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1. Introduction

The disclosure of complex numbers was established in the 17th century by Sir Carl
Fredrich Gauss, but his work was not on the record. Then, in the year 1840, Augustin
Louis Cauchy started analyzing complex numbers. Cauchy is known to be an effective
founder of complex analysis. The theory of complex numbers has its source in the solution
of ax2 + bx + c = 0, which was not worthwhile for b2 − 4ac < 0, in the set of real numbers.
Based on this background, Euler was the first mathematician to present the symbol i, for√
−1 with the property i2 = −1.

The starting point for bicomplex numbers was provided by Segre [1], supporting
a commutative substitute for the skew field of quaternions. These numbers generalize
and extend the complex numbers more firmly and specifically to quaternions. For an
excellent investigation of the study of bicomplex numbers, we refer the reader to [2]. In
2011, Azam et al. [3] proposed the theory of complex valued metric space (CVMS) as
a generalization and extension of cone metric space and classical metric space. In 2017,
Choi et al. [4] linked the concepts of bicomplex numbers and complex valued metric
spaces and introduced the notion of bicomplex valued metric spaces (bi-CVMS). They
established common fixed point results for weakly compatible mappings. Subsequently,
Jebril et al. [5], utilized this notion of newly introduced space and proved common fixed
point results under rational contractions for a pair of mappings in the background of bi-CVMS.
Later on, Beg et al. [6] strengthened the notion of bi-CVMS and obtained generalized fixed
point theorems. Recently, Gnanaprakasam et al. [7] established some common fixed point
results for rational contraction in bi-CVMSs and solved a system of linear equations as an
application of their main result. For more characteristics in the direction of CVMS and
bi-CVMS, we refer the researchers to [8–27].

In this article, we establish common fixed points of six self-mappings in the context of
bicomplex valued metric spaces. Some previous well-known results of literature are gener-
alized in this way. Moreover, we provide a non-trivial example to show the authenticity of
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established outcomes. As an application, we investigate the solution of an Urysohn integral
equation by applying our results.

2. Preliminaries

We describe C0, C1 and C2 as the set of real, complex and bicomplex numbers, corre-
spondingly. Segre [1] set out the notion of bicomplex numbers in this manner.

} = a1 + a2i1 + a3i2 + a4i1i2,

where a1, a2, a3, a4 ∈ C0, and the independent units i1, i2 are such that i21 = i22 = −1 and
i1i2 = i2i1. We represent the set of bicomplex numbers by C2 and it is defined as

C2 = {} : } = a1 + a2i1 + a3i2 + a4i1i2 : a1, a2, a3, a4 ∈ C0},

that is,
C2 = {} : } = z1 + i2z2 : z1, z2 ∈ C1},

where z1 = a1 + a2i1 ∈ C1 and z2 = a3 + a4i1 ∈ C1. If } = z1 + i2z2 and ℘ = ω1 + i2ω2 are
any two bicomplex numbers, then the sum is

}± ℘ = (z1 + i2z2)± (ω1 + i2ω2) = (z1 ±ω1) + i2(z2 ±ω2),

and the product is

} · ℘ = (z1 + i2z2) · (ω1 + i2ω2) = (z1ω1 − z2ω2) + i2(z1ω2 + z2ω1).

There are four idempotent elements in C2, which are 0, 1, e1 = 1+i1i2
2 and e2 = 1−i1i2

2 ,
of which e1 and e2 are non-trivial, such that e1 + e2 = 1 and e1e2 = 0. Every bicomplex
number z1 + i2z2 can uniquely be given as the combination of e1and e2, namely

} = z1 + i2z2 = (z1 − i1z2)e1 + (z1 + i1z2)e2.

This characterization of } is studied as the idempotent characterization of C2 and
the complex coefficients }1 = (z1 − i1z2) and }2 = (z1 + i1z2) are known as idempotent
components of }.

A member } = z1 + i2z2 ∈ C2 is called invertible if there is one more member ℘ ∈ C2,
such that }℘ = 1 and ℘ is called the multiplicative inverse of }. Accordingly } is called the
multiplicative inverse of ℘. A member which has an inverse in C2 is called a non-singular
element of C2 and a member which does not have an inverse in C2 is called a singular
element of C2.

A member } = z1 + i2z2 ∈ C2 is non-singular if and only if
∣∣z2

1 + z2
2

∣∣ 6= 0 and singular
if and only if

∣∣z2
1 + z2

2

∣∣ = 0. The inverse of } is defined as

}−1 = ℘ =
z1 − i2z2

z2
1 + z2

2
.

0 inC0 and 0 = 0+ i0 inC1 are the only members which do not have multiplicative inverses.
We represent the set of singular elements of C0 and C1 by ℵ0 and ℵ1, respectively. However,
in C2, more than one member does not have a multiplicative inverse. We represent the set
of a singular member of C2 by ℵ2. Evidently, ℵ0 = ℵ1 ⊂ ℵ2.

A bicomplex number } = a1 + a2i1 + a3i2 + a4i1i2 ∈ C2 is said to be degenerated if
the matrix (

a1 a2
a3 a4

)
2×2

is degenerated. In that case, }−1 exists, and it is also degenerated.
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The norm ‖·‖ : C2 → C+
0 is defined by

‖}‖ = ‖z1 + i2z2‖ =
{
|z1|2 + |z2|2

} 1
2

=

[
|(z1 − i1z2)|2 + |(z1 + i1z2)|2

2

] 1
2

=
(

a2
1 + a2

2 + a2
3 + a2

4

) 1
2 ,

where } = a1 + a2i1 + a3i2 + a4i1i2 = z1 + i2z2 ∈ C2.
The linear space C2 with reference to the defined norm is a normed linear space; also,

C2 is complete, hence C2 is a Banach space. If },℘ ∈ C2, then

‖}℘‖ ≤
√

2‖}‖‖℘‖,

holds instead of
‖}℘‖ ≤ ‖}‖‖℘‖,

therefore C2 is not a Banach algebra. The partial-order relation �i2 on C2 is defined as:

} �i2 ℘⇔ Re(z1) � Re(ω1) and Im(z2) � Im(ω2),

where } = z1 + i2z2, ℘ = ω1 + i2ω2 ∈ C2.
It follows that

} �i2 ℘,

if one of these assertions is satisfied:

(i) z1 = ω1, z2 ≺ ω2,

(ii) z1 ≺ ω1, z2 = ω2,

(iii) z1 ≺ ω1, z2 ≺ ω2,

(iv) z1 = ω1, z2 = ω2.

Specifically, we can write } �i2 ℘ if } ≺i2 ℘ and } 6= ℘; that is, (i), (ii) or (iii) is satisfied,
and we will write } = ℘ if only (iv) is satisfied. For }, ℘ ∈ C2, we have

(i) } �i2 ℘ =⇒ ‖}‖ ≤ ‖℘‖,
(ii) ‖}+ ℘‖ ≤ ‖}‖+ ‖℘‖,
(iii) ‖a}‖ ≤ a‖℘‖, where a is a non-negative real number,
(iv) ‖}℘‖ ≤

√
2‖}‖‖℘‖,

(v)
∥∥}−1

∥∥ = ‖}‖−1,

(vi)
∥∥∥ }℘∥∥∥ = ‖}‖

‖℘‖ , if ℘ is a degenerated bicomplex number.
Choi et al. [4] defined the bicomplex valued metric space (bi-CVMS) as follows:

Definition 1 ([4]). Let Z 6= ∅ and σ : Z ×Z → C2 be a mapping satisfying

(i) 0 �i2 σ(},℘) and σ(},℘) = 0 if and only if } = ℘,
(ii) σ(},℘) = σ(℘,}),
(iii) σ(},℘) �i2 σ(}, ν) + σ(ν,℘),

for all },℘, ν ∈ Z , then (Z , σ) is a bi-CVMS.

Example 1 ([6]). Let Z = C2 and },℘ ∈ Z . Define σ : Z ×Z → C2 by
σ(},℘) = |z1 −ω1|+ i2|z2 −ω2|,

where } = z1 + i2z2, ℘ = ω1 + i2ω2 ∈ C2. Then, (Z , σ) is a bi-CVMS.
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Definition 2 ([4]). Let (Z , σ) be a bi-CVMS and let ℵ,Q : Z → Z be self-mappings. The
mappings ℵ and Q are said to be commuting if ℵQ} = Qℵ}, for all } ∈ Z . The mappings ℵ and
Q are said to be compatible if

lim
κ→∞

σ(ℵQ}κ ,Qℵ}κ) = 0,

whenever {}κ} is a sequence in Z , such that limκ→∞ ℵ}κ = Q}κ = t for some t ∈ Z . The
mappings ℵ and Q are said to be weakly compatible if ℵQ} = Qℵ}, whenever Q} = ℵ}.

