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Abstract: Heat transfer and fluid dynamics modeling in porous media is a widely explored topic
in physics and applied mathematics, and it involves advanced numerical methods to address its
non-linear nature. One interesting application has been the urban-heat-island (UHI) numerical
simulation. The UHI is a negative consequence of the increasing urbanization in cities, which is
defined as the presence of warm temperatures inside the urban canopy in contrast to the colder
surroundings. Furthermore, an interesting phenomena occurs within a UHI context when the city
transitions from a heat island to a cold island, matching the increases and decreases of solar radiation
over the span of a day, as well as the decrease in the UHI intensity as a result of wind action. The
numerical study in this paper had, as its main goal, to reproduce this phenomenon. Therefore, the
key elements proposed in this work were the following: A 2D horizontal urban–rural domain that
had a variable porosity with a Gaussian distribution centered in the city center. A non-stationary
Darcy–Forchheimer–Brinkman model to simulate the flow in porous media, combined with an
air–soil heat transport model linked by a balancing equation for the surface energy that includes
the evapotranspiration of plants. In regards to the numerical resolution of the model, a classical
numerical methodology based on the finite elements of Lagrange P1 type combined with explicit and
implicit time-marching schemes have been effective for high-quality numerical simulations. Several
numerical tests were performed on a domain inspired by the metropolitan region of Guadalajara
(Mexico), in which not only the temperature inversion was reproduced but also the simulation of the
UHI transition by strong wind gusts.

Keywords: urban heat island; numerical simulation; Darcy–Forchheimer–Brinkman equation; finite
element method

MSC: 35K05; 35K61; 35Q35; 65L06; 65M60

1. Introduction

The urban heat island (UHI) is a well-known phenomenon that outlines the discrep-
ancies between the temperatures of an urban region and the surrounding rural region.
The UHI itself has a different behavior between day and night, being more remarkable at
night and during the summer season [1–3], in contrast with the complex distribution in the
daytime with warmer areas depending on soil use (industrial, parks, commerce, residential,
and others) [4]. Moreover, the exposure of city inhabitants to these warmer temperatures
generate thermal stress, defined as discomfort and feeling upset with the consequences of
the warmer temperatures on their daily activities, such as working and sleeping, and in
worst-case scenarios, these have even resulted in death due to heat waves [5,6]. In order
to mitigate the thermal stress, an extensive use of cooling systems is the only alternative,
leading to increased energy consumption in buildings by a median rate of 19% [7]. Fur-
thermore, the UHI facilitates the presence of higher pollution levels in cities. This was
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recently demonstrated by using numerical simulations [8] and big-data analysis [9] of dif-
ferent aspects, such as chemistry, urban design, transport politics, and city location, among
others. Therefore, we expect an increase in the number of cases of chronic respiratory and
cardiovascular illnesses in city inhabitants [10].

Nevertheless, we are mainly interested in two features of the UHI phenomenon: the
inversion of temperatures, as described by [3,11], that occurs when the city transitions from
a heat island to a cold island, according to the increasing and decreasing solar radiation
throughout the day, and the relief of UHI intensity by wind gusts.

Because of the aforementioned features, UHIs have been studied in different areas
of the science, and numerical PDE models have been expanded and developed over the
last few years due to advances in computing capacity, the improvement of numerical
methodologies, and increased data availability. Regarding mathematical models used
to study UHIs, a model using computer fluid dynamics (CFD) is often coupled with a
heat-transfer model, forced though a heat flux. Therefore, the models are typically 2D or 3D,
with scales that range from a few dozen meters (micro-scale) to several tens of kilometers
(meso-scale), the former being capable of capturing architectural details of the urban
framework while the latter approaches the urban framework with parametrizations or other
mathematical techniques due to the infeasibility of capturing urban details (buildings shape,
streets width, building materials, among others). Subsequently, complex CFD models, such
as Reynolds-averaged Navier–Stokes (RANS) and the large eddy simulation (LES), have
been implemented in several studies of UHIs at micro-scale and meso-scale levels, in
order to address problems related to local climates and urban planning. Furthermore,
the popularity of CFD models is due to its variants (such as the k− ε family models); its
implementation in several software packages, such as ENVY-MET, WRF, and FLUENT [12];
and a large number of published studies and reviews [12–16]. However, CFD models
require significant computational resources in order to produce accurate results in micro-
scale studies of UHIs, making them infeasible for producing a reliable representation of
urban frameworks at a macro-scale scenarios [12,16]. Moreover, for UHI studies on an
entire urban–rural domain, the characterization of the urban framework is essential. As
an illustrative example, in [17], a 3D CFD model based on the Navier–Stokes equations
coupled with a non-stationary balance of energy on the surface was used to study Tokyo’s
UHI. This model neglected the orography, and it assumed that the urban limits according
to the locations of heat emissions from Tokyo’s database. Therefore the urban limits were
defined neither by physical limits nor by boundary conditions at a mathematical level.
Alternatives and improvements to CFD models should be accurate and computationally
efficient, despite the lack of urban architectural details [12].

