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1. Introduction

A smooth vector field ξ on an n-dimensional differentiable (that is, of class C∞)
manifold M may be interpreted alternatively as the right-hand side of an autonomous
system of first-order ordinary differential equations, i.e., a flow (see [1], pp. 12–13). Along
with this, a dynamical system on a differentiable manifold M is a smooth vector field ξ that
generates a flow on this manifold (see, for example, Introduction in [2]). Side by side,
C. Udrişte showed that any flow on a differentiable manifold M could be developed by
conservative dynamics using a pseudo-Riemannian metric g on M. He called this kind
of dynamics geometric dynamics on a pseudo-Riemannian manifold (M, g) (see [3]). The
concept of geometric dynamics has many applications in mathematics and physics (see, for
example, [2,4,5]).

In the present paper, we study the geometry of well-known infinitesimal conformal,
affine, projective, and harmonic transformations of complete Riemannian manifolds using
the concepts of geometric dynamics and the methods of the modern version of the Bochner
technique for such manifolds (see, for example, [6–8]). The result of our study will be a series
of Liouville-type theorems for such transformations for complete Riemannian manifolds.
At the same time, we note that Liouville-type theorems of subharmonic and superharmonic
functions on complete manifolds have been known for a long time (see, for example, [6,9]).
In particular, our theorems generalize several results that have already become classical in
the global theory of infinitesimal transformations of compact Riemannian manifolds.

In conclusion, the study methods explain the extent to which our research area will
be explored. We use the generalized Bochner technique (see, for example, [6–8]), which
is intended for complete Riemannian manifolds, unlike the classical Bochner technique
(see [10], pp. 333–364; [11]). Therefore, our research area is an infinitesimal transformation
of complete Riemannian manifolds.

2. Infinitesimal Transformations of Complete Riemannian Manifolds and Dynamical
Systems on Them

We recall here some facts from the theory of groups of infinitesimal transformations.
Let (M, g) be an n-dimensional Riemannian manifold and ξ be a differentiable vector field
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on (M, g). In terms of a local coordinate system x1, . . . , xn of the coordinate neighborhood
U of an arbitrary point x ∈ M, a vector field ξ may be expressed by ξ = ξk∂k, where
∂k = ∂/∂xk and ξ1, . . . , ξn are differentiable functions defined in the coordinate neighbor-
hood U, called the components of ξ with respect to a local coordinate system x1, . . . , xn.

It is well-known (see [1], pp. 12–14) that in a neighborhood U of a point x of the
manifold (M, g) the field ξ generates a local flow, which is a local one-parameter group
of infinitesimal diffeomorphisms or, in other words, transformations ϕt: U → M for an
arbitrary t ∈ (−ε,+ε) ⊂ R. The converse assertion is also valid (see [1], pp. 21–22), namely,
a local flow or, in other words, a local one-parameter group of infinitesimal transformations
of the manifold (M, g) consisting of diffeomorphisms ϕt: U → M, for some open set
U ⊂ M, an arbitrary t ∈ (−ε,+ε) ⊂ R and any x ∈ U, induces a vector field ξ on U as
follows. At each point x ∈ U, we define a vector ξx tangent to the curve x(t) = ϕt and
such that ξk = dxk/dt for k = 1, . . . , n in a local coordinate system x1, . . . , xn in U. The
vector field ξ is called an (autonomous) dynamical system on M and the curve x(t) = ϕt
is also called the trajectory of the flow (see, for example, [5]). In this case, ξ is called the
velocity vector or the infinitesimal generator of the flow (see [12], p. 274). If there exists a
global 1-parameter group of transformations of M which induces a vector field ξ, then ξ is
called complete (see [1], p. 13). In this case, any trajectory of the flow is a curve defined on
all t of R (see [12], p. 273). Moreover, there is a one-to-one correspondence between global
flows and complete vector fields on a manifold (see [12], p. 276). Accordance to [5,13], we
formulate here our definition for the case of complete Riemannian manifolds.

Definition 1. A dynamical system on a complete Riemannian manifold (M, g) is a vector field ξ
that generates a global flow on (M, g).

In particular, a vector field ξ will be called a parallel dynamical system (compare this
with the definition given in [13]) if ξ is parallel with respect to the Levi–Civita connection
∇ of (M, g), i.e., ∇ξ = 0.

Remark 1. According to the well-known de Rham theorem (see [1], pp. 179, 192), if a vector field
ξ is parallel on a simply connected and complete manifold (M, g), then (M, g) is reducible and
isometric to the Riemannian product of some one-dimensional manifold tangent to the field ξ and
some (n−1)-dimensional integral manifold of its orthogonal integrable complement ξ⊥. We note
that the manifold (M, g) is irreducible if it is not reducible.

By the above definition, we can conclude that a complete vector field ξ defined on
a complete Riemannian manifold (M, g) is a dynamical system on it. In particular, any
smooth vector field on a compact manifold (M, g) is complete (see [1], p. 14; [12], p. 273)
and, therefore, it is a dynamical system on compact (M, g).

