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Abstract: Most companies survive the pain of cost and schedule overruns because of inaccurate 

project activity time settings. In order to deliver a project with a target cost and on schedule, this 

research proposes an inverse optimal value approach to optimize activity durations and the corre-

sponding worker assignments synchronously to make the optimal project cost infinitely close to an 

ideal cost. The leader model reflects cost orientation and adjustability of activity durations, the fol-

lower model reflects the complexity of activity sequence, critical path completion time, cost pres-

sure, skill matching, energy consumption, and other costs. Through upper-level and lower-level 

feedback and interaction of activity durations and worker assignments it is possible to deliver a 

project with an ideal cost. With considerations of the mathematical model characteristics of bi-level 

programming, nonlinearity, NP hard, and MAX functions, an improved genetic algorithm combin-

ing adaptive artificial fish swarms is designed. From the comparison results of random examples 

and an actual example, the error rate of the optimal value of the improved algorithm is acceptable. 

Numerical experiments show that the inverse optimal approach can deliver a project without delay 

and with an ideal cost. The inverse optimization method is more in line with the idea of target man-

agement, and can help managers achieve the purpose of cost control. 

Keywords: inverse optimal value method; worker assignment; activity duration optimization; tar-

get cost; adaptive artificial fish swarm genetic algorithm 
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1. Introduction 

Projects are responsible for almost 30% of the world’s economic activity; lots of com-

panies are project-based companies. Nowadays, inadequate management of project over-

runs is growing. Most companies survive the pain of cost and schedule overruns [1]. Ac-

cording to a survey by the Master of Project Academy, project schedule delays and project 

cost overruns account for more than 50% of the issues that organizations face. Because of 

bad activity duration estimations and activity–worker assignments, cost overruns and de-

livery delays get out of control [2]; they are the biggest obstacles to the survival and de-

velopment of a project-based company. The good news is that a project-cost-management 

problem with adjustable activity durations has attracted the attention of researchers [3]. 

A project duration is the total length of time a specific project takes to complete based 

on the activity of logical sequences and durations. Activity durations are key factors af-

fecting total cost and project delivering time [4]. For duration estimations, both industries 

and academia pay great attention to the problem of how much time to spend on activities. 

Generally, a duration of an activity is calculated with statistical methods based on the 
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historical data of completed activities [5]. There are different tools for estimating durations 

such as three-point estimation, parametric estimation, analogous estimation, and bottom-

up estimation methods. Scholars consider uncertainty, risk, labor productivity, and dis-

ruptive factors when estimating durations [6]. Activity durations calculated using the 

above methods, which are mainly forward methods, that are only based on activity time 

information, they cannot guarantee to deliver a project with an ideal cost and within the 

duration requirement.  

Furthermore, the following human factors, such as “student syndrome”, “Murphy’s 

law” and “Parkinson’s law”, make a project delay happen frequently [7]. People always 

procrastinate and postpone the task activities, and will not work hard to complete the task 

until the last moment. When they have enough time to finish one task, they will involun-

tarily reduce their work efficiency or spend time doing other things, resulting in the waste 

of project time. Parkinson’s Law incorporates laziness, procrastination, and self-protec-

tion against reduced deadlines in the future. Precise and strictly enforced activity-com-

pletion-time standards based on preset project goals are an important way to overcome 

the above human factor deficiencies [8].  

Project worker assignment decisions involve the determination of optimal allocations 

of workers to activities [9]. A systems view of worker-assignment problems has been re-

searched [10] with models such as the multi-task assignment model [11], task matching 

model [12], multi-criteria decision-making model of employee assignment [13], multi-ob-

jective optimization model for task assignment [14], assignment problem with historical 

data [15], maintenance workforce assignment [16], and multi-skilled personnel assign-

ment problem [17]. All of them are forward optimization models, these methods are often 

used to solve assignment plans with the maximum benefit or the minimum cost under the 

condition that the parameters of the model are known and unchanged. They follow for-

ward optimization methodology, and seek to compute optimal assignment decisions 

given fixed time parameters matrix. However, in practice, delivery date and total cost are 

preset and unchangeable. It is not a problem of original optimization, which is given an 

objective, a set of constraints, and fixed model parameters to pursue an optimal decision 

with minimum costs, whether the minimum costs are affordable or not. It is an inverse 

optimal value problem, through reverse thinking, based on reverse optimization of the 

time parameters of the model, so as to make the optimal solution of the original model as 

close as possible to the given target value. 

An inverse optimization method provides an effective mechanism for transforming 

system parameters to obtain goals. It can be classified as an inverse optimization problem 

or an inverse optimal value problem. In an inverse optimization framework, the solution 

to the problem is known. The unknown are the model parameters. Inverse optimization 

takes decisions or an ideal objective function value as input and determines an objective, 

or constraints that render these decisions or an ideal objective function value either ap-

proximately or exactly optimal. There are two typical surveys of inverse optimization 

[18,19], which can give us a theory and application framework of inverse optimization 

methodologies. An inverse optimal value problem is a kind of inverse optimization prob-

lem, it determines the reverse-inferred parameters to make the objective function value of 

the corresponding forward model closest to a desired objective function value [20]. Li pre-

sents an evolutionary algorithm based on dynamic weighted aggregation methods for the 

multi-criterion inverse optimal-value problem [20], in order to solve the inverse optimal-

value model, complementarity and relaxation conditions of the low-level problems are 

applied to the high-level problem through a penalty function [21]. Zhang et al. proposed 

an inverse optimization method for human error downtime inferring and designed a hy-

brid single-parent genetic particle algorithm to solve it [22]. Inverse optimization algo-

rithms can be divided into exact algorithms and intelligent algorithms [23,24]. In terms of 

accurate algorithms, there are mainly bi-level programming methods and penalty func-

tion methods. Although the exact solution method can theoretically get optimal solutions, 

it is only applicable to small-scale problems. Researchers made progress on a single-
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objective linear programming inverse optimization [24], nonlinear inverse optimization 

[25], partial inverse assignment problem [26], multi-objective inverse optimization model 

[27], data-driven inverse optimization [28], robust inverse optimization [29], inverse opti-

mization with noisy data [30], inverse mixed-integer optimization [31], and so on. Inverse 

optimizations related to our research are: inverse optimization for objective selection [32], 

inverse optimization for cost functions [33], inverse optimization for key parameter iden-

tification [34], etc. Algorithms are exact algorithms and intelligent algorithms; exact algo-

rithms are a penalty function method based on a bi-level optimization model [35] and an 

evolutionary algorithm [36]. It needs to be emphasized, that inverse optimization methods 

have been applied to target management problems [36]. It also needs to be emphasized, 

that the tractability of an inverse optimization problem depends on the complexity of the 

forward model and the desired properties sought in the inverse model. Different prob-

lems require different problem characteristics, leading to many different inverse models 

and corresponding solutions. Different transformation mathematical formulas and algo-

rithms are needed according to mathematical characteristics of forward models. 

Existing research on inverse optimization theories and methodologies provides good 

inspiration for this research. However, the existing literature does not deal with the fol-

lowing requirements of project management: It is necessary to match worker skills to ac-

tivity requirements; total duration is not a simply addition of all the durations, it is a MAX 

formula based on the critical path and each activity duration is adjustable. In order to 

deliver a project with an ideal cost, this research adopts the idea of the inverse optimal 

value method, driven by an ideal cost for delivering a project, to deduce decisions of 

worker–activity-duration. Based on a 0–1 mixed-integer nonlinear bi-level programming 

model with MAX formulas, the leader model pursues delivering a project with a desired 

cost by the minimum distance between the project cost of a forward problem based on 

adjusted preferred duration and a desired cost. The follower model minimizes the project 

cost based on initial durations. A hybrid artificial fish swarm genetic algorithm is used to 

solve the model. 

This research uses an inverse optimal value method, to synchronize and optimize 

durations and worker assignments to deliver a project with an ideal cost. It provides a 

new idea and a new method for the worker assignment research It has the following in-

novation points: (1) This research combines push and pull strategies to make them com-

plement each other to deliver a project within an ideal cost. The push strategy is used to 

determine original durations, and the pull strategy to give adjusted preferred durations 

based on an ideal cost. It provides a novel way to solve duration optimization problems 

driven by a preset value. (2) This research combines a genetic algorithm and an artificial 

fish algorithm to foster strengths and circumvent weaknesses with considerations of non-

linearity, NP difficulty, and MAX functions. Based on our comparisons, the error rate of 

the optimal value of the improved algorithm is acceptable. 

The structure of this research is as follows. In Section 1, we give an introduction and 

review the literature on project worker assignments and inverse optimization problems. 

In Section 2, we construct a mathematical model of the inverse optimal value method. In 

Section 3, a self-adaptation hybrid artificial fish-swarm genetic algorithm is designed. Sec-

tion 4 provides an application example of numerical analysis. Section 5 concludes the 

study. 