Based on satellite or aerial images, a city landscape conformed by building blocks
and delimited by streets can appear similar to porous media. In [18], they considered
three plates that contained rectangular blocks to simulate the buildings, and the space
between the square blocks was used to simulate the streets. The aforementioned plates
were separated by a large empty space to simulate an open field. With this configuration,
they characterized an urban–rural domain and carried out experiments to simulate the
heat plume and the obtained results were used to validate a CFD numerical model. In
later studies, the similarity between the urban framework and porous media were formally
stated in [19], in which a CFD simulation of air passing through a channel was divided in
two parts, where one part included the presence of buildings and the other part did not
include buildings. The experiment was carried out, assuming an incompressible turbulent
flow, and modeled with an experimentally derived Darcy–Forchheimer equation. In [12,16],
the reference model was validated successfully by using results from CFD micro-scale
models, and the experiment exhibited notable computational efficiency. The study in [20] is
the first instance, as far as we know, where a CFD turbulence model with porous media was
formulated to simulate a UHI of an entire city and its rural surroundings. In concrete, this
turbulence CFD model was a stationary Darcy–Forchheimer–Brinkman equation, instead
of only Darcy–Forchheimer as in [12,16,19]. Therefore, the CFD model in [20] considered an
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incompressible turbulent flow (Forchheimer correction), along with the fluid that tended
to adhere to the walls of the porous media (Brinkman correction). We could infer the
reasons for this contrast, as an entire urban–rural domain is unlikely to be supported by the
experimental results of the above models. Regarding the heat transfer, [12,16,20] focused on
the air temperature (fluid phase) forced by a known heat flux, depending on the building
height and volume, enabling them to eliminate the equation for the solid phase, which
complemented the heat-transfer model on porous media [21].

Therefore, our work identified remarkable contrasting elements, with respect to [12,16,17,
19,20], which are mentioned here briefly and are detailed throughout the paper. Our urban–rural
domain is a 2D horizontal region with a variable porosity defined as a Gaussian distribution
to focus on a human scale (a few meters above the soil surface), overlooking the turbulent
vertical transport. Furthermore, similar to [20], we apply a non-stationary CFD model of a Darcy–
Forchheimer–Brinkman type and coupled with a heat-transfer model that includes not only the
fluid–solid phase equations found in the porous media literature [21] but also an equation for
the energy balance on the surface that has been used in remote sensing research [22]. Therefore,
our model has solar radiation as the energy source, instead of heat fluxes from data or buildings.
Lastly, we show the complete mathematical methodology and the numerical schemes used to
solve the two models and carry out several numerical experiments. All of this is considered
with the aim to reproduce the phenomenon of temperature inversion and the wind transport of
warm air.

This paper has the following structure: In Section 2.1, the elements of a typical domain
are described, together with a brief justification of the model. In Section 2.2, we present
the momentum equation as a Darcy–Forchheimer–Brinkman equation but re-written as
an equation depending on the local pore-scale in the representative elementary volume
(REV), as well as stating our motivation and its advantages. Next, the heat-transfer model
is presented in Section 2.3, in which we highlight the inclusion of an equation for the
energy equilibrium on the surface that considers the total solar radiation, the heat fluxes of
sensitive and latent types, and the soil. In Section 2.4, the finite element method and time-
discretization schemes for solving both models are shown. While the numerical schemes
are classic, modifications due to variable porosity were necessary, and boundary conditions
had to be completely described for the purpose of presenting a complete numerical method-
ology, which has been absent in much of the literature, such as in [12,16,19,20]. In Section 3,
the model domain is set as the metropolitan region of Guadalajara (MRGDL) in Mexico,
and it is characterized not only by a variable porosity but also by other parameters, such as
density, specific heat, albedo, and emissivity, among others. Numerical experiments are
carried out and show the UHI evolution across a 24 h period and the transport of warm
air mass due to wind gusts. Finally, in Section 4, we explain how the model achieved the
expected results by simulating the urban temperature inversion and the wind action over
a UHI.

2. Materials and Methods
2.1. The Computer Fluid Dynamics and Heat Transfer Models on Porous Media

Currently, heat transfer and fluid dynamics through porous media are phenomena
studied by physicists and applied mathematicians, where the numerical simulation of PDE
models is an essential tool. It is our interest to study the corrections to Darcy’s Law, which
consist of added terms to address fluid behaviors observed in laboratory experiments,
such as those for high-velocity flow and resistance on the porous wall (viscosity). These
new terms or corrections are known as Forchheimer and Brinkman terms, respectively.
In regards to modeling the heat transfer, two phases are considered: fluid phase and
solid phase, both formulated as typical non-stationary transport problems with advection,
diffusion, and averages in vertical forcing terms. Furthermore, fluid and solid phases
are linked by a heat-interchange surface that plays the role of a temperature regulator.
Therefore, an indispensable parameter that is present in both models is the porosity, which
is dimensionless with values between 0 and 1, indicating the proportion of pores in the
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REV. As mentioned above, a UHI is characterized by the contrast between temperatures of
urban and rural media; therefore, we consider a regular domain Ω ⊂ R2 with boundary
Γ divided into different segments: wind inlet Γin, wind outlet Γout, and hills inside the
domain Γw.

2.2. A Non-Stationary Darcy–Brinkman–Forchheimer Model for an Urban–Rural Porous Media

Let Ω ⊂ R2 be a porous media with porosity ε = ε(x) and permeability K = K(ε).
Let (0, T) be the time interval of the simulation. We had to find the average velocity on
the reference elementary volume (REV) u = (u1, u2), such that it satisfied a CFD Darcy–
Forchheimer–Brinkman model, formulated as follows [21]:

ρ

ε

(
∂uk
∂t

+
1
ε

u · ∇uk

)
= − ∂P

∂xk
− µ

K
uk +∇ ·

µ

ε
∇uk −

ρCF√
K

uk|u| in Ω× (0, T), (1)

for index k = 1, 2 and where P is the pressure, ρ is the air density, µ is the dynamical
viscosity, CF is the Forchheimer coefficient, and u also satisfies the continuity equation

∇ · u = 0 in Ω× (0, T). (2)

Let the local fluid velocity on the REV be defined by u∗ = u
ε , so the above equation can be

expressed in terms of u∗, as follows:

