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1. Introduction

Fractional order differential equations have recently proved to be valuable tools in the
modeling of many phenomena in various fields of mathematics, physics, viscoelasticity,
electrochemistry, engineering, control, porous media, electromagnetic, etc., see [1–5] and
references cited therein. For a theoretical approach of fractional calculus, see the mono-
graphs [6–11]. Many processes in physics and engineering can be described accurately
by using differential equations containing different types of fractional derivatives such as
Riemann–Liouville, Caputo, Hadamard, Erdeyl–Kober, Hilfer, Caputo–Hadamard, etc. Hil-
fer proposed in [12] a fractional derivative operator generalizing both Riemann–Liouville
and Caputo fractional derivative operators. For the advantages of the Hilfer derivative,
see [13]. In [14], the ψ-Hilfer fractional derivative operator was introduced. Initial and
boundary value problems including the ψ-Hilfer fractional derivative operator have been
studied by many researchers, see [15–20] and references therein.

In the present paper, we investigate a new class of boundary value problems, consisting
of mixed-type fractional differential equations including ψ1-Hilfer and ψ2-Caputo fractional
derivative operators supplemented with nonlocal integro-differential boundary conditions.
More precisely, we consider the following sequential ψ1-Hilfer and ψ2-Caputo fractional
differential equation with nonlocal integro-differential boundary conditions

HDα,β;ψ1(CDγ;ψ2 π)(t) = Π(t, π(t)), 0 < α, β, γ < 1, t ∈ [0, x1],

CDγ;ψ2 π(0) = 0, π(T) =
m

∑
i=1

λi
CDγ;ψ2 π(ηi) +

n

∑
j=1

δj Iµj ;ψ2 π(ξ j),
(1)

where HDα,β;ψ1 and CDγ;ψ2 are the ψ1-Hilfer and ψ2-Caputo fractional derivatives with
respect to functions ψ1 and ψ2, respectively, when ψ′1(t), ψ′2(t) > 0 for all t ∈ [0, x1].
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In addition, the given constants λi, δj ∈ R and some points ηi, ξ j ∈ (0, x1), Iµj ;ψ2 is the
Riemann–Liouville fractional integral of order µj > 0, with respect to a function ψ2, for
i = 1, · · · , m, j = 1, · · · , n and Π : [0, x1] × R → R is a nonlinear continuous function.
Existence and uniqueness are established via Banach’s fixed point theorem and the Leray–
Schauder nonlinear alternative.

The novelty of this study lies in the fact that we introduce a new class of nonlocal
boundary value problems in which we combine ψ1-Hilfer and ψ2-Caputo fractional deriva-
tive operators and as far as we know, this is the only paper dealing with this combination.
By fixing the parameters in the nonlocal integro-differential fractional boundary value
problem (1), we obtain some new results as special cases. For example, we get to:

(i) Hilfer and Caputo fractional nonlocal integro-differential boundary value problem if
ψ1(t) = ψ2(t) = t;

(ii) ψ2-Hilfer and Caputo-type fractional nonlocal integro-differential boundary value
problem if ψ1(t) = t;

(iii) ψ1-Hilfer and Caputo-type nonlocal integro-differential boundary value problem if
ψ2(t) = t.

The remaining part of this article is organized as follows: in Section 2, some preliminary
definitions and results that will be applied in the next sections are recalled. In addition,
an auxiliary result is proved to convert the problem (1) into a fixed point problem. In
Section 3, the main results for the nonlocal integro-differential boundary value problem (1)
are established, while in Section 4, these results are discussed for some special cases.
Section 5 includes some numerical examples illustrating the main results.

2. Preliminaries

Now, some notations and definitions of fractional calculus are recalled. In the fol-
lowing, we assume that ψ ∈ C1([0, x1],R) is an increasing function with ψ′(t) > 0 for all
t ∈ [0, x1].

Definition 1 ([7]). Given α > 0 and ĥ ∈ L1([0, x1],R), the ψ-Riemann–Liouville fractional
integral of order α of a function ĥ with respect to ψ is defined by

Iα;ψ
0 ĥ(t) =

1
Γ(α)

∫ t

a
ψ′(s)(ψ(t)− ψ(s))α−1ĥ(s)ds.