2. Mathematical Formulations 

2.1. Analysis of an Inverse Optimal Value Model of Project Activity–Worker Assignment 

An inverse optimization method is essentially different from a forward optimization 

method. A forward optimization method is to find a point in the feasible region of the 

model under the condition that all resource parameters are fixed, so that the objective 

function value corresponding to the point is optimal. An inverse optimization method is 

a logically opposite problem to the forward optimization method. Its main idea is an 
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“inverse” activity, that is, under the condition of knowing a certain criterion (desired so-

lution or objective function value), the activity of making the predetermined criterion be-

comes the optimal result (optimal solution or optimal objective value) by adjusting the 

resource parameters within the feasible range. An inverse optimal value method of project 

activity–worker assignment is an optimization method in which the desired objective 

function value is known, and the aim is to find new activity durations which can make 

the desired value the optimal value of the forward model under the new activity durations 

and new activity–worker assignment themes. 

An inverse optimal value method corresponds to a forward optimization model. In 

a forward model, the parameters in the model remain unchanged, and it is an activity of 

finding a solution that makes the objective function value optimal in the feasible region. 

In an inverse optimal value method on the contrary, the desired objective function value 

is often considered to be the optimal value of the model, by adjusting the parameter to 

make the desired objective function value optimal. It is an activity of finding the best so-

lution to a problem by working backwards from the desired outcome. It involves starting 

with the desired result and then working backwards to determine the best way to achieve 

the desired result. 

This research defines the “activity–worker” inverse assignment problem as follows: 

Based on the forward optimization model of “activity–worker” assignment, through re-

verse thinking, starting from the given target cost, through adjusting activity durations, 

the aim is to make the optimal objective value of the model the desired value. The “activ-

ity–worker” reverse assignment method of a project combines the idea of objective man-

agement, a 0–1 integer programming method, and a reverse optimal value method, 

through the cost objective management of the project, to achieve the goal of controlling 

the cost, and to obtain the corresponding “activity–worker” assignment scheme. The 

methodology framework is shown in Figure 1. 

Activity-personnel-duration with delivering a project with target cost  

Project characteristics duration affects
each unit of 
activity cost

Total cost based 
on project 
duration

total cost based 
on 5 Ms

Qualification matching

Max formula for  durations 
of critical path  

0-1 assignment

Minimum cost based 
on initial duration 

Inverse transformation

Bi-level model

Duration adjustment

Algorithm

Artificial fish swarm 
algorithm

Genetic Algorithm

target cost
remains balance 
after deducting 

profit from 
actual total cost 

of a project

complementary 

advantages

Forward model

Minimum cost 
is higher than 

target cost 

Each activity 
re-optimization

 

Figure 1. Framework of the inverse optimal value method. 

2.2. Problem Description 

A project task assignment is the activity of assigning tasks to individuals in order to 

deliver a project. This type of assignment typically involves assigning specific tasks to 

individuals, as well as assigning deadlines. It also involves setting expectations for the 

completion time of each activity, such as the timeline for completion. A forward model is 

to find worker assignments of a project with constrains of skill matching, labor cost budg-

ets, delivering time requirements, and multi-tasks; the minimum total cost of performing 

all activities is based on initial durations. However, the optimal objective value is not sat-

isfying, as the duration is adjustable. Then, the goal of an inverse optimal value model is 
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to determine parameters of a forward model that render an ideal cost exactly to be the 

optimal objective function value with respect to the forward model structure. A desired 

total cost is treated as an input variable in the inverse optimal value model, and the activ-

ity durations and worker assignments are treated as output variables. Decision makers 

want to deliver a project with a desired cost with some constrains. “Duration–worker–

activity” assignment decisions need to be made. Activities of a project have the character-

istics of order (order of precedence, parallel), heterogeneity, different durations with dif-

ferent workers, and materials needed are not changeable, whereas duration is changeable. 

Workers of a project have the characteristics of heterogeneity of skills. Time can be self-

controlled within a certain range. A worker with multiple tasks not performed at the same 

time is determined to show delay tendencies, “student syndrome” et al., which are bench-

marking criteria. 

2.3. Model Assumptions 

By optimizing and adjusting the operation time parameters, the actual total cost of 

the project is as close as possible to the expected cost target of the enterprise, and the cor-

responding assignment scheme and operation time parameters are obtained. The model 

assumptions are as follows: (1) The primary concern of a project-based company is cost; a 

project must be delivered strictly with a desired cost, the cost must be strictly enforced, 

and no overspending is allowed. (2) In order to show respect for the workers, each worker 

reported the estimated working time on each activity prior to the personnel assignment 

decision. Due to different efficiencies of workers, activity durations of different workers 

with different activities are different. The above estimated working time on each activity 

is called initial activity duration. (3) Decision makers give a primary activity–worker as-

signment theme based on the initial durations with the purpose of minimizing the total 

cost. (4) For quality control reasons, the materials for a project are beyond the decision 

scope; decision makers cannot reduce cost from the perspective of materials. (5) Activity 

durations not only affect total duration of the whole project, but also affect total cost of a 

project. When the minimum total cost based on the initial durations is higher than the 

desired cost, it is necessary to readjust activity durations to reduce total cost. (6) For the 

human-factor reasons mentioned before, activity durations are adjustable [34]. (7) Due to 

skill constraints, workers may only be able to complete one or several tasks, or maybe 

unable to perform tasks because they do not meet the skill requirements. 

2.4. Mathematical Symbols 

The mathematical symbols and meanings are shown in Table 1. 

Table 1. Mathematical symbol and their meanings. 

Variable Variable Meaning 

𝑥𝑖𝑘 A binary variable equal to 1 if, and only if, worker 𝑘 is assigned to activity 𝑖 

𝑡𝑖𝑘 Activity duration if, and only if, worker 𝑘 is assigned to activity 𝑖 

𝑐𝑢 Upper control limit of worker cost 

𝑡𝑢 Upper control limit of project duration 

𝑐𝑖𝑘 Cost per unit if worker 𝑘 is assigned to activity 𝑖 

𝜃𝑗 𝑗𝑡ℎ energy cost coefficient  

s The s-th skill 

𝑛𝑖𝑠
→  

Indicates the skill demand vector of the i-th activity. When 𝑛𝑖𝑠 = 1, it means that the worker must have the 

s-th skill to work at the i-th activity; when 𝑛𝑖𝑠 = 0, it means the worker is not required to have the s-th skill 

for the activity 

ℎ𝑘𝑠
→  Represents the skill vector of the k-th worker. When ℎ𝑘𝑠 = 1, it means the worker has the s-th skill; when 

ℎ𝑘𝑠= 0, it means the operator does not have the s-th skill 

𝐼𝜏 Collection of activities in the 𝜏 th tandem path from start to end 𝜏 = 1,2, … , 𝑒 
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Ω𝜏
𝑖  Collection of all activities in tandem path 𝜏 th  

𝜙𝑖 Collection of all activities prior to activity 𝑖, on the same tandem path 𝜏 th 

𝑓∗ Ideal target cost 

𝛽 Other cost coefficient 

2.5. Forward Activity–Duration Assignment Model 

In the forward worker-activity assignment model (1), the decisions are activity–

worker assignment themes based on the initial activity duration matrixes to pursue the 

minimum cost of the project. 

min
 
∑∑𝑐𝑖𝑘𝑥𝑖,𝑘𝑡𝑖,𝑘

𝑛

𝑘=1

𝑚

𝑖=1

+ (∑𝜃𝑗

𝑢

𝑗=1

+ 𝛽) × max
𝜏=1,2,…,𝑒

{∑∑𝑥𝑖,𝑘𝑡𝑖,𝑘

𝑛

𝑘=1𝑖∈𝐼𝜏

}  

𝑠. 𝑡. max
𝜏=1,2,…,𝑒

{∑∑𝑥𝑖,𝑘𝑡𝑖,𝑘

𝑛

𝑘=1𝑖∈𝐼𝜏

} ≤ 𝑐𝑢  

∑∑𝑐𝑖𝑘𝑥𝑖,𝑘𝑡𝑖,𝑘

𝑛

𝑘=1

𝑚

𝑖=1

≤ 𝑡𝑢  

(𝑛⃗ 𝑖,𝑠 ∙ ℎ⃗ 𝑘,𝑠 −∑𝑛𝑖,𝑠

𝑆

𝑠=1

) ∙ 𝑥𝑖,𝑘 ≥ 0  (1) 

∑𝑥𝑖,𝑘 = 1, 𝑖 = 1,2,… ,𝑚

𝑛

𝑘=1

  

[max
𝜏∈𝜙𝑖1

{ ∑ ∑𝑥𝑖1,𝑘𝑡𝑖1,𝑘

𝑛

𝑘=1𝑖1∈Ω𝜏
𝑖1

} − (max
𝜏∈𝜙𝑖2

{ ∑ ∑𝑥𝑖2,𝑘𝑡𝑖2,𝑘

𝑛

𝑘=1𝑖2∈Ω𝜏
𝑖2

} +∑𝑥𝑖2,𝑘𝑡𝑖2,𝑘

𝑛

𝑘=1

)] 

