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Abstract: We present an algorithm for numerical solution of the equations of magnetohydrodynamics
describing the convective dynamo in a plane horizontal layer rotating about an arbitrary axis under
geophysically sound boundary conditions. While in many respects we pursue the general approach
that was followed by other authors, our main focus is on the accuracy of simulations, especially in
the small scales. We employ the Galerkin method. We use products of linear combinations (each
involving two to five terms) of Chebyshev polynomials in the vertical Cartesian space variable and
Fourier harmonics in the horizontal variables for space discretisation of the toroidal and poloidal
potentials of the flow (satisfying the no-slip conditions on the horizontal boundaries) and magnetic
field (for which the boundary conditions mimick the presence of a dielectric over the fluid layer
and an electrically conducting bottom boundary), and of the deviation of temperature from the
steady-state linear profile. For the chosen coefficients in the linear combinations, the products satisfy
the respective boundary conditions and constitute non-orthogonal bases in the weighted Lebesgue
space. Determining coefficients in the expansion of a given function in such a basis (for instance, for
computing the time derivatives of these coefficients) requires solving linear systems of equations for
band matrices. Several algorithms for determining the coefficients, which are exploiting algebraically
precise relations, have been developed, and their efficiency and accuracy have been numerically
investigated for exponentially decaying solutions (encountered when simulating convective regimes
which are spatially resolved sufficiently well). For the boundary conditions satisfied by the toroidal
component of the flow, our algorithm outperforms the shuttle method, but the latter proves superior
when solving the problem for the conditions characterising the poloidal component. While the
conditions for the magnetic field on the horizontal boundaries are quite specific, our algorithms for
the no-slip boundary conditions are general-purpose and can be applied for treating other boundary-
value problems in which the zero value must be admitted on the boundary.

Keywords: thermal convection; convective magnetic dynamo; Galerkin method; Chebyshev polynomials;
shuttle algorithm; numerical accuracy

MSC: 65M60; 76D05; 76W05; 76R10; 76M22

1. Introduction

We present an algorithm for numerical study of the fully nonlinear processes of
magnetic field generation by thermal convection in a plane layer of electrically conducting
fluid rotating about an inclined axis. This is required, for instance, for investigating magnetic
reversals and their precursors, which is at present a hot topic in geophysics.

The dynamo model must comply with the intention to apply it for the purposes of this
study. The equations describing the geodynamo have two essential properties: they have a
quadratic nonlinearity and they are symmetric with respect to reversing the orientation of
the magnetic field [1]. Many other specific features of the natural Earth’s dynamo are of a
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lesser importance and can be disregarded in order to reduce the numerical complexity of
computations. For instance, we neglect the processes of sedimentation of the heavy fraction,
crystallisation and other phase transitions, as well as chemical reactions in the melt, the
complex character of the rheology of substance at high pressures and temperatures, and
the small-scale geometric irregularity of the core–mantle boundary.

The choice of the geometry of the fluid volume is again a compromise between
the numerical efficiency of the algorithm and its subsequent application for solving the
geophysical problems. We consider a rectangular fluid cell that is supposed to represent
a small segment of the melted outer Earth’s core, having the form of a spherical layer.
Computing in a fluid parallelepiped is numerically more efficient than in a part of a
spherical layer, and for a relatively small cell we expect the rudimentary sphericity not
to affect the flow and dynamo behaviour significantly. Since the cell can reside at an
arbitrary latitude, the axis of rotation can have an arbitrary direction. The assumed boundary
conditions emulate the conditions under which the Earth’s dynamo operates: there is a largely
dielectric mantle over the outer core and a predominantly iron solid inner core, which is
a good electric conductor. Consequently, we assume that there is a dielectric over the
upper horizontal boundary of the fluid layer, the lower horizontal boundary is electrically
conducting, and the flow satisfies the no-slip boundary conditions (see the illustrative Figure 1
reflecting the physical process with a coordinate system). All the unknown fields (the flow
velocity, magnetic field and temperature) are supposed to be periodic in the horizontal
Cartesian variables. While convective dynamos with rotation about the vertical axis are
studied in many papers (see, e.g., [2]), rotation about an inclined axis has not attracted the
attention of many investigators, Refs. [3–5] being notable exceptions.
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Figure 1. An illustrative sketch of the physical process: there is a dielectric over the upper horizontal
boundary (blue) of the fluid layer (white), the lower horizontal boundary (gray) is electrically
conducting, and the flow satisfies the no-slip boundary conditions at the boundaries. The fluid layer
is rotating about the axis, whose arbitrary direction is shown by the unit vector q (magenta), the
Cartesian coordinate system (orange colour, respectively) is co-rotating with the fluid.

We know from the analysis of the equations of magnetohydrodynamics [6] that the
behaviour of the small-scale (spatial scales are meant here) component of the solution is
consequential: it can provoke the hypothetical break-ups of the spatial smoothness and
analyticity of solutions, and it is also likely to carry the signature of the developing magnetic
reversals. We therefore pay special attention to the accuracy of the numerical solution
throughout the entire spatial spectrum.

We apply a spatial discretisation for the partial differential equations similar to that
employed in [3,4,7], in particular, Chebyshev polynomials are employed ibid. to approxi-
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mate the behaviour of the unknown fields in the vertical (i.e., perpendicular to the layer)
direction. Chebyshev polynomials are widely used in numerical analysis [8,9]. Methods
relying on them for computing solenoidal flows satisfying the no-slip boundary conditions
were developed, e.g., for a horizontal layer of fluids in [9–12] and in the cylindrical geome-
try in [13]. Among recent applications, let us mention the use of Chebyshev polynomials
in [14] for expansion of marginally stable modes in the quasilinear reduction of equations of
the Rayleigh–Bénard convection and in [15] for a numerical study of the complex dynamics
in convection in an inclined fluid layer, where a trajectory in a phase space follows a se-
quence of connections between unstable invariant states before advancing towards a stable
attracting state. Employing Chebyshev polynomials for discretising the fields in the vertical
(or radial) direction can be advantageous for two reasons. First, the standard pseudospec-
tral methods can then be employed together with the fast Chebyshev transform, which is
essentially the usual fast cosine transform. Second, zeroes of these polynomials increasingly
accumulate near the ends of the interval [−1, 1], this suggesting that they are well-suited
for representing functions that feature a complex behaviour near the end points, e.g., when
boundary layers emerge in convection for low Ekman numbers. This clustering of roots of
Chebyshev polynomials proved useful for exploring the steady two-dimensional amagnetic
convection in the plane layer at high Rayleigh numbers by Chebyshev collocations [16,17]
and for tackling the magnetic dynamo problem [18] for a uniform shear flow between a
solid plate sliding over another one, both having anisotropic electrical conductivity. (It can
be exploited directly: for instance, finite differences in the radial direction were used in [19]
with the nodes located at the roots of Chebyshev polynomials.)

When applying the Galerkin method, one faces the dilemma: either the orthogonality
of the basis must be sacrificed (if the numerical complexity of the algorithm must be kept
minimal) or the basic functions do not satisfy the boundary conditions. For instance, the
so-called tau method [12] (used, e.g., in [20] to perform the linear stability analysis of
convection in an infinite rotating tilted cavity), which is a particular case of the Petrov–
Galerkin method, follows the latter path and can suffer from numerical instability [21].
We apply the Galerkin method because it guarantees the minimisation of the discrepancy
due to the spatial discretisation at each time step.

Let us note that for the Navier–Stokes equation, the issue of the boundary conditions
is intricate. For instance, the flow being solenoidal, the no-slip boundary condition (three
scalar conditions) on a horizontal boundary implies the fourth independent scalar condition
for the normal derivative of the vertical component of the flow, ∂v3/∂x3 = 0, on this
boundary. This additional condition serves, in fact, as an implicit boundary condition for
the pressure; while it is difficult to elicit the latter in the explicit form, the strategy of solving
the Poisson equation for the pressure when solving the hydrodynamic boundary value
problems was explored by many authors (see [22] and references therein).

Our approach to the treatment of the boundary conditions is original. We split the
flow and magnetic field into the toroidal, poloidal and mean-field components, identify
the (distinct) conditions on the horizontal boundaries for the potentials of these compo-
nents, and choose the coefficients of linear combinations of Chebyshev polynomials in the
vertical variable (each involving two to five terms) that satisfy these conditions. The sought
vector potentials are expanded into finite series of products of these linear combinations
and Fourier harmonics in the horizontal variables. Expansion in the basic functions that
satisfy the required boundary conditions is a hallmark of the Galerkin method. The linear
combinations constitute a non-orthogonal basis in the functional weighted Lebesgue space
(the weight required for the orthogonality of the Chebyshev polynomials is assumed). As a
result, for determining the time derivatives of the coefficients in the expansion of the fields,
we need to solve linear systems of equations for band matrices. The matrices emerging
when tackling the problems for toroidal parts of the flow and magnetic field, as well as for
the poloidal part of the flow, have special properties: for instance, the sum of the entries
is zero in all rows except for the upper two and the lower two. We propose specialised
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(sub)algorithms for determining the coefficients in the expansion of a given function in the
basis of these polynomials, where such properties of the problem are taken into account.