To abbreviate, we use Iα;ψ
0 ĥ(t) as Iα;ψ ĥ(t) throughout this paper.

Definition 2 ([14]). Suppose that n− 1 < α < n, n ∈ N and ĥ, ψ ∈ Cn([0, x1],R). The ψ-Hilfer
fractional derivative HDα,β;ψ(·) of order α of a function ĥ with a parameter β ∈ [0, 1] is defined by

HDα,β;ψ ĥ(t) = Iβ(n−α);ψ
(

1
ψ ′(t)

d
dt

)n
I(1−β)(n−α);ψ ĥ(t),

provided that the right-hand side exists.

Definition 3 ([21]). The ψ-Caputo fractional derivative CDα;ψ(·) of order α of a function ĥ is
expressed as

CDα;ψ ĥ(t) = In−α;ψ
(

1
ψ ′(t)

d
dt

)n
ĥ(t),

where n− 1 < α < n, n ∈ N and ĥ, ψ ∈ Cn([0, x1],R).

Remark 1 ([22]). The following relations hold:

ρ = α + β(n− α), n− 1 < α, ρ < n, 0 ≤ β ≤ 1,
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and
ρ ≥ α, ρ > β, n− ρ < n− β(n− α).

Lemma 1 ([14]). Let α, µ > 0 and δ > 1 be constants. Then, we have:

(i) Iα;ψIµ;ψ ĥ(t) = Iα+µ;ψ ĥ(t);

(ii) Iα;ψ(ψ(t)− ψ(0))δ−1 =
Γ(δ)

Γ(α + δ)
(ψ(t)− ψ(0))α+δ−1.

Lemma 2. Let ĥ ∈ L(0, x1), n − 1 < α ≤ n, n ∈ N, 0 ≤ β ≤ 1, ρ = α + nβ − αβ,(
I(n−α)(1−β);ψ ĥ

)
∈ ACk[0, x1]. (Here, by ACk[0, x1], we denote the space of k times absolutely

continuous functions on [0, x1].) Then, we have

(
Iα;ψ HDα,β;ψ ĥ

)
(t) = ĥ(t)−

n

∑
k=1

(ψ(t)− ψ(a))ρ−k

Γ(ρ− k + 1)
ĥ[n−k]

ψ

(
I(1−β)(n−α);ψ ĥ

)
(a),

where ĥ[n−k]
ψ =

(
1

ψ′(t)
d
dt

)n−k
and

(
Iα;ψ CDα;ψ ĥ

)
(t) = ĥ(t)−

n−1

∑
k=0

ĥ[k]ψ ĥ(a)

k!
(ψ(t)− ψ(a))k.

A linear variant of the sequential Hilfer–Caputo fractional integro-differential bound-
ary value problem (1) is investigated in the next lemma.

Lemma 3. Let h ∈ C([0, x1],R) be a given function and all constants are as in boundary value
problem (1). Then, the sequential Hilfer–Caputo fractional integro-differential linear boundary
value problem

HDα,β;ψ1(CDγ;ψ2 π)(t) = h(t), t ∈ [0, x1],

CDγ;ψ2 π(0) = 0, π(x1) =
m

∑
i=1

λi
CDγ;ψ2 π(ηi) +

n

∑
j=1

δj Iµj ;ψ2 π(ξ j)
(2)

is equivalent to the integral equation

π(t) =
1
A

(
m

∑
i=1

λiIα;ψ1 h(ηi) +
n

∑
j=1

δjIµj+γ;ψ2Iα;ψ1 h(ξ j)− Iγ;ψ2Iα;ψ1 h(x1)

)
+ Iγ;ψ2Iα;ψ1 h(t), (3)

where it is assumed that

A := 1−
n

∑
j=1

δj

[
ψ2(ξ j)− ψ2(0)

]µj

Γ(µj + 1)
6= 0. (4)

Proof. Operating the fractional integral Iα;ψ1 to both sides of the first equation in (2) and
applying Lemma 2, we obtain for t ∈ [0, x1], that