× [max
𝜏∈𝜙𝑖2

{ ∑ ∑𝑥𝑖2,𝑘𝑡𝑖2,𝑘

𝑛

𝑘=1𝑖2∈Ω𝜏
𝑖2

} − (max
𝜏∈𝜙𝑖1

{ ∑ ∑𝑥𝑖1,𝑘𝑡𝑖1,𝑘

𝑛

𝑘=1𝑖1∈Ω𝜏
𝑖1

} +∑𝑥𝑖1,𝑘𝑡𝑖1,𝑘

𝑛

𝑘=1

)] ≤ 0 

 

𝑥𝑖,𝑘 ∈ {0,1}  

In model (1): max
𝜏=1,2,…,𝑒

{∑ ∑ 𝑥𝑖,𝑘𝑡𝑖,𝑘
𝑛
𝑘=1𝑖∈𝐼𝜏 }  is project duration based on critical path 

method; min
 
∑ ∑ 𝑐𝑖𝑘𝑥𝑖,𝑘𝑡𝑖,𝑘

𝑛
𝑘=1

𝑚
𝑖=1 + (∑ 𝜃𝑗

𝑢
𝑗=1 + 𝛽) × max

𝜏=1,2,…,𝑒
{∑ ∑ 𝑥𝑖,𝑘𝑡𝑖,𝑘

𝑛
𝑘=1𝑖∈𝐼𝜏 }  is to mini-

mize total cost. ∑ ∑ 𝑐𝑖𝑘𝑥𝑖,𝑘𝑡𝑖,𝑘
𝑛
𝑘=1

𝑚
𝑖=1  is the total labor cost. ∑ 𝜃𝑗

𝑢
𝑗=1 ×

max
𝜏=1,2,…,𝑒

{∑ ∑ 𝑥𝑖,𝑘𝑡𝑖,𝑘
𝑛
𝑘=1𝑖∈𝐼𝜏 } is the total energy cost. 𝛽 × max

𝜏=1,2,…,𝑒
{∑ ∑ 𝑥𝑖,𝑘𝑡𝑖,𝑘

𝑛
𝑘=1𝑖∈𝐼𝜏 } are other 

costs based on total duration. The constraint formula max
𝜏=1,2,…,𝑒

{∑ ∑ 𝑥𝑖,𝑘𝑡𝑖,𝑘
𝑛
𝑘=1𝑖∈𝐼𝜏 } ≤ 𝑐𝑢 

means the project duration is no longer than the predefined project deliver date. Formula 
∑ ∑ 𝑐𝑖𝑘𝑥𝑖,𝑘𝑡𝑖,𝑘

𝑛
𝑘=1

𝑚
𝑖=1 ≤ 𝑡𝑢  states the total worker cost must be less than a given labor 

budget. Constraint (𝑛⃗ 𝑖,𝑠 ∙ ℎ⃗ 𝑘,𝑠 − ∑ 𝑛𝑖,𝑠
𝑆
𝑠=1 ) ∙ 𝑥𝑖,𝑘 ≥ 0 states each worker satisfies activity 

skills requirements. Constraint formula ∑ 𝑥𝑖,𝑘 = 1, 𝑖 = 1,2, … ,𝑚
𝑛
𝑘=1  means there is no ac-

tivity with no workers. Constraint formula [max
𝜏∈𝜙𝑖1

{∑ ∑ 𝑥𝑖1,𝑘𝑡𝑖1,𝑘
𝑛
𝑘=1𝑖1∈Ω𝜏

𝑖1 } −

(max
𝜏∈𝜙𝑖2

{∑ ∑ 𝑥𝑖2,𝑘𝑡𝑖2,𝑘
𝑛
𝑘=1𝑖2∈Ω𝜏

𝑖2 } + ∑ 𝑥𝑖2,𝑘𝑡𝑖2,𝑘
𝑛
𝑘=1 )]  × [max

𝜏∈𝜙𝑖2

{∑ ∑ 𝑥𝑖2,𝑘𝑡𝑖2,𝑘
𝑛
𝑘=1𝑖2∈Ω𝜏

𝑖2 } −

(max
𝜏∈𝜙𝑖1

{∑ ∑ 𝑥𝑖1,𝑘𝑡𝑖1,𝑘
𝑛
𝑘=1𝑖1∈Ω𝜏

𝑖1 } + ∑ 𝑥𝑖1,𝑘𝑡𝑖1,𝑘
𝑛
𝑘=1 )] ≤ 0  means if one worker is assigned to 

multiple tasks, there is no time overlap among those activities. 

2.6. Inverse Optimal Value Model of Activity–Worker Assignment with Duration Optimization 
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An inverse optimization method based on bi-level programming for worker assign-

ment is constructed. The leader model reflects cost orientation and adjustability of activity 

duration; the follower model reflects the complexity of activity sequence, cost pressure, 

energy consumption, and environmental protection. Through upper-level and lower-level 

feedback and interaction of activity duration and worker assignment, the model delivers 

a project with an ideal cost. The inverse optimization method is more in line with the idea 

of target management, and can help enterprises achieve the purpose of cost control. 

According to the above definition of inverse optimal value problem of project activ-

ity–worker assignment, based on a bi-level programming method, the inverse optimal 

model is proposed (Formula (2)). In the inverse optimal value model (2), the upper model 

is to pursue delivering a project with desired target cost based on optimization activity 

durations. The lower level is the forward optimization model of optimizing the “activity–

worker” assignment scheme under the original activity duration matrix. Formula (2) is a 

bi-level nonlinear mixed-integer programming model. The upper-level programming 

problem is not only related to the upper-level decisions, but also affected by the optimal 

solution of the lower-level programming problem, and vice versa. Activity-duration de-

cision variables of the upper-level optimization problem interact with the assignment 

scheme decision variables of the lower-level optimization problem, resulting in mutual 

feedback, and constant iterating, until “activity-duration-worker” triads are found to 

make the cost be the desired target cost. The transformation ideas of inverse optimal value 

method are shown in Figure 2. 

Inverse optimal value model of worker-activity assignment

Bi-level model

Follower model is 
the forward model

Activity-worker-
duration
decision

Both durations and 
activity-worker 

assignment unknown

 durations and activity-
worker assignment 

interact with each other 

Key 
points

From results to causes

Parameter 
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optimal 
value 
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modeling
Efficiency and 

assignment scheme 
synchronous decision

Inverse 
optimal 
value 
model 

decision

Leader model to 
minimize distance 
between cost of 

forward and ideal 
cost

Minimum cost

Original durations
as  known 

parameters

Forward 
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Figure 2. Transformation ideas of the inverse optimal value method. 

Based on the literature [21], the inverse optimal value model is as follows: 

leader model: min
𝑡𝑖𝑘
|∑∑𝑐𝑖𝑘𝑥𝑖,𝑘𝑡𝑖,𝑘

𝑛

𝑘=1

𝑚

𝑖=1

+ (∑𝜃𝑗

𝑢

𝑗=1

+ 𝛽) × max
𝜏=1,2,…,𝑒

{∑∑𝑥𝑖,𝑘𝑡𝑖,𝑘

𝑛

𝑘=1𝑖∈𝐼𝜏

} − 𝑓∗|  

𝑠. 𝑡. 𝑡0 ≤ 𝑡𝑖𝑘 ≤ 𝑡1   

follower model: min
𝑥𝑖𝑘

 

∑ ∑ 𝑐𝑖𝑘𝑥𝑖,𝑘𝑡𝑖,𝑘
𝑛
𝑘=1

𝑚
𝑖=1 + (∑ 𝜃𝑗

𝑢
𝑗=1 + 𝛽) × max

𝜏=1,2,…,𝑒
{∑ ∑ 𝑥𝑖,𝑘𝑡𝑖,𝑘

𝑛
𝑘=1𝑖∈𝐼𝜏 }  

 

𝑠. 𝑡. max
𝜏=1,2,…,𝑒

{∑ ∑ 𝑥𝑖,𝑘𝑡𝑖,𝑘
𝑛
𝑘=1𝑖∈𝐼𝜏 } ≤ 𝑐𝑢   

∑ ∑ 𝑐𝑖𝑘𝑥𝑖,𝑘𝑡𝑖,𝑘
𝑛
𝑘=1

𝑚
𝑖=1 ≤ 𝑡𝑢   (2) 