These algorithms are based on exact formulae and are therefore algebraically equiva-
lent, but in applications with a finite-precision arithmetic the equivalence is lost. We have
analysed the efficiency and accuracy of the proposed algorithms, and identified the algo-
rithms yielding the most (in the statistical sense) accurate solutions that have an exponen-
tially decaying energy spectrum, as happens when a sufficiently high spatial resolution
is used. The algorithms are applicable for a wide range of linear problems arising when
Chebyshev polynomials are used for the spatial discretisation of a solution to a boundary-
value problem for a partial differential equation. Notably, the choice of algorithms is very
sensitive to the problem to be solved: we find that while our original algorithm is optimal
for no-slip boundaries, a similar algorithm is inferior to the shuttle method when applied
to an analogous problem involving a five-diagonal band matrix that arises for somewhat
different boundary conditions.

To offset the influence of the stiffness of the Fourier–Galerkin system of equations,
which we integrate numerically, we apply the third-order Runge–Kutta scheme with
exponential differencing [23] for integration in time, which has proved useful in similar
computations [24–26].

The statement of the problem is presented in the next section. Discretisation of the
flow and magnetic field, and algorithms for computing their time derivatives are discussed
in Sections 3 and 4, respectively. The algorithms considered in Section 3.1 for the toroidal
component of the flow are general-purpose; they are applicable for all functions vanishing
at the boundary and are also employed, in particular, for the deviation of the temperature
from the linear profile. Our concluding remarks are summarised in the last section.

2. The Governing Equations

Equations governing the geodynamo in the Earth’s outer core were discussed in detail
in [27]. We focus on the nonlinear magnetic dynamo powered by the Rayleigh–Bénard
convection in a plane layer of rotating fluid heated from below, the axis of rotation being
inclined at an arbitrary constant angle. The Boussinesq approximation is considered: the
buoyancy is assumed to depend linearly on temperature, density variation is neglected
and the flow is deemed incompressible. Electrically insulating horizontal boundaries of
the layer are supposed to be held at constant temperatures; the flow satisfies the no-slip
conditions at the boundary and periodicity in horizontal directions is assumed. In contrast
with [3,4,27], we neglect neither the time derivative of the flow, nor the advective term in
the momentum equation.

In the Cartesian coordinate system, co-rotating with the fluid layer, the governing
equations for the nondimensionalised quantities are as follows: the Navier–Stokes equation

∂v
∂t

= v× (∇× v) + P∇2v−∇p + σθe3 + τv× q− b× (∇× b) (1a)

(the last three terms in the r.h.s. of (1a) express the Archimedes buoyancy, Coriolis and
Lorentz forces, respectively), the magnetic induction equation

∂b
∂t

= ∇× (v× b) + η∇2b (1b)

and the heat transfer equation

∂θ

∂t
= −v · (∇θ − e3) +∇2θ. (1c)

The flow and magnetic field are solenoidal:

∇ · v = ∇ · b = 0. (1d)
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Here v denotes the flow velocity, t time, p the modified pressure, b the magnetic field, θ
the difference between the temperature of fluid T and the linear temperature profile (if the
horizontal boundaries x3 = −1 and x3 = 1 are kept at constant temperatures T−1 and T1,
respectively, then θ = T − (T1 + T−1 + (T1 − T−1)x3)/2), a unit vector q is aligned with
the axis of rotation of the fluid layer, and en are the unit vectors of the Cartesian coordinate
system x = (x1, x2, x3), e3 being vertical. Thermal convection is often characterised by the
Rayleigh number, Ra, reflecting the magnitude of the buoyancy force; the Prandtl number,
P, the ratio of kinematic viscosity to thermal diffusivity; the magnetic Prandtl number,
Pm, the ratio of kinematic viscosity to magnetic diffusivity; and the Taylor number, Ta,
measuring the speed of rotation. We have denoted σ = PRa, τ/P =

√
Ta is proportional to

the angular speed of rotation of the fluid, and η = P/Pm.
We assume no-slip conditions for the flow velocity at the electrically insulating upper

and perfectly electrically conducting lower horizontal boundaries. The magnetic field in
the insulator over the upper boundary is a gradient of a harmonic function and the field is
continuous at the boundary:

v
∣∣∣
x3=±1

= 0, (2a)

b = ∇h, ∇2h = 0 for x3 ≥ 1, h→ 0 for x3 → ∞, (2b)

∂b1

∂x3

∣∣∣∣
x3=−1

=
∂b2

∂x3

∣∣∣∣
x3=−1

= b3
∣∣∣∣
x3=−1

= 0, (2c)

and by construction
θ
∣∣∣
x3=±1

= 0. (2d)

The fields have periods Li = 2π/αi in the horizontal directions: for all integer n1
and n2,

v(x) = v(x1 + n1L1, x2 + n2L2, x3),

b(x) = b(x1 + n1L1, x2 + n2L2, x3), (3)

θ(x) = θ(x1 + n1L1, x2 + n2L2, x3).

The equations are solved numerically by the pseudospectral methods [28]. However,
care must be taken in satisfying the boundary conditions (2).

3. Discretisation of the Flow

Let us consider the implications of the boundary conditions (2a) for the flow. Solenoidal-
ity of v(x,t) (1d) and the no-slip conditions for the horizontal components of the flow imply
that in addition to (2a), the condition

∂v3

∂x3

∣∣∣∣
x3=±1

= 0 (4)

holds (which is a boundary condition for the pressure in an implicit form).
The flow can be decomposed into the sum of the toroidal, Tv(x, t), poloidal, Pv(x, t),

and mean-field, Mv(x, t), (understood here in the sense of averaging over the horizontal
variables x1 and x2) components (see, e.g., [29]):

v(x, t) =Tv(x, t) + Pv(x, t) + Mv(x3, t), (5a)

Tv(x, t) =∇× (Tv(x, t)e3), (5b)

Pv(x, t) =∇×∇× (Pv(x, t)e3), (5c)

Mv(x3, t) =
〈
(v1(x, t), v2(x, t), 0)

〉
h
, (5d)

where
〈f〉h = (L1L2)

−1
∫ L2

0

∫ L1

0
f(x)dx1dx2.
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In view of the boundary conditions (2a) for the flow, the potentials Tv and Pv, and the
mean-field component satisfy the boundary conditions

Tv
∣∣∣
x3=±1

=0, (6a)

Pv
∣∣∣
x3=±1

=
∂Pv

∂x3

∣∣∣
x3=±1

=0, (6b)

Mv
∣∣∣
x3=±1

=0. (6c)

Adding an arbitrary function of x3 (and time) to the toroidal or poloidal potential does not
alter the respective components of a vector field; thus, we assume

〈Tv〉h = 〈Pv〉h = 0.

The equation for the toroidal potential is obtained by taking the vertical component of
the curl of (1a):

∂∇2
hTv

∂t
=P∇2∇2

hTv + Ftv, (7)

Ftv = − τ(q · ∇)v3 − e3 · (∇× (v× (∇× v)− b× (∇× b))),

where∇2
h = ∂2/∂x2

1 + ∂2/∂x2
2 is the Laplacian in horizontal variables. The inverse operator

(∇2
h)
−1 acts in the subspace of vector fields, whose mean 〈·〉h vanishes. Equation (7) is

equivalent to the parabolic equation

∂Tv

∂t
= P∇2Tv + (∇2

h)
−1Ftv (8)

(the mean over horizontal variables of the vertical component of the curl of a field periodic
in horizontal directions is zero; therefore, applying the inverse of ∇2

h is legitimate here).
Following the Galerkin method, we expand the potentials in series of functions satis-

fying the respective boundary conditions and consider ordinary differential equations in
time for the coefficients of the expansions that express the orthogonality of the resultant
discrepancies in the partial differential equations to certain test functions. The full set of
functions used for expansion of approximate solutions should constitute a basis in the
suitable functional space, as well as the full set of the test functions. The number of the
test functions employed for the orthogonal projection when constructing an approximate
solution should be equal to the dimension of the functional subspace, where the approxi-
mate solution is sought. The traditional Galerkin method, in which the same functional
subspaces are employed for approximating the solution and for the orthogonal projection,
is usually advantageous (e.g., one can derive energy estimates useful for controlling the
convergence of the approximate solutions to the precise ones on increasing the dimension
of the subspace). (In the Petrov–Galerkin method, distinct functional subspaces are used
for expanding solutions and for the projection [10].) By contrast, it was proposed in [7]
to use the collocation method (this can be regarded as “orthogonalisation” to δ-functions,
see [28]) to expand solutions in Chebyshev polynomials and to employ two higher-degree
Chebyshev polynomials to satisfy the boundary conditions. This procedure is reminiscent
of the tau method due to Lancoz [30] (see also [31]). However, then the coefficients of the
correcting Chebyshev polynomials depend on the coefficients of the low-degree Chebyshev
polynomials in such a way that, in principle, the former coefficients can remain large instead
of tending to zero on increasing the number of the polynomials used for approximation.

