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Abstract: This paper presents a modification of the q-BFGS method for nonlinear unconstrained
optimization problems. For this modification, we use a simple symmetric positive definite matrix and
propose a new q-quasi-Newton equation, which is close to the ordinary q-quasi-Newton equation in
the limiting case. This method uses only first order q-derivatives to build an approximate q-Hessian
over a number of iterations. The q-Armijo-Wolfe line search condition is used to calculate step length,
which guarantees that the objective function value is decreasing. This modified q-BFGS method
preserves the global convergence properties of the q-BFGS method, without the convexity assumption
on the objective function. Numerical results on some test problems are presented, which show
that an improvement has been achieved. Moreover, we depict the numerical results through the
performance profiles.
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1. Introduction

There are many methods for solving nonlinear unconstrained minimization prob-
lems [1–5], most of them are variants of the Newton and quasi-Newton methods. Newton’s
method uses the specification of the Hessian matrix, which is sometimes difficult to cal-
culate, whereas the quasi-Newton method uses an approximation of Hessian. Over time,
several attempts have been made to improve the effectiveness of quasi-Newton methods.
The BFGS (Broyden–Fletcher–Goldfarb–Shanno) method is a quasi-Newton method for
solving nonlinear unconstrained optimization problems, which is developed by Fletcher [6],
Goldfarb [7], Shanno [8], and Broyden [9]. Since the 1970s, the BFGS method has become
popular and is considered an effective quasi-Newton method. Some researchers have
established that the BFGS method achieves global convergence under the assumption of
convexity on the objective function. Mascarene has been shown with an example that the
standard BFGS method fails with exact line search for non-convex functions [10]. Using
inexact line search, some authors [11,12] established that the BFGS method achieves global
convergence without the assumption of convexity on the objective function.

Quantum calculus (q-calculus) is a branch of mathematics and does not require limits
to derive q-derivatives; therefore, it is also known as calculus without limits. In quantum
calculus, we can obtain the q-derivative of a non-differentiable function by replacing the
classical derivative with the q-difference operator, and if we take the limit q→ 1, then the q-
derivative reduces to the classical derivative [13]. Since the 20th century, quantum calculus
has been linking physics [14] and mathematics [15] that span from statistical mechanics [16]
and quantum theory [17] to hyper-geometric functions and number theory [14]. Quantum
analysis was first introduced in the 1740s when Euler wrote in Latin about the theory of
partitions, also known as additive analytic number theory.
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At the beginning of the 19th century, Jackson generalized the concepts of classical
derivatives in the context of q-calculus, known as Jackson’s derivative, or q-derivative
operator, or q-difference operator or simply q-derivative [18]. He systematically devel-
oped quantum calculus based on pioneer work by Eular and Henie. His work introduced
functions, mean value theorems [19], Taylor’s formula and its remainder [20,21], frac-
tional integrals [22], integral inequalities and generalizations of series in the context of
q-calculus [23]. The first time Soterroni [24] introduced the q-gradient vector. To obtain
this, instead of the classical first order partial derivative, the first order partial q-derivative
obtained from the q-difference operator is used.

In unconstrained optimization first time, Soterroni [24] used the q-derivative to es-
tablish the q-variant of the steepest descent method. After that, he also introduced the
q-gradient method for global optimization [25]. In recent years, some authors have given
some numerical techniques in the context of q-calculus to solve nonlinear unconstrained
optimization problems [26–28]. In these methods, instead of a general gradient, a q-gradient
is used because it permits the descent direction to work in the broader set of directions to
converse rapidly.

Moreover, optimization has a crucial role in the field of chemical science. In this
field, optimization methods have been used to minimize the energy consumption pro-
cess in plants, design optimum fluid flow systems, optimize product concentration and
reaction time in systems, and optimize the separation process in plants [29–31]. Some
authors [32,33] have shown that the BFGS method is systematically superior in obtaining
stable molecular geometries by reducing the gradient norm in a monotonic fashion. In a
similar way, the modified q-BFGS algorithm can be used to find stable molecular geometries
for large molecules.

In this paper, we modify the q-BFGS method for nonlinear unconstrained optimization
problems. For this modification, we propose a new q-quasi-Newton equation with the help
of a positive definite matrix, and in the limiting case, our new q-quasi-Newton equation
is close to the ordinary q-quasi-Newton equation. Instead of calculating the q-Hessian
matrices, we approximate them using only the first order q-derivative of the function. We
use an independent parameter q ∈ (0, 1) and quantum calculus based q-Armijo–Wolfe line
search [34] to ensure that the objective function value is decreasing. The use of q-gradient
in this line search is responsible for escaping the point from the local minimum to the
global minimum at each iteration. The proposed method is globally convergent without
the convexity assumption on the objective function. Then, numerical results on some test
problems are presented to compare the new method with the existing approach. Moreover,
we depict the numerical results through the performance profiles.

The organization of this paper is as follows: In Section 2, we recall essential prelim-
inaries related to the q-calculus and the BFGS method. In the next section, we present a
modified q-quasi-Newton equation, and using this, we give a modified q-BFGS algorithm
and discuss its properties. In Section 4, we present the global convergence of the modified
q-BFGS method. In the next section, we present numerical results. Finally, we give a
conclusion in the last section.

2. Preliminaries

In this section, we reviewed some important definitions and other prerequisites from
q-calculus and nonlinear unconstrained optimization.