(𝑛⃗ 𝑖,𝑠 ∙ ℎ⃗ 𝑘,𝑠 − ∑ 𝑛𝑖,𝑠
𝑆
𝑠=1 ) ∙ 𝑥𝑖,𝑘 ≥ 0   

∑ 𝑥𝑖,𝑘 = 1, 𝑖 = 1,2, … ,𝑚
𝑛
𝑘=1    

[max
𝜏∈𝜙𝑖1

{∑ ∑ 𝑥𝑖1,𝑘𝑡𝑖1,𝑘
𝑛
𝑘=1𝑖1∈Ω𝜏

𝑖1 } − (max
𝜏∈𝜙𝑖2

{∑ ∑ 𝑥𝑖2,𝑘𝑡𝑖2,𝑘
𝑛
𝑘=1𝑖2∈Ω𝜏

𝑖2 } + ∑ 𝑥𝑖2,𝑘𝑡𝑖2,𝑘
𝑛
𝑘=1 )]  ×

[max
𝜏∈𝜙𝑖2

{∑ ∑ 𝑥𝑖2,𝑘𝑡𝑖2,𝑘
𝑛
𝑘=1𝑖2∈Ω𝜏

𝑖2 } − (max
𝜏∈𝜙𝑖1

{∑ ∑ 𝑥𝑖1,𝑘𝑡𝑖1,𝑘
𝑛
𝑘=1𝑖1∈Ω𝜏

𝑖1 } + ∑ 𝑥𝑖1,𝑘𝑡𝑖1,𝑘
𝑛
𝑘=1 )] ≤ 0  

 

𝑥𝑖,𝑘 ∈ {0,1}  
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In model (2) the objective function formula min
𝑡𝑖𝑘
|∑ ∑ 𝑐𝑖𝑘𝑥𝑖,𝑘𝑡𝑖,𝑘

𝑛
𝑘=1

𝑚
𝑖=1 + (∑ 𝜃𝑗

𝑢
𝑗=1 +

𝛽) × max
𝜏=1,2,…,𝑒

{∑ ∑ 𝑥𝑖,𝑘𝑡𝑖,𝑘
𝑛
𝑘=1𝑖∈𝐼𝜏 } − 𝑓∗| is to minimize the distance between the optimized 

cost and the desired target cost. The constraint formula 𝑡0 ≤ 𝑡𝑖𝑘 ≤ 𝑡1 means a feasible ad-

justable region of activity durations. The other formula, that is the follower level model, 

is exactly the same as the forward model (1). 

3. Self-Adaptation Hybrid Artificial Fish Swarm Genetic Algorithm for an Inverse  

Optimization Model 

Formula (2) is a bi-level nonlinear mixed-integer programming model. The upper-

level programming problem is not only related to the upper-level decisions, but also af-

fected by the optimal solution of the lower-level programming problem, which is affected 

by the lower-level decision variables. Additionally, the two-level decision variables inter-

act with each other, leading to a rapid expansion of the solution space, and the computa-

tional efficiency is obviously very low when using an exact algorithm to solve the model. 

The inverse optimal value model contains two kinds of decision variables, task–

worker assignments and activity durations; they affect each other, leading to a sharp ex-

pansion of the solution space. A genetic algorithm with high optimization efficiency, sim-

ple operation, and robust performance is applied on activity–worker assignments and in-

creases learning operation to accelerate the convergence of the algorithm. An artificial fish 

algorithm with a strong ability to overcome local extreme acts on operation-time-param-

eter variables to improve the accuracy of the algorithm solution. In order to deal with 

different requirements on algorithm parameters during different periods, we propose a 

parametric adaptive hybrid artificial fish population genetic algorithm based on linear 

functions. A genetic algorithm that introduces the learning mechanism between individ-

uals in the population is used to solve the 0–1 integer programming in the lower level. 

Combined with the advantages of artificial fish swarm algorithm, such as parallel calcu-

lating, global optimization, and the ability to quickly jump out of the local extreme point, 

the artificial fish swarm algorithm is used to solve the continuous variable operation time 

optimization problem of upper-level planning. The algorithm flow is shown in Figure 3. 
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Figure 3. Flowchart of an adaptive hybrid artificial fish swarm genetic algorithm. 

4. Numerical Examples 

4.1. Project Background and Parameters 

Company H is a project-based company; it undertakes an equipment overhaul pro-

ject. According to the project contract, the material resources such as equipment spare 

parts involved in the project are provided by company A. Company A is the first party 

according to the project contract. As the second party, company H is mainly responsible 

for the human resource assignment, performance management, and other work related to 

the project. For example, company H needs to bear the energy and other costs related to 

the project duration during the overhaul. The contract stipulates that the project delivery 

time must be strictly followed, otherwise the liquidated damages under the contract are 

huge. From company H’s point of view, in order to maintain the survival and develop-

ment of the enterprise, after lots of investigations, this project should be delivered with 

the desired target cost, otherwise it is difficult to maintain the normal operation and sus-

tainable development of the company. Through the definition of the overall project scope 

of the project and the analysis of activities, the network planning diagram of activities of 

the project is given, as shown in Figure 4. There are 38 activities in a project and there are 

30 workers available to be assigned in the project. Company H obtains the original activ-

ity-duration matrix through investigation of all the workers who are intended to partici-

pate in the project. In addition, based on lots of research, company H gives the labor wage 

coefficient according to the labor market, the company’s development status, and the com-

plexity of activities. Based on the analysis of the task difficulty of the project activities and 

the opinions of many experts, the labor cost coefficient of each activity in the project is 

given. According to the value of related energy, the cost coefficients of different energies 

are given. Considering other costs of the project, the cost coefficient of other costs per unit 
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time is given through the investigation of local experts. The ideal cost of CNY 360,000 is 

given by the top manager of the company, company H needs to deliver the project with 

the target cost by optimizing worker assignments and durations together. Project param-

eters are shown in Tables 2–6. 

 

Figure 4. Project working procedure. 

4.2. Calculation Based on an Adaptive Hybrid Artificial Fish Swarm Genetic Algorithm 

According to the proposed “activity–worker” inverse assignment model (2), the fea-

sible range of the activity durations of each worker on each activity is given. The param-

eter adaptive hybrid artificial fish swarm genetic algorithm based on a linear function is 

used to solve the inverse optimal value model; the algorithm parameter settings are 

shown in Table 7, and the algorithm program is written in MATLAB version R2018b Since 

the MATLAB solver implements and tests algorithms easily, they debug easily. Most of 

the calculations are based on MATLAB, without loss of generality, this research uses the 

MATLAB solver to do the calculations using an Intel (R) Core (TM) i5-10210U CPU @ 1.60 

GHz 2 computer with a 10 GHz processor, 8 GB of RAM, and Windows 10 64-bit operating 

system to run the programs. 

Based on MATLAB R 2018b, after 10 iterations the results meet the termination con-

dition, the running time is 109.458 s. The total cost of 1.0083 × 10−4 is less than the ideal 

cost, which means that the project is delivered with an ideal cost. The iteration diagram 

for solving the inverse optimal value model is shown in Figure 5. 
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Table 2. Labor-cost coefficient. 

 Activity 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

Worker  

1 150 136 191 142 125 221 206 155 143 131 234 250 140 190 99 240 221 194 241 251 260 261 249 151 248 201 252 218 163 257 

2 117 107 150 112 100 173 163 120 112 102 184 196 110 149 77 189 173 153 189 197 205 204 195 119 194 157 199 172 127 202 

3 150 136 191 142 125 221 206 155 143 131 234 250 140 190 98 241 220 193 242 251 261 261 248 150 247 201 250 218 164 256 

4 151 138 194 144 127 225 210 156 144 131 238 253 143 193 100 245 223 197 244 255 265 263 252 154 250 202 257 222 164 261 

5 81 74 104 77 68 121 113 84 77 70 127 135 76 103 103 131 120 106 130 136 142 141 135 82 134 108 137 119 88 140 

6 125 115 162 120 106 187 175 130 120 109 198 210 119 160 83 203 186 164 203 212 220 219 209 128 208 168 213 185 137 218 

7 119 109 153 114 100 177 166 123 114 103 188 199 112 152 79 193 176 156 192 201 208 207 198 121 197 159 202 175 129 205 

8 140 128 180 134 118 209 196 145 134 122 221 235 133 179 93 227 208 183 226 237 246 244 234 143 232 188 238 206 153 242 

9 150 136 191 142 125 221 206 155 143 131 234 250 140 190 99 241 220 193 242 251 261 261 248 150 247 201 250 218 164 256 

10 131 120 136 126 111 196 183 136 126 114 208 220 124 114 87 213 195 172 212 222 231 229 219 134 218 176 224 193 142 227 

11 125 115 162 120 106 187 175 130 120 109 198 210 119 160 83 203 186 164 203 212 220 219 209 128 208 168 213 185 137 217 

12 99 91 128 95 84 148 139 103 95 87 157 167 94 127 66 161 147 181 190 197 196 187 115 186 150 191 165 122 194 220 

13 139 127 179 133 117 207 194 144 133 121 219 233 131 177 92 225 206 182 224 235 244 242 232 142 230 196 236 204 151 240 

14 112 102 144 107 95 167 156 116 107 98 177 188 106 143 74 182 166 147 181 190 197 196 187 115 186 150 191 165 122 194 