Lemma 1 ([4]). Let (Z , σ) be a bi-CVMS and L, T : Z → Z . If the pair (L, T ) on (Z , σ) is said
to be compatible, then the pair (L, T ) is weakly compatible, but the converse is not true in general.

Lemma 2 ([6]). Let (Z , σ) be a bi-CVMS and let {}κ} ⊆ Z . Then, {}κ} converges to } if and
only if ‖σ(}κ ,})‖ → 0 as κ → ∞.

Lemma 3 ([6]). Let (Z , σ) be a bi-CVMS and let {}κ} ⊆ Z . Then, {}κ} is a Cauchy sequence if
and only if ‖σ(}κ ,}κ+m)‖ → 0 as κ → ∞, where m ∈ N.

3. Main Results

We state our main result in this way.

Theorem 1. Let (Z , σ) be a complete bi-CVMS and let =,<,L, T ,ℵ,Q : Z → Z be self-
mappings. If there exists some θ ∈ [0, 1) such that the following conditions hold:

(i)
σ(ℵ},Q℘) �i2 θQ(},℘) (1)

for all },℘ ∈ Z , where

Q(},℘) ∈
{

σ(=<},LT ℘), σ(=<},ℵ}), σ(LT ℘,Q℘),
1
2 (σ(LT ℘,ℵ}) + σ(=<},Q℘))

}
;

(ii) ℵ(Z) ⊂ LT (Z),Q(Z) ⊂ =<(Z);
(iii) =< = <=, LT = T L,ℵ< = <ℵ, QT = T Q;
(iv) the pair (ℵ,=<) is compatible and the pair (Q,LT ) is weakly compatible;
(v) either the mapping =< or the mapping ℵ is continuous.
Then, there exists a unique point }/ ∈ Z , such that =}/ = <}/ = L}/ = T }/ = ℵ}/ =

Q}/ = }/.

Proof. Let }0 be an arbitrary point inZ . According to hypothesis (ii), there exist }1,}2 ∈ Z ,
such that ℵ}0 = LT }1 = ℘0 and Q}1 = =<}2 = ℘1. We can generate two sequences {}κ}
and {℘κ} in Z successively in this way

℘2κ = LT }2κ+1 = ℵ}2κ and ℘2κ+1 = =<}2κ+2 = Q}2κ+1, (2)

for κ = 0, 1, 2, · · ·. Now, according to (i), we have

σ(℘2κ ,℘2κ+1) = σ(ℵ}2κ ,Q}2κ+1) �i2 θQ(}2κ ,}2κ+1), (3)

where

Q(}2κ ,}2κ+1) ∈
{

σ(=<}2κ ,LT }2κ+1), σ(=<}2κ ,ℵ}2κ), σ(LT }2κ+1,Q}2κ+1),
1
2 (σ(LT }2κ+1,ℵ}2κ) + σ(=<}2κ ,Q}2κ+1)),

}
=

{
σ(℘2κ−1,℘2κ), σ(℘2κ−1,℘2κ), σ(℘2κ ,℘2κ+1),

1
2 ((σ(℘2κ ,℘2κ) + σ(℘2κ−1,℘2κ+1)),

}
=

{
σ(℘2κ−1,℘2κ), σ(℘2κ ,℘2κ+1),

1
2

σ(℘2κ−1,℘2κ+1)

}
. (4)
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Using the inequality (3) and expression (4), we discuss the following three cases as
follows:

If Q(}2κ ,}2κ+1) = σ(℘2κ−1,℘2κ), then we have

σ(℘2κ ,℘2κ+1) �i2 θσ(℘2κ−1,℘2κ),

which implies that
‖σ(℘2κ ,℘2κ+1)‖ ≤ θ‖σ(℘2κ−1,℘2κ)‖. (5)

If Q(}2κ ,}2κ+1) = σ(℘2κ ,℘2κ+1), then we have

σ(℘2κ ,℘2κ+1) �i2 θσ(℘2κ ,℘2κ+1),

which implies that
‖σ(℘2κ ,℘2κ+1)‖ ≤ θ‖σ(℘2κ ,℘2κ+1)‖

which is a contradiction because θ < 1.
If Q(}2κ ,}2κ+1) =

1
2 σ(℘2κ−1,℘2κ+1), then we have

σ(℘2κ ,℘2κ+1) �i2
θ

2
σ(℘2κ−1,℘2κ+1) �i2

θ

2
σ(℘2κ−1,℘2κ) +

θ

2
σ(℘2κ ,℘2κ+1),

that is,

σ(℘2κ ,℘2κ+1) �i2
θ

2
σ(℘2κ−1,℘2κ) +

θ

2
σ(℘2κ ,℘2κ+1).

Taking the norm on both sides of above inequality, we have

‖σ(℘2κ ,℘2κ+1)‖ ≤
∥∥∥∥ θ

2
σ(℘2κ−1,℘2κ) +

θ

2
σ(℘2κ ,℘2κ+1)

∥∥∥∥
≤

∣∣∣∣ θ2
∣∣∣∣‖σ(℘2κ−1,℘2κ)‖+

∣∣∣∣ θ2
∣∣∣∣‖σ(℘2κ ,℘2κ+1)‖

=
θ

2
‖σ(℘2κ−1,℘2κ)‖+

θ

2
‖σ(℘2κ ,℘2κ+1)‖.

Now, using the fact that θ < 1, we have

‖σ(℘2κ ,℘2κ+1)‖ ≤
θ

2
‖σ(℘2κ−1,℘2κ)‖+

θ

2
‖σ(℘2κ ,℘2κ+1)‖

≤ θ

2
‖σ(℘2κ−1,℘2κ)‖+

1
2
‖σ(℘2κ ,℘2κ+1)‖,

which implies that
‖σ(℘2κ ,℘2κ+1)‖ ≤ θ‖σ(℘2κ−1,℘2κ)‖.

Thus, in all cases, we have

‖σ(℘2κ ,℘2κ+1)‖ ≤ θ‖σ(℘2κ−1,℘2κ)‖. (6)

Similarly, using (i), we have

σ(℘2κ+1,℘2κ+2) = σ(Q}2κ+1,ℵ}2κ+2) = σ(ℵ}2κ+2,Q}2κ+1) �i2 θQ(}2κ+2,}2κ+1), (7)

where
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Q(}2κ+2,}2κ+1) ∈
{

σ(=<}2κ+2,LT }2κ+1), σ(=<}2κ+2,ℵ}2κ+2), σ(LT }2κ+1,Q}2κ+1),
1
2 (σ(LT }2κ+1,ℵ}2κ+2) + σ(=<}2κ+2,Q}2κ+1)),

}
=

{
σ(℘2κ+1,℘2κ), σ(℘2κ+1,℘2κ+2), σ(℘2κ ,℘2κ+1),

1
2 (σ(℘2κ ,℘2κ+2) + σ(℘2κ+1,℘2κ+1)),

}
(8)

=

{
σ(℘2κ ,℘2κ+1), σ(℘2κ+1,℘2κ+2),

1
2

σ(℘2κ ,℘2κ+2)

}
.

Using the inequality (7) and expression (9), we discuss the following three cases as
follows:
If Q(}2κ+2,}2κ+1) = σ(℘2κ ,℘2κ+1), then we have

σ(℘2κ+1,℘2κ+2) �i2 θσ(℘2κ ,℘2κ+1),

which implies that
‖σ(℘2κ+1,℘2κ+2)‖ ≤ θ‖σ(℘2κ ,℘2κ+1)‖. (9)

If Q(}2κ+2,}2κ+1) = σ(℘2κ+1,℘2κ+2), then we have

σ(℘2κ+1,℘2κ+2) �i2 θσ(℘2κ+1,℘2κ+2),

which implies that
‖σ(℘2κ+1,℘2κ+2)‖ ≤ θ‖σ(℘2κ+1,℘2κ+2)‖,

which is a contradiction, because θ < 1.
If Q(}2κ+2,}2κ+1) =

1
2 σ(℘2κ ,℘2κ+2), then we have

σ(℘2κ+1,℘2κ+2) �i2
θ

2
σ(℘2κ ,℘2κ+2) �i2

θ

2
σ(℘2κ ,℘2κ+1) +

θ

2
σ(℘2κ+1,℘2κ+2);

that is,

σ(℘2κ+1,℘2κ+2) �i2
θ

2
σ(℘2κ ,℘2κ+1) +

θ

2
σ(℘2κ+1,℘2κ+2).

