
Citation: Lu, K.; Cheng, J.; Yan, A.

Malware Detection Based on the

Feature Selection of a Correlation

Information Decision Matrix.

Mathematics 2023, 11, 961. https://

doi.org/10.3390/math11040961

Academic Editors: Zibin Zheng,

Ruoxi Jia, Dan Li, Yuxun Zhou and

Liang Xu

Received: 9 January 2023

Revised: 3 February 2023

Accepted: 10 February 2023

Published: 13 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Malware Detection Based on the Feature Selection of a
Correlation Information Decision Matrix
Kai Lu 1,2 , Jieren Cheng 3,* and Anli Yan 1

1 School of Cyberspace Security (School of Cryptology), Hainan University, Haikou 570100, China
2 Department of Public Safety Technology, Hainan Vocational College of Political Science and Law,

Haikou 571100, China
3 School of Computer Science and Technology, Hainan University, Haikou 570100, China
* Correspondence: hnplctx@163.com

Abstract: Smartphone apps are closely integrated with our daily lives, and mobile malware has
brought about serious security issues. However, the features used in existing traffic-based malware
detection techniques have a large amount of redundancy and useless information, wasting the
computational resources of training detection models. To overcome this drawback, we propose
a feature selection method; the core of the method involves choosing selected features based on
high irrelevance, thereby removing redundant features. Furthermore, artificial intelligence has
implemented malware detection and achieved outstanding detection ability. However, almost all
malware detection models in deep learning include pooling operations, which lead to the loss of
some local information and affect the robustness of the model. We also propose designing a malware
detection model for malicious traffic identification based on a capsule network. The main difference
between the capsule network and the neural network is that the neuron outputs a scalar, while the
capsule outputs a vector. It is more conducive to saving local information. To verify the effectiveness
of our method, we verify it from three aspects. First, we use four popular machine learning algorithms
to prove the effectiveness of the proposed feature selection method. Second, we compare the capsule
network with the convolutional neural network to prove the superiority of the capsule network.
Finally, we compare our proposed method with another state-of-the-art malware detection technique;
our accuracy and recall increased by 9.71% and 20.18%, respectively.

Keywords: feature selection; capsule network; malware detection; network traffic

MSC: 68T05

1. Introduction

With the popularity of the internet and mobile devices, malware has become a major
threat to the growing mobile ecosystem. Kaspersky’s statistical report [1] shows that in
2020, the number of new malicious files detected every day reached 360,000, an increase
of 5.2% compared with the previous year. Although mobile anti-virus scanners provide
security protection mechanisms for Android devices, more advanced mobile malware
can still infiltrate mobile systems by circumventing these mechanisms. Given that mobile
devices are carrying an increasing amount of users‘ private information, there is an urgent
need to develop an efficient malware detection scheme.

Malware detection technology can be divided into three types: static analysis, dynamic
analysis, and network traffic analysis. The essential difference between these three types
of methods is that they use different features [2]. Static analysis methods use application
codes and binary structures as features [3,4]. However, to avoid detection by anti-virus
scanners, malware authors use techniques, such as repackaging and code obfuscation to
generate malware variants. The ’calling relationship’ between functions characterizes the
dynamic analysis method during the running of the application [5]. This method needs to

Mathematics 2023, 11, 961. https://doi.org/10.3390/math11040961 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11040961
https://doi.org/10.3390/math11040961
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-7508-1445
https://doi.org/10.3390/math11040961
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11040961?type=check_update&version=2

Mathematics 2023, 11, 961 2 of 17

be completed on a specific sandbox and requires sufficient execution to cover the behavior
of the application. When the malware author repackages the malware or obfuscates the
code, the features of the methods as mentioned earlier change dramatically, leading to a
decrease in the performance of the detection model. From another point of view, these
malware variants have similar malicious behaviors. In other words, malicious traffic
triggered by malware is similar. Network traffic analysis takes the network traffic triggered
by the application as the research object [6]. This method extracts statistical features (such
as packet size and packet interval) [7] or HTTP header semantic features (such as host and
method) [8] from the network traffic for analysis. Therefore, the network traffic analysis
method overcomes the shortcomings of static and dynamic analyses, because even if the
malicious code changes significantly, some traffic features are similar. This paper uses the
research object by Wang et al.’s [9] public network traffic dataset.

Machine learning provides multiple methods to deal with malware detection. If the
only goal is to accurately detect malware, deep learning is usually a better choice [6]. Re-
search has shown that, compared with other machine learning technologies, deep learning
has demonstrated excellent performance in different application fields [10]. Similarly, deep
learning has also been researched in the field of malware detection and has achieved high
performance [11]. However, the algorithms used in deep learning for malware detection
models are almost all based on convolutional neural networks. Through pooling operations,
convolutional neural networks are helpful for analysis, but some local information is lost,
resulting in a decrease in robustness. To overcome the shortcomings of convolutional neural
networks, we conducted verification experiments on the capsule network as a malware
detection model. A capsule network is more conducive to preserving local information
and having local equivariant characteristics, so it can better improve its generalization
ability. In addition, we also propose a feature selection method to further filter the features
of the dataset, thereby further improving the detection performance of the model. The
contributions made in this paper are summarized as follows:

• We propose a novel malware detection method integrating feature selection and a
malware detection model. The malware detection model is a capsule network that
overcomes the deficiencies of a convolutional neural network. To the best of our
knowledge, this is the first time that a capsule network has been applied in the field of
malware detection.

• We propose a feature selection method based on a correlation information decision
matrix to reduce the dimensions of high-dimensional data and provide a strong
guarantee for subsequent detection tasks.

• We evaluated the effectiveness of our method through some detailed experiments
and compared our method with state-of-the-art malware detection techniques. Our
experiments show that our method achieves higher detection results.

The rest of the paper is organized as follows: Section 2 introduces related works.
Section 3 presents our proposed method. Section 4 describes the experimental design
and implementation. Section 5 discusses the experimental results. Section 6 concludes
the paper.