We recall that the (local) volume element or, in other words, volume form of (M, g) is
defined by the equation ωg(∂1, . . . , ∂n) =

√
det g with respect to a local coordinate system

x1, . . . , xn. We remark here that a Riemannian manifold (M, g) has a (global) volume
element if and only if (M, g) is orientable (see [14], p. 195). We also recall here that a
volume form on a connected manifold (M, g) has a single global invariant, namely the
(overall) volume, denoted by Volg(M) which is invariant under volume-form preserving
transformations. In symbols, Volg(M) =

∫
M ωg. The volume Volg(M) can be infinite or

finite. For example, Volg(M) < ∞ for a compact manifold (M, g). On the other hand, a
complete non-compact Riemannian manifold with non-negative Ricci curvature has infinite
volume (see [9]).

For the volume form ωg of (M, g) one can consider its Lie derivative along trajectories
of the flow with the velocity vector ξ. Namely, we have (see [1], p. 281; [14], p. 195)

Lξ ωg = (div ξ) ωg.
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According to the definition of the Lie derivative, Lξ ωg measures the rate of the change of the
volume form ωg under deformations determined by a one-parameter group of differentiable
transformations ϕt (or a flow) generated by the vector field ξ (see, for example, [4], p. 39).
On the other hand, in the well-known monograph [14] (p. 195) the function div ξ was called
the logarithmic rate of change of volume (or, in other words, rate of volume expansion) under the
flow ϕt generated by the vector field ξ.

For a vector field ξ on a compact oriented Riemannian manifold (M, g), Green’s theorem
is valid (see [1], p. 259): ∫

M
div ξ dvolg = 0, (1)

where we denoted a selected volume element of (M, g) in classical style by dvolg. Obvi-
ously, the conditions div ξ > 0 or div ξ < 0 for the logarithmic rate of change of volume
div ξ contradict (1). On the other hand, if div ξ ≥ 0 or div ξ ≤ 0, then (1) implies that
div ξ = 0 (see [15], p. 39). This means that Lξ ωg = 0, i.e., the one-parameter group of differ-
entiable transformations ϕt: M→ M for all t ∈ R leaves ωg invariant and the vector field
ξ is an infinitesimal automorphism of the volume structure (see [15], p. 6). In dynamical
systems, such a vector field ξ is said to be divergence-free and the flow generated by it is said
to be incompressible (see [10], p. 125). Moreover, the geometric dynamics of divergence-free
vector fields were studied in detail in the monograph [4].

We can formulate a similar assertion on conditions for the non-divergence of vector
fields on a complete Riemannian manifold. To do this, we use the proposition from [16],
which we formulate in terms of geometric dynamics.

Proposition 1. Let ξ be a dynamical system on a complete non-compact oriented Riemannian
manifold (M, g) such that its length is integrable. If, moreover, the logarithmic rate of its volumetric
expansion does not change the sign on (M, g), then the flow generated by ξ is incompressible.

Remark 2. We will insist on the function f being in Lp(M), if the pth power of the absolute value
of f is integrable on (M, g) (see also [17]). For example, the integrability condition for the length of
a vector field ξ means that its length satisfies the condition ‖ξ‖ ∈ L1(M), where ‖ξ‖ =

√
g(ξ, ξ).

From Proposition 1 we can conclude the following corollary.

Corollary 1. Let a dynamical system on a complete noncompact oriented Riemannian manifold
(M, g) have a velocity vector ξ of constant length. Furthermore, if the logarithmic rate of its
volumetric expansion div ξ ∈ L1(M) and it does not decrease under the flow it creates, then the
flow is incompressible.

Proof. Let a dynamical system on a complete noncompact oriented Riemannian manifold
(M, g) have a velocity vector ξ of constant length. Elementary calculations allow us to
conclude that the following equality holds

div((div ξ)ξ) = Lξ(div ξ) + (div ξ)2, (2)

where Lξ(div ξ) = ξ(div ξ) is the Lie derivative of div ξ with respect ξ.
Then from (2), it is easy to see that the inequality Lξ(div ξ) ≥ 0, which is valid ev-

erywhere on (M, g), implies the inequality div((div ξ)ξ) ≥ 0. To complete the proof,
it suffices to refer to Proposition 1. Namely, if the conditions div((div ξ)ξ) ≥ 0 and∫

M ‖(div ξ)ξ‖ dvolg = ‖ξ‖
∫

M |div ξ| dvolg < ∞ hold on an oriented and complete mani-
fold (M, g), then div((div ξ)ξ) ≥ 0. It follows from (2) that div ξ = 0. In this case, Lξωg is
equal to zero due to (1).

Remark 3. We considered in [18] a kinematic world model as a four-dimensional space-time (M, g)
which admits fluid flows of matter with a time-like velocity vector of unit length. In particular, we
presented interesting applications of the generalized Landau–Raichaudhuri equation to the theory of
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the logarithmic velocity of the volume expansion of space-time. At the same time, Killing vector fields
of constant length and the corresponding flows on complete Riemannian manifolds were studied
in [19].