CDγ:ψ2 π(t) =
c0

Γ(ρ1)
(ψ1(t)− ψ1(0))ρ1−1 + Iα;ψ1 h(t),

where ρ1 = α + (1− α)β and c0 ∈ R. Since ρ1 ∈ (α, 1), by Remark 1, from CDγ:ψ2 π(0) = 0,
we have c0 = 0. Therefore, we get

CDγ:ψ2 π(t) = Iα;ψ1 h(t), (5)
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which leads to
m

∑
i=1

λi
CDγ:ψ2 π(ηi) =

m

∑
i=1

λiIα;ψ1 h(ηi). (6)

Acting Iγ;ψ2 in (5) yields

π(t) = c1 + Iγ;ψ2Iα;ψ1 h(t). (7)

In addition, we have

n

∑
j=1

δjIµj ;ψ2 π(ξ j) = c1

n

∑
j=1

δj

[
ψ2(ξ j)− ψ2(0)

]µj

Γ(µj + 1)
+

n

∑
j=1

δjIµj+γ;ψ2Iα;ψ1 h(ξ j). (8)

From the second boundary condition (2) with (6) and (8), we get

c1 =
1
A

[
m

∑
i=1

λiIα;ψ1 h(ηi) +
n

∑
j=1

δjIµj+γ;ψ2Iα;ψ1 h(ξ j)− Iγ;ψ2Iα;ψ1 h(x1)

]
, (9)

where A is defined in (4). Substituting the value of c1 in (7), we get the solution (3). On
the other hand, by taking the fractional differential operator of ψ2-Caputo and ψ1-Hilfer of
orders γ and α, respectively, we get the first equation in problem (2). By direct computation,
it is easy to see that (3) satisfies the two boundary conditions in (2). Therefore, the proof
is completed.

3. Main Results

In this section, we establish existence and uniqueness of solutions to the sequential
Hilfer–Caputo fractional integro-differential boundary value problem (1) on an interval
J = [0, x1]. At first, we denote the Banach space of all continuous functions from J to
R equipped with the norm ‖π‖ = sup{|π(t)| : t ∈ J} by C = C(J,R). Having in mind
Lemma 3, we define an operator W : C → C by

(Wπ)(t) =
1
A

[ m

∑
i=1

λiIα;ψ1 Π(ηi, π(ηi)) +
n

∑
j=1

δjIµj+γ;ψ2Iα;ψ1 Π(ξ j, π(ξ j))

− Iγ;ψ2Iα;ψ1 Π(x1, π(x1))
]
+ Iγ;ψ2Iα;ψ1 Π(t, π(t)), (10)

where
Iα;ψ1 Π(ηi, π(ηi)) =

1
Γ(α)

∫ ηi

0
ψ′1(s)(ψ1(ηi)− ψ1(s))α−1Π(s, π(s))ds

and

Iφ;ψ2Iα;ψ1 Π(l, π(l))

=
1

Γ(α)Γ(φ)

∫ l

0

∫ u

0
ψ′1(s)ψ

′
2(u)(ψ1(u)− ψ1(s))α−1(ψ2(l)− ψ2(u))φ−1Π(s, π(s))dsdu,

with φ ∈ {γ, µj + γ} and l ∈ {t, x1, ξ j}. Note that if Π(t, π) ≡ 1, we have

Iφ;ψ2Iα;ψ1(1)(l) =
1

Γ(α + 1)Γ(φ)

∫ l

0
ψ′2(u)(ψ1(u)− ψ1(0))α(ψ2(l)− ψ2(u))φ−1du

:= Aα,φ
ψ1,ψ2

(l).

For convenience, we put

A1 =
1
|A|

(
m

∑
i=1
|λi|

[ψ1(ηi)− ψ1(0)]
α

Γ(α + 1)
+

n

∑
j=1
|δj|A

α,µj+γ

ψ1,ψ2
(ξ j)

)
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+

(
|A|+ 1
|A|

)
Aα,γ

ψ1,ψ2
(x1). (11)

In the following theorem, we prove the existence and uniqueness of solutions of the
fractional integro-differential boundary value problem of sequential Hilfer and Caputo
fractional derivatives (1) by applying the Banach contraction mapping principle.

Theorem 1. Let Π : J ×R→ R such that:

(H1)There exists L > 0 such that

|Π(t, π1)−Π(t, π2)| ≤ L|π1 − π2|, (12)

∀t ∈ J and π1, π2 ∈ R.

