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Abstract: In this study, a novel method called the q-homotopy analysis transform method (q-HATM)
is proposed for solving fractional-order Kolmogorov and Rosenau–Hyman models numerically. The
proposed method is shown to have fast convergence and is demonstrated using test examples. The
validity of the proposed method is confirmed through graphical representation of the obtained
results, which also highlights the ability of the method to modify the solution’s convergence zone.
The q-HATM is an efficient scheme for solving nonlinear physical models with a series solution in a
considerable admissible domain. The results indicate that the proposed approach is simple, effective,
and applicable to a wide range of physical models.
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1. Introduction

Fractional calculus (FC) is a branch of mathematical analysis that deals with deriva-
tives and integrals of a non-integer order. The fractional derivative of a function represents
its rate of change with respect to a non-integer order derivative operator. Fractional calculus
has found applications in various fields such as physics, engineering, finance, and biology.
The core principle of FC is that natural phenomenon modeling is done via fractional opera-
tors rather than integer operators. As a result, fractional calculus focuses on phenomena
that standard theory cannot model [1–5]. Fractional partial differential equations (FPDEs)
have received a number of notable contributions in the past. In many different domains,
such as unification of diffusion, dynamical systems, wave propagation phenomenon, heat
transfer, control theory, image processing, mixed convection flows, and mechanical systems,
these equations are more useful for analyzing and describing a variety of phenomena [6–13].
In recent times, a variety of nonlinear fractional differential equations that do not possess
exact analytical solutions have been approximately solved by means of numerical methods
such as the variational iteration method (VIM), residual power series method (RPSM),
reproducing kernel method (RKM), Laplace Adomian decomposition method (LADM),
Laplace variational iteration method (LVIM) and Adomian decomposition method (ADM)
for further details on the approaches and numerical strategies used to solve fractional
differential equations [14–20].
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Fractional calculus is a rapidly growing field of mathematics that deals with fractional-
order differentiation and integration. The application of fractional calculus in modeling
real-world systems has been a topic of research for several years [21–23]. The Fractional-
Order Kolmogorov and Rosenau–Hyman models are two such models that have gained
significant attention in recent years. The Fractional-Order Kolmogorov model is a fractional
generalization of the classical Kolmogorov model, which is a stochastic process that de-
scribes the evolution of a probability density function. The Fractional-Order Kolmogorov
model is used to model complex systems such as biological, ecological, and financial
systems [24–26].

The Rosenau–Hyman model is another fractional-order model that is used to describe
the dynamics of complex systems. This model is particularly useful for systems that
exhibit long-range interactions, such as plasma physics, fluid dynamics, and geophysics.
Both models have demonstrated their effectiveness in capturing the behavior of complex
systems that cannot be fully explained by classical models. In this context, this article will
explore the Fractional-Order Kolmogorov and Rosenau–Hyman models, their properties,
and applications [27–33].

Fractional calculus (FC) is a classical extension of calculus that deals with arbitrary
order differentiation and integration. It focuses on phenomena that standard theory cannot
model using fractional operators rather than integer operators. Fractional partial differential
equations (FPDEs) have received significant attention in various domains, such as diffusion,
wave propagation, and heat transfer, due to their usefulness in analyzing and describing a
variety of phenomena. However, no technique gives an explicit solution for FPDEs due to
the complexity of fractional calculus [1–5]. Numerical techniques such as the variational
iteration method (VIM), residual power series method (RPSM), Adomian decomposition
method (ADM), Laplace Adomian decomposition method (LADM), reproducing kernel
method (RKM) and Laplace variational iteration method (LVIM) have been used to solve
these equations approximately [6–13].

The homotopy analysis method (HAM) is a powerful technique for solving differential
and integral equations of fractional and classical order. Unlike other methods, HAM does
not require perturbation or linearization and has been successfully applied to various non-
linear models in science and technology. However, the drawback of HAM is that it requires
a significant amount of computer memory and processing time. To address this issue, some
researchers have suggested combining HAM with previously used transform methods.
By using transform methods, it is possible to simplify the complexity of the problem, which
can reduce the computational burden of HAM. Furthermore, the combination of HAM
with transform methods can provide more accurate solutions and improve the convergence
rate. Overall, the combination of HAM with transform methods is a promising direction for
future research in this area. It has the potential to make HAM more efficient and effective
for solving various nonlinear models, which can have a significant impact on scientific and
technological advancements [14–20].