The energy density e(ξ) of the flow generated by the vector field ξ is the scalar function
defined by (see, for example, [17], p. 434)

e(ξ) = 1/2 ‖ξ‖2 := 1/2 g(ξ, ξ). (3)

The energy density e(ξ) has interesting properties imposed either by the behavior of the
gradient, Hessian or Laplacian of e(ξ), or by the behavior of e(ξ) along field lines (see [3]
where e(ξ) is called the energy of the flow generated by ξ). In turn, the kinetic energy of the
flow generated by ξ is defined by the integral formula (see [4], pp. 2, 19, 37; [6], p. 437)

E(ξ) =
∫

M
e(ξ) dvolg.

The kinetic energy E(ξ) can be infinite or finite. For example, E(ξ) < ∞ for a smooth vector
field ξ on a compact manifold (M, g). Kinetic energy plays an important role in Hamilton
dynamics (see [4]).

Let us now consider an example in which the concepts of geometric dynamics defined
above are applied.

Theorem 1. Let (M, g) be a complete non-compact Riemannian manifold (M, g) with non-
negative Ricci curvature. There does not exist a non-zero dynamical system ξ on (M, g) such that

(i) ξ is closed;
(ii) the logarithmic rate div ξ of volumetric expansion is a non-decreasing function under the flow

of ξ;
(iii) the kinetic energy of the flow E(ξ) is finite.

Proof. Let ξ be a dynamical system on a complete manifold (M, g) such that the 1-form
θ dual to ξ with respect to g is closed. In turn, the vector field ξ is also called closed. This
means that ∇θ is symmetric with respect to the Levi–Civita connection ∇ of the metric g.
In this case, the following formula holds (see [10], p. 337)

∆e(ξ) = ‖∇ξ‖2 + Lξ(div ξ) + Ric(ξ, ξ) (4)

where ∆ := traceg∇2, ‖∇ξ‖2 = g(∇ξ,∇ξ) and Ric is the Ricci tensor of∇. We will assume
that Ric ≥ 0 and the logarithmic rate div ξ of the volumetric expansion does not decrease
along the flow generated by ξ, i.e., Lξ(div ξ) ≥ 0 everywhere on (M, g). In this case, the
inequality ∆e(ξ) ≥ 0 follows from (4). Then the energy density e(ξ) is a non-negative
subharmonic function (see [9]). On the other hand, if f is a non-negative Lp subharmonic
function at least for one 0 < p < ∞ defined on a complete manifold (M, g) with non-
negative Ricci curvature, then f must be identically constant (see [20]). Furthermore, this
constant must be zero if (M, g) has infinite volume (see, for example, [17]). We recall here
that every complete non-compact Riemannian manifold with non-negative Ricci curvature
has infinite volume (see [9]). In conclusion, we note that the finiteness condition for E(ξ)
means that e(ξ) ∈ L2(M). Summarizing the above, we can formulate the above theorem as
a conclusion.

We recall that θ is a harmonic form if θ is both closed and co-closed, i.e.,∇θ is symmetric
with under the Levi–Civita connection ∇ of the metric g and ∇∗θ = 0, where ∇∗ is the
formal-adjoint of the differential operator ∇ defined by the formula ∇∗θ = −traceg(∇θ)
(see [11], p. 378). In this case div ξ = −∇∗θ = 0 for the 1-form θ dual to ξ with respect to g.
Green and Wu proved in [12] the following theorem: If (M, g) is a complete noncompact
manifold with non-negative Ricci curvature, then no nonzero harmonic 1-form is in Lp(M)
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for any 1 < p < ∞. If, moreover, the sectional curvature of (M, g) is non-negative
outside of some compact set, then no nonzero harmonic 1-form is in L1(M). This theorem
generalized Yau result from [9]. In turn, the following corollary of our Theorem 1 is a
generalization of the theorem proved by Green and Wu in [21].

Corollary 2. There does not exist a nonzero harmonic Lp one-form for any 0 < p < ∞ on a
complete noncompact Riemannian manifold with non-negative Ricci curvature.

3. Conformal Dynamical Systems on Complete Riemannian Manifolds

We recall that a diffeomorphism f of (M, g) onto itself is called a conformal mapping if
f ∗g = e2σg for some scalar function σ on M. If σ is constant, f is called a homothety. For
σ = 0 a homothety is an isometry (see [22], p. 269).

A vector field ξ on (M, g) is called an infinitesimal conformal transformation or, in other
words, conformal Killing vector field if this field generates a local one-parameter group of
conformal transformations ϕt: U → U in a neighborhood U of any point x ∈ M. The
vector field ξ is a conformal Killing vector field on (M, g) if and only if Lξ g = 2σ g for
σ = 1/n div ξ (see [5]; [22], p. 282; [15], p. 50). Particular cases of a conformal Killing
vector field is a homothety infinitesimal conformal transformation if σ = const and a Killing
vector field (or an infinitesimal isometry) if σ = 0 (see [1], p. 237). The local geometry of
Riemannian manifolds and the global geometry of compact and complete Riemannian
manifolds of infinitesimal conformal transformations are studied in detail. Information
about these results can be found in numerous articles and well-known monographs [1,15,22]
and others.