Taking the norm on both sides of above inequality, we have

‖σ(℘2κ+1,℘2κ+2)‖ ≤
∥∥∥∥ θ

2
σ(℘2κ ,℘2κ+1) +

θ

2
σ(℘2κ+1,℘2κ+2)

∥∥∥∥
≤

∣∣∣∣ θ2
∣∣∣∣‖σ(℘2κ ,℘2κ+1)‖+

∣∣∣∣ θ2
∣∣∣∣‖σ(℘2κ+1,℘2κ+2)‖

=
θ

2
‖σ(℘2κ ,℘2κ+1)‖+

θ

2
‖σ(℘2κ+1,℘2κ+2)‖.

Now, using the fact that θ < 1, we have

‖σ(℘2κ+1,℘2κ+2)‖ ≤
θ

2
‖σ(℘2κ ,℘2κ+1)‖+

θ

2
‖σ(℘2κ+1,℘2κ+2)‖

≤ θ

2
‖σ(℘2κ ,℘2κ+1)‖+

1
2
‖σ(℘2κ+1,℘2κ+2)‖,

which implies that
‖σ(℘2κ+1,℘2κ+2)‖ ≤ θ‖σ(℘2κ ,℘2κ+1)‖.

Thus, in all cases, we have

‖σ(℘2κ+1,℘2κ+2)‖ ≤ θ‖σ(℘2κ ,℘2κ+1)‖. (10)
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Thus, using (6) and (10), we have

‖σ(℘κ ,℘κ+1)‖ ≤ θ‖σ(℘κ−1,℘κ)‖. (11)

for all κ ∈ N. It yields that

‖σ(℘κ ,℘κ+1)‖| ≤ θ‖σ(℘κ−1,℘κ)‖ ≤ · · · ≤ θκ‖σ(℘0,℘1)‖. (12)

Using the inequality (12) and the triangle inequality, for all m > κ, we have

‖σ(℘κ ,℘m)‖ ≤ ‖σ(℘κ ,℘κ+1)‖+ ‖σ(℘κ+1,℘κ+2)‖+ · · ·+ ‖σ(℘m−1,℘m)‖
≤ [θκ + θκ+1 + · · ·+ θm−1]‖σ(℘0,℘1)‖

≤ [
θκ

1− θ
]‖σ(℘0,℘1)‖ → 0 as κ → ∞.

It follows that {℘κ} is a Cauchy sequence in bi-CVMS (Z , σ). As (Z , σ) is complete,
there exists some }/ ∈ Z , such that ℘κ → }/ as κ → ∞. For its sub sequences, we also have
Q}2κ+1 → }/, LT }2κ+1 → }/, ℵ}2κ → }/ and =<}2κ → }/. Now, according to hypothesis
(v), we will have the following two cases:

Case 1. If =< is continuous.

Then, =<=<}2κ → =<}/ and =<ℵ}2κ → =<}/, as κ → ∞. Additionally, since
the pair (ℵ,=<) is compatible, it follows that ℵ=<}2κ → =<}/. Because, using triangle
inequality, we have

σ(ℵ=<}2κ ,=<}/) �i2 σ(ℵ=<}2κ ,=<ℵ}2κ) + σ(=<ℵ}2κ ,=<}/),

which implies∥∥∥σ(ℵ=<}2κ ,=<}/)
∥∥∥ ≤ ‖σ(ℵ=<}2κ ,=<ℵ}2κ)‖+

∥∥∥σ(=<ℵ}2κ ,=<}/)
∥∥∥→ 0

as κ → ∞.
(a) First, we prove that =<}/ = }/. We assume, on the contrary, that =<}/ 6= }/.

Then, 0 ≺i2 σ(=<}/,}/). Now, by using triangle inequality two times, we have

σ(=<}/,}/) �i2 σ(=<}/,ℵ=<}2κ) + σ(ℵ=<}2κ ,Q}2κ+1) + σ(Q}2κ+1,}/). (13)

Now, using hypothesis (i), we have

σ(ℵ=<}2κ ,Q}2κ+1) �i2 θQ(=<}2κ ,}2κ+1), (14)

where

Q(=<}2κ ,}2κ+1) ∈


σ(=<=<}2κ ,LT }2κ+1), σ(=<=<}2κ ,ℵ=<}2κ),

σ(LT }2κ+1,Q}2κ+1),
1
2 (σ(LT }2κ+1,ℵ=<}2κ) + σ(=<=<}2κ ,Q}2κ+1))

.

Now, we have the following four cases:
If Q(=<}2κ ,}2κ+1) = σ(=<=<}2κ ,LT }2κ+1), then by (14), we have

σ(ℵ=<}2κ ,Q}2κ+1) �i2 θσ(=<=<}2κ ,LT }2κ+1).

Using the triangle inequality, we have

σ(ℵ=<}2κ ,Q}2κ+1) �i2 θσ(=<=<}2κ ,=<}/) + θσ(=<}/,}/) + θσ(}/,LT }2κ+1). (15)
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Now, using (15) in (13), we have∥∥∥σ(=<}/,}/)
∥∥∥ ≤ 1

1− θ

∥∥∥σ(=<}/,ℵ=<}2κ)
∥∥∥+ θ

1− θ

∥∥∥σ(=<=<}2κ ,=<}/)
∥∥∥

+
θ

1− θ

∥∥∥σ(}/,LT }2κ+1)
∥∥∥+ 1

1− θ

∥∥∥σ(Q}2κ+1,}/)
∥∥∥.

Taking the limit as κ → ∞, we get∥∥∥σ(=<}/,}/)
∥∥∥ ≤ 0,

that is,
∥∥∥σ(=<}/,}/)

∥∥∥ = 0, a contradiction. Thus, =<}/ = }/.
If Q(=<}2κ ,}2κ+1) = σ(=<=<}2κ ,ℵ=<}2κ), then, according to (14), we have

σ(ℵ=<}2κ ,Q}2κ+1) �i2 θσ(=<=<}2κ ,ℵ=<}2κ).

Using the triangle inequality, we have

σ(ℵ=<}2κ ,Q}2κ+1) �i2 θσ(=<=<}2κ ,=<}/) + θσ(=<}/,ℵ=<}2κ). (16)

Now, using (16) in (13), we have

∥∥∥σ(=<}/,}/)
∥∥∥ ≤ (1 + θ)

∥∥∥σ(=<}/,ℵ=<}2κ)
∥∥∥+ θ

∥∥∥σ(=<=<}2κ ,=<}/)
∥∥∥

+
∥∥∥σ(Q}2κ+1,}/)

∥∥∥.

Now, taking the limit as κ → ∞, we get∥∥∥σ(=<}/,}/)
∥∥∥ ≤ 0,

that is,
∥∥∥σ(=<}/,}/)

∥∥∥ = 0, a contradiction. Thus, =<}/ = }/.
If Q(=<}2κ ,}2κ+1) = σ(LT }2κ+1,Q}2κ+1), then according to (14), we have

σ(ℵ=<}2κ ,Q}2κ+1) �i2 θσ(LT }2κ+1,Q}2κ+1).

Using the triangle inequality, we have

σ(ℵ=<}2κ ,Q}2κ+1) �i2 θσ(LT }2κ+1,}/) + θσ(}/,Q}2κ+1). (17)

Now, using (17) in (13), we have∥∥∥σ(=<}/,}/)
∥∥∥ ≤

∥∥∥σ(=<}/,ℵ=<}2κ)
∥∥∥+ (1 + θ)

∥∥∥σ(Q}2κ+1,}/)
∥∥∥

+θ
∥∥∥σ(LT }2κ+1,}/)

∥∥∥.