Let q ∈ (0, 1), then, a q-complex number is denoted by [b]q and defined as follows [14]:

[b]q =
qb − 1
q− 1

, b ∈ C.

A q-natural number [m]q is defined as follows [13]:

[m]q = 1 + q + · · ·+ qm−1, m ∈ N.
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In q-calculus, the q-factorial [14] of a number [m]q is denoted by [m]q! and defined
as follows:

[m]q! = [1]q[2]q . . . [m− 1]q[m]q, m ∈ N

and
[0]q! = 1.

The q-derivative (q 6= 1) [18] of a real-valued continuous function f : R→ R, provided
that f is differentiable at 0, is denoted by Dq f and defined as follows:

Dq f (x) =

{ f (x)− f (qx)
(1−q)x , if x 6= 0

f ′(x), if x = 0.

If provided that f is differentiable on R then in the limiting case (q→1), the q-derivative
is equal to classical derivative.

Let f : Rn → R be a real continuous function, then for x = (x1, x2, . . . , xn) ∈ Rn,
consider an operator εq,i on h as

(εq,i f )(x) = f (x1, x2, . . . , qxi, xi+1, . . . , xn).

The partial q-derivative [22] of f at x with respect to xi, denoted by Dq,xi f and defined
as follows:

Dq,xi f (x) =


f (x)−(εq,i f )(x)

(1−q)xi
, if xi 6=0

∂ f (x)
∂xi

, if xi = 0.

In the same way, higher order partial q-derivatives are defined as follows:

D0
q = f (x),

Dm
q,x

k1
1 ,...,x

ki
i ...,xkn

n
f (x) =

(
Dq, xi

(
Dm−1

q,x
k1
1 ...x

ki−1
i ,...,xkn

n
f

))
(x),

where k1 + k2 + · · ·+ kn = m and m = 1, 2, . . . ,

Then, the q-gradient [24] of f is

(∇q f (x)) =
[

Dq,x1 f (x), . . . , Dq,xi f (x), . . . , Dq,xn f (x)
]T

.

To simplify the presentation, we use A > 0 (≥ 0) to denote any n× n symmetric and
positive definite (semi-definite) matrix A, use f : Rn → R to denote a real-valued function,
use gq(x) to denote the q-gradient of f at x, use ||x|| to denote Euclidean norm of a vector
x ∈ Rn, use Ak to denotes the q-quasi-Newton update Hessian at xk, throughout this paper.

Let f : Rn → R be continuously q-derivative then consider the following uncon-
strained optimization problem:

min
x∈Rn

f (x). (1)

The q-BFGS method [34] generates a sequence {xk} by the following iterative scheme:

xk+1 = xk + αkdk
q; k ∈ {0} ∪N, (2)

where αk and dk
q are step length and q-BFGS descent direction, respectively.

The q-BFGS descent direction is obtained by solving the following linear equation:

gk
q + Akdk

q = 0, (3)
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where Ak is the q-quasi-Newton update Hessian. The sequence Ak satisfies the follow-
ing equation:

Ak+1δk = γk,

where δk = xk+1 − xk and γk = gk+1
q − gk

q. In the context of q-calculus, we refer to the
Broyden–Fletcher–Goldfarb–Shanno (BFGS) update formula as the q-BFGS update formula.
Thus, the Hessian Ak is updated by the following q-BFGS formula:

Ak+1 = Ak − Akδk(δk)
T Ak

(δk)
T Akδk

+
γk(γk)

T

(δk)
T

γk
, (4)

3. Modified q-BFGS Algorithm

We modify the q-BFGS algorithm using the following function [35]:

fk(x) = f (x) +
1
2
(x− xk)T Bk(x− xk),

where Bk is a positive definite symmetric matrix. We obtain the following new q-quasi-
Newton equation by using the function fk to the q-quasi-Newton method in the kth iterate:

Ak+1δk = λk, (5)

where λk = γk + Bkδk. If we take k → ∞ and δk → 0, our new q-quasi-Newton equation
is similar to the ordinary q-quasi-Newton equation. Using the above modification of the
q-BFGS formula, we obtain the new one as follows:

Ak+1 = Ak − Akδk(δk)
T Ak

(δk)
T Akδk

+
λk(λk)

T

(δk)
T

λk
, (6)

where λk = γk + Bkδk.
To provide a better formula, the primary task of this research is to determine how to

select a suitable Bk. We direct our attention to finding Bk as a simple structure that carries
some second order information of objective function. In this part, we will discuss a new
choice of f and assume it to be sufficiently smooth.

Using the following quadratic model for the objective function [36,37], we have

f (x) ' f (xk+1) + (gk+1
q )T(x− xk+1) +

1
2
(x− xk+1)TGk+1(x− xk+1), (7)

where Gk+1 denotes a Hessian matrix at point xk+1.
Hence,

f (xk) ' f (xk+1)− (gk+1
q )Tδk +

1
2
(δk)TGk+1δk. (8)

Therefore,

(δk)TGk+1δk ' 2( f k − f k+1 + (gk+1
q )Tδk),

= 2( f k − f k+1) + (gk+1
q + gk

q)
Tδk + (δk)Tγk, (9)

where f k denotes the value of f at xk.
By using (5), we have

(δk)T Ak+1δk = (δk)Tλk = (δk)Tγk + (δk)T Bkδk. (10)
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The combination of Equations (9) and (10) shows that the reasonable choice of Bk

should satisfied the following new q-quasi-Newton equation:

(δk)T Bkδk = µk (µk = 2( f k − f k+1) + (gk+1
q + gk

q)
Tδk). (11)

Theorem 1. Assume that Bk satisfies (11) and Ak is generated by (6), then for any k,

f (xk) = f (xk+1) + (gk+1
q )T(xk − xk+1) +

1
2
(xk − xk+1)T Ak+1(xk − xk+1). (12)

Proof. The conclusion follows immediately using Equations (10) and (11).