In turn, a complete vector field ξ on a complete Riemannian manifold (M, g) will be
called a conformal dynamical system if it generates a global one-parameter group ϕt: M→ M
for all t ∈ R of infinitesimal conformal transformations on (M, g). These transformations
preserve the angles defined by the Riemannian metric of (M, g). One can formulate
a vanishing theorem for conformally Killing vector fields on a complete Riemannian
manifold. To do this, we use the proposition from [16], which we formulate in terms of
geometric dynamics.

Theorem 2 (see [16]). Let (M, g) be a complete noncompact Riemannian manifold with non-
positive Ricci curvature and ξ be a conformal dynamical system with finite kinetic energy. Then ξ is
a parallel dynamical system and consequently generates an incompressible flow.

We prove here a theorem generalizing the above result. Let ξ be a conformal dynamical
system with Lξ g = 2σg defined on a complete manifold (M, g). Then for the 1-form θ dual
to ξ with respect to g we have (see [22], p. 285; [23])

∆̄ θ =
n− 2

n
∇(div ξ) + Ric(ξ, ·) (5)

where ∆̄ = ∇∗∇ is the rough (or Bochner) Laplacian defined by ∆̄ θ(X) = −(traceg∇2θ)(X)
for an arbitrary vector field X on (M, g) (see [10]; [11], p. 377). In this case, the well-known
second Kato inequality (see [11], p. 380)

‖ξ‖ ∆‖ξ‖ ≥ −g(∆̄ ξ, ξ)

can be rewritten in the form

‖ξ‖ ∆‖ξ‖ ≥ −n− 2
n

Lξ(div ξ)− Ric(ξ, ξ). (6)

The assumptions Ric ≤ 0 and Lξ(div ξ) ≤ 0 imply that ‖ξ‖ ∆‖ξ‖ ≥ 0. By the oldest
theorem of geometric analysis (see [9]) we deduce that either

∫
M ‖ξ‖

p = ∞ for a positive
number p > 1 or ‖ξ‖ = const. Therefore, if ‖ξ‖ ∈ Lp(M) at least for one p > 1, then
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p > 1 then ‖ξ‖ = const. At the same time, this constant must be zero if (M, g) has an
infinite volume. On the other hand, from (6) we obtain Ric(ξ, ξ) = 0 and Lξ(div ξ) = 0 if
the following three conditions: ‖ξ‖ = const, Ric ≤ 0 and Lξ(div ξ) ≤ 0 hold. In this case,
using (5) we have

0 = 1
2 ∆ g(ξ, ξ) = −g(∆̄θ, θ) + ‖∇ξ‖2 = n−2

n Lξ(div ξ)− Ric(ξ, ξ) + ‖∇ξ‖2 = ‖∇ξ‖2.

Then ξ is a parallel vector field. In this case, (M, g) is reducible (see [1], p. 179 and also our
remark in the second paragraph). On the other hand, if (M, g) is irreducible, then there are
no parallel vector fields on (M, g). Therefore, the following theorem holds.

Theorem 3. Let (M, g) be a complete noncompact Riemannian manifold with non-positive Ricci
curvature and ξ be a conformal dynamical system such that ‖ξ‖ ∈ Lp(M) at least for one p > 1.
If the logarithmic rate div ξ is a non-increasing function under the flow of ξ, then ξ is a parallel
dynamical system and consequently generates an incompressible flow. Furthermore, if the volume of
(M, g) is infinite or (M, g) is irreducible, then ξ is identically equal to zero everywhere on (M, g).

Recall that a Riemannian manifold (M, g) is called a Yamabe soliton (see [24]) if there is
a smooth vector filed ξ and constant ρ such that Lξ g = 2(s− ρ)g, where s = tracegRic is
the scalar curvature of (M, g). Therefore, the vector field ξ of the Yamabe soliton (M, g, ξ, ρ)
is an example of a conformal Killing vector field. Based on Theorem 2 and the theorem
from [23], we can formulate an assertion about the Yamabe soliton for which, as it is easy to
prove, Lξ(div ξ) = nLξ s.

Corollary 3. Let (M, g, ξ, ρ) be a complete noncompact Yamabe soliton with non-positive Ricci
curvature. If either of the following conditions holds:

(i) ‖ξ‖ ∈ L2(M);
(ii) ‖ξ‖ ∈ Lp(M) at least for one p > 1 and the scalar curvature s of g is a non-increasing

function under the flow of ξ,

then ξ is a parallel vector field. Furthermore, if the volume of (M, g) is infinite or (M, g) is
irreducible, then ξ is identically equal to zero on (M, g).

Remark 4. To illustrate the above statements, recall that Hadamard manifold is a simply con-
nected complete Riemannian manifold of non-positive sectional curvature. It has an infinite
volume, which follows from the Cartan–Hadamard theorem (see [10], p. 241). Furthermore,
Ric(X, X) = ∑

i=1,··· ,n
g(R(X, ei)ei, X) ≤ 0 for the curvature tensor R of a Hadamard manifold (M, g)

and for an orthonormal basis e1,··· , en of Tx M at an arbitrary x ∈ M.