We follow the traditional Galerkin method and use the polynomials (10) for both
expanding and projecting. Expansion in the vertical coordinate, x3, is not straightforward.
In view of (6a), it may seem natural to expand the toroidal potential in the sine Fourier
series. However, this basis is not particularly suitable for resolving the boundary layers
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emerging at high Ekman numbers. Moreover, every zero of the sine is also a zero of its
second derivative; if solutions to the system of equations (1) do not feature this property
at the horizontal boundaries (and it is unlikely that they do), then sine series are guaran-
teed to converge poorly. We therefore resort to the next simplest basis in the Lebesgue
space, consisting of Chebyshev polynomials, Tn(x3) = cos(n arccos x3) for n ≥ 0 and
−1 ≤ x3 ≤ 1 [32]. They are orthogonal on this interval with the weight (1− x2

3)
−1/2 and

we always carry out orthogonalisation in x3 with this weight function. The relations

Tn(x3) = xn
3 ,

dTn

dx3
(x3) = xn+1

3 n2,
d2Tn

dx2
3
(x3) = xn

3 (n
4 − n2)/3 for x3 = ±1 (9)

(see, e.g., [32]) are useful in treating the boundary conditions. They imply that a linear
combination of Chebyshev polynomials vanishes at the end points as long as the sum of the
coefficients of the even-degree polynomials vanishes, as well as the sum of the coefficients
of the odd-degree polynomials. We expand functions satisfying the conditions (6a) in the
series of the polynomials

T?
n (x3) = Tn+2(x3)− Tn(x3), n ≥ 0, (10)

as recommended in [33] because of the relative simplicity of the matrices resulting from
discretisation of the second- and fourth-order differential operators.

The Gram–Schmidt process yields orthogonal polynomials

T⊥n (x3) = Tn+2(x3)− Tn(x3) + βnT⊥n−2(x3), n ≥ 0, (11a)

β0 = β1 = 0, βn = π/(4‖T⊥n−2‖2), n ≥ 2, (11b)

‖T⊥0 ‖2 = 3π/4, ‖T⊥1 ‖2 = π/2, ‖T⊥n ‖2 = π/2− (π/(4‖T⊥n−2‖))2, n ≥ 2. (11c)

However, when the polynomials (10) are used, computation of the time derivatives of their
coefficients requires solving a system of linear equations for a band matrix; as a result, this
approach is computationally more efficient than the use of the orthogonal polynomials T⊥n .

3.1. Algorithms for Determining the Coefficients of a Linear Combination of T?
n (x3)

Consequently, we approximate the toroidal potential by finite series

Tv(x, t) = ∑
|n1|≤N, |n2|≤N, 0≤n≤N−3

tv
n(t) ei(α1n1x1+α2n2x2)T?

n (x3),

where n = (n1, n2, n). The equation for the mean-field component of the flow is derived by
averaging over horizontal variables of the horizontal component of (1a). This component is
also expanded in polynomials (10),

Mv(x3, t) = ∑
0≤n≤N−3

Mv
n(t)T

?
n (x3),

and equations for the coefficients in the expansion are also obtained by orthogonal projec-
tion on these polynomials. In view of the boundary conditions (2d), following the same
approach for discretisation of temperature we expand

θ(x, t) = ∑
|n1|≤N, |n2|≤N, 0≤n≤N−3

θn(t) ei(α1n1x1+α2n2x2)T?
n (x3).

The vector d of the time derivatives of the coefficients of the expansion is a solution
to the linear system of equations of the form Gd = r. Here r is the vector (of length
M = N − 2) of the dot products of the r.h.s. of (8) with T?

m, and G is the Gram matrix for
the polynomials T?

m, both (G and r) divided by L1L2π/2. The matrix has the following
non-zero entries: G1,1 = 3, Gk,k = 2 for all k ≥ 2 on the diagonal, and Gk,k+2 = Gk+2,k = −1
on two subdiagonals. The linear system of equations can be solved by seven algorithms.
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Algorithms 1 and 1′ are the standard shuttle (also known as Thomas) algorithms for a
three-diagonal matrix [34] applied in the direct and reverse direction.

Algorithms 2 and 2′. We observe that all the equations except for the first two and
the last two involve the coefficients −1, 2,−1 that are also encountered in the simplest
finite differences approximation of the second derivative. Consequently, the l.h.s. of these
equations do not change when the solution dn is altered by any linear function of n, i.e.,
the “intermediate” equations are invariant under the transformation dn 7→ dn + β1n + β2,
where β1 and β2 are arbitrary constant numbers. Following this observation, we set, in the
spirit of the shuttle algorithm,

b1 = b2 = 0, b3 = −r1, b4 = −r2, bn = 2bn−2 − bn−4 − rn−2 for 5 ≤ n ≤ N

and find (N is assumed to be even)

d1 = −bN−1/(N − 1), dn = nd1 + bn for odd n, 3 ≤ n ≤ M− 1;

d2 = −bN/(N/2), dn = (n/2)d2 + bn for even n, 4 ≤ n ≤ M.

This is algorithm 2. While here all unknown coefficients dn are expressed in terms of d1 and
d2, in algorithm 2′ dM−1 and dM play the role of such “basic” variables: setting

b′M =−rM, b′M−1=−rM−1, b′M−2=−2rM − rM−2, b′M−3=−2rM−1 − rM−3, (12a)

b′n = 2b′n+2 − b′n+4 − rn for 1 ≤ n ≤ M− 4, (12b)

we obtain

dM−1 = −
b′1 + b′3
N − 1

, dn =
N − n− 1

2
dM−1 + b′n+2 for odd n, 1 ≤ n ≤ M− 3, (12c)

dM = − b′2
N/2

, dn =
N − n

2
dM + b′n+2 for even n, 2 ≤ n ≤ M− 2. (12d)

Both versions of this algorithm have the numerical complexity O(N); by contrast, using
the orthogonal polynomials T⊥n results in the O(N2) complexity of computations, which is
prohibitively large. Given that the Chebyshev series coefficients rn tend to zero for large n,
the recurrence relation (12b), where computations of b′n proceed from smaller in magnitude
values to larger ones and all dn involve products of large numbers N − n with small factors
dM−1 and dM, is less affected by round-off errors. Thus, algorithm 2′ (12) apparently suits
our purposes better than algorithm 2.

The analogy between the simplest finite-difference approximation of second-order deriva-
tives of a fictitious function in the l.h.s. of the system at hand is more closely exploited in
derivation of algorithms 3 and 3′. This gives an opportunity to find explicit solutions for dk.

In terms of the variables zk = dk+2− dk for 1 ≤ k ≤ M− 2 (“the first-order derivatives”
approximated by the Euler scheme for the unit mesh size), the system of equations takes
the form

2d1 − z1 = r1, (13a)

d2 − z2 = r2, (13b)
...

zk−2 − zk = rk for 3 ≤ k ≤ M− 2, (13c)
...

dM−1 + zM−3 = rM−1, (13d)

dM + zM−2 = rM. (13e)

We will now “twice integrate” the fictitious function. The system (13) splits into separate
systems for even-index and odd-index variables. In the odd case, we find sequentially from
(13a), (13c) and (13d) (“the first integration”)
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z1 = 2d1 − r1,

z3 = 2d1 − r1 − r3,

z5 = 2d1 − r1 − r3 − r5,
...

z2k−1 = 2d1 − r1 − r3 − ...− r2k−1,
...

−dM−1 = 2d1 − r1 − r3 − ...− rM−1.