If
A1L < 1, (13)

where A1 is given by (11). Then, the fractional integro-differential boundary value problem of
sequential Hilfer and Caputo fractional derivatives (1) has a unique solution on J.

Proof. Let M = sup{|Π(t, 0)| : t ∈ J} and Br = {π ∈ C : ‖π‖ ≤ r∗} with

r∗ ≥ MA1

1− A1L
. (14)

Now, we will show that WBr∗ ⊆ Br∗ . For any π ∈ Br∗ , we obtain

|Wπ(t)| ≤ sup
t∈J
|Wπ(t)|

≤ 1
|A|

[
m

∑
i=1
|λi|Iα;ψ1(|Π(ηi, π(ηi))−Π(ηi, 0)|+ |Π(ηi, 0)|)

+
n

∑
j=1
|δj|Iµj+γ;ψ2Iα;ψ1

(
|Π(ξ j, π(ξ j))−Π(ξ j, 0)|+ |Π(ξ j, 0)|

)
+ Iγ;ψ2Iα;ψ1(|Π(x1, π(x1))−Π(x1, 0)|+ |Π(x1, 0)|)

]
+ Iγ;ψ2Iα;ψ1(|Π(x1, π(x1))−Π(x1, 0)|+ |Π(x1, 0)|)

≤ 1
|A|

[
m

∑
i=1
|λi|(Lr∗ + M)Iα;ψ1(1)(ηi)

+
n

∑
j=1
|δj|(Lr∗ + M)Iµj+γ;ψ2 Iα;ψ1(1)(ξ j)

+ (Lr∗ + M)Iγ;ψ2 Iα;ψ1(1)(x1)

]
+ (Lr∗ + M)Iγ;ψ2 Iα;ψ1(1)(x1)

=
1
|A|

[
(Lr∗ + M)

m

∑
i=1
|λi|

[ψ1(ηi)− ψ1(0)]
α

Γ(α + 1)

+ (Lr∗ + M)
n

∑
j=1
|δj|A

α,µj+γ

ψ1,ψ2
(ξ j) + (Lr∗ + M)Aα,γ

ψ1,ψ2
(x1)

]
+ (Lr∗ + M)Aα,γ

ψ1,ψ2
(x1)

= (Lr∗ + M)A1 ≤ r∗,
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which holds from (14). This shows that WBr∗ ⊆ Br∗ . Next, we let π1, π2 ∈ Br∗ , then
we have

|Wπ1(t)−Wπ2(t)| ≤ sup
t∈J
|Wπ1(t)−Wπ2(t)|

≤ 1
|A|

[
m

∑
i=1
|λi|Iα;ψ1 |Π(ηi, π1(ηi))−Π(ηi, π2(ηi))|

+
n

∑
j=1
|δj|Iµj+γ;ψ2Iα;ψ1 |Π(ξ j, π1(ξ j))−Π(ξ j, π2(ξ j))|

+ Iγ;ψ2Iα;ψ1 |Π(x1, π1(x1))−Π(x1, π2(x1))|
]

+ Iγ;ψ2Iα;ψ1 |Π(x1, π1(x1))−Π(x1, π2(x1))|,

≤ L
|A|

[
‖π1 − π2‖

m

∑
i=1
|λi|Iα;ψ1(1)(ηi)

+ ‖π1 − π2‖
n

∑
j=1
|δj|Iµj+γ;ψ2Iα;ψ1(1)(ξ j)

+ ‖π1 − π2‖Iγ;ψ2Iα;ψ1(1)(x1)

]
+ L‖π1 − π2‖Iγ;ψ2Iα;ψ1(1)(x1)

= A1L‖π1 − π2‖.

Therefore, the operator W satisfies the inequality ‖Wπ1 −Wπ2‖ ≤ A1L‖π1 − π2‖.
Since, A1L < 1, W is a contraction. Therefore, the operator W has a unique fixed point in
the ball Br, by Banach’s contraction mapping. Consequently, the sequential Hilfer–Caputo
fractional integro-differential boundary value problem (1) has a unique solution on J.