Letting κ → ∞ in the above inequality and using the fact that (ℵ,=<) is compatible,
so we have ∥∥∥σ(=<}/,}/)

∥∥∥ ≤ 0,

that is,
∥∥∥σ(=<}/,}/)

∥∥∥ = 0, a contradiction. Thus, =<}/ = }/.

If Q(=<}2κ ,}2κ+1) =
1
2 (σ(LT }2κ+1,ℵ=<}2κ) + σ(=<=<}2κ ,Q}2κ+1)), then accord-

ing to (14), we have

σ(ℵ=<}2κ ,Q}2κ+1) �i2
θ

2
(σ(LT }2κ+1,ℵ=<}2κ) + σ(=<=<}2κ ,Q}2κ+1)).
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Using the triangle inequality, we have

σ(ℵ=<}2κ ,Q}2κ+1) �i2
θ

2

(
σ(LT }2κ+1,}/) + σ(}/,=<}/) + σ(=<}/,ℵ=<}2κ)

)
+

θ

2

(
σ(=<=<}2κ ,=<}/) + σ(=<}/,}/) + σ(}/,Q}2κ+1)

)
�i2

θ

2

(
σ(LT }2κ+1,}/) + σ(}/,Q}2κ+1)

)
+

θ

2

(
σ(=<=<}2κ ,=<}/) + σ(=<}/,ℵ=<}2κ)

)
+ θσ(=<}/,}/). (18)

Now, using (18) in (13), we have∥∥∥σ(=<}/,}/)
∥∥∥ ≤ 1

1− θ

∥∥∥σ(=<}/,ℵ=<}2κ)
∥∥∥

+
θ

2(1− θ)

(∥∥∥σ(LT }2κ+1,}/)
∥∥∥+ ∥∥∥σ(}/,Q}2κ+1)

∥∥∥)+
+

θ

2(1− θ)

(∥∥∥σ(=<=<}2κ ,=<}/)
∥∥∥+ ∥∥∥σ(=<}/,ℵ=<}2κ)

∥∥∥)
+

1
1− θ

∥∥∥σ(Q}2κ+1,}/)
∥∥∥.

Now, taking the limit as κ → ∞, we have∥∥∥σ(=<}/,}/)
∥∥∥ ≤ 0,

that is,
∥∥∥σ(=<}/,}/)

∥∥∥ = 0, a contradiction. Hence, =<}/ = }/. Thus, in all cases

=<}/ = }/.
(b) Now, we show that ℵ}/ = }/. We assume, on the contrary, that ℵ}/ 6= }/. Then,

0 ≺i2 σ(ℵ}/,}/). Based on the triangle inequality, we have

σ(ℵ}/,}/) �i2 σ(ℵ}/,Q}2κ+1) + σ(Q}2κ+1,}/). (19)

Using (i), with } = }/,℘ = }2κ+1, we have

σ(ℵ}/,Q}2κ+1) �i2 θQ(}/,}2κ+1), (20)

where

Q(}/,}2κ+1) ∈
{

σ(=<}/,LT }2κ+1), σ(=<}/,ℵ}/), σ(LT }2κ+1,Q}2κ+1),
1
2 (σ(LT }2κ+1,ℵ}/) + σ(=<}/,Q}2κ+1))

}
.

Now, we have the following four cases:
If Q(}/,}2κ+1) = σ(=<}/,LT }2κ+1), then according to (20), we have

σ(ℵ}/,Q}2κ+1) �i2 θσ(=<}/,LT }2κ+1).

Since =<}/ = }/, we have

σ(ℵ}/,Q}2κ+1) �i2 θσ(}/,LT }2κ+1). (21)

Now, using (21) in (19), we have∥∥∥σ(ℵ}/,}/)
∥∥∥ ≤ θ

∥∥∥σ(}/,LT }2κ+1)
∥∥∥+ ∥∥∥σ(Q}2κ+1,}/)

∥∥∥.
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Now, letting κ → ∞ in the above inequality, we have∥∥∥σ(ℵ}/,}/)
∥∥∥ ≤ 0,

that is,
∥∥∥σ(ℵ}/,}/)

∥∥∥ = 0, a contradiction. Hence, ℵ}/ = }/.

If Q(}/,}2κ+1) = σ(=<}/,ℵ}/), then, according to (20), we have

σ(ℵ}/,Q}2κ+1) �i2 θσ(=<}/,ℵ}/).

Since =<}/ = }/, we have

σ(ℵ}/,Q}2κ+1) �i2 θσ(}/,ℵ}/). (22)

Now, using (22) in (19), we have∥∥∥σ(ℵ}/,}/)
∥∥∥ ≤ θ

∥∥∥σ(}/,ℵ}/)
∥∥∥+ ∥∥∥σ(Q}2κ+1,}/)

∥∥∥
≤ 1

1− θ

∥∥∥σ(Q}2κ+1,}/)
∥∥∥.

Now, letting κ → ∞ in the above inequality, we have∥∥∥σ(ℵ}/,}/)
∥∥∥ ≤ 0,

that is,
∥∥∥σ(ℵ}/,}/)

∥∥∥ = 0, a contradiction. Hence, ℵ}/ = }/.

If Q(}/,}2κ+1) = σ(LT }2κ+1,Q}2κ+1), then according to (20), we have

σ(ℵ}/,Q}2κ+1) �i2 θσ(LT }2κ+1,Q}2κ+1).

Using triangle inequality, we have

σ(ℵ}/,Q}2κ+1) �i2 θσ(LT }2κ+1,Q}2κ+1) �i2 θσ(LT }2κ+1,}/) + θσ(}/,Q}2κ+1). (23)

Now, using (23) in (19), we have∥∥∥σ(ℵ}/,}/)
∥∥∥ ≤ (1 + θ)

∥∥∥σ(Q}2κ+1,}/)
∥∥∥+ θ

∥∥∥σ(LT }2κ+1,}/)
∥∥∥.

Now, letting κ → ∞ in the above inequality, we have∥∥∥σ(ℵ}/,}/)
∥∥∥ ≤ 0,

that is,
∥∥∥σ(ℵ}/,}/)

∥∥∥ = 0, a contradiction. Hence, ℵ}/ = }/.

If Q(}/,}2κ+1) = 1
2 (σ(LT }2κ+1,ℵ}/) + σ(=<}/,Q}2κ+1)), then according to (20),

we have

σ(ℵ}/,Q}2κ+1) �i2
θ

2

(
σ(LT }2κ+1,ℵ}/) + σ(=<}/,Q}2κ+1)

)
.

Since =<}/ = }/, we have

σ(ℵ}/,Q}2κ+1) �i2
θ

2

(
σ(LT }2κ+1,ℵ}/) + σ(}/,Q}2κ+1)

)
.

According to the triangle inequality, we have

σ(ℵ}/,Q}2κ+1) �i2
θ

2

(
σ(LT }2κ+1,}/) + σ(}/,ℵ}/)

)
+

θ

2
σ(}/,Q}2κ+1). (24)
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Now, using (24) in (19), we have

σ(ℵ}/,}/) �i2
θ

2

(
σ(LT }2κ+1,}/) + σ(}/,ℵ}/)

)
+ (

θ

2
+ 1)σ(}/,Q}2κ+1).

This implies that∥∥∥σ(ℵ}/,}/)
∥∥∥ ≤ θ

2

(∥∥∥σ(LT }2κ+1,}/)
∥∥∥+ ∥∥∥σ(}/,ℵ}/)

∥∥∥)+ (
θ

2
+ 1)

∥∥∥σ(}/,Q}2κ+1)
∥∥∥.

Now, letting κ → ∞ in the above inequality, we have∥∥∥σ(ℵ}/,}/)
∥∥∥ ≤ 0,

that is,
∥∥∥σ(ℵ}/,}/)

∥∥∥ = 0, a contradiction. Thus, ℵ}/ = }/.