Summing up all these M/2 relations (“the second integration”) yields

−d1 = z1 + ... + zM−3 − dM−1 = Md1 − (M/2)r1 − (M/2− 1)r3 − ...− 1rM−1,

whereby
d1 =

1
M + 1

M/2

∑
j=1

(N
2
− j
)

r2j−1. (14)

Summing up the relations from the first up to the kth one now yields

d2k−1 = (2k− 1)d1 −
k−1

∑
j=1

(k− j)r2j−1 for 1 < k ≤ M/2. (15)

We find the same way from the system in the even-index unknowns

d2 =
2
N

M/2

∑
j=1

(N
2
− j
)

r2j,

d2k = kd2 −
k−1

∑
j=1

(k− j)r2j for 1 < k ≤ M/2. (16)

In algorithm 3′ the variables dM−1 and dM play the role of the basic variables d1 and
d2 in algorithm 3, resulting in the relations

dM−1 =
1

M + 1

M/2

∑
j=1

(2j− 1)r2j−1,

dM−1−2k = (k + 1)dM−1 +
M/2

∑
j=N/2−k

(M
2
− k− j

)
r2j−1 for 1 ≤ k ≤ M/2− 1,

dM =
2
N

M/2

∑
j=1

jr2j,

dM−2k = (k + 1)dM +
M/2

∑
j=N/2−k

(M
2
− k− j

)
r2j for 1 ≤ k ≤ M/2− 1.

Rearranging sums in (15) and (16), we obtain alternative equivalent expressions

d2k+1 =
M− 2k

M

(
d1 +

k

∑
j=2

(j− 1)r2j−1

)
+

k
M

M/2

∑
j=k+1

(N − 2j)r2j−1,

d2k+2 =
M− 2k

M

(
d2 +

k

∑
j=2

(j− 1)r2j

)
+

k
M

M/2

∑
j=k+1

(N − 2j)r2j.

Algorithm 4 exploits them instead of (15) and (16).
In order to assess the performance of the seven algorithms, we have conducted pre-

liminary numerical experiments, tracking their efficiency (execution times) and the quality
of the output (numerical errors originating from rounding-off in the course of computa-
tions). Regarding a set of numbers dn = pne−γnn/M, where pn and γn are pseudorandom
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numbers uniformly distributed in the intervals [−1, 1] and [5, 8], respectively, as a sample
test solution to the problem Gd = r, we compute the respective r.h.s., r, and analyse the
discrepancies qn = d̃n − dn for the approximate solutions d̃n obtained by each algorithm.
This procedure has been performed for M = 126 (mimicking a poor resolution of the
convective dynamo problem discretization), M = 510 (intermediate), and M = 2046 (high
resolution) for 106 sets of dn, comprising 3× 106 test problems in total. The results are
summarised in Tables 1 and 2, and Figures 2 and 3.

Table 1. Minimum and maximum error norms detected among solutions to the 106 test problems by
the seven algorithms for determination of coefficients of a linear combination of the polynomials T?

n .

M Algorithm
‖q‖max ‖q‖en

Min. Error Max. Error Min. Error Max. Error

126 1 3.38× 10−17 3.26× 10−15 1.29× 10−16 1.73× 10−14

1′ 3.21× 10−17 3.44× 10−15 1.16× 10−16 1.70× 10−14

2 5.97× 10−16 1.19× 10−12 3.17× 10−15 6.53× 10−12

2′ 3.12× 10−17 3.44× 10−15 1.48× 10−16 1.72× 10−14

3 2.22× 10−16 3.82× 10−14 6.06× 10−16 1.01× 10−13

3′ 1.11× 10−16 3.61× 10−15 3.22× 10−16 1.62× 10−14

4 8.33× 10−17 3.77× 10−15 3.34× 10−16 1.83× 10−14

510 1 2.78× 10−14 2.20× 10−14 1.75× 10−15 2.35× 10−13

1′ 2.43× 10−14 2.28× 10−14 1.69× 10−15 2.25× 10−13

2 7.75× 10−11 3.47× 10−11 8.98× 10−14 3.63× 10−10

2′ 2.78× 10−14 2.03× 10−14 1.43× 10−15 2.14× 10−13

3 1.42× 10−13 1.59× 10−13 8.70× 10−15 7.48× 10−13

3′ 1.11× 10−14 2.30× 10−14 5.52× 10−15 2.28× 10−13

4 1.19× 10−14 2.36× 10−14 5.65× 10−15 2.24× 10−13

2046 1 2.22× 10−15 1.64× 10−13 2.74× 10−14 3.50× 10−12

1′ 2.35× 10−15 1.75× 10−13 2.63× 10−14 3.57× 10−12

2 2.34× 10−13 1.16× 10−9 5.23× 10−12 2.39× 10−8

2′ 2.61× 10−15 1.72× 10−13 2.64× 10−14 3.32× 10−12

3 1.43× 10−14 6.29× 10−13 1.53× 10−13 6.11× 10−12

3′ 9.24× 10−15 1.76× 10−13 8.31× 10−14 3.89× 10−12

4 9.71× 10−15 1.77× 10−13 9.37× 10−14 3.51× 10−12

Table 2. Mean execution times (seconds) of 1000 applications of the seven algorithms for computing
coefficients of a linear combination of T?

n .

Algorithm 1 1′ 2 2′

M = 126 1.32× 10−3 1.39× 10−3 8.94× 10−4 9.98× 10−4

M = 510 5.42× 10−3 5.36× 10−3 3.81× 10−3 3.83× 10−3

M = 2046 2.171× 10−2 2.162× 10−2 1.506× 10−2 1.542× 10−2

Algorithm 3 3′ 4

M = 126 1.45× 10−3 1.34× 10−3 1.90× 10−3

M = 510 5.68× 10−3 5.26× 10−3 7.97× 10−3

M = 2046 2.262× 10−2 2.109× 10−2 3.197× 10−2
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Figure 2. Errors (vertical axes) of approximate solutions obtained for sample test problems by algo-
rithms 1 (red), 1′ (green), 2 (blue), 2′ (yellow), 3 (cyan), 3′ (magenta) and 4 (black colour, respectively)
for determining the coefficients of a linear combination of T?

n (x3) vs. the coefficient index number
(horizontal axes). The panels show the plots for six randomly chosen sample runs for the three values
of the resolution parameter M. Continuous line: odd-index coefficients; dashed line: even-index
coefficients. In order to fit the panels, the error values have been divided by 103 for algorithm 2 and
by 102 for algorithm 3.

For each resolution parameter (the number M of the sought coefficients in the ex-
pansion at hand) and each algorithm, Table 1 presents the ranges (i.e., the maximum and
minimum values) of the error norms for 106 approximate solutions to the test problems.
Two norms are considered: the maximum norm ‖q‖max = maxn |qn| and the so-called

“energy” norm ‖q‖en =
√

∑n |qn|2.
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Figure 3. Distribution of error norms of approximate solutions obtained for 106 test problems
by algorithms 1 (red), 1′ (green), 2 (blue), 2′ (yellow), 3 (cyan), 3′ (magenta) and 4 (black colour,
respectively) for determining the coefficients of a linear combination of T?

n (x3). Horizontal axis:
the error norms relative to the smallest error norm obtained for the test problem by the seven

algorithms, m; vertical axis: the number of cases, N(k)
m , for the kth algorithm and each error norm.

Dashed lines, saturated colours: the maximum error norm; continuous lines, diluted colours: the
energy error norm. The panels show the plots for the three values of the resolution parameter M.
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Table 2 illustrates the execution times for each algorithm. Since each individual computa-
tion of a sample solution is very fast, the individual durations of computations by the same
algorithm for the same M significantly vary from run to run. To reduce the influence of this
noise, we have employed the following procedure: for a sample problem, we measure the
CPU time required for 1 000 (identical) applications of the algorithm under consideration;
we make 1 000 measurements of this time (for test problems for the same resolution param-
eter M solved by the same algorithm); the average of the obtained numbers is reported in
Table 2. These mean CPU execution times are reproduced to at least 3 significant digits
for all the 21 test problems used for measuring the times; thus, the influence of noise in
these values is reduced as desirable. In principle, algorithm 1 execution times should not
differ from those of algorithm 1′; similarly for the algorithm pairs 2 and 2′, and 3 and 3′.
The nature of the variation of these values is related to the intimate details of application
of the compiler optimisation techniques (in this experiment we have used the maximum
optimisation). For algorithms 3 and 3′ the variation also reflects the difference in the
programming of computation of the sums involved aimed at enhancing the accuracy.