In the current work, q-HATM was taken into consideration when trying to solve
challenges that were predicted inside the FC framework. Singh et al. [34], using the Laplace
transform and the q-homotopy analysis approach, suggest this method. This solution
technique deals with numerous operators that may help regulate the convergence province
and we modify the accuracy of the produced findings. It is not necessary to meet any of
the aforementioned objectives. The suggested method is innovative in that it provides
a straightforward method for locating the solution, a sizable convergence zone, and a
non-local influence in the discovered solution. The suggested method manipulates and
regulates the acquired solution, which, contrary to other conventional methods, swiftly
converges to the analytical solution in a constrained acceptable zone.

2. Preliminaries

Here some basic definitions about fractional derivative and Laplace transform [35–39]
and integrals [40] are discussed here.
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Definition 1. Let U ∈ H1(µ, ε)(ε > µ), κ ∈ [0, 1] be differentiable, then the Atangana-Baleanu
derivative of order κ in Caputo sense is given by

ABC
µ Dκ

ς (U (ς)) =
N[κ]
1−κ

d
dς

∫ ς

µ
U ′(ϕ)Eκ

[
κ (ς− ϕ)κ

κ − 1

]
dϕ, (1)

where, the function N is a normalization of the function satisfies N(0) = N(1) = 1. Noting that

Eκ(ς
κ) =

∞

∑
ϑ=0

ςκϑ

Γ(κϑ + 1)
.

Definition 2. The AB fractional integral is defined by

AB
µ Iκς (U (ς)) =

1−κ
N[κ] U (ς) +

κ
N[κ]Γ(κ)

∫ ς

µ
U (ϕ)(ς− ϕ)κ−1dϕ. (2)

Definition 3. Fractional derivative Laplace transform (LT) is given by

L[ABC
µ Dκ

ς (U (ς)) =
N[κ]
1−κ

sκL[U (ς)]− sκ−1U (0)
sκ + κ

(1−κ)
, 0 < κ ≤ 1. (3)

3. Methodology

The general methodology of q-HATM [41–44] for fractional Kolmogorov IVP

ABCDκ
ς U ($, ς) = R[U ($, ς)] + N[U ($, ς)], 0 < κ ≤ 1, (4)

with initial condition
U ($, 0) = f ($), (5)

where ABCDκ
ς U ($, ς) symbolise the AB derivative of U ($, ς), R and N is linear and nonlin-

ear functions.
On using the LT on Equation (4), we have after simplification

L[U ($, ς)] =
f ($)

s
+

1
N[κ]

(
1−κ +

κ
sκ
)
L[R[U ($, ς)] + N[U ($, ς)]]. (6)

The non-linear operator is defined as follows

N[φ($, ς; q)] =L[U ($, ς)]− f ($)
s

+
1

N[κ]

(
1−κ +

κ
sκ
)
L[Rφ($, ς; q) + Nφ($, ς; q)].

(7)

Here, φ($, ς; q) is the real-valued function with respect to $, ς and q ∈ [0, 1
n ]. Now, we

define a homotopy as follows

(1− nq)L[φ($, ς; q)−U0($, ς)] = h̄qN[φ($, ς; q)], (8)

where h̄ is an auxiliary parameter, L is LT, q ∈ [0, 1
n ] (n ≥ 1) is the embedding parameter.

For q = 0 and q = 1
B , the below hold true

φ($, ς; 0) = U0($, ς), φ($, ς;
1
n
) = U ($, ς). (9)
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Thus, by intensifying q from 0 to 1
n , the solution φ($, ς; q) varies from initial guess U0($, ς)

to U ($, ς). We defining φ($, ς; q) with respect to q by using the Taylor theorem, we get

φ($, ς; q) = U0($, ς) +
∞

∑
m=1
Um($, ς)qm, (10)

where

Um =
1

m!
∂mφ($, ς; q)

∂q
|q=0. (11)

The series (8) converges at q = 1
n for the proper choice of U0($, ξ, ς), n and h̄. Then

U ($, ς) = U0($, ς) +
∞

∑
m=1
Um($, ς)