(c) Now, we show that <}/ = }/. We assume, on the contrary, that <}/ 6= }/. Then,
0 ≺i2 σ(<}/,}/). Now, using the triangle inequality, we get

σ(<}/,}/) = σ(<ℵ}/,}/) = σ(ℵ<}/,}/) �i2 σ(ℵ<}/,Q}2κ+1) + σ(Q}2κ+1,}/). (25)

According to (1) with } = <}/ and ℘ = }2κ+1, we have

σ(ℵ<}/,Q}2κ+1) �i2 θQ(<}/,}2κ+1), (26)

where

Q(<}/,}2κ+1) ∈
{

σ(=<<}/,LT }2κ+1), σ(=<<}/,ℵ<}/), σ(LT }2κ+1,Q}2κ+1),
1
2 (σ(LT }2κ+1,ℵ}/) + σ(=<}/,Q}2κ+1))

}
=

{
σ(<=<}/,LT }2κ+1), σ(<=<}/,<ℵ}/), σ(LT }2κ+1,Q}2κ+1),

1
2 (σ(LT }2κ+1,ℵ}/) + σ(=<}/,Q}2κ+1))

}
=

{
σ(<}/,LT }2κ+1), σ(<}/,<}/), σ(LT }2κ+1,Q}2κ+1),

1
2 (σ(LT }2κ+1,}/) + σ(}/,Q}2κ+1))

}
.

Now, we have the following four sub cases:
If Q(<}/,}2κ+1) = σ(=<<}/,LT }2κ+1), then according to (26) and =<}/ = }/, we

have

σ(ℵ<}/,Q}2κ+1) �i2 θσ(<}/,LT }2κ+1) �i2 θσ(<}/,}/) + θσ(}/,LT }2κ+1). (27)

Now, using (27) in (25), we have∥∥∥σ(<}/,}/)
∥∥∥ ≤ θ

∥∥∥σ(<}/,}/)
∥∥∥+ θ

∥∥∥σ(}/,LT }2κ+1)
∥∥∥+ ∥∥∥σ(Q}2κ+1,}/)

∥∥∥,

which implies that∥∥∥σ(<}/,}/)
∥∥∥ ≤ θ

1− θ

∥∥∥σ(}/,LT }2κ+1)
∥∥∥+ 1

1− θ

∥∥∥σ(Q}2κ+1,}/)
∥∥∥.

Now, letting κ → ∞ in the above inequality, we have∥∥∥σ(<}/,}/)
∥∥∥ ≤ 0,

that is,
∥∥∥σ(<}/,}/)

∥∥∥ = 0 a contradiction. Hence, <}/ = }/.



Mathematics 2023, 11, 1207 12 of 20

If Q(<}/,}2κ+1) = σ(=<<}/,ℵ<}/), then according to (26) and =<}/ = }/, we
have

σ(ℵ<}/,Q}2κ+1) �i2 θσ(<}/,<}/). (28)

Now, using (28) in (25), we have∥∥∥σ(<}/,}/)
∥∥∥ ≤ ∥∥∥σ(Q}2κ+1,}/)

∥∥∥.

Now, letting κ → ∞ in the above inequality, we get
∥∥∥σ(<}/,}/)

∥∥∥ = 0, a contradiction.

Hence, <}/ = }/.
If Q(<}/,}2κ+1) = σ(LT }2κ+1,Q}2κ+1), then according to (26), we have

σ(ℵ<}/,Q}2κ+1) �i2 θσ(LT }2κ+1,Q}2κ+1) �i2 θσ(LT }2κ+1,}/) + θσ(}/,Q}2κ+1). (29)

Now, using (29) in (25), we have

σ(<}/,}/) �i2 θσ(LT }2κ+1,}/) + θσ(}/,Q}2κ+1) + σ(Q}2κ+1,}/),

which implies that∥∥∥σ(<}/,}/)
∥∥∥ ≤ θ

∥∥∥σ(LT }2κ+1,}/)
∥∥∥+ θ

∥∥∥σ(}/,Q}2κ+1)
∥∥∥+ ∥∥∥σ(Q}2κ+1,}/)

∥∥∥.

Now, letting κ → ∞ in the above inequality, we get
∥∥∥σ(<}/,}/)

∥∥∥ = 0, a contradiction.

Hence, <}/ = }/.
If Q(<}/,}2κ+1) =

1
2

(
σ(LT }2κ+1,}/) + σ(}/,Q}2κ+1)

)
, then by (26), we have

σ(ℵ<}/,Q}2κ+1) �i2
θ

2

(
σ(LT }2κ+1,}/) + σ(}/,Q}2κ+1)

)
. (30)

Now, using (30) in (25), we have

σ(<}/,}/) �i2
θ

2
σ(LT }2κ+1,}/) + (

θ

2
+ 1)σ(Q}2κ+1,}/),

which implies that∥∥∥σ(ℵ<}/,}/)
∥∥∥ ≤ θ

2

∥∥∥σ(LT }2κ+1,}/)
∥∥∥+ (

θ

2
+ 1)

∥∥∥σ(Q}2κ+1,}/)
∥∥∥.

Now, letting κ → ∞ in the above inequality, we get
∥∥∥σ(<}/,}/)

∥∥∥ = 0, a contradiction.

Hence, <}/ = }/.
Thus, in all cases, we get <}/ = }/.
(d) As ℵ(Z) ⊂ LT (Z), there exists v ∈ Z , such that }/ = ℵ}/ = LT v. First, we shall

show that LT v = Qv. According to (1) with } = }/ and ℘ = v, we have

σ(LT v,Qv) = σ(ℵ}/,Qv) �i2 θQ(}/, v), (31)

where

Q(}/, v) ∈
{

σ(=<}/,LT v), σ(=<}/,ℵ}/), σ(LT v,Qv),
1
2 (σ(LT v,ℵ}/) + σ(=<}/,Qv))

}
.

Since =<}/ = }/ and }/ = ℵ}/ = LT v, so we have

Q(}/, v) ∈
{

σ(}/,}/), σ(}/,}/), σ(LT v,Qv),
1
2
(σ(}/,}/) + σ(}/,Qv))

}
.
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This implies that

Q(}/, v) ∈ {0, σ(LT v,Qv),
1
2

σ(LT v,Qv)}. (32)

From (31) and (32), it follows that

‖σ(LT v,Qv)‖ = 0,

that is, LT v = Qv = }/. As the pair (Q,LT ) is weakly compatible, we have LT Qv =
QLT v. Thus,

LT }/ = Q}/.

(e) Now, we prove that Q}/ = }/. According to (1), we have

σ(}/,Q}/) = σ(ℵ}/,Q}/) �i2 θQ(}/,}/), (33)

where

Q(}/,}/) ∈
{

σ(=<}/,LT }/), σ(=<}/,ℵ}/), σ(LT }/,Q}/),
1
2 (σ(LT }/,ℵ}/) + σ(=<}/,Q}/))

}
=

{
σ(}/,Q}/), σ(}/,}/), σ(Q}/,Q}/),

1
2 (σ(Q}/,}/) + σ(}/,Q}/))

}
(34)

=
{

0, σ(}/,Q}/)
}

.

From (33) and (35), we get ∥∥∥σ(}/,Q}/)
∥∥∥ = 0,

that is,
Q}/ = }/.

(f) Now, we show that T }/ = }/. According to (1), we have

σ(}/, T }/) = σ(ℵ}/, T Q}/) = σ(ℵ}/,QT }/) �i2 θQ(}/, T }/), (35)

where

Q(}/, T }/) ∈
{

σ(=<}/,LT T }/), σ(=<}/,ℵ}/), σ(LT T }/,QT }/),
1
2 (σ(LT T }/,ℵ}/) + σ(=<}/,QT }/))

}
=

{
σ(}/, T LT }/), σ(}/,}/), σ(T LT }/, T Q}/),

1
2 (σ(T LT }/,ℵ}/) + σ(=<}/, T Q}/))

}
(36)

=

{
σ(}/, T }/), σ(}/,}/), σ(T }/, T }/),

1
2 (σ(T }/,}/) + σ(}/, T }/))

}
=

{
0, σ(}/, T }/)

}
.

From (35) and (37), we get ∥∥∥σ(}/, T }/)
∥∥∥ = 0,

that is, T }/ = }/. Since LT }/ = }/, it follows that L}/ = }/. Hence, if =< is continuous,
then we show that

=}/ = <}/ = L}/ = T }/ = ℵ}/ = Q}/ = }/.



Mathematics 2023, 11, 1207 14 of 20

Case 2. if ℵ is continuous.

As ℵ is continuous, then ℵ2}2κ → ℵ}/ and ℵ=<}2κ → ℵ}/, as κ → ∞. As the pair
(ℵ,=<) is compatible, we have =<ℵ}2κ → ℵ}/, as κ → ∞, because according to triangle
inequality, we have

σ(=<ℵ}2κ ,ℵ}/) �i2 σ(=<ℵ}2κ ,ℵ=<}2κ) + σ(ℵ=<}2κ ,ℵ}/),

which implies that∥∥∥σ(=<ℵ}2κ ,ℵ}/)
∥∥∥ ≤ ‖σ(=<ℵ}2κ ,ℵ=<}2κ)‖+

∥∥∥σ(ℵ=<}2κ ,ℵ}/)
∥∥∥→ 0, as κ → ∞.