Figure 2 illustrates the error distributions among the approximate solutions d̃n to the
sample test problems. Plots for two test problems for each of the three considered values of
M are shown. The problem splits into two independent subproblems for odd- and even-
number variables dk; errors for odd-index coefficients are shown by continuous lines and
for even-index coefficients by dashed lines. Graph colours indicate by which algorithms the
curves have been obtained. We observe that algorithms 2 and 3 yield blatantly high errors;
algorithms 2 and 2′ are also imperfect in that they produce higher errors for higher-index
unknowns d̃n. The errors experience a wild spiky behaviour for low-index coefficients dn,
but, except for algorithm 2′, it becomes more ordered roughly for n > M/6.

To assess how statistically relatively poor or good the considered algorithms are, we
present in Figure 3 the distributions of error norms measured in the units of the smallest
error norm for the given test problem. More precisely, the plots have been constructed
by the following procedure: A set of 106 test problems with solutions, pseudorandomly
generated as discussed above, have been solved by each of the seven algorithms. For the
pth problem and the kth algorithm, the error norms ‖q(p;k)‖ have been determined. We
denote the smallest of these seven norms by ω(p) = mink ‖q(p;k)‖ and define the quantities
N(k)

m as the number of cases (among the considered 106 test problems), in which the error
norm obtained by algorithm k relative to the smallest norm ω(p) falls into the mth bin, or in
other words, the ratio ‖q(p;k)‖/ω(p) satisfies the inequality m− 1 < ‖q(p;k)‖/ω(p) ≤ m. In
particular, N(k)

1 is the number of test problems, for which algorithm k delivers the smallest,
over all the seven algorithms, norm, i.e., ω(p) = ‖q(p;k)‖. These computations have been
performed for both norms, the maximum norm ‖q‖max and the energy norm ‖q‖en.

For each algorithm and both error norms, in Figure 3 we show the quantities N(k)
m

versus the bin number m. The data points for six algorithms are joined into plots up to the
smallest m such that N(k)

m = 0 (the use of the logarithmic scale for N(k)
m forces us to break

the plot at this point). The outlier values N(k)
m > 0 for larger m are shown as disjoint points;

all these values are small. The data distribution for algorithm 2 has a different nature, more
resembling a cloud; we therefore render the data as two plots (for odd- and even-index
numbers) only for the small-dimensional problem (M = 126) for N(3)

m < 100. The outliers
N(k)

m > 0 for m > 5× 103 for M = 126, and for m > 5× 104 for M = 510 and 2 046 are
ignored in Figure 3. There are 211 and 1 529 such outliers for the odd- and even-index test
problems, respectively, for algorithm 3 for N = 128, 18 for the even-index problems for
M = 510, and 2 265 and 8 831 for the odd- and even-index test problems for M = 2046.
These statistics demonstrate that the larger the number of unknown coefficients M, the
more the output of algorithm 2 is affected by the numerical noise.

The numerical results lead us to the following conclusions:



Mathematics 2023, 11, 808 14 of 26

i. Except for algorithm 2, in applications for solving the 3× 106 test problems, for any
M and for both error norms each algorithm delivers approximate solutions d̃n of any
possible accuracy from the best to the worst one, i.e., for each algorithm, solutions to
some test problems obtained by this algorithm have the smallest, the largest, or any
differently placed intermediate error norm among the seven error norms obtained for
this problem.

ii. Algorithm 2 yields solutions of blantly poor accuracy. For M = 126, its output
still includes solutions occupying any possible place between the best-accuracy and
worst-accuracy solutions. However, for M = 126, it yields just three most accurate
solutions in terms of the maximum error norm and just one, if the energy error norm
is used. These numbers gradually increase via 46 and 15 penultimately worst-accuracy
solutions to 999,934 and 999,975 least accurate solutions. By contrast, for M = 510 and
2 046 all its outputs are the least accurate solutions for both error norms, except for one
case of penultimately worst-accuracy solutions for the maximum norm.

iii. The error norms (see Table 1) are compatible with the standard “double” (in the
Fortran speak; 64 bit words) computer precision (the 10−15 “machine epsilon”). The
poor performance of algorithm 2 and the second-worst (accuracy-wise) algorithm
3 stems from the involvement in the expressions used in their formulation of the
products of d1 and d2 with the numbers proportional to the indices of the unknown
coefficients that increase up to the large numbers M.

iv. We can regard the accuracy results at a different angle. In the worst-case scenario, the
norm of a discrepancy in the r.h.s. of the equation Gd = r is multiplied by the condition
number of the matrix G, which is defined as the product of norms of the matrices G
and G−1. The former norm is obviously order 1; to estimate the latter, we use (14) and
(15) for the r.h.s. where all rk = 1, and find ‖G−1‖ ≥ ‖d‖en/‖r‖en = O(M2). Hence,
the condition number of G is (at least) order M2, which is compatible with the accuracy
results for algorithm 2 (see maximum errors in Table 1). We observe that numerical
errors are amplified by an algorithm-specific effective condition number [35], which
can be much smaller than the worst-case theoretical condition number, provided a
specialised algorithm takes into account particular properties of the problem,

v. For all the three M values used, most frequently the smallest-error approximate
solutions d̃n are provided by algorithm 2′ for whichever error norm: 315,174 and
236,707 times out of 106 for M = 126, 325,841 and 236,544 for M = 510, and 333,062
and 239,009 for M = 2046 (the first number in a pair is for the maximum error norm
and the second one for the energy norm). Accuracy-wise, the shuttle algorithms 1 and
1′ are mutually close and not significantly inferior to algorithm 2′.

vi. The quantities N(k)
m have the maxima at k = 2 (see Figure 3), i.e., for each algorithm

and each M, the error norms fall into the bin 1 < ‖q(p;k)‖/ω(p) ≤ 2 with the highest
probability.

vii. Solutions d̃n obtained by all algorithms except for two and three have significantly
larger errors qn for small n (say, for n < M/6) than for larger n (see Figure 3). By
contrast, algorithms 2 and 3 yield maximum errors for intermediate and high n. In
addition, the errors in solutions computed by algorithm 3 wildly oscillate, which is not
typical for the behaviour of errors generated by the other six algorithms. Consequently,
algorithms 2 and 3 yield approximate solutions in which d̃n for intermediate and high
n have exceptionally high relative errors.

viii. Algorithms 2 and 2′ are significantly faster than the other five algorithms (see Table 2).
Their execution CPU times are mutually close and differ much more from the execution
times registered for the other ones.

Properties iii and vii render algorithms 2 and 3 inapplicable. None of the seven
algorithms is “perfect”, but the compromise between the highest efficiency and accuracy
reveals the optimality of algorithm 2′.
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3.2. Algorithms for Determining the Coefficients of a Linear Combination of T??
n (x3)

The equation for the poloidal potential is obtained by applying twice the curl to (1a)
and taking the vertical component of the result:

∂∇2
h∇

2Pv

∂t
=P∇2

h(∇
2)2Pv + Fpv,

Fpv = − σ∇2
hθ + e3 · (τ(q · ∇)∇× v− (∇×)2(v× (∇× v)− b× (∇× b))).

The above equation is equivalent to the parabolic equation

∂∇2Pv

∂t
= P(∇2)2Pv + (∇2

h)
−1Fpv. (17)

To apply the inverse Laplacian (∇2)−1 is now tempting but unfeasible, since the condi-
tions (6b) do not imply suitable boundary conditions for ∇2Pv. By (9), the polynomials

T??
n (x3) = (n + 1)(Tn+4(x3)− Tn+2(x3))− (n + 3)(Tn+2(x3)− Tn(x3)), n ≥ 0, (18)

satisfy (6b), and the poloidal potentials can be approximated by finite series

Pv(x, t) = ∑
|n1|≤N, |n2|≤N, 0≤n≤N−5

pv
n(t) ei(α1n1x1+α2n2x2)T??

n (x3),

where n = (n1, n2, n).
Substituting the series into (17), we obtain an equation, whose l.h.s. is of the form

∑
|n1|≤N, |n2|≤N, 0≤n≤N−1

dpv
n

dt
ei(α1n1x1+α2n2x2) p̃n(x3),

where p̃n is a polynomial of degree n + 4. As usual, we apply the Fourier transform in
the horizontal directions to deduce the equation for each pair of indices n1 and n2, and
orthogonally project p̃n on the polynomials T??

m (x3) with the weight (1−x2
3)
−1/2. Computing

dpv
n/dt requires inverting the matrices acting on the columnar vectors consisting of the time

derivatives dpv
n/dt for 0 ≤ n ≤ N− 1 and n1, n2 fixed. As in the case of the toroidal potential

of the flow, these are band matrices. To see this, we integrate twice by parts the integral∫ 1
−1 d2T??

n /dx2
3 (1−x2

3)
−1/2T??

m dx3 encountered in the projection of the l.h.s. of (17) (noting
that the test polynomial T??

m satisfies the boundary conditions (6b)) and apply the relation

d2

dx2
3

(
(1− x2

3)
−1/2T??

m
)
= 4(m + 1)(m + 2)(m + 3)(1− x2

3)
−1/2Tm+2. (19)

It can be proven by using the identities

2(x2
3 − 1)

dTm

dx3
= m(Tm+1 − Tm−1),

d
dx3

(
(1− x2

3)
1/2 dTm

dx3

)
= −m2(1− x2

3)
−1/2Tm.