If (M, g) is complete, then every infinitesimal isometry is a complete vector field
(see [25], p. 46). Therefore, we can consider an arbitrary infinitesimal isometry as an
isometric dynamical system on a complete manifold (M, g). Let ξ be an isometric dynamical
system with Lξ g = 0 defined on a complete manifold (M, g). In this case, div ξ = 0
and, therefore, repeating the arguments from the proof of Theorem 2, we arrive at the
following corollary.

Corollary 4. Let (M, g) be a complete noncompact Riemannian manifold with non-positive Ricci
curvature and ξ be an isometric dynamical system such that ‖ξ‖ ∈ Lp(M) at least for one
p > 1. Then ξ is a parallel dynamical system and consequently generates an incompressible flow.
Furthermore, if the volume of (M, g) is infinite or (M, g) is irreducible, then ξ is identically equal
to zero everywhere on (M, g).

Remark 5. Our theorem generalizes the following theorem from [23]: Suppose that a complete
non-compact Riemannian manifold (M, g) has non-positive Ricci curvature, then every Killing
vector field ξ is a parallel vector field on (M, g) if ‖ξ‖ ∈ L2(M).
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Proposition 2. Let (M, g) be a Hadamard manifold and ξ be an isometric dynamical system
such that the energy density e(ξ) of the flow generated by ξ is bounded on (M, g), then (M, g)
is reducible and isometric to a Riemannian product of some trajectory of the flow and its some
orthogonal (n− 1)-dimensional complement.

Proof. The proposition is a corollary from the two theorems. First, this is a theorem
from [19] with the following content: If the length of a Killing vector field ξ is bounded on a
Riemannian manifold (M, g) with non-positive sectional curvature (M, g) then ξ is parallel
on (M, g). Second, it is the de Rham decomposition theorem on a simply connected and
complete Riemannian manifold (M, g) (see [1], p. 192).

4. Affine Dynamical Systems on Complete Riemannian Manifolds

Let (M, g) and (M′, g′) be Riemannian manifolds with the Levi–Civita connections
∇ and ∇′, respectively. A differentiable mapping f : (M, g) → (M′, g′) is called an affine
mapping if it maps every parallel vector field along any curve γ in (M, g) into a parallel
vector field along the curve f (γ) in (M′, g′) (see [11]). Clearly, f maps every geodesic in
(M, g) into a geodesic in (M′, g′). An affine mapping f of a manifold (M, g) onto itself is
called an affine transformation of (M, g). We recall the well-known theorem (see [25], p. 126):
If (M, g) is an irreducible and complete Riemannian manifold, then the group of all affine
transformations of (M, g) is equal to the group of all isometric transformations of (M, g),
except the case when (M, g) is the 1-dimensional Euclidean space.

In turn, vector field ξ on (M, g) is called an infinitesimal affine transformation or affine
Killing vector field if the local 1-parameter group of local transformations ϕt for t ∈ (−ε,+ε)
⊂ R generated by this field in a neighborhood U of a point x ∈ M preserves the connection
∇, i.e., if ϕt: U → M is an affine transformation (see [10], p. 230). Therefore, if ξ is an
infinitesimal affine transformation, then (see [22], p. 224; [5,23])

Lξ∇ = 0. (7)

Local and global geometries of infinitesimal affine transformations are studied in
detail. Information about the obtained results can be found in numerous articles and
well-known monographs [1,15,22] and others. In turn, we will consider the theory of these
transformations from the point of view of dynamical systems and apply the generalized
Bochner technique to their study.

Let now (M, g) be a complete manifold, then every infinitesimal affine transformation
is a complete vector field on (M, g) (see Theorem 2.5 in [25], p. 46). Therefore, we can
consider an infinitesimal affine transformation as a dynamical system on a complete
Riemannian manifold (M, g).

It is well-known that div ξ = 0 for an infinitesimal affine transformation ξ defined on
a compact Riemannian manifold (M, g) (see [25], p. 45). On the other hand, it is directly
verified that Equation (7) is equivalent to the condition (see also [26])

∇(Lξ g) = 0. (8)

It is well-known that if a simply connected Riemannian manifold (M, g) is irreducible,
then any field of parallel symmetric 2-tensors G is defined by the condition G = ρ g for
some constant ρ. Therefore, from (8) we can deduce the condition Lξ g = ρ g for some
constant ρ. Hence ξ is an infinitesimal homothetic transformation. On the other hand,
if a simply connected complete Riemannian manifold admits a one-parameter group of
non-isometric homothetic transformations, then it is isometric to a Euclidean space of the
same dimension (see [26]). As a result, the following proposition holds.