(
1
n

)m
. (12)

Taking the derivative of Equation (8) with respect to the embedding parameter q and then
putting q = 0, later dividing by m! , we obtain

L[U ($, ς)− kmUm−1($, ς)] = h̄<m(
−→U m−1), (13)

where the vectors are defined as

−→U m = [U0($, ς),U1($, ς), · · · ,Um($, ς)]. (14)

On applying inverse LT on Equation (13), one can get

Um($, ξ, ς) = kmUm−1($, ξ, ς) + h̄L−1[<m(
−→U m−1)], (15)

where

<m(
−→U m−1) =L[Um−1($, ς)]−

(
1− km

n

)(
f ($)

s

)
+

1
N[κ]

(
1−κ +

κ
sκ
)
L
[

NU ($, ς)

]
, (16)

and

km =

{
0, m ≤ 1,
n, m > 1.

(17)

Using the Equations (15) and (16), one can get the series of Um(κ, ς). Lastly, the series
q-HATM solution is defined as

U ($, ς) =
∞

∑
m=0
Um($, ς). (18)

4. Numerical Problems

Problem 1. Consider the following non-linear time-fractional Kolmogorov IVP:{
Dκ

ς U ($, ς) = ($ + 1)D$U ($, ς) + $2eςD2
$U ($, ς), 0 < κ ≤ 1, ($, ς) ∈ [0, 1]×R,

U ($, 0) = $ + 1.
(19)

The exact solution at κ = 1 is given by

U ($, ς) = ($ + 1)eς. (20)

Applying the Laplace transform on Equation (19) and using initial condition, we get

L(U ) = ($ + 1)
s

+
1

N[κ]

(
(1−κ) + κ

sκ
)
L
[
($ + 1)

∂U
∂$

+ $2eς ∂2U
∂$2

]
. (21)
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The non-linear operator is defined as

N[Φ($, ς; q)] =L(Φ($, ς; q))− ($ + 1)
s

− 1
N[κ]

(
(1−κ) + κ

sκ
)
L
[
($ + 1)

∂Φ($, ς; q)
∂$

+ $2eς ∂2Φ($, ς; q)
∂$2

]
.

(22)

The mth order deformation equation define by the assist of suggested method as follows

L[Um($, ς)− kmUm−1($, ς)] = h̄Rm(
−→U m−1), (23)

whereRm(
−→U ) is

Rm(
−→U ) =L(Um−1)−

(
1− km

n

)
L($ + 1)

− 1
N[κ]

(
(1−κ) + κ

sκ
)
L
[
($ + 1)

∂Um−1

∂$
+ $2eς ∂2Um−1

∂$2

]
.

(24)

Applying inverse LT on Equation (31), we get

Um($, ς) = kmUm−1($, ς) + h̄L[Rm(
−→U m−1)]. (25)

Solving the above equations, we get

U0($, ς) =$ + 1,

U1($, ς) =
h̄
(
−1− $ +

(
− ($+1)ςκ

Γ(κ+1) + $ + 1
)
κ
)

N[κ] ,

U2($, ς) =
nh̄
(
−1− $ +

(
− ($+1)ςκ

Γ(κ+1) + $ + 1
)
κ
)

N[κ] +
h̄2

N[κ]2

(
1 +κ2

(
1 +

ς2κ

Γ(2κ + 1)

)
+N[κ](−1 +κ)

+

(
−2 +

(−N[κ]− 2κ + 2)ςκ

Γ(κ + 1)

)
κ
)
($ + 1),

U3($, ς) =n

(
nh̄
(
−1− $ +

(
− ($+1)ςκ

Γ(κ+1) + $ + 1
)
κ
)

N[κ] +
h̄2

N[κ]2

(
1 +κ2

(
1 +

ς2κ

Γ(2κ + 1)

)
+N[κ](−1 +κ)

+

(
−2 +

(−N[κ]− 2κ + 2)ςκ

Γ(κ + 1)

)
κ
)
($ + 1)

)
+ h̄

(
1

N[κ]2
(

h̄
(

n + 2h̄ +κ2
(

2h̄ + n +
(2h̄ + n)ς2κ

Γ(2κ + 1)