Relation (19) is also useful for computing∫ 1

−1
(∇2)2

(
ei(α1n1x1+α2n2x2)T??

n

)
(1− x2

3)
−1/2 T??

m dx3

= ei(α1n1x1+α2n2x2)
[πΓ4

2

(
(m + 3)(m− 3)δm

n+4 − 2
(
(m + 3)m + (m + 2)(m− 1)

)
δm

n+2

+
(
(m + 1)2 + (2m + 4)2 + (m + 3)2(1 + δm

0 )
)
δm

n

− 2
(
(m + 1)(m + 4) + (m + 2)(m + 5)

)
δm

n−2 + (m + 1)(m + 7)δm
n−4

)
+ 4(m + 1)(m + 2)(m + 3)

(
− πΓ2((m− 1)δm

n+2 − 2(m + 2)δm
n + (m + 5)δm

n−2
)

+
∫ 1

−1

d2T??
n

dx2
3

(1− x2
3)
−1/2 Tm+2 dx3

)]
,
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where Γ = (α2
1n2

1 + α2
2n2

2)
1/2 and δm

n is the Kronecker symbol. Differentiation in x3 can now
be performed ([9], see also [36]) using the recurrence relation

d
dx3

Tk+1 =
k + 1
k− 1

d
dx3

Tk−1 + 2(k + 1)Tk.

Thus, the vector d of the time derivatives of the expansion coefficients is a solution to
the linear system of equations of the form

Gd = r, (20a)

where r is the vector (of length M′ = N− 4) of the dot products of the r.h.s. of (17) with T??
m ;

both G and r are divided by πL1L2Γ2/2. The matrix has non-zero entries on the diagonal:

Gk,k = −6k2 − 12k− 8− 9δk
1 − 2Γ′k(k + 1) (20b)

and on four subdiagonals:

Gk,k−4 = −(k− 4)(k + 2), Gk,k−2 = 4k2 − 8 + Γ′k(k− 2), (20c)

Gk,k+2 = 4(k + 2)2 − 8 + Γ′k(k + 4), Gk,k+4 = −k(k + 6), (20d)

where
Γ′k = 4k(k + 1)(k + 2)/Γ2. (20e)

Algorithm 1 is the standard shuttle algorithm for a pentadiagonal matrix [37]. We note
that the odd-index subproblem is separated from the even-index one and use the ansatz

dn = Andn+2 + Bndn+4 + Cn. (21)

The first four equations imply

A1 = −G1,3/G1,1, B1 = −G1,5/G1,1, C1 = r1/G1,1,

A2 = −G2,4/G2,2, B2 = −G2,6/G2,2, C2 = r2/G2,2,

A3 = − B1G3,1 + G3,5

A1G3,1 + G3,3
, B3 = − G3,7

A1G3,1 + G3,3
, C3 =

r3 − G3,1C1

A1G3,1 + G3,3
,

A4 = − B2G4,2 + G4,6

A2G4,2 + G4,4
, B4 = − G4,8

A2G4,2 + G4,4
, C4 =

r4 − G4,2C2

A2G4,2 + G4,4
.

The M− 4 equations for 5 ≤ n ≤ M yield the recurrence relations

An = − (Gn,n−4 An−4 + Gn,n−2)Bn−2 + Gn,n+2

(Gn,n−4 An−4 + Gn,n−2)An−2 + Gn,n−4Bn−4 + Gn,n
,

Bn = − Gn,n+4

(Gn,n−4 An−4 + Gn,n−2)An−2 + Gn,n−4Bn−4 + Gn,n
,

Cn =
rn − (Gn,n−4 An−4 + Gn,n−2)Cn−2 − Gn,n−4Cn−4

(Gn,n−4 An−4 + Gn,n−2)An−2 + Gn,n−4Bn−4 + Gn,n
,

where it is assumed Gn,m = 0 for m > M. This yields dn = Cn for n = M − 1 and M,
and we use the recurrence relation (21) to compute sequentially all the unknowns dn for
decreasing n. (Note Bn = 0 for n = M− 1 and M.)

Algorithm 1′ is the same shuttle procedure applied to the system of equations with the
reverse numbering of equations and variables.

Algorithms 2 and 2′ are modifications of the shuttle algorithm based on the observation
that the sum of coefficients in the equation number k for 4 < k < M− 3 is zero. Hence,
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in new variables d′k = dk − dk−2, k ≥ 3, the system reduces to a problem with a matrix G′

involving three subdiagonals for 4 < k < M− 3:

G′k,k−2 = (k− 1)2 − 9, G′k,k = −3k2 − 2k− Γ′k(k− 2),

G′k,k+2 = 3k2 + 10k + 8 + Γ′k(k + 4), G′k,k+4 = −k(k + 6).

The problem splits into two independent subproblems for odd- and even-number
variables dk. We formulate algorithm 2 for solving the subproblem for even-number vari-
ables; it is straightforward to reformulate it for the subproblem for odd-number variables.
We introduce M′ + 1 = M/2 + 1 variables z1 = d2, zk = d2k − d2k−2 for 2 ≤ k ≤ M′ and
zM′+1 = d2M. They satisfy M′ original equations and the gauge equation

zM′+1 −
M′

∑
k=1

zk = 0. (22)

The first equation is equivalent to z1 = A1z2 + B1z3 + C1. Equations for 2 ≤ k ≤ M′ take
the form

G′2k,2k−2zk−1 + G′2k,2kzk + G′2k,2k+2zk+1 + G′2k,2k+4zk+2 = r2k,

whereby
zk = Akzk+1 + Bkzk+2 + Ck, (23)

Ak = −
G′2k,2k+2 + Bk−1G′2k,2k−2

G′2k,2k + Ak−1G′2k,2k−2
, Bk =

−G′2k,2k+4

G′2k,2k + Ak−1G′2k,2k−2
, Ck =

r2k − Ck−1G′2k,2k−2

G′2k,2k + Ak−1G′2k,2k−2
,

which defines the first, “direct run of the shuttle”. Here, zM′+2 = 0. For k = M′, the
relation (23) reduces to just

zk = DkzM′+1 + Ek, (24)

where DM′ = AM′ and EM′ = CM′ . We can now use (23) for k = M′ − 1, ..., 1 to obtain the
coefficients in (24) recursively,

Dk = AkDk+1 + BkDk+2, Ek = AkEk+1 + BkEk+2 + Ck

(the second, “reverse run of the shuttle”). Simultaneously, we compute the coefficients Fk
and Rk in the partial sums

zM′+1 −
M′

∑
n=k

zn = FkzM′+1 + Rk.

By (22), we then find zM′+1 = −R1/F1. Now, the third “run of the shuttle” yields

d2n =
n

∑
k=1

zk = zM′+1 −
M′

∑
k=n+1

zk −
(

zM′+1 −
M′

∑
k=1

zk

)
= Fn+1zM′+1 + Rn+1. (25)

This algorithm is apparently more involved than the standard shuttle algorithm. However,
since it works with the differences zk = d2k − d2k−2, it may be advantageous in yielding
more accurate values of d2k.

Algorithm 2′ amounts to the same computational procedure applied to the system of
equations, where the numbering of equations and variables is reversed. Thus, we obtain
the relations, similar to (25), in which all d2n are expressed in terms of z1 instead of zM′+1.
Normally, the coefficients dk tend to zero, whereby z1 is a priori much larger than zM′+1;
for a given precision of computations (in our case, the standard real*8 “double” precision
of the floating point arithmetics), this is a tighter constraint on the number of correct digits
after the decimal point. Consequently, we may expect algorithm 2′ to yield less accurate
values of dk than algorithm 2.
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We have investigated the performance of the four algorithms following the same
approach as for the algorithms for determining the coefficients of linear combinations of
the polynomials T?

n : we have synthesized 106 pseudorandom sample test solutions dn by
the same procedure, outlined in Section 3.1, as for the polynomials T?

n , and analysed the
errors qn = d̃n − dn for the approximate solutions obtained by each of the four algorithms
for M = 124, 508 and 2 044 terms in linear combinations of T??

n .
For each resolution parameter M and each algorithm, Table 3 shows the ranges (i.e., the

maximum and minimum values) of the maximum and energy norms of the approximate
solution errors. Table 4 illustrates the execution times for each algorithm, measured by the
same procedure (see Section 3.1) as for the polynomials T?

n . The obtained mean execution
times are again accurate to at least three significant digits. We expect the algorithm 1
execution times to coincide with those for algorithm 1′, similarly for algorithms 2 and 2′.
However, the times presented in Table 4 for algorithms 1 and 2 are slightly smaller than
those for algorithms 1′ and 2′, respectively. This difference is insignificant, it just reflects
the way we have programmed the latter algorithms: in our implementation, the orders of
the equations and unknown variables are reversed at run time, which can be avoided by a
more careful programming of the algorithms using index reversion.