(a) We show that ℵ}/ = }/.
According to the triangle inequality, we have

σ(ℵ}/,}/) �i2 σ(ℵ}/,ℵ2}2κ) + σ(ℵ2}2κ ,Q}2κ+1) + σ(Q}2κ+1,}/). (37)

According to (1) with } = ℵ}2κ and ℘ = }2κ+1, we have

σ(ℵ2}2κ ,Q}2κ+1) �i2 θQ(ℵ}2κ ,}2κ+1), (38)

where

Q(ℵ}2κ ,}2κ+1) ∈
{

σ(=<ℵ}2κ ,LT }2κ+1), σ(=<ℵ}2κ ,ℵ2}2κ), σ(LT }2κ+1,Q}2κ+1),
1
2 (σ(LT }2κ+1,ℵ2}2κ) + σ(=<ℵ}2κ ,Q}2κ+1)),

}
.

Now, we have the following four sub cases:
If Q(ℵ}2κ ,}2κ+1) = σ(=<ℵ}2κ ,LT }2κ+1), then according to (38), we have

σ(ℵ2}2κ ,Q}2κ+1) �i2 θσ(=<ℵ}2κ ,LT }2κ+1).

According to triangle inequality, we have

σ(ℵ2}2κ ,Q}2κ+1) �i2 θσ(=<ℵ}2κ ,ℵ}/) + θσ(ℵ}/,}/) + θσ(}/,LT }2κ+1). (39)

Now, using (39) in (37), we have

σ(ℵ}/,}/) �i2 σ(ℵ}/,ℵ2}2κ) + θσ(=<ℵ}2κ ,ℵ}/)

+ θσ(ℵ}/,}/) + θσ(}/,LT }2κ+1) + σ(Q}2κ+1,}/),

which implies that∥∥∥σ(ℵ}/,}/)
∥∥∥ ≤

∥∥∥σ(ℵ}/,ℵ2}2κ)
∥∥∥+ θ

∥∥∥σ(=<ℵ}2κ ,ℵ}/)
∥∥∥

+θ
∥∥∥σ(ℵ}/,}/)

∥∥∥+ θ
∥∥∥σ(}/,LT }2κ+1)

∥∥∥+ ∥∥∥σ(Q}2κ+1,}/)
∥∥∥.

lThis yields∥∥∥σ(ℵ}/,}/)
∥∥∥ ≤ 1

1− θ

∥∥∥σ(ℵ}/,ℵ2}2κ)
∥∥∥+ θ

1− θ

∥∥∥σ(=<ℵ}2κ ,ℵ}/)
∥∥∥

+
θ

1− θ

∥∥∥σ(}/,LT }2κ+1)
∥∥∥+ 1

1− θ

∥∥∥σ(Q}2κ+1,}/)
∥∥∥.

Letting κ → ∞ in the above inequality, we have∥∥∥σ(ℵ}/,}/)
∥∥∥ = 0.
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Hence, ℵ}/ = }/.
If Q(ℵ}2κ ,}2κ+1) = σ(=<ℵ}2κ ,ℵ2}2κ), then according to (38), we have

σ(ℵ2}2κ ,Q}2κ+1) �i2 θσ(=<ℵ}2κ ,ℵ2}2κ).

According to the triangle inequality, we have

σ(ℵ2}2κ ,Q}2κ+1) �i2 θσ(=<ℵ}2κ ,ℵ}/) + θσ(ℵ}/,ℵ2}2κ). (40)

Now, using (40) in (37), we have

σ(ℵ}/,}/) �i2 σ(ℵ}/,ℵ2}2κ) + θσ(=<ℵ}2κ ,ℵ}/) + θσ(ℵ}/,ℵ2}2κ) + σ(Q}2κ+1,}/),

which implies ∥∥∥σ(ℵ}/,}/)
∥∥∥ ≤

∥∥∥σ(ℵ}/,ℵ2}2κ)
∥∥∥+ θ

∥∥∥σ(=<ℵ}2κ ,ℵ}/)
∥∥∥

+θ
∥∥∥σ(ℵ}/,ℵ2}2κ)

∥∥∥+ ∥∥∥σ(Q}2κ+1,}/)
∥∥∥.

Letting κ → ∞ in the above inequality, we have∥∥∥σ(ℵ}/,}/)
∥∥∥ = 0.

Hence, ℵ}/ = }/.
If Q(ℵ}2κ ,}2κ+1) = σ(LT }2κ+1,Q}2κ+1), then according to (38), we have

σ(ℵ2}2κ ,Q}2κ+1) �i2 θσ(LT }2κ+1,Q}2κ+1) �i2 θσ(LT }2κ+1,}/) + θσ(}/,Q}2κ+1). (41)

Now, using (41) in (37), we have

σ(ℵ}/,}/) �i2 σ(ℵ}/,ℵ2}2κ) + θσ(LT }2κ+1,}/) + θσ(}/,Q}2κ+1) + σ(Q}2κ+1,}/),

which implies that

σ(ℵ}/,}/) �i2 σ(ℵ}/,ℵ2}2κ) + θσ(LT }2κ+1,}/) + (1 + θ)σ(}/,Q}2κ+1).

It yields∥∥∥σ(ℵ}/,}/)
∥∥∥ ≤ ∥∥∥σ(ℵ}/,ℵ2}2κ)

∥∥∥+ θ
∥∥∥σ(LT }2κ+1,}/)

∥∥∥+ (1 + θ)
∥∥∥σ(}/,Q}2κ+1)

∥∥∥.

Letting κ → ∞ in the above inequality, we have∥∥∥σ(ℵ}/,}/)
∥∥∥ = 0.

Hence ℵ}/ = }/.
If Q(ℵ}2κ ,}2κ+1) =

1
2 (σ(LT }2κ+1,ℵ2}2κ) + σ(=<ℵ}2κ ,Q}2κ+1)), then according to

(38), we have

σ(ℵ2}2κ ,Q}2κ+1) �i2
θ

2
(σ(LT }2κ+1,ℵ2}2κ) + σ(=<ℵ}2κ ,Q}2κ+1))

�i2
θ

2
(σ(LT }2κ+1,}/) + σ(}/,ℵ}/) + σ(ℵ}/,ℵ2}2κ))

+
θ

2
(σ(=<ℵ}2κ ,ℵ}/) + σ(ℵ}/,}/) + σ(}/,Q}2κ+1)). (42)
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Now, using (42) in (37), we have

σ(ℵ}/,}/) �i2 σ(ℵ}/,ℵ2}2κ) +
θ

2
(σ(LT }2κ+1,}/) + σ(}/,ℵ}/) + σ(ℵ}/,ℵ2}2κ))

+
θ

2

(
σ(=<ℵ}2κ ,ℵ}/) + σ(ℵ}/,}/) + σ(}/,Q}2κ+1)

)
+ σ(Q}2κ+1,}/).

It implies that

σ(ℵ}/,}/) �i2
1

1− θ
σ(ℵ}/,ℵ2}2κ) +

θ

2(1− θ)
σ(LT }2κ+1,}/) +

θ

2(1− θ)
σ(ℵ}/,ℵ2}2κ)

+
θ

2(1− θ)
σ(=<ℵ}2κ ,ℵ}/) +

θ

2(1− θ)
σ(}/,Q}2κ+1) +

1
1− θ

σ(Q}2κ+1,}/).

It yields∥∥∥σ(ℵ}/,}/)
∥∥∥ ≤ 1

1− θ

∥∥∥σ(ℵ}/,ℵ2}2κ)
∥∥∥+

θ

2(1− θ)

∥∥∥σ(LT }2κ+1,}/)
∥∥∥+ θ

2(1− θ)

∥∥∥σ(ℵ}/,ℵ2}2κ)
∥∥∥

+
θ

2(1− θ)

∥∥∥σ(=<ℵ}2κ ,ℵ}/)
∥∥∥

+
θ

2(1− θ)

∥∥∥σ(}/,Q}2κ+1)
∥∥∥+ 1

1− θ

∥∥∥σ(Q}2κ+1,}/)
∥∥∥.