2. Related Work
2.1. Feature Selection

The form of feature selection can be divided into two categories: filter and model-based.
The filter involves scoring each feature according to divergence or correlation and then
setting a threshold or the number of features to be selected for filtering. Jemal et al. [12]
defined feature selection as a quadratic programming problem, and analyzed how the filter-
based feature selection method works in Android malware detection. Mouhammd et al. [13]
studied feature selection and malware classification based on machine learning. These
features are identified intuitively. The features of each part of the PE (portable executable)
file can be associated with each other, not with class files. Pushkar et al. [14] proposed a

Mathematics 2023, 11, 961 3 of 17

new JavaScript analysis and detection technology based on the sandbox assisted ensemble
model, and calculated the Pearson coefficient between each feature to extract features.

The working mode of the model-based feature selection algorithm can be divided into
two cases. One is to train the model on the training set for each feature subset to be selected
and then select the feature subset on the test set according to the size of the error. The other
first uses some machine learning models for training, obtains the weight coefficients of
each feature, and finally selects the features according to the coefficients from large to small.
Yan et al. [15] proposed a two-tier architecture for malware detection, which uses a random
forest algorithm for feature selection before training the detection model. Csahin et al. [16]
used a feature selection method based on linear regression to remove unnecessary features,
and then built a malware detection system. Anam et al. [17] proposed a machine learning-
based Android malware detection method, using an evolutionary genetic algorithm for
feature selection. The results show that the feature selection still keeps the classification
accuracy of over 94%, and reduces the feature dimension greatly. Harry et al. [18] proposed
an improved feature learning method for malware detection, which is based on Aminanto
et al. [19]. The authors of [19] proposed deep abstraction and weighted feature selection
(DFES) for intrusion detection systems in 2017.

Compared with the above feature selection work, we propose a feature selection
method based on the correlation information decision matrix (CIDM) to reduce the di-
mension of high-dimensional data. CIDM can keep the original dimension information.
In addition, based on the feature selection method, CIDM achieves soft dimensionality
reduction through iterative statistical analysis of the correlation coefficient matrix.

2.2. Malware Detection-Based Network Traffic

As this paper focuses on network traffic, we only analyze the detection of malware
based on network traffic. The different features extracted from network traffic can be
divided into textual feature and statistical feature analyses [15].

Textual feature analysis involves extracting text information in traffic, such as the URL,
packet header, etc., and then using natural language processing technology to preprocess it
and convert it into a data format that can be processed by a machine learning model [20].
Li et al. [21] proposed a method combining linear space transformation and nonlinear
space transformation. For linear space transformation, it first performs singular value
decomposition to obtain the orthogonal space and then uses linear programming to solve
the optimal distance metric. For nonlinear space transformation, they introduced the
Nyström method [22] for kernel approximation and adopted a modified distance metric
for its radial basis function. Wang et al. [20] proposed a method to identify malware by
using a URL accessed by an application. In addition, they established a multi-view neural
network, which can automatically generate multiple input views and assign soft attention
weights to different input features. Taiga et al. [23] proposed a malware detection method
that does not require benign communication traffic. This method generates a template
containing the HTTP request templates generated by the malware. Then, it detects whether
the host is infected by malware by comparing the monitored HTTP request set with the
template set. Kitsune [24] is a plug-and-play unsupervised network intrusion detection
system. Kitsune’s core algorithm uses an integrated autoencoder to distinguish between
benign and malicious traffic patterns.

Statistical feature analysis involves extracting statistical information from the traffic,
such as data packet size, the time interval between data packets, etc., and then normalizing
the extracted statistical features to train the machine learning model [25]. Wang et al. [26]
proposed a lightweight security mechanism to detect malicious traffic, which is based on
the Chebyshev polynomial approximation theory of time series. Cheng et al. [27] proposed
a deep packet inspection (OFDPI) method based on the SDN paradigm to provide adaptive
and efficient packet inspection. First, OFDPI checks the IP address of each new flow through
the OpenFlow protocol, which provides for early detection at the flow-level granularity.
Then, OFDPI allows for deep packet inspection at the packet-level granularity. A malicious

Mathematics 2023, 11, 961 4 of 17

traffic detection framework called Malfinder—based on ensemble learning—was proposed
in [28]. Malfinder uses statistical features and sequence features to describe network traffic
and extends the dimensions of these two features to enhance their ability to represent
traffic data. When considering that most of the network traffic is benign and only a small
part is malicious, which leads to the data imbalance issue. Chen et al. [29] proposed
solving the challenge of low model prediction accuracy caused by data imbalance issues.
They use the imbalanced data gravitation-based classification (IDGC) algorithm to classify
imbalanced data.

Compared with the above malware detection-based network traffic work, we propose
a malware detection method based on a capsule neural network. It is also the first applica-
tion of a capsule neural network in the field of malware detection since it was proposed
in 2017 [30]. In addition, to make the capsule neural network achieve better detection
performance, we also developed a feature selection algorithm based on feature correlation.

3. Methodology

Our proposed malware detection method includes two main parts, one is feature
selection and the other is the detection model. It operates by (1) extracting more vital
features to reduce feature dimensions based on the raw text features of network traffic, and
(2) detecting malicious traffic through the capsule network.

3.1. Feature Selection

For high-dimensional traffic data, the necessary dimension reduction preprocessing
can improve the efficiency of subsequent processing and the accuracy of recognition. Before
classification work, to retain the direct information of the original data and refine the
dimension reduction process, we propose a feature selection method based on a correlation–
information decision matrix (CIDM) to reduce the dimension. The factors we consider are
the correlation between features and the amount of information on features. Generally
speaking, the lower the correlation between features, the more information they carry.
Before introducing the feature selection method, several related contents (such as CIDM
and the score of features) need to be introduced.