The function f holds the Equation (12) without any convexity assumption on it and any
formula derived from the original quasi-Newton equation fails to satisfy the Equation (12).
From Equation (11), a choice of Bk can be defined as follows :

Bkδk = ηk,
(

ηk =
µk

(δk)Tvk vk
)

. (13)

In above Equation (13), vk is some vector such that (δk)Tvk 6= 0.
By the Equations (2) and (3), we know that if δk = 0 then gk

q = 0. Therefore, for all k we
can always assume that ‖δk‖ 6= 0; otherwise, at the kth iteration, the algorithm terminates.
Hence, we can choose vk = δk. Taking vk = δk in the Equation (10), we have a choice of Bk

as follows:

Bk =
µk

‖δk‖2 I, (14)

where the norm is the Euclidean norm and µk = 2( f k − f k+1) + (gk+1
q + gk

q)
Tδk.

Remark 1. The structure of Bk is very simple, so we can construct and analyze it easily. We only
need to consider the value of Bkδk to calculate the modified Ak+1 from the modified quasi-Newton
Equation (5). Thus, once vk is fixed, different choices of Bk, which satisfied (13) gives the same
Ak+1.

For computing the step length following q-gradient based modified Armijo–Wolfe line
search conditions [34] are used:

f (xk + αkdk
q) ≤ f (xk) + σ1αk(dk

q)
T gk

q, (15)

and

∇q f (xk + αkdk
q)

Tdk
q ≥ σ2(dk

q)
T gq

k, (16)

where 0 < σ1 < σ2 < 1. Additionally, if αk = 1 satisfies (16), we take αk = 1. In the above
line search, a sufficient reduction in the objective function and nonacceptance of short step
length is ensured by (15) and (16), respectively.

A good property of Formula (6) is that Ak+1 inherits the positive definiteness of Ak as
long as (δk)

T
λk > 0; provided that f is convex and step length is computed by an above

line search. However, when f is a non-convex function, then the above line search does
not ensure the condition (δk)

T
λk > 0. Hence, in this case, Ak+1 is not necessarily positive

definite even if Ak is positive definite. Therefore, some extra caution updates should be
introduced as follows:
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Define the index set K as follows:

K =

{
k :

(δk)Tλk

‖δk‖2 ≥ ε‖gk
q‖c

}
, (17)

where β ∈ [ϑ1, ϑ2], with 0 < ϑ1 ≤ ϑ2 and ε are positive constants. We determine Ak+1 by
the following rule:

Ak+1 =

Ak − Akδk(δk)
T

Ak

(δk)
T Akδk

+ λk(λk)
T

(δk)
T

λk
if k ∈ K

Ak if k /∈ K.
(18)

Corollary 1. Let Bk be chosen such Equation (13) holds and Ak is generated by (18), then
Ak+1 > 0, ∀ k ∈ N ∪ {0} .

Proof. Without loss of generality, let ‖gk‖ 6= 0, ∀k. We use mathematical induction on k
to prove this corollary. Since B0 is chosen as a positive definite symmetric matrix, the
result holds for k = 0. Let’s assume that the result holds for k = n. We consider the case
when k = n + 1. If k ∈ K, then from Equations (17) and (18), (δk)Tλk > 0 holds. Hence,
for k = n + 1, the result also holds. If k /∈ K, then by our assumption, Ak+1 = Ak is also
positive definite. This completes the proof.

From the above modifications, we introduce the following Algorithm 1:

Algorithm 1 Modified q-BFGS algorithm

Require: Objective function f : Rn → R, ε is tolerance for convergence. Select an initial
point x0 ∈ Rn, fix q ∈ (0, 1), and an initial positive definite symmetric matrix Ao ∈
Rn×m.

Ensure: With the corresponding objective value f (x∗), the minimizer x∗ is encountered.
1: Set A0 = In.
2: for k = 0,1,2... do
3: if ‖gk

q‖ < ε then
4: Stop.
5: else
6: Solve the Equation (3) to find a q-descent direction dk

q.
7: Find a step length αk satisfying Equations (15) and (16).
8: end if
9: Compute xk+1 = xk + αkdk

q and using the following equation, calculate Bk:

Bk =
µk

‖δk‖2 I,

where the norm is the Euclidean norm and

µk = 2( f k − f k+1) + (gk+1
q + gk

q)
Tδk.

10: Select two appropriate constants β, ε, then update Ak+1 by (18).
11: end for

4. Analysis of the Convergence

Under the following two assumptions, the global convergence [11] of the modified
q-BFGS algorithm is shown in this section.
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Assumption 1. The level set

Ω = {x ∈ Rn| f (x) ≤ f (x0)}

is bounded.