Proposition 3. If a simply connected complete and irreducible Riemannian manifold admits an
affine dynamical system that is not an isometric dynamical system, then it is isometric to a Euclidean
space of the same dimension.
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In turn, from (8) it follows that ∇traceg(Lξ g) = 2∇(div ξ) = 0. In this case, the
identity div ξ = constant holds (see also [25], p. 45). Consider now an affine dynamical
system ξ on a complete Riemannian manifold (M, g). If ‖ξ‖ ∈ L1(M), then by Proposition 1
we conclude that div ξ = 0. As a result, we have the following statement.

Proposition 4. Let (M, g) be a complete Riemannian manifold and ξ be an affine dynamical system
such that its length is integrable, then the flow generated by ξ is incompressible.

Since Equation (7) follows from the condition Lξ g = 0, we can conclude that the
Killing vector field is an example of an infinitesimal affine transformation. Moreover, we
can formulate a condition for the coincidence of an infinitesimal affine transformation and a
Killing vector field on a complete Riemannian manifold. To do this, we use the proposition
from [23], which we formulate in terms of geometric dynamics.

Theorem 4 (see [23]). Let ξ be an affine dynamical system on a complete Riemannian manifold
(M, g). If the kinetic energy of ξ is finite, then it is an isometric dynamical system.

For an affine dynamical system ξ on a complete manifold Riemannian manifold (M, g)
we have the following Equation (see [25], p. 56)

(Hessge(ξ))(X, X) = ‖∇Xξ‖ − g(R(ξ, X)X, ξ), (9)

where Hessge(ξ) = ∇de(ξ) for the energy density function e(ξ) of the flow generated
by the vector field ξ and for an arbitrary smooth vector field X on (M, g). If the section
curvature of (M, g) is non-positive, then the inequality g(R(ξ, X)X, ξ) ≤ 0 holds. In this
case, from (9) we obtain the inequality Hessge(ξ) ≥ 0. Therefore, e(ξ) is a non-negative
smooth convex function (see also [27]). In [27], was proved that an arbitrary convex function
on a complete Riemannian manifold (M, g) is constant on each closed geodesic in (M, g)
and, moreover, the critical points of a convex function are its absolute minimum points in
(M, g). Using this statement we can formulate a proposition.

Proposition 5. Let ξ be an affine dynamical system on a complete Riemannian manifold with
non-positive sectional curvature, then its energy density function e(ξ) is constant on each closed
geodesic in (M, g) and an arbitrary critical point of e(ξ) is its absolute minimum point in (M, g).

A convex function is an example of a subharmonic function. At the same time, well-
known from [20] that if a Riemannian manifold (M, g) is complete, simply connected and
has non-positive sectional curvature or, in other words, Hadamard manifold, then for each
p ∈ (0,+∞) every nonnegative Lp subharmonic function on (M, g) is constant. Therefore,
the energy density Lp function e(ξ) on a complete Riemannian manifold with non-positive
sectional curvature must be a constant. On the other hand, a Hadamard manifold has an
infinite volume, which follows the Cartan–Hadamard theorem. This forces the constant
function e(ξ) to be zero. As a result, the following corollary holds.

Corollary 5. The Hadamard manifold (M, g) does not admit a non-zero affine dynamical system ξ
such that e(ξ) ∈ Lp(M) at least for one p ∈ (0,+∞).

From (9) we obtain ∇∗(Lξ g) = 0, which is equivalent to Equation (see also [23])

∆̄ θ = −Ric(ξ, · ). (10)

In this case, the second Kato inequality (6) can be rewritten in the form

‖ξ‖ ∆‖ξ‖ ≥ −Ric(ξ, ξ).

Next, repeating our arguments of the third paragraph, we arrive at the following conclusion.
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Theorem 5. Let (M, g) be a complete noncompact Riemannian manifold with non-positive Ricci
curvature and ξ be an affine dynamical system such that ‖ξ‖ ∈ Lp(M) at least for one p > 1. Then
ξ is a parallel dynamical system and consequently generates an incompressible flow. Furthermore, if
the volume of (M, g) is infinite or (M, g) is irreducible, then ξ is identically equal to zero everywhere
on (M, g).

5. Projective Dynamical Systems on Complete Riemannian Manifolds

The classic geometrical problem of determining Riemannian metrics g and g′ that have
corresponding geodesics arose in connection with the dynamic problem on transformations
of the equations of motion of mechanical systems in such a way that the trajectories are
preserved. Various ways of identifying the geodesics of a pseudo-Riemannian manifold
(M, g) with the trajectories of conservative and nonconservative dynamical systems give
the possibility of widely applying the results of the theory of projective transformations to
physics and mechanics (see [4,5]).

A transformation of a Riemannian manifold (M, g) which maps geodesics into geo-
desics is called projective. The main results of the local theory of projective transformations
are presented in our monograph [22]. In the case of compact Riemannian manifolds, the
results of the global theory of projective transformations can be found in the well-known
monograph [15].