∂u∗k
∂t

+ u∗ · ∇u∗k = −1
ρ

∂P
∂xk
− ε

ρ

µ

K
u∗k +

1
ρ
∇ · µ

ε
∇(εu∗k )− ε2 CF√

K
u∗k |u

∗|. (3)

The left hand side of the last equation is well known, and this method for defining u∗

allow us to send the porosity ε = ε(x) to the forcing term on the right hand side of the
equation, which is more advantageous when seeking its numerical solution. Accordingly,
the continuity equation needs an adjustment,

∇ · εu∗ = 0, (4)

as a consequence of the variability of the porosity.
With respect to the initial and boundary conditions, we assume a known initial state

for the velocity field. Therefore, for a given u0(·),

u∗(· , 0) =
1
ε

u0(·) on Ω. (5)

Meanwhile, the boundary conditions are formulated based on the boundary segments,
as follows:

u∗k = gk, on Γin × (0, T), (6a)

u∗k = 0, on Γw × (0, T), (6b)

n · µ

ε
∇(ε u∗k )− P nk = 0, on Γout × (0, T), (6c)

n · ∇P = 0, on Γin
⋃

Γw × (0, T), (6d)

where n = (n1, n2) is the unit normal vector at each point of Γ and exterior to the domain
Ω. The boundary conditions indicate that a constant inlet wind is imposed on the inlet
boundary Γin (6a), and a no-slip condition is used on walls Γw (6b). Furthermore, boundary
condition (6c) indicates that the wind direction on Γout is not affected by the pressure.
Therefore, pressure on the inlet boundary Γin and walls Γw is applied in a tangential
direction under condition (6d).
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2.3. Model for Heat Transfer in Urban–Rural Domain

We are interested in simulating the temperature dynamics for our urban–rural domain.
In order to achieve this objective, three temperatures are considered: air, surface, and
soil, with solar radiation as their energy source. Next, air temperature is important for
quantifying the UHI intensity, and it is strongly influenced by the wind flow field. The
surface acts as a screen for the solar radiation, reflecting a fraction of it and absorbing its
complement. As a consequence, the surface temperature can be determined. Meanwhile,
soil temperature depended only on the energy interchange with the surface. Lastly, despite
being defined on the 2D horizontal domain Ω, the mentioned temperatures are related by
heat transfer at a much smaller vertical component.

Let θa, θ0, and θs denote the air, surface, and soil temperatures, respectively, which
satisfy the following PDE system:

ε
∂θa

∂t
+ u · ∇θa −∇ · (µa∇θa) =

1
da
{γa(θ0 − θa) + σa(θ

4
0 − θ4

a)} in Ω× (0, T), (7a)

(1− a)Rs + εskyσBθ4
a − ε0σBθ4

0 −
ρaca

rah
(θ0 − θa)−

ρscs

rsh
(θ0 − θs) = λLE in Ω× (0, T), (7b)

(1− ε)
∂θs

∂t
−∇ · (µs∇θs) =

1
ds
{γs(θ0 − θs)} in Ω× (0, T), (7c)

where we observe the porosity ε, the global total radiation Rs, and those related to air, such
as µa, γa, da, and σa, as the thermal diffusivity, convective interchange coefficient, air layer
thickness, and radiation transfer coefficient, respectively. Parameters related to the soil are
µs, γs, and ds which correlate to the thermal diffusivity, convective interchange coefficient,
and soil layer thickness, respectively. Furthermore, those related to the air–surface–soil link
are the albedo a, the sky emissivity εsky, the soil emissivity ε0, soil interchange resistance
rsh, and air interchange resistance rah. The complete list of the model parameters is found
in Table A1.

For this system, we identified the following elements: Equation (7b) represents the
energy balance on the surface, commonly used to estimate surface temperatures or other
surface variables in remote sensing [22,23]. This equation formulates the equilibrium
between total radiation Q∗ = (1 − a)Rs + εskyσBθ4

a − ε0σBθ4
0 , sensitive heat flux H =

ρaca
rah

(θ0 − θa), heat soil flux G0 = ρscs
rsh

(θ0 − θs), and latent heat flux λLE. The latter is

obtained from the definition of the Bowen ratio, β = H
λLE , and the energy balance equation

on the soil surface:
Q∗ = H + G0 + λLE. (8)

Then, substituting the value H = βλLE, we obtained a method for estimating the latent
heat flux with the following relation [24,25]:

λLE =
(1− a)Rs + εskyσBθ4

a − ε0σBθ4
0 −

ρscs
rsh

(θ0 − θs)

1 + β
, (9)

as long as a known value of β is available.

Remark 1. Additional physical definitions are required to explain Equation (7b). The total radiation
is the difference among the downward short-wave radiation or solar radiation (1− a)Rs, the long-
wave radiation from the sky εskyσBθ4

a , and the upward long-wave radiation emitted by the soil
ε0σBθ4

0 . The sensitive heat flux H and latent heat flux λLE are the mechanisms by which the
surface transfers much of the absorbed solar radiation to the air. The magnitude of H depends on
the temperature difference and the resistance rah while λLE depends on the Bowen radius, which
is related to evapotranspiration, predominantly by plants. Therefore, H and λLE play the role of
thermal regulators for the air layer temperature.
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The Equations (7a,c) are formulated as a typical transport problem with diffusion,
advection, and vertical averaged forcing, by da and ds, respectively. Furthermore, the
location on the domain of the three temperatures and its relation with the convective
resistances rah and rsh is shown and briefly explained in Figure 1.