Assumption 2. The function f is continuously q-derivative on Ω, and there exist a constant
(Lipschitz constant) L > 0, such that

‖gq(x1)− gq(x2)‖ ≤ L||x1 − x2||, ∀ x1, x2 ∈ Ω. (19)

Since { f k} is a decreasing sequence, it is clear that the sequence {xk} generated by the
modified q-BFGS algorithm is contained in Ω.

To establish the global convergence of the modified q-BFGS algorithm in the context
of q-calculus, first, we show the following lemma:

Lemma 1. Let Assumptions 1 and 2 hold for f and with q ∈ (0, 1), {xk} be generated by
Algorithm 1. If there exist positive constants a1 and a2 such that the following inequalities :

‖Akδk‖ ≤ a1‖δk‖ and (δk)T Akδk ≥ a2‖δk‖2, (20)

holds for infinitely many k, then we have

lim
k→∞

inf ‖gq(xk)‖ = 0 (21)

Proof. Using Equations (2) and (3) in (20), we have

a2‖dk
q‖ ≤ ‖gk

q‖ ≤ a1‖dk
q‖ and (dk

q)
T Akdk

q ≥ a2‖dk
q‖2. (22)

We consider a new case using the q-Armijo type line search (15) with backtracking
parameter ρ ∈ (0, 1). If αk 6= 1, then we have

σ1ρ−1αkgq(xk)
T

dk
q < f (xk + ρ−1αkdk

q)− f (xk). (23)

By the q-mean value theorem [19], there is a θk ∈ (0, 1) such that

f (xk + ρ−1αkdk
q)− f (xk) = ρ−1αkgq(xk + θkρ−1αkdk

q)
T

dk
q,

that is,

f (xk + ρ−1αkdk
q)− f (xk) = ρ−1αkgq(xk)

T
dk

q + ρ−1αk(gq(xk + θkρ−1αkdk
q)− gq(xk))Tdk

q.

From Assumption 2, we obtain

f (xk + ρ−1αkdk
q)− f (xk) ≤ ρ−1αkgq(xk)

T
dk

q + Lρ−2(αk)2‖dk
q‖2. (24)

From (23) and (24), we obtain for any k ∈ K

αk ≥
−(1− σ1)ρgk

q(xk)Tdk
q

L‖dk
q‖2 .

Since −gq(xk) = Akdk
q,

αk ≥
(1− σ1)ρ(dk

q)
T Akdk

q

L‖dk
q‖2 .
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Using (22) in the above inequality, we obtain

αk ≥ min{1, (1− σ1)a2L−1ρ} > 0. (25)

We consider the case where line search (16) is used; then, from Assumption 2 and from
the inequality (16), we obtain the following:

(σ2 − 1)gq(xk)Tdk
q ≤ (gq(xk + αkdk

q)− gq(xk))Tdk
q ≤ Lαk‖dk

q‖2.

The above inequality implies that

αk ≥
(σ2 − 1)gq(xk)Tdk

q

L‖dk
q‖2 .

Since −gk
q = Akdk

q,

αk ≥
−(σ2 − 1)(dk

q)
T Akdk

q

L‖dk
q‖2 .

Since Akdk
q ≥ a2‖dk

q‖2,

αk ≥ min{1, (1− σ2)a2L−1ρ} > 0. (26)

The inequalities (25) and (26) together show that {αk}k∈K is bounded below away
from zero whenever line search (16) and (15) are used. Moreover,

∞

∑
k=0

[ f (xk)− f (xk+1)] = lim
i→∞

i

∑
k=1

[ f (xk)− f (xk+1)],

= f (x1)− lim
i→∞

f (xj).

That is,

∞

∑
k=0

[ f (xk)− f (xk+1)] = f (x1)− f (x∗).

This gives the following result

∞

∑
k=1

[ f (xk)− f (xk+1)] < ∞.

The above inequality, together with (15) gives,

−
∞

∑
k=1

αk(gk
q)

Tdk
q < ∞.

Since gk
q = −Akdk

q,

lim
k→∞

(dk
q)

T Akdk
q = − lim

k→∞
(gk

q)
Tdk

q → 0.

The above result, together with (22), implies (21).

From the above Lemma 1, we can say that to establish the global convergence of
Algorithm 1, it is sufficient to show that there are positive constants a1 and a2 such that
the (20) holds for infinitely many k. To prove this, we need the following lemma [34]:
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Lemma 2. Let A0 be a positive definite and symmetric matrix and Ak be updated by (18). Suppose
that there exist positive constant m < M such that, for each k ≥ 0, λk and δk satisfy

(δk)Tλk

‖δk‖2 ≥ m and
‖λk‖2

(δ)Tλk ≤ M. (27)

Then, there exist constants a1, a2 > 0 such that for any positive integer t, (20) holds for at
least d t

2e values of k ∈ {1, 2, . . . , t}.

By using Lemma 2 and Lemma 1, we can prove the following global convergence
theorem for Algorithm 1.

Theorem 2. Let f satisfy Assumption 1 and Assumption 2, and {xk} be generated by modified
q-BFGS Algorithm 1, then the Equation (21) is satisfied.

Proof. By using Lemma 1, it is sufficient to show that there are infinitely many k which
satisfies (20).

If the set K is finite, then after a finite number of iterations, Ak remains constant. Since
matrix, Ak is positive definite and symmetric for each k, and it is clear that there are positive
constants a1 and a2 such that Equation (20) holds for all sufficiently large k.