15 99 91 128 95 84 148 139 103 95 87 157 167 94 127 66 161 147 130 161 168 175 173 166 102 165 133 169 145 103 172 

16 134 123 173 128 113 200 187 139 128 117 212 225 127 171 89 218 199 176 217 227 235 234 224 137 222 180 228 197 146 232 

17 125 114 161 119 105 186 174 129 119 109 197 209 118 159 83 202 185 163 202 211 219 218 208 127 207 167 212 184 136 215 

18 107 98 137 102 90 159 149 111 102 93 169 179 101 136 71 173 158 140 172 180 187 186 178 109 177 143 182 157 116 185 

19 127 116 163 121 107 189 177 131 121 110 200 212 120 162 84 206 131 166 205 214 223 221 212 130 210 170 216 187 138 219 

20 131 119 168 125 111 195 183 135 125 114 207 219 124 167 87 212 194 171 211 221 230 228 218 134 217 175 222 192 143 226 

21 132 121 170 126 112 197 184 137 126 115 209 221 125 169 87 214 196 173 213 223 232 230 220 135 219 177 225 194 144 229 

22 119 109 153 114 102 176 168 123 115 104 188 201 113 152 80 193 176 156 193 201 210 209 200 123 198 161 203 175 130 207 

23 119 108 151 114 100 178 165 122 114 104 187 199 111 153 79 194 174 157 192 202 208 203 197 121 198 159 202 174 129 207 

24 88 79 113 83 74 128 120 91 83 76 136 145 81 112 107 141 129 115 140 146 152 152 145 89 143 116 147 128 95 149 

25 128 117 165 124 108 124 182 134 124 113 203 217 121 165 87 210 193 169 209 219 227 226 216 132 215 174 220 190 141 224 

26 133 122 172 127 112 199 186 138 127 116 211 224 126 170 88 217 188 166 216 226 234 233 223 136 221 189 227 196 145 222 

27 106 97 138 103 91 160 150 112 103 94 170 187 100 135 72 170 160 148 170 190 176 185 179 109 177 142 182 157 116 185 

28 100 92 129 96 85 149 140 104 96 88 158 168 95 128 67 162 148 161 162 169 176 174 168 100 162 135 168 146 103 165 

29 150 137 193 143 127 223 209 155 143 131 236 250 142 191 100 240 220 195 240 250 260 261 245 156 249 200 253 218 160 262 
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30 130 117 168 125 110 193 181 134 126 113 208 219 135 161 90 200 190 168 209 219 227 226 215 134 214 170 225 195 140 222 

31 90 83 115 86 76 125 126 90 85 90 140 140 88 111 107 141 168 130 116 150 150 150 150 145 90 160 130 120 180 156 

32 92 84 117 88 78 134 126 95 88 81 142 150 87 116 62 146 134 119 145 152 157 156 150 94 149 121 153 133 100 155 

33 104 95 134 99 87 156 146 108 99 90 166 176 98 133 68 170 155 137 169 177 184 183 175 106 174 140 179 154 113 182 

34 114 104 146 109 97 169 158 118 109 100 179 190 108 145 76 184 168 149 183 192 199 198 189 117 188 152 193 167 124 196 

35 119 109 152 114 101 176 165 123 114 104 186 198 112 151 79 191 175 155 191 199 207 206 197 121 196 159 201 174 129 204 

36 127 116 166 121 106 193 180 132 121 110 205 218 120 164 82 211 182 160 210 220 228 227 217 130 215 183 221 190 139 216 

37 130 117 173 123 107 203 189 135 123 111 216 230 122 171 80 220 200 175 220 230 240 241 225 136 229 180 233 198 140 240 

38 102 94 131 98 87 151 142 106 98 90 160 170 97 130 69 164 150 133 164 171 178 176 169 105 168 136 172 148 111 175 

Table 3. Original activity-duration matrix. 

 Worker 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

Activity  

1 5.0 4.7 5.2 4.7 5.2 4.7 4.9 5.1 5.3 4.6 5.4 5.2 5.0 4.9 4.9 4.8 5.0 5.0 5.3 5.3 5.1 4.9 5.3 5.0 4.8 5.4 5.4 5.0 5.1 5.1 

2 7.7 7.8 8.3 7.5 8.4 8.2 8.0 8.0 7.7 7.9 8.4 8.0 8.0 7.7 8.0 8.1 8.8 7.9 7.9 8.5 7.5 8.3 8.4 8.3 7.6 7.8 7.8 8.1 7.6 8.2 

3 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 

4 12.4 11.5 11.9 11.9 12.0 12.2 11.8 12.3 12.0 11.5 11.7 12.2 12.0 12.2 12.0 11.7 11.8 12.1 11.7 12.2 11.7 12.4 11.8 12.3 11.7 11.8 11.6 12.0 12.2 12.0 

5 3.1 3.1 3.2 3.1 3.4 2.7 3.2 2.7 2.6 3.1 2.9 3.0 3.2 3.3 2.9 3.2 2.9 3.3 3.3 2.8 3.1 3.0 3.0 3.7 2.8 2.8 2.6 3.4 3.1 3.0 

6 3.0 3.1 3.0 3.2 3.0 3.5 2.7 2.6 2.6 2.5 2.9 2.9 2.8 3.3 3.1 3.3 3.4 3.5 2.7 2.6 3.2 2.6 3.0 3.0 3.4 3.0 2.9 3.2 3.2 3.0 

7 3.0 2.8 2.7 3.0 2.8 2.5 3.3 2.7 2.9 3.2 2.9 3.2 2.9 3.2 3.2 2.7 2.5 2.8 2.9 2.7 2.7 3.3 2.9 3.4 2.9 3.3 2.9 3.3 3.3 2.9 

8 8.6 9.1 9.0 9.3 9.2 9.4 9.4 8.8 9.2 8.7 8.5 9.2 9.0 9.0 9.4 9.1 9.8 9.4 9.3 9.0 8.7 8.7 9.4 8.5 8.9 8.7 9.5 9.2 9.0 8.9 

9 8.2 8.4 7.8 8.1 7.9 8.3 8.3 7.7 8.4 8.5 8.0 8.4 8.0 7.6 7.7 7.9 8.2 8.3 8.3 7.8 8.0 7.6 7.6 7.6 8.2 7.9 8.0 7.7 8.0 7.6 

10 20.4 20.0 20.4 20.2 20.0 20.3 20.4 20.5 19.5 20.4 20.1 20.5 20.0 20.0 20.3 19.7 20.0 20.4 20.0 20.3 20.2 20.0 19.7 20.0 19.6 20.1 20.1 20.2 20.4 20.5 

11 22.3 22.0 22.4 22.0 21.5 21.6 22.4 22.0 22.3 21.7 22.0 22.1 21.5 22.1 21.8 21.5 22.0 21.7 21.6 21.7 21.6 21.7 21.5 22.1 21.8 22.0 22.2 22.0 22.0 21.9 

12 11.6 12.0 12.3 12.4 11.8 11.7 12.0 12.2 11.9 11.7 12.5 11.6 11.6 11.6 11.7 12.1 12.0 11.6 12.4 12.2 12.2 11.6 12.4 12.4 12.5 12.4 12.3 12.0 11.7 11.9 

13 23.6 23.5 24.4 23.8 23.8 23.8 24.0 24.1 23.5 24.3 24.0 24.4 23.8 23.9 23.6 23.7 24.2 24.8 24.4 23.6 24.5 24.0 24.2 24.5 23.8 23.9 23.9 24.2 24.3 23.6 

14 8.6 9.2 8.5 8.6 9.0 8.6 9.3 9.3 9.2 8.7 9.2 9.0 9.5 9.1 9.3 9.0 8.9 9.38 8.6 8.7 8.9 9.3 9.3 8.6 8.9 9.0 8.9 9.2 9.1 9.0 

15 11.7 11.8 11.6 12.0 11.8 11.7 11.7 10.3 12.2 11.9 12.4 11.6 12.2 12.2 12.0 11.7 12.0 11.8 11.6 11.7 12.4 11.6 11.7 11.6 11.9 11.5 12.4 11.7 11.6 11.8 

16 17.9 17.6 18.5 17.9 17.8 17.6 17.8 17.5 18.0 18.3 18.1 17.6 17.6 18.3 18.4 18.0 17.6 18.3 17.8 17.8 18.2 17.5 17.5 18.2 18.1 18.0 18.2 18.2 18.3 17.8 

17 22.2 22.0 21.9 21.6 22.2 21.8 22.1 22.2 21.6 21.6 22.0 22.0 22.4 22.3 22.2 21.6 22.1 22.2 22.0 22.4 21.6 22.3 22.4 22.2 21.6 22.0 22.2 21.6 21.6 22.1 

18 24.2 23.7 24.2 24.5 24.4 23.6 23.8 23.9 24.2 24.0 24.3 23.9 23.7 23.6 24.3 23.7 23.9 24.0 23.7 24.0 24.0 23.7 24.3 23.6 23.8 23.7 24.0 23.6 23.9 23.6 