Figure 1. Heat-transfer model: the urban–rural domain Ω (bottom) is a sub-set of R2 with an urban
area, represented as a rectangle (gray); a rural area (green); the soil below (brown); inlet–outlet
boundary segments; and inlet wind direction (blue arrow). Based on the horizontal section of the
domain (magenta sector), the vertical distribution of the three temperatures θa, θ0, and θs is shown
(top left) in congruence with the vertical interchange thermal resistances rah and rsh for air and soil,
respectively (top right). Both layer thicknesses, da for air and ds for soil, are much smaller when
compared with the horizontal scale. Finally, the resistance diagram (top right) is formulated based on
Figure 6 in [23].

The system is complemented with the initial conditions for air and soil temperatures
θa(·, 0) = θ0

a(·) and θs(·, 0) = θ0
s (·), where θ0

a(·) and θ0
s (·) are given functions. Regarding

boundary conditions, it is assumed that heat escapes from the domain only by wind action
in the case of the air temperature, so diffusion must be at zero on all borders. Whereas for
the soil, it is assumed that soil temperature is equal on both sides of the boundary, implying
zero diffusion. Therefore, the following homogeneous Neumann boundary conditions for
both air and soil equations are imposed:

n · µa∇θa = 0 on Γ× (0, T), (10a)

n · µs∇θs = 0 on Γ× (0, T), (10b)

where n is the unit normal vector at each point of Γ and exterior to the domain Ω.

Remark 2. Conditions (10a,b) have the advantage of simplifying the variational formulation of the
model, and both conditions are a special case of the heat interchange condition n · µ∇θ = −φ(θre f −
θ), where φ > 0 and θ of the model are unknown and θre f is a given reference temperature.

2.4. Numerical Solution

Notice that the air density is constant, so the systems (3) and (7) are uncoupled,
and they can be addressed independently. Moreover, the Darcy–Forchheimer–Brinkman
Equation (1) has a viscous term that contributes to stability; meanwhile, the equations of
the energy transfer model had the classic form of a transport equation. This indicates that a
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standard finite element methodology can be applied. Therefore, let us consider the Sobolev
space V = H1(Ω) as our space of test functions, along with the L2 inner product 〈·, ·〉 to
obtain the variational formulation, and the finite element functions of Lagrange P1 type to
achieve a stable numerical solutions [26–28].

Remark 3. Note the mathematical analysis of the Darcy–Forchheimer–Brinkman and Darcy–
Forchheimer equations in order to define the appropriate Sobolev spaces and to derive suitable
variational problems has been studied in [29,30], thereby supporting the use of a finite element
approach. However, due to the scope of this work, it is sufficient to use a variational approach based
on the space H1(Ω).

2.4.1. An Explicit Scheme for the Darcy–Forchheimer–Brinkman Equation: The Chorin
Method

The Chorin method is now considered a classic method for solving the Navier–Stokes
equations numerically [31], which is explicit in time and subsequently splits the model into
three equations. The method has the advantage of being straightforward to formulate, at
the expense of losing accuracy on the boundary conditions [26]. The method begins by
formulating a semi-discrete problem in time. Let T denote the final simulation time, and
for a given integer N, define the time step δt = T/N and the time instants tn = nδt, n =
0, . . . , N. The value u∗k (·, tn) is denoted by un+1

k , and let us approximate the time derivative
by using the backward Euler scheme, to obtain the following (hereafter, omitting the ‘∗’
from the local velocity):

un+1
k − un

k
δt

+ un · ∇un
k = −1

ρ

∂Pn

∂xk
− ε

ρ

µ

K
un

k +
1
ρ
∇ · µ

ε
∇(εun

k )− ε2 CF√
K

un
k |u

n|. (11)

Next, let ûk be a first approximation to un+1
k , adding the zero −ûk + ûk to the first term on

the left hand side allows us to split the above equation as follows:

ûk − un
k

δt
= −un · ∇un

k −
ε

ρ

µ

K
un

k +
1
ρ
∇ · µ

ε
∇(ε un

k )− ε2 CF√
K

un
k |u

n|, (12a)

un+1
k − ûk

δt
= −1

ρ

∂Pn

∂xk
. (12b)

Furthermore, multiplying Equation (12b) by ε leads to:

ε

(
un+1 − û

δt

)
= − ε

ρ
∇Pn, (13)

By applying gradients on both sides and because un+1 satisfies the continuity Equation (4),
the pressure equation is obtained:

− 1
δt
∇ · εû = −1

ρ
∇ · (ε∇Pn), (14)

Next, by re-using Equation (12b), we formulate the following semi-discrete explicit problem:
Given the initial state u0

k(·), for each n = 0, 1, . . . , N − 1, find the tentative velocity ûk,
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the pressure Pn, and update the velocity un+1
k by solving the following system of semi-

discretized equations:

ûk = un
k + δt

{
−un · ∇un

k −
ε

ρ

µ

K
un

k +
1
ρ
∇ · µ

ε
∇(εun

k )− ε2 CF√
K

un
k |u

n|
}

, (15a)

−1
ρ
∇ · (ε∇Pn) = − 1

δt
∇ · (εûn), (15b)

un+1
k = ûk −

δt

ρ

∂Pn

∂xk
. (15c)

The above system is uncoupled, so given un
k , k = 1, 2 we obtain ûk from Equation (15a),

following the pressure Pn from (15b), and finally update un+1
k with Equation (15c).

Now we address its variational formulation, for this, multiply Equations (15a) and
(15b) by test functions v, q ∈ V, integrate them by parts, and assuming that ûk, un

k , Pn ∈ V,
we can formulate

〈ûk, v〉 = 〈un
k , v〉+ δt

{
−〈un · ∇un

k , v〉 −
〈

ε

ρ

µ

K
un

k , v
〉
−
〈

µ

ρε
(ε∇un

k + un
k∇ε),∇v

〉
+
〈

n · µ

ε
∇εun

k , v
〉

Γ
−
〈

ε2 CF√
K

un
k |u

n|, v
〉}

,

1
ρ
(〈ε∇Pn,∇q〉 − 〈n · ε∇Pn, q〉Γ) = −

1
δt
〈∇ · εû, q〉.