3.1.1. Correlation Decision Matrix

The reference information that determines which features are redundant is obtained
from the CIDM; the CIDM is optimized from the correlation decision matrix (CDM). The
generation process of CDM is shown in Figure 1. First, we use Equation (1) to calculate the
correlation coefficient between each pair of features and obtain the correlation coefficient
matrix C, where Var(Ai) is the variance between the values within the feature Ai, which
is computed by Equation (2), M is the number of features and µi is the elements average
value of Ai. Additionally, Cov(Ai Aj), as is shown in Equation (3), is the covariance between
features Ai and Aj. In these Equations, 1 ≤ i, j ≤ M. If the value of the elements in matrix
C is less than 0, it is converted to its opposite number, i.e., the elements in the matrix are all
non-negative. Second, an initial correlation decision matrix O for matrix C is established.
Currently, each element value of each row of matrix O corresponds to the serial number of
its column. For example, the value of the i− th column from the left is i. Next, each row
element of the matrix O is arranged in ascending order according to each row’s value of
the corresponding matrix C to obtain CDM O′. Finally, we conduct the statistical analysis
of this iteration in the local matrix (red box range) with width to determine which features
are reduced.

ρAi Aj =
Cov(Ai Aj)√

Var(Ai)Var(Aj)
(1)

Var(Ai) =
1
n

M

∑
i=1

(Ai − µi)
2 (2)

Mathematics 2023, 11, 961 5 of 17

Cov(Ai Aj) =
1
n

M

∑
k=1

(Aik Ajk)−
1
n2 (

M

∑
1

Aik)(
M

∑
1

Ajk) (3)

In addition, if we only consider the correlation for dimensionality reduction, we will
reduce the main features in some extreme cases, for example, there are three vectors: a
= [1,0,0,0,0,0], b = [0,1,0,0,0,0], c = [1,1,1,0,1,0]. corrcoe f (x, y) is the correlation coefficient
function of the two vectors x and y. Then, corrcoef(a,b) = 0.2, corrcoef(a,c) = corrcoef(b,c) =
0.32. According to the rule that the higher the correlation between features is, the lower
the amount of information they carry, the features c with high amounts of data should
be reduced. This is obviously wrong. It is similar to two low information features, a and
b, which crowd out their differences c. To avoid this situation, in fact, it does happen in
the data used in the latter experiment, the consideration of the amount of information is
essential. The information aoi(i) is represented by the number of non-zero elements of
feature i. All elements in the matrix C are adjusted by Equations (4) and (5).

Cij =
Cij

γ
+

(γ− 1) ∗ aoi_r(j) ∗ ave_C
γ ∗ ave_aoi_r

, 1 ≤ i, j ≤ M (4)

aoi_r(i) =
{

N/aoi(i), aoi(i)/N < a
N/(N − aoi(i)), aoi(i)/N ≥ a

(5)

where ave_C
ave_aoi_r is a weighting factor, which is used to adjust the correlation and information

range to the same order of magnitude in Equation (4). ave_C is the average of all elements
of the matrix C and ave_aoi_r represents the average of aoi_r. γ is used to control the
proportion of the correlation and information in the assignment and the value range is
[1,+∞). From Equation (4), it is obvious that when γ is equal to 1, only the correlation
is considered; when it is oriented to positive infinity, only the amount of information is
considered. Parameter a is used to control the intensity of low information feature selection;
here, we use 0.9. Now, we can obtain the matrix CIDM according to the flow of Figure 1.

Figure 1. Establishment of CDM.

3.1.2. Scoring of Attributes

The local matrix consists of the width column and M rows. In this matrix, the fre-
quency of each existing feature is counted, and the average and variance of the correlation
coefficient with all features are combined to score. This score value is used as the basis for
judging feature reduction. We sort these scores, and the first width features with the largest
scores are taken as the reduction objects in this iteration. Instead of using the frequency
of occurrence as the judgment basis, the mean value and variance of the correlation coeffi-
cients between features are added to avoid ambiguity in the selection of reduction objects
caused by the same frequency of occurrence among multiple features. Specifically, the score
equation is shown in Equation (6), where Ave(Ci) and Var(Ci) represent the average and
variance of the i-th row of matrix C, and S_score(Ai) is the statistical frequency, which is
the score of attribute Ai in the local matrix in the current iteration.

Mathematics 2023, 11, 961 6 of 17

Score(Ai) = Ave(Ci) + Var(Ci) + S_score(Ai) (6)

3.1.3. Algorithm of Dimension Reduction

According to CDM and the feature scoring method, a feature selection method based
on CDM is proposed. The specific execution process pseudo-code of the dimension reduc-
tion algorithm is shown in Algorithms 1 and 2.

Algorithm 1 Iterative feature selection.

Require: Dataset X = [x1, x2, . . . , xM], width, goal_dim.
Ensure: X′ = [x′1, x′2, . . . , x′goal_dim]

1: Establish the correlation matrix C by Equations (1)–(5)
2: The elements that are less than 0 in matrix C are replaced by their absolute values
3: C = C− E
4: iteration← f loor((M− goal_dim)/width)
5: remainder ← (M− goal_dim)− width ∗ iteration
6: while iteration > 0
7: X ← Score(X, width)
8: iteration← iteration− 1
9: end while

10: if remainder 6= 0
11: width← remainder
12: X ← Score(X, width)
13: end if
14: X′ ← X

Algorithm 2 Score.

Require: X = [x1, x2, . . . , xM], width.
Ensure: X after dimension reduction in this iteration

1: Establish the correlation matrix C by Equations (1)–(3)
2: The elements less than 0 in matrix C are replaced by their absolute values
3: C ← C− E
4: Calculate Ave(Ci) and Var(Ci)
5: Establish correlation decision matrix O′

6: Count S_score(Ai) in the local matrix with width width
7: Calculate Score(Ai) by Equation (6)
8: Sort the attribute number by the corresponding Score value
9: Reduce the width dimensions of X with the largest Score value

Through the description of the algorithm pseudo-code, the whole dimension reduction
process can be cleared. In the details of Algorithm 1, the parameter goal_dim represents
the number of dimensions to reduce dataset X. The purpose of setting this parameter is to
match the input interface of the subsequent classification model. E is an identity matrix
of M rows and M columns; iteration determines the number of iterations in the whole
reduction process; remainder is the remainder of the differences between the initial data
dimensions M and goal_dim divided by width. The parameter width is determined by the
experiments. If remainder 6= 0 means that the algorithm completes the iteration reduction
processes, there are remainder (smaller than iteration) attributes that need to be reduced.
The reason why the local matrix is used to score features in each iteration is to make the
trade-off between multiple features with high correlations clear. For example, in extreme
cases, there is a high correlation between two features. At this time, only one of them needs
to be reduced. How does one choose between them? The statistical score based on the local
matrix can solve this problem well.