19 23.6 24.3 23.8 24.0 24.5 23.9 24.2 24.3 23.9 24.2 23.6 24.4 23.7 23.8 24.3 24.0 24.3 23.9 23.8 23.5 24.2 23.9 23.9 24.1 23.6 23.8 24.3 24.2 23.6 23.6 
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20 7.8 7.9 7.5 8.5 7.7 7.6 7.9 7.7 8.0 7.8 7.5 8.4 7.6 8.2 7.8 7.9 8.0 8.4 8.0 8.5 7.8 8.2 8.0 8.0 8.2 8.2 7.7 7.6 8.5 7.7 

21 7.5 8.0 8.4 8.2 7.7 7.9 8.0 8.5 7.7 834.0 8.1 7.9 7.7 7.9 8.0 7.6 8.0 7.7 7.9 8.0 7.7 7.8 8.1 7.8 8.3 8.5 8.2 7.8 8.0 7.6 

22 20.0 19.6 19.5 19.9 20.2 20.2 20.0 19.4 20.1 19.6 20.0 19.6 20.1 19.7 19.7 19.8 19.8 19.7 19.7 20.4 20.2 20.0 19.7 19.7 19.6 20.4 20.2 20.0 19.8 19.7 

23 3.5 2.7 2.7 2.9 2.6 3.2 2.9 3.5 2.9 3.1 2.6 2.9 2.7 3.3 3.4 2.8 3.2 2.8 3.0 3.3 3.0 2.8 2.8 2.9 2.9 2.8 3.0 3.2 2.9 2.8 

24 9.6 9.5 9.8 9.7 10.2 10.5 10.4 10.0 9.8 10.3 10.3 10.2 10.2 9.6 10.2 9.9 9.7 9.6 10.3 9.7 9.7 10.2 10.4 10.0 10.2 9.7 10.5 10.0 10.2 9.5 

25 8.3 8.2 7.6 8.0 7.8 8.0 7.9 7.9 7.7 7.8 7.5 8.4 8.2 8.4 7.7 8.4 8.3 8.0 7.9 7.8 8.3 7.7 7.6 8.3 8.2 8.2 8.1 7.9 7.9 8.3 

26 20.4 20.4 20.3 19.8 20.0 19.5 19.9 19.8 19.7 19.7 20.0 19.6 20.0 20.0 20.2 20.1 19.5 19.6 19.8 20.0 20.2 19.9 20.3 20.2 20.5 20.0 19.8 19.6 20.0 19.7 

27 3.3 2.9 2.6 2.8 2.7 2.8 2.9 3.0 2.9 3.4 3.0 3.4 3.1 3.5 2.7 3.2 2.8 3.2 3.2 2.6 2.8 2.7 3.2 3.3 2.8 3.3 3.2 2.5 3.1 2.9 

28 17.8 18.3 18.3 18.4 18.0 18.1 18.4 18.0 17.6 19.4 18.1 17.9 18.5 17.7 18.2 18.1 17.9 17.6 17.5 17.9 17.7 18.2 17.9 18.3 18.2 18.0 17.7 18.5 17.8 18.4 

29 20.7 20.9 20.6 21.1 20.7 20.5 21.2 20.8 21.2 20.9 21.1 20.5 21.4 21.3 21.2 21.3 20.9 21.1 21.0 21.0 20.8 20.7 20.9 20.6 21.3 21.5 20.5 21.0 20.6 21.3 

30 28.5 27.6 28.4 27.5 28.2 28.3 28.0 28.4 28.4 28.1 27.6 27.7 27.7 27.5 27.6 28.1 28.4 27.5 27.9 28.5 28.4 28.2 28.5 28.3 27.8 28.2 27.7 27.8 28.2 28.5 

31 16.9 17.1 17.3 17.0 17.0 17.0 17.0 16.6 17.2 17.5 16.9 17.5 16.8 17.4 16.9 16.9 16.7 16.6 16.8 17.2 17.3 17.2 16.5 17.3 17.4 17.3 16.5 16.9 17.2 17.2 

32 3.0 2.7 2.8 3.2 3.0 3.1 2.7 2.7 3.3 3.2 3.4 2.6 2.7 2.6 3.0 2.7 3.4 2.6 2.5 3.0 3.3 2.8 2.7 2.8 2.7 3.0 3.4 3.1 2.6 2.9 

33 3.0 2.9 3.5 3.3 3.0 3.4 2.6 2.9 3.4 3.4 3.2 3.1 2.8 3.4 2.6 3.2 3.1 3.3 2.9 3.2 3.3 2.8 3.0 3.5 3.0 2.8 3.1 2.8 3.2 2.9 

34 3.0 3.2 3.5 2.8 3.3 3.2 3.4 2.5 2.8 3.2 2.8 2.7 3.2 3.1 3.1 3.2 2.5 2.8 2.9 2.7 3.2 3.4 2.8 3.2 2.6 3.3 2.6 3.0 2.9 3.3 

35 3.0 3.0 3.4 2.8 2.9 3.5 2.5 3.5 2.7 3.2 3.0 3.2 2.8 3.1 3.3 2.5 2.6 3.5 3.2 2.7 2.9 2.6 2.8 2.7 2.8 2.6 2.9 2.6 3.4 2.6 

36 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 

37 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 

38 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 
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Table 4. Skills that workers provide. 

 Skill 
Computer English Knowledge 

Safety 

Management 
Communication Analysis Calculation Electronic 

Worker  

1 1 0 0 0 0 0 1 1 

2 1 1 1 0 1 1 0 0 

3 0 0 1 0 0 1 1 0 

4 1 0 0 1 0 1 1 1 

5 1 0 0 0 1 1 1 1 

6 0 0 1 0 0 0 1 0 

7 0 0 0 0 1 0 0 0 

8 0 0 0 0 1 1 1 0 

9 1 1 0 1 0 0 0 1 

10 0 1 0 0 1 0 0 1 

11 0 1 0 0 0 1 0 0 

12 0 0 0 1 1 0 0 0 

13 0 1 1 0 0 1 0 1 

14 0 1 0 0 0 0 1 1 

15 1 1 1 0 0 0 1 1 

16 0 0 0 1 0 0 0 1 

17 0 1 0 0 1 0 1 0 

18 0 0 1 0 0 0 1 1 

19 0 0 0 0 0 1 0 0 

20 0 0 1 1 0 0 0 0 

21 0 1 0 0 0 0 0 1 

22 0 0 0 0 0 1 0 0 

23 1 0 1 1 0 0 0 1 

24 1 0 0 1 0 1 0 0 

25 0 0 1 0 0 0 0 0 

26 0 1 0 0 0 0 1 0 

27 0 1 0 0 0 0 0 1 

28 0 0 1 0 0 1 0 0 

29 0 0 0 0 1 1 0 0 

30 0 1 0 0 0 1 0 0 

Table 5. Activity skill demands. 

 Skill 
Computer English Knowledge 

Safety 

Management 

Communica

tion 
Analysis Calculation Electronic 

Activity  

1 0 1 0 0 0 0 0 0 

2 0 0 1 0 0 0 0 0 

3 0 1 0 0 0 0 0 0 

4 1 0 0 0 0 0 0 0 

5 0 0 0 1 0 0 0 0 

6 0 0 0 0 1 0 0 0 

7 0 0 0 0 1 0 0 0 

8 0 0 0 0 0 0 0 1 

9 1 0 0 0 0 0 0 0 

10 0 0 0 0 1 0 0 0 

11 0 1 0 0 0 0 0 0 

12 0 0 0 0 0 0 0 1 

13 0 0 0 0 0 0 0 1 

14 0 0 0 0 0 0 1 0 

15 0 0 0 0 0 1 0 0 

16 0 0 0 0 0 1 0 0 
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17 1 0 0 0 0 0 0 0 

18 0 0 0 0 0 0 1 0 

19 0 0 0 0 0 1 0 0 

20 0 0 0 1 0 0 0 0 

21 0 0 1 0 0 0 0 0 

22 0 0 0 0 0 1 0 0 

23 0 0 0 0 0 0 0 1 

24 1 0 0 0 0 0 0 0 

25 0 0 0 1 0 0 0 0 

26 0 0 0 0 1 0 0 0 

27 0 0 0 0 0 1 0 0 

28 0 0 0 0 0 0 0 1 

29 0 1 0 0 0 0 0 0 

30 0 0 0 0 0 0 0 1 

31 0 0 0 0 0 0 0 1 

32 0 0 0 0 1 0 0 0 

33 0 0 0 0 0 1 0 0 

34 0 0 0 1 0 0 0 0 

35 0 1 0 0 0 0 0 0 

36 1 0 0 0 0 0 0 0 

37 0 0 0 0 0 0 1 0 

38 0 0 1 0 0 0 0 0 

Table 6. Parameters of the project. 