Table 3. Minimum and maximum error norms detected among solutions to 106 test problems (20a)
by the four algorithms.

M Algorithm
‖q‖max ‖q‖en

Min. Error Max. Error Min. Error Max. Error

124 1 4.51× 10−17 3.22× 10−15 1.10× 10−16 8.47× 10−15

1′ 5.55× 10−17 2.83× 10−15 1.49× 10−16 7.83× 10−15

2 5.55× 10−17 3.55× 10−15 1.42× 10−16 1.02× 10−14

2′ 8.33× 10−17 4.22× 10−15 2.68× 10−16 1.54× 10−14

508 1 4.30× 10−16 1.95× 10−14 1.81× 10−15 1.12× 10−13

1′ 2.78× 10−16 2.03× 10−14 1.98× 10−15 1.10× 10−13

2 3.61× 10−16 2.21× 10−14 2.19× 10−15 1.29× 10−13

2′ 5.00× 10−16 2.07× 10−14 2.47× 10−15 1.27× 10−13

2044 1 2.78× 10−15 1.35× 10−13 2.53× 10−14 1.69× 10−12

1′ 2.53× 10−15 1.33× 10−13 2.95× 10−14 1.62× 10−12

2 2.89× 10−15 2.55× 10−13 3.61× 10−14 2.10× 10−12

2′ 3.16× 10−15 1.53× 10−13 3.32× 10−14 1.88× 10−12

Table 4. Mean execution times (seconds) of 1000 applications of the four algorithms for computing
coefficients of a linear combination of T??

n .

Algorithm 1 1′ 2 2′

M = 124 1.41× 10−3 1.51× 10−3 1.43× 10−3 1.51× 10−3

M = 508 6.04× 10−3 6.30× 10−3 5.88× 10−3 6.18× 10−3

M = 2044 2.506× 10−2 2.632× 10−2 2.464× 10−2 2.595× 10−2

Figure 4 illustrates the error distributions among the unknowns detected for solutions
to six sample test problems (plots for two problems for all the considered M = 124, 508 and
2044 are shown). Figure 5 presents the distributions of error norms measured by the same
procedure, discussed in Section 3.1, as for the polynomials T?

n . For the pth problem and
the kth algorithm, we find the error norms ‖q(p;k)‖ and the smallest norm for this problem,
ω(p) = mink ‖q(p;k)‖. We again denote by N(k)

m the number of cases, among the 106 test
problems, in which the error norm produced by algorithm k, measured in the units of ω(p),
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falls into the mth bin, i.e., m satisfies the inequality m− 1 < ‖q(p;k)‖/ω(p) ≤ m. For each
algorithm and both error norms (the maximum norm and the energy norm), Figure 5 shows
the histogram N(k)

m versus the bin number m. The data points are joined up to the smallest
m such that N(k)

m = 0, and the outlier values N(k)
m > 0 (always small) for larger m are shown

as disjoint points; unlike in Figure 3, all outliers are shown.
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Figure 4. Errors (vertical axes) of approximate solutions obtained for sample test problems by algo-
rithms 1 (red), 1′ (green), 2 (blue) and 2′ (black colour, respectively) for determining the coefficients of
a linear combination of T??

n (x3) vs. the coefficient index number (horizontal axes). The panels show
the plots for six randomly chosen sample runs for the three values of the resolution parameter M.
Continuous line: odd-index coefficients; dashed line: even-index coefficients.
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Figure 5. Distribution of error norms of approximate solutions obtained for 106 sample test problems
by algorithms 1 (red), 1′ (green), 2 (blue) and 2′ (black colour, respectively) for determining the
coefficients of a linear combination of T??

n (x3). Horizontal axis: the error norms relative to the
smallest error norm obtained for the test problem by the four algorithms, m; vertical axis: the number

of cases, N(k)
m , for the kth algorithm and each error norm. Dashed lines, saturated colours: the

maximum error norm; thin continuous lines, diluted colours: the energy error norm. The panels
show the plots for the three values of the resolution parameter M.
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The results reveal the following properties of the algorithms:

i. None of the four algorithms is “perfect”: for all considered M and for both error
norms, when solving the 3× 106 test problems each algorithm delivers solutions of
any possible relative accuracy from the best to the worst one, in the sense that solutions
to some test problems obtained by any algorithm have the smallest, the largest or any
intermediate error norms among the four error norms produced by the four algorithms
for this problem.

ii. The quantities N(k)
m have the maxima at m = 2 (see Figure 5), i.e., for each algorithm

the error norms fall into the second bin, 1 < ‖q(p;k)‖/ω(p) ≤ 2, with the highest
probability.

iii. For any M and for both error norms, algorithm 1′ delivers the best accuracy solutions

(has the maximum N(k)
1 over k) more often than the other three. For M = 124 and

508, the least accurate solutions are obtained most frequently by algorithm 2′and for
M = 2044 by algorithm 2.

iv. The errors qn for intermediate and high n (say, for n > M/6) in approximate solutions
computed by algorithm 2′ are significantly larger than in solutions obtained by any of
the other three algorithms.

v. The execution CPU times of algorithms 1 and 1′ are slightly larger than those for
algorithms 2 and 2′.

Property iv implies that algorithm 2′ yields approximate solutions, where d̃n for
intermediate and high n are polluted by high relative errors, rendering this algorithm
inapplicable. The smallest execution time and the highest frequency of yielding the smallest
errors distinguish algorithm 1′, but algorithms 2 and 2′ follow closely.

4. Discretisation of the Magnetic Field

Here we consider the implications of the boundary conditions (2b) for the magnetic
field. Since the magnetic field is solenoidal (1d), it can be decomposed into the sum of the
toroidal, Tb(x, t), poloidal, Pb(x, t), and mean-field, Mb(x, t), components:

b(x, t) =Tb(x, t) + Pb(x, t) + Mb(x3, t), (26a)

Tb(x, t) =∇× (Tb(x, t)e3), (26b)

Pb(x, t) =∇×∇× (Pb(x, t)e3), (26c)

Mb(x3, t) =
〈
(b1(x, t), b2(x, t), 0)

〉
h

(26d)

such that 〈
Tb
〉

h
=
〈

Pb
〉

h
= 0.

In view of the boundary conditions (2b) and (2c) for the magnetic field, the potentials and
the mean-field component satisfy the boundary conditions

Tb
∣∣∣
x3=1

=
∂Tb

∂x3

∣∣∣∣∣
x3=−1

= 0, (27a)

∇Pb
∣∣∣
x3=1

= ∇h|x3=1′ (27b)

∂2Pb

∂x2
3

∣∣∣∣∣
x3=−1

= Pb
∣∣∣
x3=−1

= 0, (27c)

Mb
∣∣∣
x3=1

=
∂Mb

∂x3

∣∣∣∣∣
x3=−1

= 0. (27d)
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The poloidal potential is determined from the vertical component of (1b), the toroidal
one from the vertical component of the curl of (1b),

∂Tb

∂t
= η∇2Tb + (∇2

h)
−1Ftb, Ftb = e3 · (∇×)2(v× b), (28)

and the mean-field component of the magnetic field from the equation derived by averaging
over horizontal variables of the horizontal component of (1b).

The harmonic function h referred to in (27a) is defined by (2b). The boundary condi-
tion (27b) can be further detailed for individual harmonics in horizontal variables for the
poloidal potential expanded as the Fourier series

Pb(x, t) = ∑
|n1|≤N, |n2|≤N

Pb
n1,n2

(x3, t) ei(α1n1x1+α2n2x2)

⇒ ∇Pb = ∑
|n1|≤N, |n2|≤N

(
iα1n1Pb

n1,n2
, iα2n2Pb

n1,n2
,

∂Pb
n1,n2

∂x3

)
ei(α1n1x1+α2n2x2).