Next, the nonlinear alternative of the Leray–Schauder-type [23] is used to prove
the existence of at least one solution to the sequential Hilfer–Caputo fractional integro-
differential boundary value problem (1).

Theorem 2. Assume that Π : J ×R→ R is a continuous function satisfying the conditions:

(H2)There exists a continuous function Ω : [0, ∞)→ (0, ∞) which is nondecreasing and u1, u2 :
J → R+ two continuous functions such that

|Π(t, π)| ≤ u1(t)Ω(|π|) + u2(t), (15)

for all t ∈ J and π ∈ R;
(H3)There exists a positive constant K such that

K
(‖u1‖Ω(K) + ‖u2‖)A1

> 1. (16)

Then, the sequential Hilfer–Caputo fractional integro-differential boundary value problem (1)
has at least one solution on J.

Proof. We show that the operator W defined by (10) is compact on a bounded ball Bρ,
when Bρ = {π ∈ C : ‖π‖ ≤ ρ}. For any π ∈ Bρ, we have

|Wπ(t)| ≤ sup
t∈J
|Wπ(t)|

≤ 1
|A|

[
m

∑
i=1
|λi|Iα;ψ1 |Π(ηi, π(ηi))|+

n

∑
j=1
|δj|Iµj+γ;ψ2Iα;ψ1 |Π(ξ j, π(ξ j))|
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+Iγ;ψ2Iα;ψ1 |Π(x1, π(x1))|
]
+ Iγ;ψ2Iα;ψ1 |Π(x1, π(x1))|,

≤ 1
|A|

[
(‖u1‖Ω(ρ) + ‖u2‖)

m

∑
i=1
|λi|Iα;ψ1(ηi)

+(‖u1‖Ω(ρ) + ‖u2‖)
n

∑
j=1
|δj|Iµj+γ;ψ2Iα;ψ1(ξ j)

+(‖u1‖Ω(ρ) + ‖u2‖)Iγ;ψ2Iα;ψ1(x1)

]
+ (‖u1‖Ω(ρ) + ‖u2‖)Iγ;ψ2Iα;ψ1(x1)

= (‖u1‖Ω(ρ) + ‖u2‖)A1 := Φ, a constant,

which yields ‖Wπ‖ ≤ Φ. Therefore, the set W(Bρ) is uniformly bounded. To show that
W(Bρ) is an equicontinuous set, we let t1 and t2 be the two points in J such that t1 < t2.
Thus, for any π ∈ Bρ, we have

|Wπ(t2)−Wπ(t1)|

=
∣∣∣ 1
Γ(α)Γ(γ)

∫ t2

0

∫ u

0
ψ′1(s)ψ

′
2(u)(ψ1(u)− ψ1(s))α−1

×(ψ2(t2)− ψ2(u))α−1Π(s, π(s))dsdu

− 1
Γ(α)Γ(γ)

∫ t1

0

∫ u

0
ψ′1(s)ψ

′
2(u)(ψ1(u)− ψ1(s))α−1

×(ψ2(t1)− ψ2(u))α−1Π(s, π(s))dsdu
∣∣∣

=
∣∣∣ 1
Γ(α)Γ(γ)

∫ t1

0

∫ u

0
ψ′1(s)ψ

′
2(u)(ψ1(u)− ψ1(s))α−1

×(ψ2(t2)− ψ2(u))α−1Π(s, π(s))dsdu

+
1

Γ(α)Γ(γ)

∫ t2

t1

∫ u

0
ψ′1(s)ψ

′
2(u)(ψ1(u)− ψ1(s))α−1

×(ψ2(t2)− ψ2(u))α−1Π(s, π(s))dsdu

− 1
Γ(α)Γ(γ)

∫ t1

0

∫ u

0
ψ′1(s)ψ

′
2(u)(ψ1(u)− ψ1(s))α−1

×(ψ2(t1)− ψ2(u))α−1Π(s, π(s))dsdu
∣∣∣

=
∣∣∣ 1
Γ(α)Γ(γ)

∫ t1

0

∫ u

0
ψ′1(s)ψ

′
2(u)(ψ1(u)− ψ1(s))α−1

{
(ψ2(t2)− ψ2(u))α−1

−(ψ2(t1)− ψ2(u))α−1
}

Π(s, π(s))dsdu

+
1

Γ(α)Γ(γ)