Mathematics 2023, 11, 961 7 of 17

3.2. Malware Detection

Our malware detection model is based on a capsule network. A capsule neural
network was first proposed by Sabour et al. [31]. The main difference between a capsule
network and a neural network is that the neuron outputs a scalar, while the capsule outputs
a vector. The simple structure diagram is shown in Figure 2.

Input OutputInput Output

Neural network Capsule network

Figure 2. A simple comparison between the capsule network and neural network in the structure.

The reason why we adopt a capsule network is that it overcomes the deficiencies in a
convolutional neural network. A convolutional neural network obtains invariance through
the pooling operation, which is helpful for the analysis. However, some local information
is lost. The solution to this problem is data enhancement, which generates a new training
set by rotating and shifting the training samples. Unfortunately, for the network traffic
dataset, it is meaningless to rotate and shift it. In other words, the network traffic after the
rotation and shift cannot correctly describe the flow. Therefore, we use a capsule network
to overcome the shortcomings of the convolutional neural network, to obtain a more robust
detection model.

To introduce the capsule network more clearly, we describe it from three aspects:
the operation mechanism of a single capsule, the core algorithm of the capsule network
(dynamic routing), and the loss function.

3.2.1. The Operation of a Capsule

The operation process of a capsule is shown in Figure 3, in which the output of three
capsules is taken as the input of the next capsule. The output vectors of the three capsules,
v1, v2, and v3, are used as the input of the next capsule; v1, v2, and v3 are multiplied by
the other matrices (w1, w2, and w3) to obtain u1, u2, and u3, respectively. Next, u1, u2, and
u3 are the weighted sums used to obtain s Then, v is obtained by squashing. Squash only
changes the length, it does not change the direction. Parameters w1 and w2 are obtained
through backpropagation learning. Moreover, c1, c2, and c3 are called coupling coefficients.
They use the dynamic decisions of capsules when testing. This decision-making process is
called dynamic routing, and the details are described in Section 3.2.2.

Figure 3. The operation process of a capsule.

The calculation equation of u is shown in Equation (7). i in the equation is the index of
capsules. For a simple example of Figure 3, u1 = v1w1, u2 = v2w2, and u3 = v3w3.

ui = viwi (7)

Mathematics 2023, 11, 961 8 of 17

s is obtained by summing the weights of ui, and the calculation equation of s is
shown in Equation (8), n is the number of capsules in the upper layer. For a simple
example of Figure 3, n is 3. According to Equation (8), the expansion of s is calculated as
s = u1c1 + u2c2 + u3c3.

si =
n

∑
i=1

uici (8)

The calculation of capsule output v by s needs an operation called squash. The specific
calculation of squash is shown in Equation (9). In Equation (9), || · ||2 is the norm of
the vector.

v = Squash(s) =
||s||2

1 + ||s||2
s
||s||2 (9)

3.2.2. Dynamic Routing

The c1, c2, and c3 choices are determined by the dynamic routing algorithm. The
pseudo-code of the dynamic routing algorithm is shown in Algorithm 3. First of all, there
must be the parameter B set; the initial values of B are all zeros, and {b1

0, b1
0, b1

0, . . . , bi
0}

correspond to {c1, c2, c3, . . . , ci}. Suppose you run T iterations, and T is a predetermined
hyperparameter.

Algorithm 3 Dynamic routing.

Require: B = {b1
0, b2

0, b3
0, . . . , bi

0}, U = {u1, u2, u3, . . . , ui}← B is a set of parameters, U is the
output of a layer of the capsule network.

Ensure: CT = {c1
T , c1

T , c1
T , . . . , ci

T}
1: for r = 1 to T do
2: c1

r , c1
r , c1

r , . . . , ci
r = softmax(b1

r−1, b1
r−1, b1

r−1, . . . , bi
r−1)

3: sr = ∑n
i=1 uici

r
4: ar = Squash(sr)
5: bi

r = bi
r−1 + arui

6: end for

For a more convenient and intuitive understanding, we give an example, as shown
in Figure 4. We have v1, v2 and v3, and we multiply by w1, w2 and w3 to obtain U = {u1,
u2, u3}. We carry out the routing algorithm, refer to Algorithm 3. First, we initialize B0 =
{b1

0, b2
0, b3

0}, they are all zeros, T is 3. Next, according to B0, we can obtain C1 = {c1
1, c2

1, c3
1},

as shown on line 2. With C1, we can calculate a s1 and obtain a a1 as shown on lines 3–4.
According to a1, we can decide the next round of C2 = {c1

2, c2
2, c3

2}. Afterward, through
line 5, we update parameter B, B1 = {b1

1, b2
1, b3

1}, where b1
1 = b1

0 + a1u1, b2
1 = b2

0 + a1u2 and
b3

1 = b3
0 + a1u3. After the first iteration, the second iteration is performed according to B1.

We use B1 to obtain C2. We can calculate s2 by C2, and then we can obtain a2. Subsequently,
we update parameter B, B2 = {b1

2, b2
2, b3

2}, where b1
2 = b1

1 + a2u1, b2
2 = b2

1 + a2u2 and
b3

2 = b3
1 + a2u3. After the second iteration, the last iteration is performed according to B2.

The process is calculated from B2 to C3, from C3 to s3, and from s3 to a3 = v.

Mathematics 2023, 11, 961 9 of 17

Figure 4. The operation process of a capsule.

3.2.3. Loss Function

Capsule neural network provides two loss functions, one is margin loss, which is used
for the classification task, and the other is reconstruction loss, which is used for sample
reconstruction. Since our task is to detect malicious traffic, margin loss is adopted. The
equation of the margin loss function is shown in Equation (10).