Note that the expansion µ
ε (ε∇un

k + un
k∇ε) is due the variable porosity ε = ε(x), and the

inner products defined on the boundary Γ result from the integration by parts.
Regarding the Dirichlet boundary conditions (6a,b), they were imposed in a numerical

level, so the natural condition n · ∇εun+1
k = 0 has to be applied on Γin ∪ Γw. Meanwhile, to

fulfill the condition on the outlet (6c), we split it into a velocity part and a pressure part,
n · ∇εun+1

k = 0 and Pn = 0, respectively, enforcing the latter with a generalized condition
n · ∇Pn = σPn, here σ must be sufficiently large. Finally, the condition for the pressure on
walls and the inlet boundary (6d) is applied.

Next, we formulate the finite element spaces associated with triangulation τh

Wh = {v ∈ C(Ω̄) : v|T ∈ P1, T ∈ τh, n · ∇(εv) = 0 on Γ}, (16a)

Mh = {q ∈ C(Ω̄) : q|T ∈ P1, T ∈ τh, n · ∇(εq) = 0 on Γin
⋃

Γw}, (16b)

and we define the full discretized problem: Given the initial state u0
k , k = 1, 2, find the

vector (un+1
1 , un+1

2 , Pn) ∈ Wh ×Wh ×Mh that satisfies the follow explicit system for each
index n = 0, 1, 2, . . . , N and for all pairs (v, q) ∈Wh ×Mh

〈ûk, v〉 = 〈un
k , v〉+ δt

{
−〈un · ∇un

k , v〉 −
〈

ε

ρ

µ

K
un

k , v
〉
+

〈
µ

ρε
(ε∇un

k + un
k∇ε),∇v

〉
−
〈

ε2 CF√
K

un
k |u

n|, v
〉}

, (17a)

1
ρ
(〈ε∇Pn,∇q〉 − 〈σPn, q〉Γout) = −

1
δt
〈∇ · εû, q〉, (17b)

un+1
k = ûk −

δt

ρ

∂Pn

∂xk
. (17c)

By introducing the nodal basis of spaces Wh, Mh, it is well known that problem (17) is then
equivalent to solving a system of lineal equations built with the contribution matrices of
each triangle element in τh.

Remark 4. Is important to consider that the unknown in the problem (17) is the local velocity on
the REV u∗k at instant tn, and not the average velocity un

k required in the model (7). Therefore, the
average velocity has to be updated as follows:

un
k = ε u∗,nk , (18)
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for each index n = 1, 2, . . . , N.

2.4.2. A Finite Element Approach and Implicit Time Schemes to Solve the Heat-Transfer
Model

The model (7) has the classical form of a transport problem, so unlike the Chorin
method, we follow the standard treatment of the finite element method and start by
performing the spatial discretization. For this, Equation (7a,c) is multiplied by a test
function v ∈ V, integraed by parts, and the boundary condition (10a,b) is applied. This
leads to the variational formulation of the problem:〈

ε
∂θa

∂t
, v
〉
+ 〈u · ∇θa, v〉+ 〈µa∇θa,∇v〉 =

〈
1
da
{γa(θ0 − θa) + σa(θ

4
0 − θ4

a)}, v
〉

, (19a)〈
(1− ε)

∂θs

∂t
, v
〉
+ 〈µs∇θs,∇v〉 =

〈
1
ds
{γs(θ0 − θs)}, v

〉
. (19b)

It must be considered that the above equations, along with Equation (7b), form a non-
linear system, so computing the gradients of the not-yet-defined residuals is essential for
solving it.

Consider the finite element space associated with triangulation τh:

Vh = {v ∈ C(Ω̄) : v|T ∈ P1, T ∈ τh, n · ∇v = 0 on Γ}. (20)

Therefore, substituting V by Vh, taking v ∈ Vh, and replacing θ(x, t) by θ(t)w(x) with
w ∈ Vh leads to:

∂θa

∂t
〈εw, v〉+ θa{〈u · ∇w, v〉+ 〈µa∇w,∇ v〉} = 〈 fa(θa, θ0), v〉, (21a)

∂θs

∂t
〈(1− ε)w, v〉+ θs

{
〈µs∇w,∇v〉+

〈
1
ds

w, v
〉}

=

〈
1
ds

γsθ0, v
〉

, (21b)

where fa(θa, θ0) denotes the forcing by convection and radiation (right hand side of (19a)).
At this point, several time-marching schemes can be applied to resolve both equations.

In this work, we chose a hybrid scheme with a BDF method of order 2 [26] to obtain stability
at the first equation and the backward Euler for the last equation. Both schemes are implicit
and then unconditionally stable. However, the nature of each equation is non-linear, non-
linear algebraic, and linear, respectively. This motivated us to formulate an implicit method
characterized by a time interval between the state variable of each equation and the other
unknowns of the system, in order to use the available information.