Letting κ → ∞ in the above inequality, we get∥∥∥σ(ℵ}/,}/)
∥∥∥ ≤ 0;

that is,
∥∥∥σ(ℵ}/,}/)

∥∥∥ = 0, a contradiction. Hence, ℵ}/ = }/. Thus, in all sub cases,

ℵ}/ = }/.
Now, utilizing steps (d), (e) and (f), and continuing the step (f) gives us

Q}/ = L}/ = T }/ = }/.

Now, as Q(Z) ⊂ =<(Z), so there exists w ∈ Z , such that

}/ = Q}/ = =<w.

Now, we show that
ℵw = =<w = }/.

By (1), we have

σ(ℵw,=<w) = σ(ℵw,Q}/) �i2 θQ(w,}/),

where

Q(w,}/) ∈
{

σ(=<w,LT }/), σ(=<w,ℵw), σ(LT }/,Q}/),
1
2 (σ(LT }/,ℵw) + σ(=<w,Q}/))

}
= {0,

1
2
(σ(}/,ℵw)}.

This implies that

σ(ℵw,=<w) = σ(ℵw,Q}/) = σ(ℵw,}/) �i2
θ

2
(σ(}/,ℵw),
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i.e., ℵw = =<w = }/.
Since (ℵ,=<) is compatible, so it must be weakly compatible, and so we have

ℵ}/ = =<}/.

Moreover, <}/ = }/ according to step (c). Hence, =}/ = <}/ = ℵ}/ = }/ and we
establish that }/ is the common fixed point of =,<,L, T ,ℵ and Q in this case, too.

Now, we prove that this common fixed point is unique. Let }∗ be another common
fixed point of =,<,L, T ,ℵ and Q; then

=}∗ = <}∗ = L}∗ = T }∗ = ℵ}∗ = Q}∗ = }∗.

Using (1) with } = }/,℘ = }∗, we have

σ(}/,}∗) = σ(ℵ}/,Q}∗)) �i2 θQ(}/,}∗), (43)

where

Q(}/,}∗) ∈
{

σ(=<}/,LT }∗), σ(=<}/,ℵ}/), σ(LT }∗,Q}∗),
1
2 (σ(LT }∗,ℵ}/) + σ(=<}/,Q}∗))

}
= {0, σ(}/,}∗)}. (44)

Using (44) in (43), we have ∥∥∥σ(}/,}∗)
∥∥∥ = 0,

which implies that }/ = }∗. Thus, }/ is the unique common fixed point of =,<,L, T ,ℵ
and Q.

Corollary 1. Let (Z , σ) be a complete bi-CVMS and let =,L,ℵ,Q : Z → Z be a self-mapping. If
there exists some θ ∈ [0, 1) such that the following conditions hold:

(i)
σ(ℵ},Q℘) �i2 θQ(},℘) (45)

for all },℘ ∈ Z , where

Q(},℘) ∈
{

σ(=},L℘), σ(=},ℵ}), σ(L℘,Q℘),
1
2 (σ(L℘,ℵ}) + σ(=},Q℘))

}
;

(ii) ℵ(Z) ⊂ L(Z),Q(Z) ⊂ =(Z);
(iii) the pair (ℵ,=) is compatible and the pair (Q,L) is weakly compatible;
(iv) either the mapping = or the mapping ℵ is continuous.
Then, there exists a unique point }/ ∈ Z , such that =}/ = L}/ = ℵ}/ = Q}/ = }/.

Proof. Take < = T = IZ , the identity mapping on Z in Theorem 1.

Corollary 2. Let (Z , σ) be a complete bi-CVMS and let ℵ,Q : Z → Z be a self-mapping. If there
exists some θ ∈ [0, 1), such that

σ(ℵ},Q℘) �i2 θQ(},℘), (46)

for all },℘ ∈ Z , where

Q(},℘) ∈
{

σ(},℘), σ(},ℵ}), σ(℘,Q℘),
1
2 (σ(℘,ℵ}) + σ(},Q℘))

}
.

Then, there exists a unique point }/ ∈ Z , such that ℵ}/ = Q}/ = }/.



Mathematics 2023, 11, 1207 18 of 20

Proof. Take = = < = L = T = IZ , the identity mapping on Z in Theorem 1.

Corollary 3. Let (Z , σ) be a complete bi-CVMS and let F : Z → Z be a self-mapping. If there
exists some θ ∈ [0, 1) such that

σ(F}, F℘)) � θQ(},℘), (47)

for all },℘ ∈ Z , where

Q(},℘) ∈
{

σ(},℘), σ(}, F}), σ(℘, F℘),
1
2
{σ(}, F℘) + σ(℘, F})}

}
.

Then, there exists a unique point }/ ∈ Z such that F}/ = }/.

Proof. Take ℵ = Q = F and = = < = L = T = IZ , the identity mapping on Z in
Theorem 1.

Example 2. Let Z = {(1, 2), (2, 3), (3, 4), (4, 5), (5, 6)} and define a mapping σ : Z ×Z → C2
as

σ(},℘) = |}1 − ℘1|+ i|}2 − ℘2|,

where } = }1 + i}2,℘ = ℘1 + i℘2, then (Z , σ) is a complete bi-CVMS. Define F : Z → Z by

F(}1 + i}2) = 2|}1 − }2|+ 3i|}1 − }2|,

for all } = }1 + i}2 ∈ Z . Then, there exists θ = 1
2 ∈ [0, 1), such that the mapping F : Z → Z

satisfies all the assertions of Corollary 3, and there exists a unique point (2, 3) ∈ Z such that
F(2, 3) = (2, 3).

4. Applications

LetZ = C([a, b],R), a > 0 where C[a, b] denotes the set of all real continuous functions
defined on the closed interval [a, b] and σ : Z ×Z → C2 be defined in this way

σ(},℘) = (1 + i)(|}(t)− ℘(t)|),

for all },℘ ∈ Z and t ∈ [a, b], where |·| is the usual real modulus. Then, (Z , σ) is a complete
bi-CVMS. Consider the Urysohn integral equations

}(t) = 1
b− a

∫ b

a
K1(t, s,}(s))σs + g(t), (48)

}(t) = 1
b− a

∫ b

a
K2(t, s,}(s))σs + l(t), (49)

where K1, K2 : [a, b]× [a, b]×R→ R and g, l : [a, b]→ R are continuous and t ∈ [a, b]. We
define partial order �i2 in C2 as follows }(t) �i2 ℘(t) if and only if } ≤ ℘.

Theorem 2. Let K1, K2 : [a, b]× [a, b]× R → R, such that S}(t), G}(t) ∈ Z for each } ∈
Z , where

S}(t) =
1

b− a

∫ b

a
K1(t, s,}(s))σs, G}(t) =

1
b− a

∫ b

a
K2(t, s,}(s))σs

for all t ∈ [a, b]. Suppose the following inequality

(1 + i2)(|S}(t)− G℘(t) + g(t)− h(t)|) �i2 θQ(},℘),
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holds, for all },℘ ∈ Z with } 6= ℘ and θ<1, where

Q(},℘)(t) ∈ {A(},℘)(t), B(},℘)(t), C(},℘)(t), D(},℘)(t)},

A(},℘)(t) = (1 + i2)(|}(t)− ℘(t)|),
B(},℘)(t) = (1 + i2)(|S}(t) + g(t)− }(t)|),
C(},℘)(t) = (1 + i2)(|G℘(t) + l(t)− ℘(t)|),

D(},℘)(t) = (1 + i2)
(|G℘(t) + l(t)− }(t)|+ |S}(t) + g(t)− ℘(t)|)

2
.

Then, the integral operators defined by (48) and (49) have a unique common solution.

Proof. Define continuous mappings ℵ,Q : Z → Z by

ℵ}(t) = S}(t) + g(t),

Q}(t) = G}(t) + g(t),

for all t ∈ [a, b]. Then

σ(ℵ},Q℘) = (1 + i2)(|S}(t)− G℘(t) + g(t)− l(t)|),

σ(},℘) = A(},℘)(t),

σ(},ℵ}) = B(},℘)(t),

σ(℘,Q℘) = C(},℘)(t),

1
2
{σ(},Q℘) + σ(℘,ℵ})} = D(},℘)(t).