+ $(2h̄ + n)
)
+
(
− 4h̄− 2n +

(4h̄ + 2n−N[κ](2h̄ + n)− 2κ(2h̄ + n))ςκ($ + 1)
Γ(κ + 1)

− 2$(2h̄ + n)
)
κ

+ $(2h̄ + n)
))

+
1

N[κ]3
(

h̄($ + 1)
(
(−1 +κ)

(
N[κ]2(h̄ + n) +

3h̄κ2ς2κ

Γ(2κ + 1)

)
+
((

1− ς3κ

Γ(3κ + 1)

)
κ3

− 3κ3 + 3
(
− (−1 +κ)2ςκ

Γ(κ + 1)
+ 1
)
κ − 1

)
h̄
)))

,

...

(26)

In Figure 1, the exact and analytical solutions graph at κ = 1 for Problem 1. Figure 2, three
dimensional various fractional order graph of κ. Table 1, absolute error of Exact and fourth terms
approximate solutions for Problem 1 with various ς and $ for κ = 1.
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Figure 1. The exact and analytical solutions graph at κ = 1 for Problem 1.

Figure 2. The three dimensional various fractional order graph of κ.

Table 1. Absolute error of Exact and fourth terms approximate solutions for Problem 1 with various
ς and$ for κ = 1.

ς $ Approximateκ=1 Exact AE

0.1 0 1.105166667 1.105170918 4.251 × 10−6

0.3 1.326200000 1.326205102 5.102 × 10−6

0.5 1.547233333 1.547239285 5.952 × 10−6

0.7 1.547239285 1.768273469 6.802 × 10−6

0.9 1.989300000 1.989307652 7.652 × 10−6

1 2.210333333 2.210341836 8.503 × 10−6
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Table 1. Cont.

ς $ Approximateκ=1 Exact AE

0.3 0 1.221333333 1.221402758 6.9425 × 10−5

0.3 1.465600000 1.465683310 8.3310 × 10−5

0.5 1.709866667 1.709963861 9.7194 × 10−5

0.7 1.954133333 1.954244413 1.11080 × 10−4

0.9 2.198400000 2.198524964 1.24964 × 10−4

1 2.442666667 2.442805516 1.38849 × 10−4

Problem 2. Consider the following non-linear time-fractional Rosenau–Hyman IVP:{
Dκ

ς U ($, ς) = U ($, ς)D3
$U ($, ς) + U ($, ς)D$U ($, ς) + 3D$U ($, ς)D2

$U ($, ς), 0 < κ ≤ 1, ($, ς) ∈ [0, 1]×R,
U ($, 0) = − 8C

3 cos2( $
4
)
.

(27)

The exact solution at κ = 1 is given by

U ($, ς) = −8
3

cos2
(

$− Cς

4

)
. (28)

Applying the Laplace transform on Equation (27) and using initial condition, we get

L(U ) =

(
− 8C

3 cos2( $
4
))

s
+

1
N[κ]

(
(1−κ) + κ

sκ
)
L
[
UD3

$U + UD$U + 3D$UD2
$U
]
. (29)

The non-linear operator is defined as

N[Φ($, ς; q)] =L(Φ($, ς; q))−

(
− 8C

3 cos2( $
4
))

s
− 1

N[κ]

(
(1−κ) + κ

sκ
)
L
[

Φ($, ς; q)D3
$Φ($, ς; q)

+ Φ($, ς; q)D$Φ($, ς; q) + 3D$Φ($, ς; q)D2
$Φ($, ς; q)

]
.

(30)

The mth order deformation equation define by the assist of suggested method as follows

L[Um($, ς)− kmUm−1($, ς)] = h̄Rm(
−→U m−1), (31)

whereRm(
−→U ) is

Rm(
−→U ) =L(Um−1)−

(
1− km

n

)
L
(
−8C

3
cos2

($

4

))
− 1

N[κ]

(
(1−κ) + κ

sκ
)
L
[ m−1

∑
i=0
UiD3

$Um−i−1

+
m−1

∑
i=0
UiD$Um−i−1 + 3

m−1

∑
i=0

D$UiD2
$Um−i−1

] (32)

Applying inverse LT on Equation (31), we get

Um($, ς) = kmUm−1($, ς) + h̄L[Rm(
−→U m−1)]. (33)