In turn, an infinitesimal transformation ξ on (M, g) is said to be projective if an arbitrary
transformation ϕt from the flow of the vector field ξ preserves the geodesic curves of (M, g),
i.e., if any geodesic is invariant under the action of the (local) one-parameter group of (local)
transformations that are generated by the vector field ξ. If (M, g) is complete and ξ
generates a global one-parameter group of infinitesimal projective transformations on
(M, g), then we call ξ a projective dynamical system. Therefore, ξ is an infinitesimal projective
transformation if and only if (see [5])

(Lξ∇)(X, Y) = Y(φ)X + X(φ)Y

for φ = 1
n+1 div ξ and any smooth vector field X and Y on (M, g). Side by side, Equation (7)

is equivalent to the condition (see [28])

∇Z(Lξ∇)(X, Y) = 2g(X, Y)Z(φ) + g(X, Z)Y(φ) + g(Y, Z)X(φ) (11)

for any smooth vector field X, Y and Z on (M, g). From (11) we obtain Equation (see
also [5,23])

∆̄ θ = Ric(ξ, · )− 2
n + 1

∇(div ξ).

In this case, the second Kato inequality (6) can be rewritten in the form

‖ξ‖ ∆‖ξ‖ ≥ −Ric(ξ, ξ) +
2

n + 1
Lξ(div ξ). (12)

Using (12), we can prove the projective dynamical system theorem. Moreover, the proof of
the following theorem is no different from the proof of our Theorem 3.

Theorem 6. Let (M, g) be a complete noncompact Riemannian manifold with non-positive Ricci
curvature and ξ be a projective dynamical system such that ‖ξ‖ ∈ Lp(M) at least for one p > 1.
If the logarithmic rate div ξ is a non-decreasing function under the flow of ξ, then ξ is a parallel
dynamical system and consequently generates an incompressible flow. Furthermore, if the volume of
(M, g) is infinite or (M, g) is irreducible, then ξ is identically equal to zero everywhere on (M, g).

Remark 6. Our theorem complements the following theorem from [23]: Let (M, g) be a complete
non-compact Riemannian manifold with non-positive Ricci curvature, then every projective in-
finitesimal transformation ξ on (M, g) is a parallel vector field if ‖ξ‖ ∈ L2(M) or, in other words,
every projective dynamical system with finite kinetic energy is a parallel vector field.
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Let (M, g, J) be a 2m-dimensional Kählerian manifold where (M, g) is 2m-dimensional
Riemannian manifold and J is a tensor field such that J ∈ C∞(T∗M ⊗ TM), J2 = −id,
g(J, J) = g and ∇J = 0 for the Levi–Civita connection ∇ (see, for example, [14], p. 160).
We shall say a vector field ξ is an infinitesimal holomorphically projective transformation if it
satisfies (see [22], p. 499; [28])

(Lξ∇)(X, Y) = Y(φ)X + X(φ)Y− g(ξ, JX)JY− g(ξ, JY)JX (13)

for the Levi–Civita connection ∇ and smooth vector fields X, Y on M. In this case, φ is
called the associated one-form of the transformation. If φ vanishes, then the transformation
reduces to an affine one. From (13) follows Equation (10). Hence the following corollary is
true. Moreover, this statement is an analog of Corollary 4 and Theorem 5.

Corollary 6. Let (M, g, J) be a complete Kählerian manifold with non-positive Ricci curvature. If
‖ξ‖ ∈ Lp(M) at least for one p > 1, then ξ is a parallel vector field. Furthermore, if the volume
of (M, g, J) is infinite or (M, g, J) is irreducible, then ξ is identically equal to zero everywhere on
(M, g, J).

Remark 7. This corollary generalizes a similar assertion from [28] which was proved for a compact
Kählerian manifold.

6. Harmonic Dynamical Systems on Complete Riemannian Manifolds

Suppose a map f : (M, g)→ (M′, g′) of Riemannian manifolds (M, g) and (M′, g′). Its
differential d f : TM → TM′ determines the energy density by the formula
e( f ) = 1/2 ‖d f ‖2 := 1/2 traceg f ∗g′ (see [6], p. 436). This map is said to be harmonic if
it determines an extremum of the energy functional EU( f ) =

∫
M e( f ) dvolg for any open set

U in M relatively compact with respect to the variations of f compactly supported on U
(see [6], p. 438). It is well-known that f : (M, g) → (M′, g′) is a harmonic mapping if and
only if it satisfies the Euler–Lagrange equation traceg(∇̄d f ) = 0 for the canonical connection
∇̄ = ∇⊕∇′ in the vector bundle T∗M⊗ f ∗TM′ (see also [6], p. 435). A harmonic mapping
of (M, g) onto itself is called a harmonic transformation.

A vector field ξ on (M, g) is called an infinitesimal harmonic transformation, if this
field generates a local one-parameter group of harmonic transformations ϕt: U → U in a
neighborhood U of any point x ∈ M (see [22], p. 262; [29]). In this case, the Euler–Lagrange
equation can be rewritten in the form traceg(Lξ∇) = 0. Therefore, an infinitesimal affine
transformation is an example of an infinitesimal harmonic transformation. The geometry
of infinitesimal harmonic transformations is studied in detail in [22,29]. In turn, we will
consider the theory of these transformations from the point of view of dynamical systems
and apply the generalized Bochner technique to their study.