Considering all of this, it is possible to formulate the complete discretized problem:
Given the initial conditions θ0

a and θ0
s , find the solutions θn

a , θn
0 , and θn

s for time instants
n = 0, 1, 2, . . . , N, such that it satisfies the following system:

(3θn
a − 4θn−1

a + θn−2
a )〈εw, v〉+ 2δtθ

n
a {〈u · ∇w, v〉+ 〈µa∇w,∇v〉} = 2δt〈 fa(θ

n
a , θn−1

0 ), v〉, (22a)

(1− a)Rs + εskyσB(θ
n
a )

4 − ε0σB(θ
n
0 )

4 − ρaca

rah
(θn

0 − θn
a )−

ρscs

rsh
(θn

0 − θn−1
s ) = λLE, (22b)

(θn
s − θn−1

s )〈(1− ε)w, v〉+ θn
s δt

{
〈µs∇w,∇v〉+

〈
1
ds

w, v
〉}

= δt

〈
1
ds

γsθn+1
0 , v

〉
. (22c)

The first equation requires two initial values: The first one is the initial condition, and the
second one was estimated with a suitable Runge–Kutta method. In this work, we used an
implicit Euler scheme.

At this stage, it is possible to compute the gradients needed to solve the non-linear
Equation (22a,b). Therefore, let Ra and R0 be the residuals defined from Equations (22a,b),
and let their gradients (while omitting index n) be expressed as follows:
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∂Ra

∂θa
= 3〈εw, v〉+ 2δt

{
(〈u · ∇w, v〉+ 〈µa∇w,∇v〉)−

〈
∂ fa(θa, θ0)

∂θa
, v
〉}

= 3〈εw, v〉+ 2δt

{
(〈u · ∇w, v〉+ 〈µa∇w,∇v〉)− (γa + 4σa(θa)

3)
}

, (23a)

∂R0

∂θ0
= −4ε0σB(θ0)

3 − ρscs

rsh
− ∂λLE

∂θn
0

= − β

1 + β

(
4ε0σB(θ0)

3 +
ρscs

rsh

)
. (23b)

Similarly, by introducing the nodal basis of space Vh, a non-linear system can be built with
the contribution matrices defined by each term of Equation (22a,c) and vectors from the
non-linear vector Equation (22b). The solution of this system produces the values of the
state variables in each mesh node and each time instant.

Finally, MATLAB™ software was used to implement the finite element method and,
particularly, its command fsolve was used to address the system of non-linear equations.
This solver allowed us to supply the gradient (23a,b) and optionally evaluate its accuracy by
comparing them with the solver’s gradients (estimated with central finite differences). This
comparison proved to be effective, with a maximum error of order O(10−5) and O(10−6)
for (23a) and (23b), respectively.

3. Numerical Results
3.1. Parameters Values and the Urban–Rural Domain Based on the Metropolitan Region of
Guadalajara

The domain of study considered in this work is the metropolitan region of Guadalajara
in Mexico (shown in Figure 2a). Here, we observed an irregular urban boundary, along
with obstacles and hills. The domain Ω was bounded by a rectangle Ωh, surrounding the
hills and other small rectangles, and the constructed geometrical domain was meshed by
the triangulation τh (Figure 2b). It contained 5360 vertices and 10,338 triangular elements
such that they were finer on boundary hills and urban regions in order to minimize the
consequences of the no-slip boundary condition (6b) and the large temperature gradients
expected in a UHI context. Moreover, we assumed that the urban–rural domain had a
concentric distribution of buildings, so the center of the city presented a higher concen-
tration of large buildings, in contrast with the suburbs, where smaller and more scattered
structures were more common, and with the rural regions, where building concentration
was practically nil. Therefore, the notable discrepancy on the model parameter values were
intended to agree with our idealized urban–rural domain.

A key point of this work was to consider a variable porosity to characterize the urban
and rural regions, instead of the use of urban–limit layouts (and without the need of
boundary conditions). Therefore, given the typical porosity value [18,20] for the urban
area εurb = 0.38 that is associated with high building concentrations, and for the rural
area, εrural = 0.98 is associated with the lack of building structures. We used a simple
Gaussian distribution with variances αx, αy, and centered at the city center (xc, yc) (see
Figure 3b) to distribute them across the domain. Furthermore, in order to define the
urban limits, we modeled the city as a circle with radius r, which we used to truncate
the Gaussian distribution at the points where it reaches the city limits (see black and
magenta lines on Figures 2b and 3a). The porosity was not the only parameter related to
the concentration of building blocks, as there were other factors, such as soil density (ρurb =
2.11× 103, ρrural = 8.4× 102), soil roughness (z0,urb = 7, z0,rural = 1), Bowen radius (βurb =
5, βrural = 0.5), and others that were defined with a Gaussian distribution. Nevertheless,
there were dimensionless parameters, such as emissivity (eurb = 0.84, erural = 0.96), and
albedo (aurb = 0.27, arural = 0.16), which were not dependent on the concentration of
buildings. Therefore, they were defined with a radial distribution (see Figure 3b). Lastly,
we used conservative values for air and soil layer thickness da = 2 m and ds = 1 m. For a
complete list of the model parameters, and the parameters associated with either urban or
rural regions, see Table A1.
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Remark 5. For the sake of simplicity, we used an idealized urban–limit layout. More realistic
urban layouts could be built with the curve fitting of a finite number of points on the real city limits.
Nevertheless, the described methodology applies in such realistic cases.

(a) (b) (c)

Figure 2. Study area idealization, mesh, and 24 h solar radiation. (a) Satellite photograph of the
metropolitan region of Guadalajara with more of 40 km2 (Google-Earth, 2023). Here, we denoted the
boundaries and hills (idealized as rectangles) of the domain Ω with a red line. (b) Triangular mesh τh,
inlet boundary Γin (green), outlet boundary Γout (magenta), hills walls Γw (red), and the urban-limit
layout (black) as a circumference of radius r. The black arrow shows the inlet wind direction. (c)
Typical global day-long solar radiation Rs(t) with maximum values at midday and almost zero on
either side.