Solving the above equations, we get
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U0($, ς) =− 8C
3

cos2
($

4

)
,

U1($, ς) =
4h̄C2 cos( $

4 ) sin( $
4 )
(

1 +κ
(
−1 + ςκ

Γ(κ+1)

))
3N[κ] ,

U2($, ς) =
4nh̄C2 cos( $

4 ) sin( $
4 )
(

1 +κ
(
−1 + ςκ

Γ(κ+1)

))
3N[κ]

+
1
3

(
h̄2
(
C3
( ς2κκ2

(
cos
( $

4
)2 − sin

( $
4
)2
)

Γ(2κ + 1)
+

2(−1 +κ)
(
−2 cos

( $
4
)2

+ 1
)
κςκ

Γ(κ + 1)

+
(

2 cos
($

4

)2
− 1
)
(−1 +κ)2

))
+

4C2 cos
( $

4
)

sin
( $

4
)(

1 +κ
(
−1 + ςκ

Γ(κ+1)

))
N[κ]

)
,

....

(34)

Figure 3, the analytical solutions of different fractional order κ of Problem 2. Figure 4, the
analytical solutions of different fractional order κ of Problem 2. Table 2, absolute error of exact and
q-HATM of Problem 2 of different fractional order of ς and $ for κ = 1.

Figure 3. The exact and analytical solution graph of Problem 2.

Table 2. The absolute error of exact and q-HATM of Problem 2 of different fractional order of ς and $

for κ = 1.

ς $ Approximateκ=1 Exact AE

0.1 0 10.56035556 10.56035508 4.8 × 10−8

0.3 10.64002126 10.64002221 9.5 × 10−7

0.5 10.66666431 10.66666667 2.36 × 10−7

0.7 10.64001846 10.64002221 3.75 × 10−7

0.9 10.56034998 10.56035508 5.10 × 10−7

1 10.42845487 10.40846247 6.400 × 10−7

0.2 0 10.24568889 10.24565863 3.026 × 10−6

0.3 10.42833314 10.48246127 1.616 × 10−6

0.5 10.45689126 10.56035508 7.043 × 10−6

0.7 10.63991712 10.64002221 1.0408 × 10−5

0.9 10.66651797 10.66666667 1.3770 × 10−5

1 10.63983139 10.46003331 1.8972 × 10−5
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Figure 4. The analytical solutions of different fractional order κ of Problem 2.

5. Conclusions

The present research has effectively solved the fractional-order Kolmogorov and
Rosenau–Hyman models using q-HATM without any difficulty. The q-HATM has nu-
merous advantages and efficiency due to its ability to provide a broad convergence area,
uncomplicated solution process, and high precision in obtaining accurate results. The q-
HATM approach is more robust and systematic than other analytical methods, and it
can be used to investigate nonlinear mathematical models that describe real-world issues.
The auxiliary parameter h used in the proposed method explains the non-local convergence
and provides an illuminated solution in series form without any ambiguity.

Author Contributions: Methodology, L.F.S., E.R.E.-Z. and N.A.S.; Software, L.F.S.; Investigation,
E.R.E.-Z. and J.D.C.; Data curation, J.D.C.; Writing—original draft, N.A.S. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Acknowledgments: This study is supported via funding from Prince sattam bin Abdulaziz University
project number (PSAU/2023/R/1444). This work was supported by the Technology Innovation
Program (20018869, Development of Waste Heat and Waste Cold Recovery Bus Air-conditioning
System to Reduce Heating and Cooling Load by 10%) funded By the Ministry of Trade, Industry &
Energy (MOTIE, Republic of Korea).

Conflicts of Interest: The authors declare no conflict of interest.



Mathematics 2023, 11, 1321 10 of 11

References
1. Zhang, X.; Yu, L.; Jiang, J.; Wu, Y.; Cui, Y. Solutions for a singular Hadamard-type fractional differential equation by the spectral

construct analysis. J. Funct. Spaces 2020, 2020, 8392397. [CrossRef]
2. He, J.; Zhang, X.; Liu, L.; Wu, Y.; Cui, Y. A singular fractional Kelvin–Voigt model involving a nonlinear operator and their

convergence properties. Bound. Value Probl. 2019, 2019, 112. [CrossRef]
3. Caputo, M. Linear models of dissipation whose Q is almost frequency independent—II. Geophys. J. Int. 1967, 13, 529–539.