It is very simple to show that σ(ℵ},Q℘) �i2 θQ(},℘), where

Q(},℘) ∈
{

σ(},℘), σ(},ℵ}), σ(℘,Q℘), 1
2
{σ(},Q℘) + σ(℘,ℵ})}

}
.

Hence, all the assumptions of Corollary (2) are satisfied and the integral Equations
(48) and (49) have a unique common solution.

5. Conclusions

This article expands on the concept of bicomplex valued metric space in order to
establish common fixed points of six mappings for generalized contractions. A non-trivial
example is also provided to show the validity of the obtained results. At the end of this
paper, we applied our result to discuss the solution of Urysohn integral equation. We
believe that the established results in this paper will establish a contemporary link for
investigators working in bicomplex valued metric space.

Common fixed points of multivalued mappings and fuzzy mappings in the context of
bicomplex valued metric space can be an interesting outline for future work in this direction.
Differential and integral inclusions can be investigated as applications of these results.

Author Contributions: All authors contributed equally and significantly in writing this article. All
authors read and approved the final manuscript.

Funding: Authors declare that there is no funding available for this article..

Data Availability Statement: Not applicable..

Acknowledgments: The authors would like to thank the anonymous reviewers for their insightful
suggestions and careful reading of the manuscript.



Mathematics 2023, 11, 1207 20 of 20

Conflicts of Interest: The authors declare that they have no conflict of interest.

References
1. Segre, C. Le Rappresentazioni Reali delle Forme Complesse a Gli Enti Iperalgebrici. Math. Ann. 1892, 40, 413–467. [CrossRef]
2. Price, G.B. An Introduction to Multicomplex Spaces and Functions; Marcel Dekker: New York, NY, USA, 1991.
3. Azam, A.; Fisher, B.; Khan, M. Common fixed point theorems in complex valued metric spaces. Num. Funct. Anal. Optim. 2011,

32, 243–253. [CrossRef]
4. Choi, J.; Datta, S.K.; Biswas, T.; Islam, N. Some fixed point theorems in connection with two weakly compatible mappings in

bicomplex valued metric spaces. Honam. Math. J. 2017, 39, 115–126. [CrossRef]
5. Jebril, I.H.; Datta, S.K.; Sarkar, R.; Biswas, N. Common fixed point theorems under rational contractions for a pair of mappings in

bicomplex valued metric spaces. J. Interdiscip. Math. 2020, 22, 1071–1082. [CrossRef]
6. Beg, I.; Datta, S.K.; Pal, D. Fixed point in bicomplex valued metric spaces. Int. J. Nonlinear Anal. Appl. 2021, 12, 717–727.
7. Gnanaprakasam, A.J.; Boulaaras, S.M.; Mani, G.; Cherif, B.; Idris, S.A. Solving system of linear equations via bicomplex valued

metric space. Demonstr. Math. 2021, 54, 474–487. [CrossRef]
8. Gu, Z.; Mani, G.; Gnanaprakasam, A.J.; Li, Y. Solving a system of nonlinear integral equations via common fixed point theorems

on bicomplex partial metric space. Mathematics 2021, 9, 1584. [CrossRef]
9. Rouzkard. F.; Imdad, M. Some common fixed point theorems on complex valued metric spaces. Comp. Math. Appl. 2012, 64,

1866–1874. [CrossRef]
10. Sintunavarat, W.; Kumam, P. Generalized common fixed point theorems in complex valued metric spaces and applications. J.

Inequal Appl. 2012, 84, 1–12. [CrossRef]
11. Sitthikul, K.; Saejung, S. Some fixed point theorems in complex valued metric spaces. Fixed Point Theory Appl. 2012, 189, 1–11.

[CrossRef]
12. Ahmad, A.; Klin-eam, C.; Azam, A. Common fixed points for multivalued mappings in complex valued metric spaces with

applications. Abstr. Appl. Anal. 2013, 2013, 1–12. [CrossRef]
13. Azam, A.; Ahmad, J.; Kumam, P. Common fixed point theorems for multi-valued mappings in complex-valued metric spaces. J.

Inequal Appl. 2013, 578, 1–12. [CrossRef]
14. Albargi, A.H.; Ahmad, J. Common α-fuzzy fixed point results for Kannan type contractions with application. J. Funct. Spaces

2022, 2022, 1–9. [CrossRef]
15. Carmel Pushpa Raj, J.; Arul Xavier, A.; Maria Joseph, J.; Marudai, M. Common fixed point theorems under rational contractions

in complex valued extended b-metric spaces. Int. J. Nonlinear Anal. Appl. 2022, 13, 3479–3490.
16. Humaira, M.; Sarwar, G.; Kishore, N.V. Fuzzy fixed point results for ϕ contractive mapping with applications. Complexity 2018,

2018, 1–12. [CrossRef]
17. Humaira, M.; Sarwar, G.; Kumam, P. Common fixed point results for fuzzy mappings on complex-valued metric spaces with

Homotopy results. Symmetry 2019, 11, 61. [CrossRef]
18. Klin-eam, C.; Suanoom, C. Some common fixed point theorems for generalized contractive type mappings on complex valued

metric spaces. Abstr. Appl. Anal. 2013, 2013, 1–6. [CrossRef]
19. Kutbi, M.K.; Ahmad, J.; Azam, A.; Hussain, N. On fuzzy fixed points for fuzzy maps with generalized weak property. J. Appl.

Math. 2014, 2014, 1–13. [CrossRef]
20. Kumar, J. Common Fixed point theorem for generalized contractive type paps on complex valued b-metric spaces. Int. J. Math.

Anal. 2015, 9, 2327–2334. [CrossRef]
21. Mukheimer, A.A. Some common fixed point theorems in complex valued b-metric spaces. Sci. World J. 2014, 2014, 1–6. [CrossRef]
22. Mustafa, Z.; Parvaneh, V.; Roshan, J.R.; Kadelburg, Z. b2-Metric spaces and some fixed point theorems. Fixed Point Theory Appl.

2014, 1, 1–23.
23. Rao, P.; Swamy, R.; Prasad, J.R. A common fixed point theorem in complex valued b-metric spaces. Bull. Math. Stat. Res. 2013, 1,

1–8.
24. Ullah, N.; Shagari, M.S.; Azam, A. Fixed point theorems in complex valued extended b-metric spaces. Moroc. J. Pure Appl. Anal.

2019, 5, 140–163. [CrossRef]
25. Ullah, N.; Shagari, M.S.; Khan, T.A.; Khan, A.U.; Khan, M.A.U. Common fixed point theorems in complex valued non-negative

extended b -metric space. e-J. Anal. Appl. Math. 2021, 2012, 35–47. [CrossRef]
26. Ullah, N.; Shagari, M.S. Fixed point results in complex valued extended b-metric spaces and related applications. Annals. Math.

Comp. Sci. 2021, 1, 1–11.
27. Shammaky, A.E.; Ahmad, J.; Sayed, A.F. On fuzzy fixed point results in complex valued extended b-metric spaces with application.

J. Math. 2021, 2021, 1–9. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1007/BF01443559
http://dx.doi.org/10.1080/01630563.2011.533046
http://dx.doi.org/10.5831/HMJ.2017.39.1.115
http://dx.doi.org/10.1080/09720502.2019.1709318
http://dx.doi.org/10.1515/dema-2021-0046
http://dx.doi.org/10.3390/math9141584
http://dx.doi.org/10.1016/j.camwa.2012.02.063
http://dx.doi.org/10.1186/1029-242X-2012-84
http://dx.doi.org/10.1186/1687-1812-2012-189
http://dx.doi.org/10.1155/2013/854965
http://dx.doi.org/10.1186/1029-242X-2013-578
http://dx.doi.org/10.1155/2022/5632119
http://dx.doi.org/10.1155/2018/5303815
http://dx.doi.org/10.3390/sym11010061
http://dx.doi.org/10.1155/2013/604215
http://dx.doi.org/10.1155/2014/549504
http://dx.doi.org/10.12988/ijma.2015.57179
http://dx.doi.org/10.1155/2014/587825
http://dx.doi.org/10.2478/mjpaa-2019-0011
http://dx.doi.org/10.2478/ejaam-2021-0004
http://dx.doi.org/10.1155/2021/9995897

	Introduction 
	Preliminaries
	Main Results
	Applications 
	Conclusions
	References