∫ t2

t1

∫ u

0
ψ′1(s)ψ

′
2(u)(ψ1(u)− ψ1(s))α−1

×(ψ2(t2)− ψ2(u))α−1Π(s, π(s))dsdu
∣∣∣

≤ 1
Γ(α)Γ(γ)

∫ t1

0

∫ u

0
ψ′1(s)ψ

′
2(u)(ψ1(u)− ψ1(s))α−1

×
∣∣∣(ψ2(t2)− ψ2(u))α−1 − (ψ2(t1)− ψ2(u))α−1

∣∣∣|Π(s, π(s))|dsdu

+
1

Γ(α)Γ(γ)

∫ t2

t1

∫ u

0
ψ′1(s)ψ

′
2(u)(ψ1(u)− ψ1(s))α−1

×(ψ2(t2)− ψ2(u))α−1|Π(s, π(s))|dsdu

≤ (‖u1‖Ω(ρ) + ‖u2‖)
Γ(α)Γ(γ)

∫ t1

0

∫ u

0
ψ′1(s)ψ

′
2(u)(ψ1(u)− ψ1(s))α−1
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×
∣∣∣(ψ2(t2)− ψ2(u))α−1 − (ψ2(t1)− ψ2(u))α−1

∣∣∣dsdu

+
(‖u1‖Ω(ρ) + ‖u2‖)

Γ(α)Γ(γ)

∫ t2

t1

∫ u

0
ψ′1(s)ψ

′
2(u)(ψ1(u)− ψ1(s))α−1

×(ψ2(t2)− ψ2(u))α−1dsdu.

Observe that if t1 → t2, then we have |Wπ(t2) −Wπ(t1)| → 0 independently of π.
Therefore, the set W(Bρ) is an equicontinuous set. Hence, the set W(Bρ) is relatively
compact. By applying the Arzelá–Ascoli theorem, the operator W is completely continuous.

Finally, we show that the set of all solutions to equations π = λWπ is bounded for
λ ∈ (0, 1). Let π ∈ C and π = λWπ for some λ ∈ (0, 1). Then, for any t ∈ J, as in the first
step, we obtain

|π(t)| = λ|Wπ(t)| ≤ sup
t∈J
|Wπ(t)|

≤ (‖u1‖Ω(‖π‖) + ‖u2‖)A1,

and, consequently,
‖π‖

(‖u1‖Ω(‖π‖) + ‖u2‖)A1
≤ 1.

From (H3), ‖π‖ 6= K. After that, we define U = {π ∈ Bρ : ‖π‖ < K}. Now, we can see
that W : U → C is continuous and completely continuous. Thus, there is no π ∈ ∂U such
that π = λWπ with 0 < λ < 1. By the nonlinear alternative of the Leray–Schauder-type,
we get that the operator W has a fixed point π ∈ U, which is a solution of the nonlocal
fractional integro-differential sequential Hilfer and Caputo boundary value problem (17)
on J. The proof is completed.

4. Some Special Cases

In this section, we present some special cases and some interesting behavior of solu-
tions to the investigated problem (1).

Corollary 1. Assume that Π : J ×R→ R is a continuous function.

(a) If |Π(t, π)| ≤ M, where M is a positive constant, then the nonlocal fractional integro-
differential sequential Hilfer and Caputo boundary value problem (17) has at least one solu-
tion J.

(b) If u1(t) = 1, Ω(u) = Bu + C, u2(t) = D, where B ≥ 0, C, D > 0, then the nonlocal
fractional integro-differential sequential Hilfer and Caputo boundary value problem (17) has
at least one solution J if A1B < 1.

(c) If u1(t) = 1, Ω(u) = Bu2 + C, u2(t) = D, where B ≥ 0, C, D > 0, then the nonlocal
fractional integro-differential sequential Hilfer and Caputo boundary value problem (17) has
at least one solution J, if 4A2

1B(C + D) < 1.