Lk = Ekmax(0, m+ − ||vk||)2 + λ(1− Ek)max(0, ||vk|| −m−)2 (10)

where Ek is the existence of k class, the existence is 1, and the nonexistence is 0. m+ is 0.9,
the penalty false is positive, the k class exists but prediction does not exist, m− is 0.1, the
penalty false is negative, the k class does not exist but prediction exists. λ is the weight.

The specific architecture information of the capsule neural network and CNN is
described in https://download.csdn.net/download/littlle_yan/87399101 (accessed on 8
January 2023).

4. Experimental Design and Implementation
4.1. Datasets

We use the URL extracted from the network traffic published by Wang et al. [9]. For
the network traffic collection method, Wang et al. used the Android tool monkey to send
some events randomly to the device to trigger network traffic during the execution of
each application. To avoid network traffic being mixed with different applications, they
executed only one application at a time. This dataset provides information on the method,
host, page, and name fields in the URL. Each sample is represented by 1708 features. The
specific numbers of benign traffic and malicious traffic are shown in Table 1. Our work
feature selections are based on 1708 features per sample.

Table 1. The specific information about the dataset.

Label NO.

Benign 25,276
Malicious 11,251

4.2. Experiment Setup

We used the Python language. We mainly used the TensorFlow framework and sklearn
library. The experiments were conducted on a server with an Intel Core i5-8500 CPU @ 3.00
GH and 8 GB RAM running Ubuntu 14.04. The optimizer of the training capsule network
and CNN was Adadelta.

4.2.1. Parameter Setting Analysis

width and γ are crucial parameters in the dimension reduction of this paper. Different
parameter values affect the efficiency of dimensionality reduction. To obtain the appropriate
parameter values in the dataset environment, and ensure high-dimensional reduction
efficiency and a stable-dimensional reduction process, corresponding experiments for
setting width and γ were designed.

https://download.csdn.net/download/littlle_yan/87399101

Mathematics 2023, 11, 961 10 of 17

4.2.2. Feature Analysis

The purpose of feature analysis is to verify the effectiveness of our proposed dimen-
sionality reduction method. To achieve this goal, we used classification algorithms on data
without dimensionality reduction and data with dimensionality reduction. We used the
four most popular algorithms, decision tree (DT), random forest (RF), logistic regression
(LR), and K-nearest neighbor (KNN).

4.2.3. Model Analysis

The model analysis focuses on the evaluation of the capsule network, showing the
performance differences between the capsule network and other deep learning networks.
We chose the convolution neural network (CNN) as the contrast object. To ensure fairness
and rationality, all methods used the same training set and test set in the evaluation
experiment.

4.2.4. Comprehensive Analysis

To further verify the effectiveness of the method, we compared our method with
other state-of-the-art malware detection techniques [9] in the comprehensive analysis.
Wang et al. [9] proposed a detection method based on the floating centroid method (FCM),
which combines supervised classification and unsupervised clustering.

4.3. Evaluation Metrics

The evaluation metrics we use are accuracy, precision, recall, and F-measure, which
are calculated based on a confusion matrix. The confusion matrix is shown in Table 2. In
the table, TP is truly positive, which means that the real label of the sample is positive,
and the result predicted by the model is also positive. TN is a true negative, which means
that the real label of the sample is negative, and the model predicts it to be negative. FP is
the false positive, which means that the real label of the sample is negative, but the model
predicts it to be positive. FN is the false negative, which means that the real label of the
sample is positive, but the model predicts it as negative. The equations for the four metrics
we used are shown below.

Accuracy =
TP + TN

TP + TN + FP + FN
(11)

Precision =
TP

TP + FP
(12)

Recall =
TP

TP + FN
(13)

FPR =
FP

TN + FP
(14)

F−measure =
2× precision× recall

precision + recall
(15)

Table 2. Confusion matrix.

Real Label
Prediction Label

Positive Negative

positive TP FN

negative FP TN

Mathematics 2023, 11, 961 11 of 17

5. Evaluation
5.1. Parameter Setting Analysis

The dataset dimension was 1708, and the input interface of the capsule network
required 784-dimensional data, i.e., goal_dim = 784; then, 924 attributes needed to be
reduced by the algorithm. Firstly, the running times of the dimension reduction algorithm
under different parameter (width) values were tested; the parameter width value sets are in
[5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70]. Phenomena can be seen in Figure 5; with the
increase in the width value, the time cost of the dimension reduction gradually decreases
and tends to be stable. Based on this figure, the condition to select the parameter value is
that the running time should be as low as possible and the value of width should be as small
as possible. Next, Figure 6 shows the effect of the width on the dimensionality reduction.
The value of the ordinate indicates the number of common features in the dimension
reduction sequence corresponding to the adjacent values of the width. Different parameter
values can lead to different dimensionality reduction sequences, such as in Figure 7, the
values in the figure indicate the initial feature number. Figure 7 shows the partial results
of the dimension reduction sequence corresponding to different parameters. It can be
seen from Figure 6 that the values of the width parameter have no obvious influence on
the overall dimension reduction results, but it is clearly from Figure 7 that the dimension
reduction sequences corresponding to values of width are obviously different. The smaller
the parameter value is, the more detailed the relationship between dimensions can be
reflected. Finally, through the above experimental analysis, we decide that the value of
the width is 40. The reason is that its value is very small relative to the total dimension
number (924) to be reduced, and the dimension reduction efficiency is also high at this time.
Therefore, the dimension reduction result is obtained when the width value equal to 40 is
the input sample set of the subsequent capsule network model.

Figure 5. Run time for dimensionality reduction for various values of width.

Figure 6. The same number of reduced features under adjacent width settings.

Mathematics 2023, 11, 961 12 of 17

Figure 7. The change of the dimension reduction sequence under a different width.

γ is another important parameter. Its value determines the proportion of the corre-
lation and information in the dimension reduction. The value of γ is determined by the
classification effect of the dimension reduction results in the decision tree. The classification
effect is evaluated by the four indexes: accuracy, precision, recall, and F-measure. Under
the condition that the width is 40 and each index reaches the highest, the lowest γ is the
final value we want. The specific experimental results are shown in Figure 8.