At the upper boundary x3 = 1, the horizontal components of the gradient of Pb
n1,n2

coincide
with the gradient of the harmonic function

h(x, t) = Pb
n1,n2

(1, t) ei(α1n1x1+α2n2x2)−(α2
1n2

1+α2
2n2

2)
1/2(x3−1)

and therefore (27b) is satisfied as long as

∂Pb
n1,n2

∂x3

∣∣∣
x3=1

= −(α2
1n2

1 + α2
2n2

2)
1/2 Pb

n1,n2

∣∣∣
x3=1

. (29)

In view of (9), the boundary condition (27c) is satisfied by the polynomials

Πn = (n + 1)(2n + 1)Tn−1 + (4n2 + 2)Tn + (n− 1)(2n− 1)Tn+1 for n ≥ 0

and both conditions, (27c) and (29), are satisfied by the polynomials

T???
n (x3) = ((4(n + 1)4 − 2(n + 1)2 + 1 + Γ(4(n + 1)2 + 2))Πn

−
(

4n4 − 2n2 + 1 + Γ(4n2 + 2))Πn+1

)
/(2n + 1) (30)

= κn+1Tn−1 + (κn + λn)Tn − (κn+1 − λn)Tn+1 − κnTn+2

for n ≥ 1, where

κn = n(4n4 − 2n2 + 1 + Γ(4n2 + 2)), λn = 16n(n + 1)(n(n + 1) + 1).

Thus, Pb
n1, n2

(x3, t) can be expanded as

Pb(x, t) = ∑
|n1|≤N, |n2|≤N, 1≤n≤N−2

pb
n(t) ei(α1n1x1+α2n2x2)T???

n (x3).

The vector d of the time derivatives of the coefficients of the expansion is a solution
to the linear system of equations of the form Gd = r. Here G is the heptadiagonal Gram
matrix for the basic functions T???

m and r is the vector (of length M′′ = N − 3) of dot
products of the r.h.s. with T???

m . Unlike in the two linear problems considered above, there
is no separation into odd- and even-index subproblems.

The shuttle process can again be applied for solving this problem. We use the ansatz

dn = Andn+1 + Bndn+2 + Cndn+3 + Dn. (31)
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The first equation is equivalent to

A1 = −G1,2/G1,1, B1 = −G1,3/G1,1, C1 = −G1,4/G1,1, D1 = r1/G1,1.

The second equation implies

A2 = −(G2,1B1 + G2,3)/A′2, B2 = −(G2,1C1 + G2,4)/A′2,

C2 = −G2,5/A′2, D2 = (r2 − G2,1D1)/A′2,

where
A′2 = G2,1 A1 + G2,2.

From the third equation,

A3 = −(A′3B2 + G3,1C1 + G3,4)/A′′3 , B3 = −(A′3C2 + G3,5)/A′′3 , C3 = −G3,6/A′′3 ,

D3 = (r3 − G3,1D1 − A′3D2)/A′′3 ,

where
A′3 = G3,1 A1 + G3,2, A′′3 = A′3 A2 + G3,1B1 + G3,3.

For n ≥ 4, it is convenient to introduce the additional variables

A′n = Gn,n−3 An−3 + Gn,n−2, A′′n = A′n An−2 + Gn,n−3Bn−3 + Gn,n−1,

A′′′n = A′′n An−1 + A′nBn−2 + Gn,n−3Cn−3 + Gn,n.

For 4 ≤ n ≤ M′′ − 3, in the nth equation we use (21) to make consecutive substitutions of
dn−2, dn−1 and dn. This yields the recurrence relations

An = −(A′′n Bn−1 + A′nCn−2 + Gn,n+1)/A′′′n , Bn = −(A′′nCn−1 + Gn,n+2)/A′′′n ,

Cn = −Gn,n+3/A′′′n , Dn = (rn − Gn,n−3Dn−3 − A′nDn−2 − A′′n Dn−1)/A′′′n .

Finally, the remaining equations for M′′ − 2 ≤ n ≤ M′′ yield a system of three equations in
dM′′−2, dM′′−1 and dM′′ . The equations are:

(A′′n An−1 + A′nBn−2 + Gn,n−3Cn−3 + Gn,n)dM′′−2 + (A′′n Bn−1 + A′nCn−2 + Gn,n+1)dM′′−1

+(A′′nCn−1 + Gn,n+2)dM′′ = rM′′−2 − A′′n Dn−1 − A′nDn−2 − Gn,n−3Dn−3

for n = M′′ − 2;

(A′n An−2 + Gn,n−3Bn−3 + Gn,n−1)dM′′−2 + (A′nBn−2 + Gn,n−3Cn−3 + Gn,n)dM′′−1+

(A′nCn−2 + Gn,n+1)dM′′ = rM′′−1 − A′nDn−2 − Gn,n−3Dn−3

for n = M′′ − 1;

(Gn,n−3 An−3 + Gn,n−2)dM′′−2 + (Gn,n−3Bn−3 + Gn,n−1)dM′′−1+

(Gn,n−3Cn−3 + Gn,n)dM′′ = rM′′ − Gn,n−3Dn−3

for n = M′′.
The boundary conditions (27a) and (27d) for the toroidal potential and mean-field

components of the magnetic field are satisfied by the polynomials

T????
n (x3) = µnTn−1 − 4nTn − µn−1Tn+1, where µn = 2n(n + 1) + 1, (32)
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and hence we use the expansions

Tb(x, t) = ∑
|n1|≤N, |n2|≤N, 1≤n≤N−2

tb
n(t)e

i(α1n1x1+α2n2x2)T????
n (x3),

Mb(x3, t) = ∑
0≤n≤N

Mb
n(t)T

????
n (x3).

The coefficients in the expansion of a function in this basis can be determined by solving a
linear system of equations with a pentadiagonal Gram matrix G, whose non-zero entries
are as follows:

Gk,k−2 = −µk−3µk, Gk,k−1 = −4(k− 1)µk + 4kµk−2, Gk,k = µ2
k

(
1 + δk

1

)
+ 16k2 +µ2

k−1,

Gk,k+1 = −4kµk+1 + 4(k + 1)µk−1, Gk,k+2 = −µk−1µk+2.

Apparently, the system has no special properties enabling us to develop specialized methods for
solving it numerically; it can be solved by the shuttle method (see Algorithm 1 in Section 3.2).

5. Conclusions

We have presented an original algorithm for numerical solution of the equations
of convective dynamo in a plane horizontal layer rotating about an inclined axis under
geophysically sound boundary conditions. In many respects, our approach does not differ
significantly from the general approach that was followed by other authors. Focusing
mainly on the accuracy of computations, especially in the small scales, we have discussed
the numerical techniques which we have designed with this purpose in mind.

The Galerkin method is applied for computing the toroidal and poloidal components
of physical vector fields and their mean components. We exploit the bases of functions
that are products of linear combinations (T?

n (10), T??
n (18), T???

n (30), and T????
n (32)) of

Chebyshev polynomials in the vertical coordinate and Fourier harmonics in the horizontal
coordinates. The basic functions involving the polynomials T?

n are used for the spatial
discretisation of the unknown functions that take zero values on the horizontal boundaries
x3 = ±1, namely, in the problem under discussion, the toroidal potential ofthe flow and
its mean fields, and the deviation of temperature from the steady-state linear profile. The
poloidal potential of the flow, which, for the no-slip boundary conditions, must vanish
on the horizontal boundaries together with the first derivative in the vertical direction,
is expanded in a series of functions involving the polynomial factors T??

n . The functions
involving T???

n are used for discretising the poloidal potential of the magnetic field in the
presence of the dielectric over the fluid layer and an electric conductor below it; while
the no-slip boundary conditions for a solenoidal field are often considered in different
problems, the latter boundary conditions are rather special. Finally, the toroidal potential
of the magnetic field, which, for the boundary conditions considered here, is zero on the
upper fluid boundary, and whose first derivative in x3 vanishes on the lower boundary, is
expanded in the series of the basic functions involving the polynomials T????

n .
The basic functions satisfy the boundary conditions, but they are non-orthogonal.

Specialized algorithms for determining the coefficients in the expansion of an arbitrary
function in a series of the basic functions involving polynomials T?

n and T??
n are proposed

and analyzed. They are general-purpose and are applicable whenever the same boundary
conditions are imposed. We find that when the spatial resolution is sufficiently high, our
original algorithm 2′ is optimal from the point of view of accuracy and efficiency when T?

n
are used, and algorithm 1′ (the reverse shuttle algorithm) is optimal for T??

n .
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