If we put ψ1(t) = ψ2(t) = ψ(t), then the nonlocal fractional integro-differential
sequential Hilfer and Caputo boundary value problem (17) is reduced to

HDα,β;ψ(CDγ;ψπ)(t) = Π(t, π(t)), 0 < α, β, γ < 1, t ∈ [0, x1],

CDγ;ψπ(0) = 0, π(x1) =
m

∑
i=1

λi
CDγ;ψπ(ηi) +

n

∑
j=1

δj Iµj ;ψπ(ξ j).
(17)

The following constants are used in the next corollaries.

A∗ = 1−
n

∑
j=1

δj

[
ψ(ξ j)− ψ(0)

]µj

Γ(µj + 1)
,



Mathematics 2023, 11, 867 9 of 12

A∗1 =
1
|A∗|

(
m

∑
i=1
|λi|

[ψ(ηi)− ψ(0)]α

Γ(α + 1)
+

n

∑
j=1
|δj|
(
ψ(ξ j)− ψ(0)

)α+µj+γ

Γ(α + µj + γ + 1)

)

+

(
|A∗|+ 1
|A∗|

)
(ψ(x1)− ψ(0))α+γ

Γ(α + γ + 1)
.

Corollary 2. If f satisfies the Lipschitz condition in (H1) and if A∗1 L < 1, then the nonlocal
fractional integro-differential sequential Hilfer and Caputo boundary value problem (17) has a
unique solution on J.

Corollary 3. If the continuous function f satisfies (H2) in Theorem 2 and if there exists a positive
constant M such that

M
(‖u1‖Ω(M) + ‖u2‖)A∗1

> 1,

then the nonlocal fractional integro-differential sequential Hilfer and Caputo boundary value
problem (17) has at least one solutions on J.

If n = p + q, and µw = 0 for w = 1, . . . , q, then the problem (17) can be reduced to the
following problem with integro-differential multi-point boundary conditions as

HDα,β;ψ(CDγ;ψπ)(t) = Π(t, π(t)), 0 < α, β, γ < 1, t ∈ [0, x1],

CDγ;ψπ(0) = 0, π(x1) =
m

∑
i=1

λi
CDγ;ψπ(ηi) +

p

∑
j=1

δj Iµj ;ψπ(ξ j) +
q

∑
w=p+1

ζw π(θw).
(18)

In addition, we put

Â = 1−
p

∑
j=1

δj

[
ψ(ξ j)− ψ(0)

]µj

Γ(µj + 1)
−

q

∑
w=p+1

ζw,

Â1 =
1
|Â|

{
m

∑
i=1
|λi|

[ψ(ηi)− ψ(0)]α

Γ(α + 1)
+

p

∑
j=1
|δj|
(
ψ(ξ j)− ψ(0)

)α+µj+γ

Γ(α + µj + γ + 1)

+
q

∑
w=p+1

|ζw|
(ψ(θw)− ψ(0))α+γ

Γ(α + γ + 1)

}
+

(
|Â|+ 1
|Â|

)
(ψ(x1)− ψ(0))α+γ

Γ(α + γ + 1)
.

The existence and uniqueness results for the integro-differential multi-point boundary
value problem (18) are similar to the Corollaries 2 and 3 by replacing Â1 with A∗1 .

5. Illustrative Examples

Example 1. Let us consider the following integro-differential boundary conditions to the sequential
ψ1-Hilfer and ψ2-Caputo fractional differential equation of the form

HD
1
4 , 3

4 ;e
1
10 t(CD

1
2 ;t2+tπ

)
(t) = Π(t, π(t)), 0 < t <

9
8

, (19)

CD
1
2 ;t2+tπ(0) = 0, π

(
9
8

)
=

3
67

CD
1
2 ;t2+tπ

(
3
8

)
+

5
77

CD
1
2 ;t2+tπ

(
5
8

)
+

7
87

CD
1
2 ;t2+tπ

(
7
8

)
+

2
39

I
4
5 ;t2+tπ

(
1
2

)
+

4
59

I
7
5 ;t2+tπ

(
3
4

)
. (20)

From the boundary value problem (19), we set constants as α = 1/4, β = 3/4, γ = 1/2,
x1 = 9/8, λ1 = 3/67, λ2 = 5/77, λ3 = 7/87, η1 = 3/8, η2 = 5/8, η3 = 7/8, δ1 = 2/39,
δ2 = 4/59, µ1 = 4/5, µ2 = 7/5, ξ1 = 1/2, ξ2 = 3/4 and functions ψ1(t) = e(1/10)t and
ψ2(t) = t2 + t. From above information, we can compute that A ≈ 0.8763925133 and
A1 ≈ 2.374946616. Observe that the two functions satisfy ψ′1, ψ′2 > 0.
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(i) If the function Π is defined by