In turn, a complete vector field ξ is called a harmonic dynamical system on a complete
Riemannian manifold (M, g) if it generates a flow, which is a globally defined on (M, g)
one-parameter group of infinitesimal transformations ϕt: M→ M for all t ∈ R.

We proved in [29] that a vector field ξ is an infinitesimal harmonic transformation if
and only if

∆̄ θ = Ric(ξ, · ) (14)

the 1-form θ dual to ξ with respect to g. In this case, the well-known second Kato inequality
(see [11])

‖ξ‖ ∆‖ξ‖ ≥ −g(∆̄ ξ, ξ)

can be rewritten in the form

‖ξ‖ ∆‖ξ‖ ≥ −Ric(ξ, ξ). (15)

Then the assumption Ric ≤ 0 implies that ‖ξ‖∆‖ξ‖ ≥ 0. By the Yau’s theorem (see [6]), if
‖ξ‖ ∈ Lp(M) at least for one p > 1, then ‖ξ‖ = const. At the same time, this constant must
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be zero if (M, g) has an infinite volume (see [17]). On the other hand, from (15) we obtain
Ric(ξ, ξ) = 0 if the following conditions ‖ξ‖ = constant and Ric ≤ 0 are satisfied. In this
case, using (14) we have

0 = 1/2 ∆g(ξ, ξ) = −g(∆̄ θ, θ) + ‖∇ξ‖2 = −Ric(ξ, ξ) + ‖∇ξ‖2 = ‖∇ξ‖2.

In accordance with the theory of harmonic mappings, we can define the energy density
of the flow on (M, g) generated by the infinitesimal harmonic system ξ by equality (3),
and the energy of the flow, by equality (4). Using these definitions, we can formulate the
following theorem.

Theorem 7. Let (M, g) a complete noncompact Riemannian manifold with non-positive Ricci
curvature and ξ be a harmonic dynamical system on (M, g). If ‖ξ‖ ∈ Lp(M) at least for one
p > 1 or, in particular, ξ has finite energy on (M, g), then ξ is a parallel dynamical system and
consequently generates an incompressible flow. Furthermore, if the volume of (M, g) is infinite or
(M, g) is irreducible, then ξ is identically equal to zero everywhere on (M, g).

Hamilton introduced the concept of Ricci solitons in mid 80 s. They are natural
generalizations of Einstein manifolds. Suppose that (M, g) is a complete Riemannian
manifold such that the equation

−2Ric = 2λ g + LV g

holds for some constant λ and some complete vector field V on M. In this case, we say g is
a Ricci soliton (see [30], pp. 37–38). The Ricci soliton is usually denoted as (M, g, ξ, λ). In
this case, traceg(Lξ∇) = 0 (see [22], p. 264). Then a vector field ξ that makes a Riemannian
metric g a Ricci soliton metric is necessarily a harmonic dynamical system on a complete
Riemannian manifold (M, g). Therefore, the following corollary holds.

Corollary 7. Let (M, g, ξ, λ) be a Ricci soliton with a complete Riemannian metric (M, g) and
non-positive Ricci curvature. If ‖ξ‖ ∈ Lp(M) at least for one p > 1, then ξ is a parallel vector
field. Furthermore, if the volume of (M, g) is infinite or (M, g) is irreducible, then ξ is identically
equal to zero everywhere on (M, g).

Remark 8. This corollary generalizes our similar assertion from [22] (p. 265) which was proved
for a compact Ricci soliton manifold.

Let (M, g, J) be an almost Kählerian manifold where (M, g) is 2m-dimensional Rieman-
nian manifold and J is a tensor field such that J ∈ C∞(T∗M⊗ TM), J2 = − id, g(J, J) = g
and (∇X J)Y + (∇Y J)X = 0 for the Levi–Civita connection ∇ and smooth vector fields on
M (see, for example, [22], p. 263).

A holomorphic vector field ξ on (M, g, J) is defined by the condition Lξ J = 0. In this
case, Equation (13) holds (see also [22], p. 263). Therefore, a holomorphic vector field on
an almost Kählerian manifold is an example of an infinitesimal harmonic transformation.
Moreover, a complete holomorphic vector field ξ is necessarily a harmonic dynamical
system on a complete Riemannian manifold (M, g). Hence the following corollary is true.

Corollary 8. Let (M, g, J) be a complete almost Kählerian manifold with non-positive Ricci cur-
vature and ξ be a holomorphic vector field on (M, g, J). If ‖ξ‖ ∈ Lp(M) at least for one p > 1,
then ξ is a parallel vector field. Furthermore, if the volume of (M, g, J) is infinite or (M, g, J) is
irreducible, then ξ is identically equal to zero everywhere on (M, g, J).

Remark 9. This corollary is a new statement despite a large number of articles on this topic.
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7. Conclusions

The study of the geometry of infinitesimal transformations of Riemannian manifolds
using the concepts of geometric dynamics and the methods of the modern version of the
Bochner technique distinguishes our work from other similar articles. Therefore, our paper
has the potential to become a good research article.
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