 Parameter 
𝑻𝒖 𝑪𝒖 𝜽𝟏 𝜽𝟐 𝜽𝟑 𝜷 𝒇∗ 

Value  

 90 80,000 800 750 650 1800 360,000 

Table 7. Parameters of adaptive hybrid artificial fish swarm genetic algorithm. 

Parameter Value 

Iteration number 200 

Error 0.01 

Population 30 

Try number 50 

Visual 1.5 

Step 0.5 

Congestion  𝛿 20 

Crossover probability pc = {
0.7 ×

(Ymax − Yi)

(Ymax − Yavg)
Yi > Yavg

0.7                                 Yi < Yavg

 

Mutation probability pm = {
0.1 ×

(Ymax − Yi)

(Ymax − Yavg)
Yi > Yavg

0.1                                  Yi < Yavg
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Figure 5. Algorithm iteration diagram for solving the inverse optimal value model. 

4.3. Accurate Algorithm and Results for the Inverse Optimal Value Model 

The inverse optimal value model is a nonlinear, MAX formula, bi-level, NP hard 

problem. To accurately solve the inverse optimal value model, based on dual theory, pen-

alty function methods, and other methods, we transform the inverse optimal value model 

into an equivalent single-level programming model, and then use the traditional optimi-

zation method (see Formula (3)) to accurately solve it. Linearization is based on both an 

alternative method and McCormick’s envelope method. After that, the penalized function 

method based on the Kuhn–Tucker condition transforms the linearized inverse optimal 

value model into an equivalent model. 

The exact algorithm flow is as follows: 

Input: Input all the parameter values of the inverse optimal value model. 

Output: Activity–worker-duration assignments. 

Step 1: Eliminate the MAX function. 

Step 2: Equivalently transform the bilinear term into a bi-level programming model of 

mixed-integer linear programming using McCormick’s envelope method. 

Step 3: Transform the model into an equivalent single-level programming model using 

the penalty function method based on the Kuhn–Tucker condition [13]. 

Step 4: Directly solve the converted model by using a MATLAB solver. 
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Then it is solved using MATLAB R 2018b and an Intel (R) Core (TM) i5-10210U CPU 

@ 1.60 GHz 2.10 GHz, with 8 GB of running memory, and the Windows10 64-bit operating 

system. 

5. Results and Discussion 

5.1. Calculation Results Comparisons 

In order to compare the results of the hybrid artificial fish swarm genetic algorithm 

and the exact algorithm, the comparison results are shown in Table 8. 

Table 8. Results comparison. 

Forward Model 
Inverse Model Based on an Intelligent Algo-

rithm 

Inverse Model Based on an Accurate 

Algorithm 

Total cost 390,220.50 Total cost 360,000 Total cost 360,000 

Total duration 86.2 Total duration 77.7 Total duration 77.6 

Cost difference 40,220.5 Cost difference 5.27265 × 10−5 Cost difference 0 

Time 00:00:10.783 Time 00:01:49.458 Time 8:42:23.283 

In Table 8, we can get the following findings: 

1. From the perspective of the forward optimization model: Based on the worker’s 

initial activity duration on each activity given by the workers, the “activity–

worker” assignment is obtained by using the forward optimization method and 

the optimal cost is CNY 390,220.50. It exceeds the budget cost target of CNY 

360,000; the exceeding range is 8.33%. It means that under the given conditions, 

the optimal cost of activity–worker assignments based on the forward optimiza-

tion method is still higher than the budget cost. The forward optimization 

method can only solve the optimization problem of worker assignment under 

the given existing conditions, it cannot solve the optimization problem of making 

the budget cost be an ideal cost. It means that the project cannot be delivered 

with the target cost based on the initial activity duration. The reason is that the 

initial activity duration estimated may be longer than needed because of worries 

about being punished by comparison with the initial standard activity duration. 

2. From the perspective of the inverse optimal value model: Through the inverse 

optimal value method, the project can be delivered with the target cost, the cost 

of inverse optimization is CNY 30,220.50 lower than the forward optimization. 

Additionally, the total project duration is reduced from 86.2 months to 77.7 

months. It means that the total project duration can be optimized by adjusting 

activity duration within allowable range. Based on the inverse optimal value 

model, it shortens the total project duration and reduces the total cost. Optimiz-

ing durations and worker assignment synchronously is better than that of opti-

mizing activity–worker assignment alone. 

3. From the perspective of comparing the intelligent algorithm and the exact algo-

rithm: It can be seen from Table 6 that the total cost can be effectively controlled 

by using the inverse optimal value method. The hybrid artificial fish swarm ge-

netic algorithm can achieve an ideal cost as the exact algorithm. The hybrid arti-

ficial fish swarm genetic algorithm can get the near-optimal result of the model 

in 109.458 s, while the exact algorithm needs a longer time to get the optimal 
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result. However, although the optimization method has the ability to solve the 

problem accurately, its calculation scale is small, and for problems with a large 

solution space, its calculation time is long and its efficiency is low. It also reflects 

that the hybrid artificial fish swarm genetic algorithm can ensure the accuracy of 

the solution on the basis of achieving a fast solution. The “activity–worker” as-

signment inverse optimal value model contains two decision variables, the “ac-

tivity–worker” assignment scheme decision variable and the activity-duration 

decision variable, and the two kinds of variables interact with each other, which 

leads to the rapid expansion of the solution space, and the computational effi-

ciency is obviously very low when using the optimization method to solve the 

model accurately. 

4. From the perspective of comparing the inverse optimal value method and the 

forward optimization method: The inverse optimal value method gives “activ-

ity–worker” assignment schemes by adjusting the original activity durations to 

pursue the desired target cost. The upper-level objective function value is 5.2726 

× 10−5; it means the total project cost corresponding to the new worker assign-

ments and activity durations obtained by the inverse optimal value method is 

CNY 360,000, which equals the target cost. It can take a target as the guidance, 

adjust resource parameters, and reversely optimize the resource parameters to 

obtain the “activity–worker” assignment scheme and activity time parameters 

that can meet the desired target cost. 

5.2. Comparative Analysis of Activity–Worker-Duration Results 

The inverse optimal value method can be used to project cost control by reverse col-

laborative optimization of activity durations and “activity–worker” assignment schemes. 

However, the activity–worker-duration themes (in Table 9) are different. 

Table 9. Comparison of activity–worker-duration assignment. 

Forward Model 
Inverse Model Based on an Intelligent  

Algorithm 

Inverse Model Based on an Accurate  

Algorithm 

Activity–Worker Original Duration  Activity–Worker  Duration t * Activity–Worker  Duration t * 

x (1, 2) 4.7 x (1, 14) t *(4.7) x (1, 2) t *(4.6) 

x (2, 28) 8.1 x (2, 2) t *(7.5) x (2, 3) t *(7.4) 

x (3, 15) 9.0 x (3, 15) t *(8.5) x (3, 15) t *(8.4) 

x (4, 24) 12.3 x (4, 4) t *(10.7) x (4, 2) t *(11.0) 

x (5, 4) 3.1 x (5, 24) t *(2.6) x (5, 9) t *(2.7) 

x (6, 5) 3.0 x (6, 10) t *(2.7) x (6, 5) t *(2.4) 

x (7, 12) 3.2 x (7, 5) t *(2.5) x (7, 17) t *(2.4) 

x (8, 4) 9.3 x (8, 9) t *(8.3) x (8, 13) t *(8.4) 

x (9, 15) 7.7 x (9, 15) t *(7.3) x (9, 15) t *(7.3) 

x (10, 10) 20.4 x (10, 10) t *(19.0) x (10, 10) t *(19.2) 

x (11, 2) 22.0 x (11, 13) t *(21.2) x (11, 9) t *(20.7) 

x (12, 13) 11.6 x (12, 18) t *(10.8) x (12, 4) t *(11.6) 

x (13, 9) 23.5 x (13, 1) t *(21.6) x (13, 14) t *(20.6) 

x (14, 15) 9.3 x (14, 26) t *(8.9) x (14, 26) t *(8.3) 

x (15, 8) 12.4 x (15, 8) t *(10.1) x (15, 5) t *(10.3) 

x (16, 13) 17.6 x (16, 4) t *(16.8) x (16, 5) t *(16.9) 

x (17, 5) 22.2 x (17, 15) t *(20.7) x (17, 15) t *(21.1) 

x (18, 1) 24.2 x (18, 14) t *(22.8) x (18, 4) t *(22.9) 

x (19, 17) 24.3 x (19, 24) t *(20.0) x (19, 11) t *(20.8) 

x (20, 9) 8.0 x (20, 9) t *(7.3) x (20, 24) t *(7.5) 

x (21, 15) 8.0 x (21, 13) t *(7.3) x (21, 13) t *(7.7) 
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x (22, 4) 19.9 x (22, 29) t *(17.8) x (22, 2) t *(17.8) 

x (23, 9) 2.9 x (23, 27) t *(2.3) x (23, 14) t *(2.5) 