Figure 8. The classification indexes under various values of γ.

In the experiment, the value of γ starts from 1 and is tested every 0.5. When γ is equal
to 7.5, each index reaches the best, so we take the dimension reduction result for γ = 7.5 as
the data of the subsequent classification model.

5.2. Feature Analysis

To analyze the performance of our feature selection method, we used four popular
machine learning algorithms to train on the datasets with feature selection; at the same
time, we also used these four popular machine learning algorithms to train on the datasets
without feature selection. The machine learning algorithms we used were decision tree
(DT), random forest (RF), logistic regression (LR), and K-nearest neighbor (KNN). As shown
in Figures 9–12, different algorithms have different performances. In the figure, the abscissa
represents the different algorithms, and the ordinate represents the metric values. From
the global analysis, it is not difficult to find that the detection performance of the models
trained with the dimensionality reduction dataset is not lower than those models without
dimensionality reduction, especially the RF algorithm, the precision with dimensionality
reduction is 4.97% higher than that without dimensionality reduction, the KNN algorithm,

Mathematics 2023, 11, 961 13 of 17

the recall with dimensionality reduction is 3.71% higher than that without dimensionality
reduction. The reason for this phenomenon is that the data for dimensionality reduction
does not cause the loss of data information due to the decline of feature dimension but
removes the counterproductive features. Through experiments and results analyses, we
can conclude that our proposed dimensionality reduction method plays a positive role, so
our method is effective.

Figure 9. Accuracy comparison between different algorithms in the dimensionality reduction and
non-dimensionality reduction datasets.

Figure 10. Precision comparison between different algorithms in the dimensionality reduction and
non-dimensionality reduction datasets.

Figure 11. Recall comparison between different algorithms in the dimensionality reduction and
non-dimensionality reduction datasets.

Mathematics 2023, 11, 961 14 of 17

Figure 12. F-measure comparison between different algorithms in the dimensionality reduction and
non-dimensionality reduction datasets.

5.3. Model Analysis

The model analysis focuses on verifying whether the detection performance of the
capsule network is better than other deep learning networks. We compare the capsule
network (CN) with the convolutional neural network (CNN), and the statistical results are
shown in Figure 13. In Figure 13, the x-axis involves four different metrics, i.e., accuracy,
precision, recall, and F-measure, and the y-axis is the metric value. Compared with CNN,
the gaps in the accuracy, precision, recall, and F-measure between CNN and CN are 1.71%
1.41%, 1.07%, and 1.38%, respectively. We further analyzed the factors that produced the
experimental results. Figures 14 and 15 show the loss change curve during CN and CNN
training, respectively, it can be seen from the loss curve that CN reaches the convergence
state faster than CNN. CNN loses some local information through the pooling operation;
however, the capsule neural network overcomes this problem, so the robustness of CN
is higher than CNN. Through the above analysis, we can conclude that CN is better than
CNN. Although the performance of CN is better than that of CNN, CN also has defects
considering the time consumption. From the time consumption of the training model, the
training time of CN is longer than that of CNN. From the time consumption of the test
model, the test time of CN is equivalent to the long test time of CNN.

Figure 13. The comparison of CN with CNN.

Mathematics 2023, 11, 961 15 of 17

Figure 14. The loss curve of CN.

Figure 15. The loss curve of CNN.

5.4. Comprehensive Analysis

We compare our method with the state-of-the-art malware detection technique [9]
to further verify the effectiveness of our method. We briefly introduce the principles of
this state-of-the-art malware detection technique. The work in reference [9] is a technique
that combines supervised and unsupervised learning, and its core lies in the application of
the floating centroid method (FCM). The experimental results are shown in Figure 16. Its
abscissa is a different metric, and its ordinate is a metric value. From the statistical results,
we can conclude that our method is superior to the state-of-the-art malware detection
technique in all aspects of performance. The main reason for our experimental phenomenon
is that this state-of-the-art malware detection technique is based on simple machine learning
algorithms, and our method uses deep learning.

Figure 16. The comparison of CN with other state-of-the-art malware detection techniques.

6. Conclusions

In this work, we propose a feature selection method and apply the capsule network
to achieve malware detection. We verify the superiority of our proposed feature selection
method and the effectiveness of our application of the capsule network to detect malware
from the perspective of feature analysis and model analysis. In feature analysis, we use

Mathematics 2023, 11, 961 16 of 17

four popular machine learning algorithms (decision tree, random forest, logistic regression,
and K-nearest neighbor) to train the dataset with feature selection and the dataset without
feature selection for the experimental comparison. The experimental results of the feature
analysis show that our feature selection method can extract features more conducive to
distinguishing benign and malicious samples. In the model analysis, we use convolutional
neural networks for comparative experiments. The experimental results of the model
analysis show that the capsule network is suitable for network traffic datasets. To further
prove the effectiveness of our proposed method, in the comprehensive analysis, we compare
it with the malware detection technique presented in [9]. Through the comprehensive
analysis of the experimental results, our method provides gains of 9.71% and 20.18% in
accuracy and recall, respectively, concerning the results reported in [9]. Although our
method performs well, there are still areas for improvement. In future work, we will focus
on the adaptive adjustment of parameters in the feature selection method, thereby reducing
artificial settings.

Author Contributions: Writing—original draft, K.L. and A.Y.; writing—review and editing, J.C. All
authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Major science and technology project of Hainan Province
(Grant No.ZDKJ2020012),Key Research and Development Program of Hainan Province (Grant
No.ZDYF2021GXJS003, ZDYF2020040), National Natural Science Foundation of China (NSFC)
(Grant No.62162022, 62162024),Hainan Provincial Natural Science Foundation of China (Grant
No.621RC1082, 620MS021), the Key Laboratory of PK System Technologies Research of Hainan,Science
and Technology Development Center of the Ministry of Education Industry-university-Research
Innovation Fund (2021JQR017), Youth Foundation Project of Hainan Natural Science Foundation
(621QN211), Beijing Baidu Netcom Science and Technology Co., Ltd. (Grant No.220700001154419).