Π(t, π(t)) =
1

2t + 5

(
2|π|+ π2

1 + |π|

)
+

1
7

t2 + 8t +
1
9

. (21)

From the given nonlinear unbounded Lipschitzian function in (21), we get |Π(t, π) −
Π(t, z)| ≤ (2/5)|π − z| for t ∈ [0, 9/8], π, z ∈ R. Setting L = 2/5, we have A1L ≈
0.9499786464 < 1 which fulfills the condition in (13). The result in Theorem 1 can be used
to conclude that the boundary value problem (19) and (20) with the given function in (21)
has a unique solution on [0, 9/8]

(ii) Let the function Π be defined as

Π(t, π(t)) =
1

t + 4

(
π2024

5(1 + π2022)
+

1
3t + 6

)
+

1
2t + 7

. (22)

We have

|Π(t, π)| ≤ 1
t + 4

(
1
5

π2 +
1
6

)
+

1
2t + 7

.

Choosing u1(t) = 1/(t + 4), u2(t) = 1/(2t + 7) and Ω(π) = (1/5)π2 + (1/6), we get
‖u1‖ = 1/4, ‖u2‖ = 1/7 and then, there exists a K ∈ (0.463775263, 7.957466657) satisfying
the inequality in (16). Therefore, all assumptions in Theorem 2 agree with function Π
in (22). Then, using integro-differential boundary conditions to the sequential ψ1-Hilfer
and ψ2-Caputo fractional differential Equations (19), (20) and (22) have at least one solution
on [0, 9/8].

(iii) If ψ1(t) = ψ2(t) = t2 + t, then (19) is expressed as

HD
1
4 , 3

4 ;t2+t
(

CD
1
2 ;t2+tπ

)
(t) = Π(t, π(t)), 0 < t <

9
8

, (23)

and we can find that A∗ ≈ 0.8763925133, A∗1 ≈ 4.810643110. If

Π(t, pi) =
1

2t + 10

(
2|π|+ π2

1 + |x|

)
+

1
7

t2 + 8t +
1
9

. (24)

Then, L = 1/5 and we have A∗1 L ≈ 0.9621286220. This means that boundary value
problem (23), (20) and (24) has a unique solution on [0, 9/8].

In addition, if function Π in (23) is given in (22), then there exists a constant K ∈
(0.235228817, 3.922219479) which satisfies the Corollary 3. So, the boundary value problem
(23), (20) and (22) has at least one solution on [0, 9/8].

(iv) If the boundary conditions in (20) is replaced by

CD
1
2 ;t2+tπ(0) = 0, π

(
9
8

)
=

3
67

CD
1
2 ;t2+tπ

(
3
8

)
+

5
77

CD
1
2 ;t2+tπ

(
5
8

)
+

7
87

CD
1
2 ;t2+tπ

(
7
8

)
+

2
39

I
4
5 ;t2+tπ

(
1
2

)
+

4
59

π

(
3
4

)
. (25)

Then, we get Â ≈ 0.8884626894, Â1 ≈ 4.816166032. If

Π(t, π) = Wπ2 + Z, (26)

where constants W, Z > 0 and WZ < 1/(4Â2
1) ≈ 0.01077797341. Then, there exists

a positive constant M satisfying the Corollary 3 when replacing A∗1 by Â1. Hence, the
boundary value problem (23), (25) and (26) has at least one solution on [0, 9/8].
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6. Conclusions

In this paper, we have studied a new kind of boundary value problem consisting of
a combination of two fractional derivative operators, one ψ1-Hilfer and one ψ2-Caputo,
supplemented with nonlocal integro-differential boundary conditions. This combination,
as far as we know, is new in the literature. Our uniqueness result is derived via Banach’s
contraction principle, while the Leray–Schauder nonlinear alternative is used to derive the
existence result. The main results are well illustrated by constructing numerical examples.
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