Now, consider the case when K is an infinite set. We go forward by contradiction and
assume that (21) is not true. Then, there exists a positive constant α such that ‖gk

q‖ > α, ∀k.
Then, from (17)

(δk)Tλk ≥ εαβ‖δk‖2, ∀k ∈ K

⇒ 1
(δk)Tλk ≤

1
εαβ‖δk‖2 , ∀k ∈ K,

⇒ ‖λk‖2

(δk)Tλk ≤
‖λk‖2

εαβ‖δk‖2 , ∀k ∈ K.

From (19), we know that ‖λk‖2 ≤ L2‖δk‖2. Thus, combining it with the above
inequality, we obtain

‖λk‖2

(δk)Tλk ≤
L2

εαβ
, ∀k ∈ K.

Let L2

εαβ = M, then
‖λk‖2

(δk)Tλk ≤ M, ∀k ∈ K.

Applying Lemma 2 to the matrix subsequence {Ak}k∈K, we conclude that there exist
constants a1, a2 > 0 such that the Equation (20) holds for infinitely many k. The proof is
then complete.

The above Theorem 2 shows that the modified q-BFGS algorithm is globally convergent
even if convexity is not assumed for f [34].

5. Numerical Results

This section presents the comparison of numerical results obtained with the modified
q-BFGS algorithm 1, the q-BFGS algorithm [34], and the BFGS Algorithm [38] for solving a
collection of unconstrained optimization problems taken from [39]. For each test problem,
we chose an initial matrix as a unit matrix, i.e., A0 = I. Our numerical results are performed
on Python3.7 (Google colab). Throughout this section ‘NI’, ‘NF’, and ‘NG’ indicate the
total number of iterations, the total number of function evaluations, and the total number
of gradient evaluations, respectively. For each test problem, the parameters are common
to modified q-BFGS, q-BFGS, and BFGS algorithms. We set q = 0.9999999, σ1 = 0.0001,
and σ2 = 0.9, and used the condition ‖gk

q‖ ≤ 10−6 as the stopping criteria. Moreover, we
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set the parameter β = 3, when ‖gk
q‖ ≤ 10−6 otherwise we take β = 0.01. In general, we take

q→ 1 and q 6= 1. When q 6= 1, then the q-gradient can make any angle with the classical
gradient and the search direction can point in any direction.

We have used performance profiles for evaluating and comparing the performance of
algorithms on a given set of test problems through graphs. Dolan and More [40], presented
an appropriate technique to demonstrate the performance profiles, which is a statistical
process. We use this as an evaluation tool to show the performance of the algorithm. We
are interested in using the number of the iteration, function evaluations, and q-gradient
evaluations as the performance measure. The performance ratio is presented as

ρp,s =
r(p,s)

min{r(p,s) : 1 ≤ r ≤ ns}
, (28)

Here, r(p,s) refers to the number of the iteration, function evaluations, and q-gradient
evaluations, respectively, required to solve problem p by solver s and ns refers to the
number of problems in the model test. The cumulative distribution function is expressed as

ps(τ) =
1

np
size{p ∈ ρp,s ≤ τ}

where ps(τ) is the probability that a performance ratio ρp,s is within a factor of τ of the best
possible ratio. That is, for a subset of the methods being analyzed, we plot the fraction
ps(τ) of problems for which any given method is within a factor (τ) of the best. Now we
take the following examples to show the computational results:

Example 1. Consider the non-convex Rosenbrock function f : R2 → R such that

f (x1, x2) = 100(x2 − x1
2)2 + (x1 − 1)2.

Following Figure 1 represents the surface plot of the Rosenbrock function:

Figure 1. Surface plot of Rosenbrock function.

The Rosenbrock function was introduced by Rosenbrock in 1960. We tested modified q-BFGS,
q-BFGS, and BFGS algorithms for 10 different initial points. Numerical results for the Rosenbrock
function are given in the following Table 1:
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Table 1. Comparison of numerical results of Modified q-BFGS, q-BFGS, and BFGS algorithms for the
Rosenbrock function.

S.No. x0 Modified q-BFGS q-BFGS BFGS
NI/NF/NG NI/NF/NG NI/NF/NG

1 (−1.5,−1)T 25/95/47 47/198/66 49/213/71
2 (0, 0)T 22/77/35 21/78/26 20/75/25
3 (−4, 4)T 27/125/73 63/82/246 63/255/85
4 (−3, 0)T 28/118/64 55/210/70 58/210/70
5 (10, 0)T 54/197/91 40/150/50 85/372/120
6 (7,−7)T 52/184/82 75/294/98 76/414/134
7 (4, 5)T 48/174/80 51/201/67 51/198/66
8 (−2,−2)T 26/112/62 55/201/67 57/342/110
9 (1, 1.2)T 9/38/22 13/57/19 12/93/27
10 (0, 4)T 27/113/61 25/96/32 26/114/38

The Rosenbrock function converges to x∗ = (1, 1)T with value f (x∗) = 0, for the above
starting points x0. Figures 2–4 show the Dolan and More performance profiles of modified q-BFGS,
q-BFGS, and BFGS algorithms for the Rosenbrock function, respectively.

Figure 2. Performance profile based on number of iterations.

Figure 3. Performance profile based on number of gradient evaluations.
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Figure 4. Performance profile based on number of function evaluations.