Data Availability Statement: Not applicable.

Acknowledgments: The Research Group sincerely thanks Hainan University and the Hainan Blockchain
Engineering Technology Research Center for the experimental sites and equipment provided for our
research.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. 2020 State of Malware Report. 2021. Available online: https://securelist.com/ (accessed on 8 January 2023).
2. Wang, S.; Chen, Z.; Zhang, L.; Yan, Q.; Yang, B.; Peng, L.; Jia, Z. TrafficAV: An effective and explainable detection of mobile

malware behavior using network traffic. In Proceedings of the 24th IEEE/ACM International Symposium on Quality of Service
(IWQoS 2016), Beijing, China, 20–21 June 2016; pp. 1–6. [CrossRef]

3. Liu, B.; Zhang, C.; Gong, G.; Zeng, Y.; Ruan, H.; Zhuge, J. FANS: Fuzzing Android Native System Services via Automated
Interface Analysis. In Proceedings of the 29th USENIX Security Symposium, USENIX Security 2020, Boston, MA, USA, 12–14
August 2020; Capkun, S., Roesner, F., Eds.; USENIX Association: Berkeley, CA, USA, 2020; pp. 307–323.

4. Zhang, X.; Wu, K.; Chen, Z.; Zhang, C. MalCaps: A capsule network based model for the malware classification. Processes 2021,
9, 929. [CrossRef]

5. Omer, M.A.; Zeebaree, S.R.; Sadeeq, M.A.; Salim, B.W.; x Mohsin, S.; Rashid, Z.N.; Haji, L.M. Efficiency of malware detection in
android system: A survey. Asian J. Res. Comput. Sci. 2021, 7, 59–69. [CrossRef]

6. Wei, S.; Zhang, Z.; Li, S.; Jiang, P. Calibrating Network Traffic with One-Dimensional Convolutional Neural Network with
Autoencoder and Independent Recurrent Neural Network for Mobile Malware Detection. Secur. Commun. Netw. 2021, 2021,
6695858 . [CrossRef]

7. Phan, T.V.; Nguyen, T.G.; Dao, N.; Huong, T.T.; Nguyen, H.; Bauschert, T. DeepGuard: Efficient Anomaly Detection in SDN With
Fine-Grained Traffic Flow Monitoring. IEEE Trans. Netw. Serv. Manag. 2020, 17, 1349–1362. [CrossRef]

8. Possemato, A.; Fratantonio, Y. Towards HTTPS Everywhere on Android: We Are Not There Yet. In Proceedings of the 29th
USENIX Security Symposium, USENIX Security 2020, Boston, MA, USA, 12–14 August 2020; Capkun, S., Roesner, F., Eds.;
USENIX Association: Berkeley, CA, USA, 2020; pp. 343–360.

9. Wang, S.; Yan, Q.; Chen, Z.; Wang, L.; Spolaor, R.; Yang, B.; Conti, M. Lexical Mining of Malicious URLs for Classifying Android
malware. In Proceedings of the International Conference on Security and Privacy in Communication Systems, Singapore, 8–10
August 2018; Springer: Berlin/Heidelberg, Germany, 2018; pp. 248–263.

https://securelist.com/
http://doi.org/10.1109/IWQoS.2016.7590446
http://dx.doi.org/10.3390/pr9060929
http://dx.doi.org/10.9734/ajrcos/2021/v7i430189
http://dx.doi.org/10.1155/2021/6695858
http://dx.doi.org/10.1109/TNSM.2020.3004415

Mathematics 2023, 11, 961 17 of 17

10. Jagielski, M.; Carlini, N.; Berthelot, D.; Kurakin, A.; Papernot, N. High Accuracy and High Fidelity Extraction of Neural
Networks. In Proceedings of the 29th USENIX Security Symposium, USENIX Security 2020, Boston, MA, USA, 12–14 August
2020; Capkun, S., Roesner, F., Eds.; USENIX Association: Berkeley, CA, USA, 2020; pp. 1345–1362.

11. Qiu, J.; Zhang, J.; Luo, W.; Pan, L.; Nepal, S.; Xiang, Y. A survey of Android malware detection with deep neural models. ACM
Comput. Surv. (CSUR) 2020, 53, 1–36. [CrossRef]

12. Abawajy, J.H.; Darem, A.B.; Alhashmi, A. Feature Subset Selection for Malware Detection in Smart IoT Platforms. Sensors 2021,
21, 1374. [CrossRef] [PubMed]

13. Al-Kasassbeh, M.; Mohammed, S.; Alauthman, M.; Almomani, A. Feature Selection Using a Machine Learning to Classify a
Malware. In Handbook of Computer Networks and Cyber Security, Principles and Paradigms; Gupta, B.B., Pérez, G.M., Agrawal, D.P.,
Gupta, D., Eds.; Springer: Berlin/Heidelberg, Germany, 2020; pp. 889–904. [CrossRef]

14. Kishore, P.; Barisal, S.K.; Mohapatra, D.P. JavaScript malware behaviour analysis and detection using sandbox assisted ensemble
model. In Proceedings of the 2020 IEEE Region 10 Conference (TENCON 2020), Osaka, Japan, 16–19 November 2020; pp. 864–869.
[CrossRef]

15. Yan, A.; Chen, Z.; Spolaor, R.; Tan, S.; Zhao, C.; Peng, L.; Yang, B. Network-based Malware Detection with a Two-tier Architecture
for Online Incremental Update. In Proceedings of the 28th IEEE/ACM International Symposium on Quality of Service (IWQoS
2020), Hangzhou, China, 15–17 June 2020; pp. 1–10. [CrossRef]

16. Şahin, D.Ö.; Kural, O.E.; Akleylek, S.; Kılıç, E. A novel permission-based Android malware detection system using feature
selection based on linear regression. Neural Comput. Appl. 2023, 35, 4903–4918. [CrossRef]

17. Fatima, A.; Maurya, R.; Dutta, M.K.; Burget, R.; Masek, J. Android Malware Detection Using Genetic Algorithm based Optimized
Feature Selection and Machine Learning. In Proceedings of the 42nd International Conference on Telecommunications and Signal
Processing (TSP 2019), Budapest, Hungary, 1–3 July 2019; Herencsar, N., Ed.; pp. 220–223. [CrossRef]

18. Tanuwidjaja, H.C.; Kim, K. Enhancing Malware Detection by Modified Deep Abstraction and Weighted Feature Selection. In
Proceedings of the 2020 Symposium on Cryptography and Information Security, Seoul, Republic of Korea, 2–4 December 2020;
pp. 1–8.