x (24, 5) 10.2 x (24, 24) t *(8.9) x (24, 15) t *(9.3) 

x (25, 4) 8.0 x (25, 24) t *(7.1) x (25, 9) t *(7.3) 

x (26, 2) 20.4 x (26, 2) t *(18.8) x (26, 29) t *(18.9) 

x (27, 5) 2.7 x (27, 22) t *(2.7) x (27, 2) t *(2.5) 

x (28, 15) 18.2 x (28, 1) t *(17.2) x (28, 13) t *(17.0) 

x (29, 26) 21.5 x (29, 15) t *(20.5) x (29, 10) t *(20.5) 

x (30, 10) 28.1 x (30, 5) t *(27.1) x (30, 4) t *(27.1) 

x (31, 27) 16.5 x (31, 13) t *(16.6) x (31, 27) t *(16.6) 

x (32, 5) 3.0 x (32, 10) t *(2.7) x (32, 12) t *(2.5) 

x (33, 13) 2.8 x (33, 29) t *(2.5) x (33, 13) t *(2.5) 

x (34, 12) 2.7 x (34, 9) t *(2.7) x (34, 24) t *(2.6) 

x (35, 2) 3.0 x (35, 26) t *(2.7) x (35, 26) t *(2.3) 

x (36, 1) 9.0 x (36, 2) t *(8.4) x (36, 5) t *(8.4) 

x (37, 15) 3.0 x (37, 15) t *(2.3) x (37, 5) t *(2.6) 

x (38, 15) 2.0 x (38, 15) t *(1.6) x (38, 2) t *(1.6) 

“*” means the optimal value of adurations based on inverse optimal value model. 

In Table 9, based on the forward model, (x (1, 2) 4.7) means the first activity is as-

signed to the second worker with a duration of 4.7 days and (x (2, 28) 8.1) means the sec-

ond activity is assigned to the 28th worker with a duration of 8.1 days Similarly, all the 

activities–worker themes are displayed. Based on the inverse optimal model with an 

adaptive hybrid artificial fish swarm genetic algorithm, ((1, 14) t * 4.7) means the first ac-

tivity is assigned to the 14th worker with a duration of 4.7 days and (x (2, 2) t * (7.5)) means 

the second activity is assigned to the 2nd worker with a duration of 7.5 days. Based on the 

inverse optimal model with an exact algorithm, (x (1, 2) t * (4.6) means the first activity is 

assigned to the 2nd worker with a duration of 4.6 days. 

It can be seen from Table 9 that there are differences between the two algorithms in 

terms of “activity–worker-duration” assignments. Only assigned workers of six activities 

have not changed, but the activity durations of these six activities are also different. It 

means that both activity–worker assignments and activity durations are important factors 

for delivering a project with an ideal cost. A desired target can be achieved by simultane-

ously optimizing activity durations and “activity–worker” assignments as activity–

worker assignments and activity durations interact and influence each other. It reflects 

that the inverse optimal value method is more advantageous than the forward optimiza-

tion method in dealing with the optimization problem with known budget cost objectives. 

5.3. Algorithm Robustness Verification Results 

In order to prove the robustness of the algorithm, we design nine random examples 

RI: RI01, RI02, ……, RI09. Different sample sizes were chosen for workers and activities 

for random examples, for example workers from 40 to 90, activities from 50 m to 100, the 

maximum project duration is 15 months, the maximum labor cost is CNY 190,000. Because 

of different scales of the problem, the calculation times are different. 

Furthermore, in order to reflect the robustness of the algorithm, we used MATLAB 

and an adaptive artificial fish swarm genetic algorithm to solve the random and practical 

examples, the calculation results are as shown in Table 10. Opt uses the MATLAB solver 

for accurate solution. Best, mean and worst are, respectively, the best value, the average 

value and the worst value of the results obtained by the improved intelligent algorithm in 

25 independent calculations. Time is the average time (unit: s) spent using various meth-

ods to solve 25 independent calculations of different examples. 
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Table 10. Two algorithms for solving two kinds of instances. 

 
Exact Algorithm Adaptive Artificial Fish Swarm Genetic Algorithm 

Opt Time Best Mean Worst Time 

PI 3.7516 × 105 2.32 3.7516 × 105 3.8281 × 105 4.1344 × 105 1.22 

RI01 2.5652 × 105 1.27 2.5652 × 105 2.6063 × 105 2.6240 × 105 1.89 

RI02 2.0153 × 105 4.02 2.1281 × 105 2.0809 × 105 2.1213 × 105 2.77 

RI03 2.1808 × 105 9.29 2.2708 × 105 2.2027 × 105 2.2188 × 105 4.27 

RI04 2.0092 × 105 12.36 2.1590 × 105 2.1554 × 105 2.2124 × 105 5.83 

RI05 2.4290 × 105 16.26 2.4290 × 105 2.4695 × 105 2.4822 × 105 7.24 

RI06 2.3468 × 105 35.16 2.3468 × 105 2.3696 × 105 2.3798 × 105 8.99 

RI07 2.4519 × 105 43.59 2.4912 × 105 2.5315 × 105 2.5676 × 105 10.22 

RI08 2.4047 × 105 89.32 2.4491 × 105 2.4997 × 105 2.5254 × 105 10.99 

RI09 2.7540 × 105 106.37 2.7540 × 105 2.8048 × 105 2.8312 × 105 13.41 

The results in Table 10 show that the adaptive artificial fish swarm genetic algorithm 

can solve this problem well in a general way. It can be verified that the algorithm in this 

paper can not only achieve a fast solution, but also ensure that the solution accuracy is 

controlled within the error range. 

6. Conclusions and Management Enlightenments 

6.1. Conclusions 

The inverse optimal value model can optimize activity durations and the correspond-

ing worker assignments synchronously to deliver a project with an ideal cost based on bi-

level programming. The leader model is used to make a project deliver within a target by 

optimization activity durations; the follower model is the forward model which optimizes 

activity–worker assignments for minimum cost of the project. Through activity duration 

decisions and activity–worker-decision feedback and interaction with each other they de-

liver a project with an ideal cost. 

With considerations of the mathematical characteristics of bi-level programming, 

nonlinearity, NP hard, and MAX functions in order to make the optimal cost of the model 

infinitely close to the target cost, we designed a parameter adaptive hybrid artificial fish 

swarm genetic algorithm solution model based on a linear function, and give the algo-

rithm flow. A numerical example is given to illustrate the effectiveness of the inverse op-

timal value model. The advanced algorithm is proven by comparison with the exact algo-

rithm. 

6.2. Management Enlightenments 

(1) The model provides a new way for worker-assignment decision-making for project 

managers. Human resources are the first element of project management, and the 

role of workers run through the whole project process. “Activity–worker” assign-

ments directly affect a project duration and cost input, which is an important factor 

to control total costs of a project. This paper constructs a forward optimization model 

of “activity–worker” assignments. However, under the original parameters, the op-

timal cost of the forward optimization method is still higher than an ideal cost, and 

it is impossible to continue to reduce the cost by using the forward optimization 

method. Therefore, based on reverse thinking, starting from the ideal target, this re-

search explores the causes leading to the ideal results. It uses the inverse optimal 

value method to transform the forward optimization model into the inverse optimal 

value model. With combining the idea of goal management and inverse optimal 

value methodologies, reversely optimizing working time and worker assignment 

schemes, it provides a new method for project–worker assignment and it gives a new 

way for goal-driven worker-assignment decision making. 
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(2) The model is useful for project managers to do performance management. It provides 

a performance criterion driven by the predetermined goals. The method of setting 

performance standards for employees can guarantee the goal realization and the time 

for employees to complete tasks is determined. The time can be used as a benchmark-

ing standard, which not only helps workers overcome human factor deficiencies such 

as the student syndrome, but also ensures that the project is delivered on time within 

an expected goal. The completing-time criterion handles the new activity durations. 

It can be used as a tool for performance management, if a worker is faster than the 

activity duration based on the inverse optimal value method, the worker will receive 

a bonus, otherwise a fine is given. The task-completion-time standard can help pro-

ject managers to deal with delay tendency of workers, it is an important way to over-

come the above human-factor deficiencies. It also tells the managers that when a 

manager decides “task–worker” assignment, focus should not be limited to the 

matching of workers and tasks, but also should care about the activity-time criteria 

of workers, and comprehensively consider the impact of worker-assignment and 

work-time criteria setting, which complement each other. 

(3) The model can help project managers realize cost control. Cost management is im-

portant for project managers. Most projects survive the pain of cost overruns. In or-

der to help project managers to deliver a project with an ideal cost and on time, the 

proposed inverse optimal value approach can make the optimal project cost infinitely 

close to a preset ideal cost. This method gives a new ideal to realize cost control. With 

an ideal-cost goal-driven methodology, this research gives a decision support tool for 

project managers to readjust model parameters to achieve goals. Furthermore, it can 

help managers reduce costs of a project. 
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