The global minima and plotting points of the Rosenbrock function using the modified q-BFGS
algorithm can also be observed in Figure 5.

Figure 5. Global minima of the Rosenbrock function using modified q-BFGS algorithm.

For the starting point x0 = (−1.5,−1), the Rosenbrock function converges to

x∗ = [0.999999996685342, 0.999999997414745]T ,

with

f (x∗) = 1.64642951315324e−15 and ∇q f (x∗) = [−1.66435354e−06, 7.98812111e−07]T ,

in 25 iterations.
The global minima and plotting points of the Rosenbrock function using the q-BFGS algorithm

can also be observed in Figure 6.
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Figure 6. Global minima of the Rosenbrock function using q-BFGS algorithm [34].

For the starting point x0 = (−1.5,−1), the Rosenbrock function converges to

x∗ = [1.0000000, 1.00000001]T ,

with

f (x∗) = 1.541354346404984e−16 and ∇q f (x∗) = [4.42018890e−07,−2.47425057e−07]T .

in 47 iterations.
The global minima and plotting points of the Rosenbrock function using the BFGS algorithm

can also be observed in Figure 7.

Figure 7. Global minima of the Rosenbrock function using BFGS algorithm.

For the starting point x0 = (−1.5,−1), the Rosenbrock function converges to

x∗ = [0.99999552, 0.99999103]T ,

with

f (x∗) = 2.0060569721431806e−11 and ∇q f (x∗) = [7.91549092e−07,−3.95920563e−07]T ,

in 49 iterations.

Example 2. We consider

f (x) =

{
x2 − 2 if x < 2
x2 + 2 if x ≥ 2,
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which is non-differentiable at x = 2. For initial point x0 = 9, using our modified q-BFGS algorithm
we reach minima at x∗ = 0 in 4 iterations, 10 function evaluations, and 5 gradient evaluations.

Example 3. Consider the non-convex Rastrigin function f such that

f (x) = 10d +
d

∑
i=1

[x2
i − 10cos(2πxi)]

Following Figure 8 represents the surface plot of the Rastrigin function:

Figure 8. Surface plot of the Rastrigin function.

The Rastrigin function f has a global minimum at

x∗ = (0, 0, . . . , 0),

with value
f (x∗) = 0.

We tested modified q-BFGS, q-BFGS, and, BFGS algorithms for initial point x0 = (0.2, 0.2).
The global minima and plotting points of the Rastrigin function using the modified q-BFGS

algorithm can be observed in Figure 9.

Figure 9. Global minima of the Rastrigin function using the modified q-BFGS algorithm.
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The numerical results for the Rastrigin function, using the modified q-BFGS algorithm are
as follows:

For the starting point x0 = (0.2, 0.2), the Rastrigin function converges to

x∗ = [−6.83810097023008e−6,−6.83810097023008e−6]T ,

with

f (x∗) = 1.85534789132191e−9 and ∇q f (x∗) = [−1.3676e−6,−1.3676e−6]T .

NI/NF/NG = 4/18/6.
The global minima and plotting points of the Rastrigin function using the q-BFGS algorithm

can be observed in Figure 10.

Figure 10. Global minima of the Rastrigin function using q-BFGS algorithm.

The numerical results for the Rastrigin function, using the q-BFGS algorithm are as follows:
For the starting point x0 = (0.2, 0.2), The Rastrigin function converges to

x∗ = [−1.18906228e−06,−2.65293229e−07]T ,

with

f (x∗) = 2.944648969105401e−10 and ∇q f (x∗) = [0., 0.]T .

NI/NF/NG = 5/24/8.
The global minima and plotting points of the Rastrigin function using the BFGS algorithm

can be observed in Figure 11.

Figure 11. Global minima of the Rastrigin function using BFGS algorithm.
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The numerical results for the Rastrigin function using the BFGS algorithm are as follows:
For the starting point x0 = (0.2, 0.2), the Rastrigin function converges to

x∗ = (−7.14289963e−09,−7.37267609e−09)T ,

with

f (x∗) = 2.1316282072803006e−14 and ∇ f (x∗) = (1.1920929e−07, 0.0000000e00)T .

NI/NF/NG = 7/36/12.
From the above numerical results, we conclude that using the modified q-BFGS algorithm, we

can reach the critical point by taking the least number of iterations.

Example 4. Consider the SIX-HUMP CAMEL function f : R2 → R such that

f (x) =

(
4− 2.1x2

1 +
x4

1
3

)
x2

1 + x1x2 + (−4 + 4x2
2)x2

2

The Figure 12 on the left shows the SIX-HUMP CAMEL function on its recommended input
domain and on the right shows only a portion of this domain for easier view of the function’s key
characteristics. The function f has six local minima, two of which are global.

Figure 12. Surface plot of the SIX-HUMP CAMEL function.

Input Domain: The function is usually evaluated on the rectangle x1 ∈ [−3, 3], x2 ∈ [−2, 2].
This function has a global minimum at

x∗ = (0.0898,−0.7126) and (−0.0898, 0.7126),

with value
f (x∗) = −1.0316.

For the starting point x0 = (1, 1), with the modified q-BFGS algorithm f converges to x∗ in
eight iterations whereas with q-BFGS and BFGS it takes 13 iterations. Tables 2–4 give numerical
results and Figures 13–15 represents the global minima and sequence of iterative points generated
with modified q-BFGS, q-BFGS and BFGS algorithms, respectively.
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Table 2. Numerical results for Modified q-BFGS algorithm.