[CrossRef]
4. Oldham, K.B.; Spanier, J. The Fractional Calculus. In Integrations and Differentiations of Arbitrary Order; Descartes Press: Cambridge,

MA, USA, 1974.
5. Xie, Z.; Feng, X.; Chen, X. Partial Least Trimmed Squares Regression. Chemom. Intell. Lab. Syst. 2022, 221, 104486. [CrossRef]
6. Al-Smadi, M.; Abu Arqub, O.; Hadid, S. An attractive analytical technique for coupled system of fractional partial differential

equations in shallow water waves with conformable derivative. Commun. Theor. Phys. 2020, 72, 085001. [CrossRef]
7. Jleli, M.; Kumar, S.; Kumar, R.; Samet, B. Analytical approach for time fractional wave equations in the sense of Yang-Abdel-Aty-

Cattani via the homotopy perturbation transform method. Alex. Eng. J. 2020, 59, 2859–2863. [CrossRef]
8. Chen, X.; Xu, Y.; Meng, L.; Chen, X.; Yuan, L.; Cai, Q.; Huang, G. Non-parametric Partial Least Squares-Discriminant Analysis

Model Based on Sum of Ranking Difference Algorithm for Tea Grade Identification Using Electronic Tongue Data. Sensors
Actuators Chem. 2020, 311, 127924. [CrossRef]

9. Hasan, S.; El-Ajou, A.; Hadid, S.; Al-Smadi, M.; Momani, S. Atangana-Baleanu fractional framework of reproducing kernel
technique in solving fractional population dynamics system. Chaos Solitons Fractals 2020, 133, 109624. [CrossRef]

10. Al-Smadi, M.; Abu Arqub, O.; Momani, S. A computational method for two-point boundary value problems of fourth-order
mixed integrodifferential equations. Math. Probl. Eng. 2013, 2013, 832074. [CrossRef]

11. Al-Smadi, M.; Dutta, H.; Hasan, S.; Momani, S. On numerical approximation of Atangana-Baleanu-Caputo fractional integrodif-
ferential equations under uncertainty in Hilbert Space. Math. Model. Nat. Phenom. 2021, 16, 41. [CrossRef]

12. Qin, X.; Zhang, L.; Yang, L.; Cao, S. Heuristics to Sift Extraneous Factors in Dixon Resultants. J. Symb. Comput. 2022, 112, 105–121.
[CrossRef]

13. Al-Smadi, M.; Abu Arqub, O.; Gaith, M. Numerical simulation of telegraph and Cattaneo fractional-type models using adaptive
reproducing kernel framework. Math. Methods Appl. Sci. 2021, 44, 8472–8489. [CrossRef]

14. Li, X.; Dong, Z.; Wang, L.; Niu, X.; Yamaguchi, H.; Li, D.; Yu, P. A Magnetic Field Coupling Fractional Step Lattice Boltzmann
Model for the Complex Interfacial Behavior in Magnetic Multiphase Flows. Appl. Math. Model. 2023, 117, 219–250. [CrossRef]

15. Odibat, Z.; Momani, S. Application of variational iteration method to nonlinear differential equations of fractional order. Int. J.
Nonlinear Sci. Numer. Simul. 2006, 7, 27–34. [CrossRef]

16. Sun, L.; Hou, J.; Xing, C.; Fang, Z. A Robust Hammerstein-Wiener Model Identification Method for Highly Nonlinear Systems.
Processes 2022, 10, 2664. [CrossRef]

17. Hasan, S.; Al-Smadi, M.; El-Ajou, A.; Momani, S.; Hadid, S.; Al-Zhour, Z. Numerical approach in the Hilbert space to solve a
fuzzy Atangana-Baleanu fractional hybrid system. Chaos Solitons Fractals 2021, 143, 110506. [CrossRef]

18. Liu, K.; Yang, Z.; Wei, W.; Gao, B.; Xin, D.; Sun, C.; Wu, G. Novel Detection Approach for Thermal Defects: Study on Its Feasibility
and Application to Vehicle Cables. High Volt. 2022, 1–10. [CrossRef]

