robust lpv model predictive control: Application to semi-active
suspension systems. In Proceedings of the 2021 European Control Conference (ECC), Delft, The Netherlands, 29 June 2021;
pp. 1525–1530.

33. Fliess, M.; Lévine, J.; Martin, P.; Rouchon, P. Flatness and defect of non-linear systems: Introductory theory and examples. Int. J.
Control 1995, 61, 1327–1361. [CrossRef]

34. Beltran-Carbajal, F.; Chavez-Conde, E.; Favela-Contreras, A.; Chavez-Bracamontes, R. Active nonlinear vehicle suspension control
based on real-time estimation of perturbation signals. In Proceedings of the 2011 IEEE International Conference on Industrial
Technology, Auburn, AL, USA, 14 March 2011; pp. 437–442.

35. Diwakar, A.D.; Manivannan, P.V. Differential flatness based LQR control of a magnetorheological damper in a quarter-car
semi-active suspension system. Int. J. Mech. Eng. Robot Res. 2020, 9. [CrossRef]

36. Darus, R.B. Modeling and Control of Active Suspension for a Full Car Model; Faculty of Electrical Engineering, University of Technology
Malaysia: Skudai, Malaysia, 2008.

37. Chávez Conde, E.; Beltrán Carbaja, F.; Valderrábano González, A.; Favela Contreras, A. Active vibration control of vehicle
suspension systems using sliding modes, differential flatness and generalized proportional-integral control. Rev. Fac. Ing. Univ.
Antioq. 2011, 61, 104–113.
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