S.N. x f (x) ∇q f (x)

1 (1, 1)T 3.23333333333333 (2.59999999, 8.9999998)T

2 (0.675,−0.12499997)T 1.27218227259399 (2.97185835, 1.64374981)T

3 (−0.06796459,−0.53593743)T −0.764057148938559 (−1.0770199, 1.75654714)T

4 (−0.0353348602,−0.8064736058)T −0.876032180235736 (−1.08878201,−1.97602868)T

5 (0.117691114989,−0.69297924267)T −1.02498975962408 (0.23490147, 0.33700269)T

6 (0.087916835437,−0.709453427634)T −1.03153652682667 (−0.01181639, 0.05018343)T

7 (0.089782273326,−0.71271422021)T −1.03162840874522 (−0.00052364,−0.00100674)T

8 (0.089842117966,−0.71265601378)T −1.03162845348855 (1.20226364× 10−6, 6.54303983× 10−6)T

Here, we obtain x∗ = (0.089842117966,−0.71265601378)T

f (x∗) = −1.03162845348988 and ∇q f (x∗) = (−6.20473783× 10−09, 0.00000000× 10+00)T

Figure 13. Global minima of SIX-HUMP CAMEL function using modified q-BFGS algorithm.

Table 3. Numerical results for q-BFGS algorithm [34].

S.N. x f (x) ∇q f (x)

1 (1, 1)T 3.23333333333333 (2.59999999, 8.9999998)T

2 (0.71968495, 0.02967868)T 1.57257718494530 (3.04212661, 0.4826738)T

3 (−0.36642555,−0.07524058)T 0.505072874807150 (−2.60658417, 0.22868392)T

4 (0.13008033,−0.06568514)T 0.0413558838831559 (0.95654292, 0.65102699)T

5 (0.00245036,−0.12816569)T −0.0649165012454617 (−0.10856293, 0.99409097)T

6 (−0.11507302,−0.35694646)T −0.351034437749229 (−1.26477125, 2.01283747)T

7 (−0.23737914,−0.62081297)T −0.581320173229039 (−2.40899478, 0.90085665)T

8 (−0.08148802,−0.6924283)T −0.915418626192531 (−1.33979439, 0.14610549)T

9 (0.11917819,−0.6987523)T −1.02633316281778 (0.24050227, 0.25049034)T

10 (0.0912121,−0.72252832)T −1.03082558867975 (0.00080671,−0.16366308)T

11 (0.087625,−0.71111103)T −1.03159319420704 (−0.01575222, 0.02301181)T

12 (0.09005303,−0.71260578)T −1.03162824822151 (0.00169591, 0.00104015)T

13 (0.08983369,−0.71266332)T −1.03162845277086 (−7.18180083× 10−5,−1.21481195× 10−4)T
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Here, we obtain x∗ = (0.08983369,−0.71266332)T ,

f (x∗) = −1.0316284534898477 and ∇q f (x∗) = (−0.00000000× 10+00, 9.65876859× 10−07)T .

Using this q-BFGS algorithm, we can reach the critical point by taking 13 iterations.

Figure 14. Global minima of SIX-HUMP CAMEL function using q-BFGS algorithm.

Table 4. Numerical results for BFGS algorithm.

S.N. x f (x) ∇q f (x)

1 (1, 1)T 3.23333333333333 (2.59999999, 8.9999998)T

2 (0.71968497, 0.02967869)T 1.5725772653791203 (3.04212611, 0.48267368)T

3 (0.13008034,−0.06568512)T 0.041355907444434827 (0.95654306, 0.65102689)T

4 (0.00245035,−0.12816566)T −0.06491646830150141 (−0.10856298, 0.99409077)T

5 (−0.11507301,−0.35694647)T −0.35103445558228663 (−1.26477118, 2.01283762)T

6 (−0.23737911,−0.62081301)T −0.5813202779118049 (−2.40899456, 0.90085617)T

7 (−0.08148803,−0.6924282)T −0.9154186025665918 (−1.33979439, 0.1461069)T

8 (0.11917811,−0.69875236)T −1.0263331977999757 (0.24050162, 0.25048941)T

9 (0.09121207,−0.72252828)T −1.0308255945761227 (0.00080669,−0.16366242)T

10 (0.08762501,−0.71111104)T −1.031593194593363 (−0.01575207, 0.02301181)T

11 (0.09005304,−0.71260578)T −1.031628248214576 (0.00169598, 0.00104006)T

12 (0.08983368,−0.7126633)T −1.0316284527721356 (0.000016959, 0.000104006)T

13 (0.08984197,−0.71265633)T −1.0316284534898297 (−7.19424520× 10−5,−1.21236354× 10−4)T

Here, we obtain x∗ = (0.08984197,−0.71265633)T ,

f (x∗) = −1.0316284534898448 and ∇ f (x∗) = (−2.68220901× 10−07, 9.98377800× 10−07)T .

Using this BFGS algorithm, we can reach the critical point by taking 13 iterations.

Figure 15. Global minima of SIX-HUMP CAMEL function using BFGS algorithm.
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We conclude that using the modified q-BFGS algorithm, we can reach the critical point by
taking the least number of iterations. From the performance results and plotting points for the
multimodal functions it could be seen that the q-descent direction has a mechanism to escape from
many local minima and move towards the global minimum.