19. Kumar, S. A new fractional modeling arising in engineering sciences and its analytical approximate solution. Alex. Eng. J. 2013,
52, 813–819. [CrossRef]

20. Xu, K.; Guo, Y.; Liu, Y.; Deng, X.; Chen, Q.; Ma, Z. 60-GHz Compact Dual-Mode On-Chip Bandpass Filter Using GaAs Technology.
IEEE Electron Device Lett. 2021, 42, 1120–1123. [CrossRef]

21. Mofarreh, F.; Khan, A.; Abdeljabbar, A. A Comparative Analysis of Fractional-Order Fokker-Planck Equation. Symmetry 2023,
15, 430. [CrossRef]

22. Naeem, M.; Yasmin, H.; Shah, N.A.; Nonlaopon, K. Investigation of Fractional Nonlinear Regularized Long-Wave Models via
Novel Techniques. Symmetry 2023, 15, 220. [CrossRef]

23. Alshehry, A.S.; Ullah, R.; Shah, N.A.; Nonlaopon, K. Implementation of Yang residual power series method to solve fractional
non-linear systems. AIMS Math. 2023, 8, 8294–8309. [CrossRef]

24. Alderremy, A.A.; Shah, R.; Aly, S.; Nonlaopon, K. Comparison of two modified analytical approaches for the systems of time
fractional partial differential equations. AIMS Math. 2023, 8, 7142–7162. [CrossRef]

25. Alyobi, S.; Khan, A.; Shah, N.A.; Nonlaopon, K. Fractional Analysis of Nonlinear Boussinesq Equation under Atangana-Baleanu-
Caputo Operator. Symmetry 2022, 14, 2417. [CrossRef]

26. Alshehry, A.S.; Shah, R.; Dassios, I. A reliable technique for solving fractional partial differential equation. Axioms 2022, 11, 574.
[CrossRef]

27. Sukhinov, A.; Chistyakov, A.; Nikitina, E.T.E.A.; Belova, Y. The Construction and Research of the Modified Upwind Leapfrog
Difference Scheme with Improved Dispersion Properties for the Korteweg-de Vries Equation. Mathematics 2022, 10, 2922.
[CrossRef]

28. Sukhinov, A.; Chistyakov, A.; Kuznetsova, I.; Belova, Y.; Rahimbaeva, E. Development and Research of a Modified Upwind
Leapfrog Scheme for Solving Transport Problems. Mathematics 2022, 10, 3564. [CrossRef]

http://doi.org/10.1155/2020/8392397
http://dx.doi.org/10.1186/s13661-019-1228-7
http://dx.doi.org/10.1111/j.1365-246X.1967.tb02303.x
http://dx.doi.org/10.1016/j.chemolab.2021.104486
http://dx.doi.org/10.1088/1572-9494/ab8a29
http://dx.doi.org/10.1016/j.aej.2019.12.022
http://dx.doi.org/10.1016/j.snb.2020.127924
http://dx.doi.org/10.1016/j.chaos.2020.109624
http://dx.doi.org/10.1155/2013/832074
http://dx.doi.org/10.1051/mmnp/2021030
http://dx.doi.org/10.1016/j.jsc.2022.01.003
http://dx.doi.org/10.1002/mma.6998
http://dx.doi.org/10.1016/j.apm.2022.12.025
http://dx.doi.org/10.1515/IJNSNS.2006.7.1.27
http://dx.doi.org/10.3390/pr10122664
http://dx.doi.org/10.1016/j.chaos.2020.110506
http://dx.doi.org/10.1049/hve2.12258
http://dx.doi.org/10.1016/j.aej.2013.09.005
http://dx.doi.org/10.1109/LED.2021.3091277
http://dx.doi.org/10.3390/sym15020430
http://dx.doi.org/10.3390/sym15010220
http://dx.doi.org/10.3934/math.2023418
http://dx.doi.org/10.3934/math.2023360
http://dx.doi.org/10.3390/sym14112417
http://dx.doi.org/10.3390/axioms11100574
http://dx.doi.org/10.3390/math10162922
http://dx.doi.org/10.3390/math10193564