19. Aminanto, M.E.; Choi, R.; Tanuwidjaja, H.C.; Yoo, P.D.; Kim, K. Deep abstraction and weighted feature selection for Wi-Fi
impersonation detection. IEEE Trans. Inf. Forensics Secur. 2017, 13, 621–636. [CrossRef]

20. Wang, S.; Chen, Z.; Yan, Q.; Ji, K.; Peng, L.; Yang, B.; Conti, M. Deep and broad URL feature mining for android malware detection.
Inf. Sci. 2020, 513, 600–613. [CrossRef]

21. Li, T.; Kou, G.; Peng, Y. Improving malicious URLs detection via feature engineering: Linear and nonlinear space transformation
methods. Inf. Syst. 2020, 91, 101494. [CrossRef]

22. Williams, C.; Seeger, M. Using the Nyström method to speed up kernel machines. In Proceedings of the 14th Annual Conference
on Neural Information Processing Systems, Vancouver, BC, Canada, 3–8 December 2001; pp. 682–688.

23. Hokaguchi, T.; Ohsita, Y.; Shibahara, T.; Chiba, D.; Akiyama, M.; Murata, M. Detecting Malware-infected Hosts Using Templates
of Multiple HTTP Requests. In Proceedings of the IEEE 17th Annual Consumer Communications & Networking Conference
(CCNC 2020), Las Vegas, NV, USA, 10–13 January 2020; pp. 1–2. [CrossRef]

24. Mirsky, Y.; Doitshman, T.; Elovici, Y.; Shabtai, A. Kitsune: An Ensemble of Autoencoders for Online Network Intrusion Detection.
In Proceedings of the 25th Annual Network and Distributed System Security Symposium (NDSS 2018), San Diego, CA, USA,
18–21 February 2018.

25. Yan, A.; Chen, Z.; Zhang, H.; Peng, L.; Yan, Q.; Hassan, M.U.; Zhao, C.; Yang, B. Effective detection of mobile malware behavior
based on explainable deep neural network. Neurocomputing 2020, 453, 482–492. [CrossRef]

26. Wang, F.; Wei, Z. A Statistical Trust for Detecting Malicious Nodes in IoT Sensor Networks. IEICE Trans. Fundam. Electron.
Commun. Comput. Sci. 2021, 104, 1084–1087. [CrossRef]

27. Cheng, Q.; Wu, C.; Zhou, H.; Kong, D.; Zhang, D.; Xing, J.; Ruan, W. Machine Learning based Malicious Payload Identification in
Software-Defined Networking. arXiv 2021, arXiv:2101.00847.

28. Rong, C.; Gou, G.; Cui, M.; Xiong, G.; Li, Z.; Guo, L. MalFinder: An Ensemble Learning-based Framework For Malicious Traffic
Detection. In Proceedings of the IEEE Symposium on Computers and Communications (ISCC 2020), Rennes, France, 7–10 July
2020; pp. 1–7. [CrossRef]

29. Chen, Z.; Yan, Q.; Han, H.; Wang, S.; Peng, L.; Wang, L.; Yang, B. Machine learning based mobile malware detection using highly
imbalanced network traffic. Inf. Sci. 2018, 433–434, 346–364. [CrossRef]

30. Sabour, S.; Frosst, N.; Hinton, G.E. Dynamic Routing Between Capsules. In Proceedings of the Advances in Neural Information
Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, Long Beach, CA, USA, 4–9 December
2017; Guyon, I., von Luxburg, U., Bengio, S., Wallach, H.M., Fergus, R., Vishwanathan, S.V.N., Garnett, R., Eds.; pp. 3856–3866.

31. Sabour, S.; Frosst, N.; Hinton, G.E. Dynamic routing between capsules. arXiv 2017, arXiv:1710.09829.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1145/3417978
http://dx.doi.org/10.3390/s21041374
http://www.ncbi.nlm.nih.gov/pubmed/33669191
http://dx.doi.org/10.1007/978-3-030-22277-2_36
http://dx.doi.org/10.1109/TENCON50793.2020.9293847
http://dx.doi.org/10.1109/IWQoS49365.2020.9212829
http://dx.doi.org/10.1007/s00521-021-05875-1
http://dx.doi.org/10.1109/TSP.2019.8769039
http://dx.doi.org/10.1109/TIFS.2017.2762828
http://dx.doi.org/10.1016/j.ins.2019.11.008
http://dx.doi.org/10.1016/j.is.2020.101494
http://dx.doi.org/10.1109/CCNC46108.2020.9045542
http://dx.doi.org/10.1016/j.neucom.2020.09.082
http://dx.doi.org/10.1587/transfun.2020EAL2125
http://dx.doi.org/10.1109/ISCC50000.2020.9219609
http://dx.doi.org/10.1016/j.ins.2017.04.044

	Introduction
	Related Work
	Feature Selection
	Malware Detection-Based Network Traffic

	Methodology
	Feature Selection
	Correlation Decision Matrix
	Scoring of Attributes
	Algorithm of Dimension Reduction

	Malware Detection
	The Operation of a Capsule
	Dynamic Routing
	Loss Function

	Experimental Design and Implementation
	Datasets
	Experiment Setup
	Parameter Setting Analysis
	Feature Analysis
	Model Analysis
	Comprehensive Analysis

	Evaluation Metrics

	Evaluation
	Parameter Setting Analysis
	Feature Analysis
	Model Analysis
	Comprehensive Analysis

	Conclusions
	References