(a) (b)

Figure 3. Examples of parameter distribution on the urban–rural domain and the urban–limit layout.
(a) Gaussian distribution of the porosity ε with lower values at the city center and with higher values
in the rural surroundings. (b) For dimensionless parameters such as soil emissivity es, a simple
radial distribution with only two values, corresponding to urban and rural, was assigned to each
mesh node.

3.2. A 24 h Simulation of the UHI under Ideal Conditions

In our first test, we considered a simulation of T = 24 h under ideal conditions:
no wind, a typical day-long radiation (Figure 2c), and no clouds, which was carried out
with the aim of reproducing the temperature inversion described in [3,11]: a warm city
during the day that transitioned into a cold city at night. Results are shown in Figure 4,
where the spatial distribution of temperature θa at 8, 10, 12, 14, 16, 18, and 20 h of the
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day is displayed. We observed not only the expected transition from a warmer urban
process (consistent with radiation increase) to a colder process (consistent with radiation
decrease). Both were in contrast with their rural surroundings, but they also had different
heat levels, with differences of 2–3 degrees in the city (Figure 4c). This was the intended
inverse temperature effect.

Remark 6. It could be accurate to say that [11] observed the temperature inversion on parks
surrounded by an urban area, that is, parks turning from a cold island during the day to a warmer
island at night, with respect to their urban surroundings. Given that parks are conformed by plants,
trees, and green soil, that have similar thermal properties as the rural surroundings of the city, this
allowed us to assume that this phenomenon holds for a city surrounded by a rural (green) area.
Therefore, the city transitioned from a heat island during the day to a cold island at night, with
respect its rural surroundings.

(a) (b) (c)

(d) (e) (f)

Figure 4. Time evolution of the air temperatures during a 24 h interval. We used the following times
8, 12, 16, and 20 h as a sample to illustrate the obtained results. (a) θa at 8 h. (b) θa at 10 h. (c) θa at
12 h. (d) θa at 14 h. (e) θa at 16 h. (f) θa at 20 h.

3.3. Influence of the Wind and the Need for Numerical Stabilization

With respect to the wind field, we solved the Darcy–Forchheimer–Brinkman model by
forcing it with the boundary condition values g1 = 0.25 m s−1, and g2 = −0.25 m s−1, and
then with an inlet wind gust in a southwest direction. Therefore, with enough time, the
model achieved a stationary state which was used as the reference wind (see Figure 5),
having maximum magnitude of 1.2 m s−1. To augment the wind intensity, we used a scalar
parameter η that multiplied its intensity by 1, 2, 3, 4 times.
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(a) (b)

Figure 5. The reference wind field used in the experiment was constant and computed from the
momentum equation. (a) Wind field. (b) Norm of the wind field ‖u‖.

The model is highly convective due to the low density of the air and the intensity of
the wind field, and this combination tends to destroy the stability of the numerical solution
through spurious oscillations. This is shown in Figure 6a, where the air temperature
oscillations were present along the wind direction when η = 4 and the wind blew for 3 h.
To address this problem, several techniques could have been used. We chose the streamline
diffusion stabilizer [28], and as shown in Figure 6b, the oscillations were minimal. The
streamline diffusion stabilizer added diffusion, but only in the direction of the wind. By
catching the temperature changes using an inner product between wind and θ gradient,
it was implemented in the variational formulation level by adding a suitable term to
Equation (19a):〈

ε
∂θa

∂t
, v
〉
+ 〈u · ∇θa, v〉+ 〈µa∇θa,∇v〉+ ζ〈u · ∇θa, u · ∇v〉 = 〈 fa(θa, θ0), v〉, (24)

where ζ > 0 is a parameter to modulate the stabilization.
Certainly, the stabilizer is artificial, and the new variational formulation is not con-

sistent with the strong formulation of the model, but these types of adjustments are not
exclusive to the Galerkin method. For example, discontinuous Galerkin and finite volumes
in heat transfer and fluid dynamics both use WENO stabilizers, which are implemented
to limit the gradients between the elements of the mesh [32–34]. Therefore, in view of
the results shown in Figure 6, future numerical experiments should use the streamline
diffusion stabilizer.

Next, we analyzed the influence of different wind intensities η = 1, 2, 3, 4 blowing
from hour 10 to hour 13 in a day. The results are shown in Figure 7, where, as expected, the
wind carried the hot mass of air to the southeast and, thereby, benefiting the northwest city
inhabitants (mainly those living close to the city limits) with fresh air but disadvantaging
those living in the southeast and outside of the city. The differences in the air temperatures
could reach 2◦ K. We had to consider that radiation between the hours 10 and 13 increased,
thereby continuing to heat the system. The city center did not show significant changes
and maintained higher temperatures. Below, we show the changes during the afternoon.
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(a) (b)

Figure 6. It was clear that the streamline diffusion stabilizer minimized the spurious oscillation
without notable changes in the temperatures. (a) Un-stabilized solution (ζ = 0). (b) Stabilized
solution (ζ = 25).

(a) (b)

(c) (d)

Figure 7. Wind effect on the UHI. As expected, the wind transported the warmer air from urban to
rural areas. With enough intensity, the wind could be a factor in cold downwind air temperatures.
(a) Reference wind η = 1. (b) Augmented reference wind η = 2. (c) Augmented reference wind
η = 3. (d) Augmented reference wind η = 4.
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Our last test demonstrated an interesting feature of the UHI, as it occurred when the
radiation was low enough to stop the warming of the system, but at the same time, it
was still subject to intense wind. The model output showed the residual mass of warmer
air from the city continued to move through the countryside, exhausting its energy by
interchanging it with the colder surface, until it reached the environmental temperature.
At specific instants, warmer air masses had a temperature as high as 3 ◦K higher than
the rural surroundings, which was unrelated to this dynamic. For an example, see the
southeast zone (Figure 8b,c). In contrast, the UHI was broken in the northwest part of the
city, where the temperature contours overlapping with the city circumference boundary
were no longer present. We noted that the similarities between the city circumference with
temperature contours, as shown in Figure 8a, were no longer showing in the northwest
section, as shown in Figure 8b, but it returned in Figure 8c with colder temperatures.