Mathematics 2023, 11, 1321 11 of 11

29. Salnikov, N.N. Construction of Weight Functions of the Petrov-Galerkin Method for Convection-Diffusion-Reaction Equations in
the Three-Dimensional Case. Cybern. Syst. Anal. 2014, 50, 805–814. [CrossRef]

30. Siryk, S.V.; Salnikov, N.N. Numerical solution of Burgers’ equation by Petrov-Galerkin method with adaptive weighting functions.
J. Autom. Inf. Sci. 2012, 44, 50–67. [CrossRef]

31. Salnikov, N.N.; Siryk, S.V.; Tereshchenko, I.A. On construction of finite-dimensional mathematical model of convection-diffusion
process with usage of the Petrov-Galerkin method. J. Autom. Inf. Sci. 2010, 42, 67–83. [CrossRef]

32. AbdulRidha, M.W.; Kashkool, H.A. Space-Time Petrov-Discontinuous Galerkin Finite Element Method for Solving Linear
ConvectionDiffusion Problems. J. Phys. Conf. Ser. 2022, 2322, 012007. [CrossRef]

33. Saadoon, J.J.; Kashkool, H.A. hp-discontinuous Galerkin Finite Element Method for Incompressible Miscible Displacement in
Porous Media. J. Phys. Conf. Ser. 2020, 1530, 012001.

34. Singh, J.; Kumar, D.; Swroop, R. Numerical solution of time- and space-fractional coupled Burgers’ equations via homotopy
algorithm. Alex. Eng. J. 2016, 55, 1753–1763. [CrossRef]

35. Liu, Y.; Xu, K.; Li, J.; Guo, Y.; Zhang, A.; Chen, Q. Millimeter-Wave E-Plane Waveguide Bandpass Filters Based on Spoof Surface
Plasmon Polaritons. IEEE Trans. Microw. Theory Tech. 2022, 70, 4399–4409. [CrossRef]

36. Jin, H.; Wang, Z. Boundedness, Blowup and Critical Mass Phenomenon in Competing Chemotaxis. J. Differ. Equations 2016, 260,
162–196. [CrossRef]

37. Jin, H.Y.; Wang, Z. Asymptotic Dynamics of the One-Dimensional Attraction-Repulsion Keller-Segel Model. Math. Methods Appl.
Sci. 2015, 38, 444–457. [CrossRef]

38. Ciancio, A. Analysis of time series with wavelets. Int. J. Wavelets Multiresolut. Inf. Process. 2007, 5, 241–256. [CrossRef]
39. Atangana, A.; Baleanu, D. New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat

transfer model. arXiv 2016, arXiv:1602.03408.
40. Srivastava, H.M.; Kumar, D.; Singh, J. An efficient analytical technique for fractional model of vibration equation. Appl. Math.

Model. 2017, 45, 192–204. [CrossRef]
41. Liao, S.J. The Proposed Homotopy Analysis Technique for the Solution of Nonlinear Problems. Ph.D. Thesis, Shanghai Jiao Tong

University, Shanghai, China, 1992.
42. Liao, S.J. Homotopy analysis method and its applications in mathematics. J. Basic Sci. Eng. 1997, 5, 111–125.
43. Liao, S. Beyond Perturbation: Introduction to Homotopy Analysis Method; CRC Press: Boca Raton, FL, USA, 2000.
44. Liao, S.J. Notes on the homotopy analysis method: Some definitions and theorems. Commun. Nonlinear Sci. Numer. Simul. 2009,

14, 83–97. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s10559-014-9671-z
http://dx.doi.org/10.1615/JAutomatInfScien.v44.i1.50
http://dx.doi.org/10.1615/JAutomatInfScien.v42.i6.50
http://dx.doi.org/10.1088/1742-6596/2322/1/012007
http://dx.doi.org/10.1016/j.aej.2016.03.028
http://dx.doi.org/10.1109/TMTT.2022.3197593
http://dx.doi.org/10.1016/j.jde.2015.08.040
http://dx.doi.org/10.1002/mma.3080
http://dx.doi.org/10.1142/S0219691307001744
http://dx.doi.org/10.1016/j.apm.2016.12.008
http://dx.doi.org/10.1016/j.cnsns.2008.04.013

	Introduction
	Preliminaries
	Methodology
	Numerical Problems
	Conclusions
	References