(a) (b) (c)

Figure 8. Dynamics of the transport of warmer mass air during wind gusts. (a) θa before wind blows
at 13 h. (b) θa an in-between time period of blowing wind. (c) θa final state at 17 h.

4. Discussion

In this work, a numerical study of the well-known phenomenon, urban heat island
(UHI), was developed using key contributions and could be compared with other works.
The characterization of the rural and urban regions using a spatially varying porosity
defined by a Gaussian distribution was a different approach, with respect to the urban-
monolithic type, with constant parameters or buildings distribution depending on the
porosity used in the previous works ([12,16–18,20] and the references therein). It was
interesting that the variability of the parameters enabled us to obtain a notable contrast, not
only between the city and its rural surroundings, but also in the city itself, with temperature
discrepancies of a few degrees. However, the porosity we defined had consequences on
the model, its variational formulation, and the finite element approach, which have been
explained in detail throughout the paper.

With respect to the CFD and heat-transfer models and their numerical solutions, a
simple adjustment in the Darcy–Forchheimer–Brinkman equations after rewriting them
with respect to the local velocity u∗k , instead of the average fluid velocity uk, ensured they
became classic equations of fluid dynamics with porosity-dependent forcing. Furthermore,
the model for heat transfer was written based on equations used in remote sensing [23] but
was adapted to the energy interchange in porous media [21]. Both allowed us to reach the
proposed goals: temperature inversion and warm air transport.

From our perspective, that both models were resolved with classical numerical
schemes with great accuracy was remarkable and should enable other researchers to repro-
duce and amplify our results. This is in contrast with more complicated methodologies,
such as discontinuous finite element and finite volume methods and their limiters.
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With respect to expanding our work, we inferred that our model would be able to
simulate the effects of the strategies in order to mitigate the intensity of the UHI, which was
evidenced in recently published reviews [15,35]: great and median urban parks [35,36], the
use of white-green roofs [37], trees with dense vegetation [15,38], and the use of concrete
instead of asphalt [39]. However, those strategies must be carried out in a large enough
area to influence the numerical results.

Last, but not least, this paper presented challenges to be considered in future research,
such as a sensitivity analysis of the influence of the model parameters on the numerical
outputs; a vertical extension of the model that considers the turbulent transport; and
improvements to the layout of the urban limits. Regarding the latter, there are at least two
possible alternatives, using boundary conditions in an urban layout (more complicated
mathematical formulation and computational effort) or defining the urban limit layout by
truncating a continuous function, as we did in this work.
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Appendix A

Table A1. Complete list of parameters: Value, definitions, and units [4,11,18,20].

Symbol/Formula Definition Value/Units

Rs Global solar radiation W m−2

ρ Fluid density kg m−3

ρa Air density 1.1614 kg m−3

ρurb Urban soil density 2.11 × 103 kg m−3

ρrural Rural soil density 8.4 × 102 kg m−3

ca Specific heat of air 1005 J kg−1 K−1

curb Specific heat of urban soil 920 J kg−1 K−1

crural Specific heat of rural soil 3600 J kg−1 K−1

csteam Specific heat of steam 1952 J kg−1 K−1

αair Air conductivity 0.0263 J s−1 m−1 K−1

αurb Urban soil conductivity 0.41 J s−1 m−1 K−1

αrural Rural soil conductivity 1.47 J s−1 m−1 K−1

ha Air convection coefficient 1 J s−1 m−2 K−1

hurb Urban soil convection coefficient 0.4 J s−1 m−2 K−1

hrural Rural soil convection coefficient 0.2 J s−1 m−2 K−1

aurb Urban albedo 0.27
arural Rural albedo 0.16

https://www.researchgate.net/profile/Nestor-Garcia-Chan
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Table A1. Cont.

Symbol/Formula Definition Value/Units

eurb Urban soil emissivity 0.96
erural Rural soil emissivity 0.85
esky Sky emissivity 0.77
z0,urb Urban soil roughness 7 m
z0,rural Rural soil roughness 1 m
u∗,urb Urban friction velocity 0.2 ms−1

u∗,rural Rural friction velocity 0.5 ms−1

βurb Urban Bowen radius 5.0
βrural Rural Bowen radius 0.5
da = 2 Air layer thickness 2.0 m
ds = 1 Soil layer thickness 1.0 m
k Von Karman constant 0.4
Nu Nusselt number 1
σB Stephan–Boltzmann constant 5.6703 × 10−8 W m−2 K−4

r Urban radius 13,250.0 m
(xc, yc) Urban center coordinates (0, −2500) m
d Diameter of spheres 1 m
CF = 175√

150 ε3
; Forchheimer coefficient −−

(αx, αy) Gaussian distribution variances (10−8.25, 10−8.15)
K = ε3 d2

150(1−ε)2 Permeability −−
rsh =

0.75 ρa csteam
αa Nu Soil resistance s m−1

rah = 1
k2 u∗

[
ln( 2

z0
)
]2

Air resistance s m−1

σa = σB es
ρs cs

Air radiation interchange coefficient m s−1 K−3

γa = ha
ca ρa

Air convective interchange coefficient m s−1

γs =
hs

cs ρs
Soil convective interchange coefficient m s−1

µa = αa
ca ρa

Air thermal diffusivity m2s−1

µs =
αs

ρs cs
Soil thermal diffusivity m2s−1
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