Now, we compare the performance of numerical algorithms for large dimensional
Rosenbrock and Wood function. Numerical results for these functions are given in
Tables 5 and 6.

Numerical results for the large dimensional Rosenbrock function for x0 = (0, 0, . . . , 0)

f (x) =
d−1

∑
i=1

[100(xi+1 − xi
2)2 + (xi − 1)2]

Table 5. Comparison of numerical results of Modified q-BFGS, q-BFGS, and BFGS algorithm for the
large dimensional Rosenbrock function.

S.No. Dimension Modified q-BFGS q-BFGS BFGS

NI/NF/NG NI/NF/NG NI/NF/NG

1 10 58/889/132 63/972/81 61/1365/123

2 50 242/15,432/300 253/17,316/324 253/17,199/337

3 100 466/63,088/604 486/64,056/636 479/64,741/641

4 200 904/209,912/1175 978/248,056/1228 956/253,674/1262

Numerical results for large dimensional WOOD function [39] for x0 = (0, 0, . . . , 0)

Table 6. Comparison of numerical results of Modified q-BFGS, q-BFGS, and BFGS algorithm for Large
Dimensional Wood function.

S.No. Dimension Modified q-BFGS q-BFGS BFGS

NI/NF/NG NI/NF/NG NI/NF/NG

1 20 85/1976/98 91/2872/130 103/2478/118

2 80 162/19,745/198 193/21,250/259 209/22,366/276

3 100 197/19,965/255 240/30,714/301 254/29,290/290

4 200 296/75,686/397 370/93,538/463 378/93,678/466

We have taken 20 test problems to show the proposed method’s efficiency and numer-
ical results. We take tolerance ε = 10−6, σ1 = 0.0001, and σ2 = 0.9. Our numerical results
are shown in Tables 7–9 with the problem number(S.N.), problem name, Dimension (DIM),
starting point, the total number of iterations (NI), the total number of function evaluations
(NF), the total number of gradient evaluations (NG), respectively.
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Table 7. Numerical results for Modified q-BFGS algorithm.

S.N. Problems x0 DIM NI NF NG x∗

1 ROSENBROCK (−1.5,−1)T 2 25 95 47 (1.0000, 1.0000)T

2 FROTH (0.5,−2)T 2 9 37 20 (11.4128,−0.8968)T

3 BADSCP (0, 1)T 2 174 618 272 (1.0981× 10−5, 9.1062)T

4 BADSCB (1, 1)T 2 11 100 80 (1000000.0000, 1.9999× 10−6)T

5 BEALE (3, 1)T 2 12 44 21 (3.0000, 0.5000)T

6 JENSAM (1, 0.4)T 2 15 57 20 (0.56094, 0.56094)T

7 WOOD (−3,−1,−3,−1)T 4 42 205 52 (1.0000, 1.0000, 1.0000, 1.0000)T

8 POWELL SINGULAR (3,−1, 0, 1)T 4 23 91 46 (−0.0011, 0.0001, 0.0009, 0.0009)T

9 RASTRIGIN (0.2, 0.2)T 2 4 18 6 (−6.8381× 10−5,−6.8381× 10−5)T

10 GOLDSTEIN PRICE (0.5, 0.5)T 2 12 106 84 (5.4911× 10−5,−1.0000)T

11 THREE-HUMP
CAMEL

(−2.5, 0)T 2 5 19 10 (8.3463× 10−8, 1.9707× 10−7)T

12 COLVILLE (0, 0, 0, 0)T 4 27 109 56 (1.0000, 1.0000, 1.0000, 1.0000)T

13 BOOTH (2, 2)T 2 2 11 8 (1.0000, 3.0000)T

14 SINE VALLEY (3π/2,−1)T 2 35 115 46 (−1.4495× 10−11,−1.6686× 10−11)T

15 BRANIN (9.3, 3)T 2 5 18 9 (9.4248, 2.4750)T

16 SIX HUMP CAMEL (1, 1)T 2 8 32 17 (0.0898,−0.7126)T

17 HIMMELBLAU (1, 1)T 2 9 37 20 (3.0000, 2.0000)T

18 SHEKEL (0, 0, 0, 0)T 4 14 105 35 (4.0007, 4.0005, 3.9997, 3.9995)T

19 HARTMAN 3D (0, 0.5, 0.4)T 3 10 100 21 (0.1146, 0.5556, 0.8525)T

20 GRIEWANK (2,−1.2)T 2 8 25 9 (−6.9305× 10−5,−5.0749× 10−5)T

Table 8. Numerical results for q-BFGS algorithm.

S.N. Problems x0 DIM NI NF NG x∗

1 ROSENBROCK (−1.5,−1)T 2 47 198 66 (1.0000, 1.0000T

2 FROTH (0.5,−2)T 2 9 30 10 (11.4127,−0.8968)T

3 BADSCP (0, 1)T 2 158 609 203 (1.0981× 10−5, 9.1061)T

4 BADSCB (1, 1)T 2 - - - -

5 BEALE (3, 1)T 2 13 48 16 (3.0000, 0.5000)T

6 JENSAM (1, 0.4)T 2 17 66 22 (0.56095, 0.56095)T

7 WOOD (−3,−1,−3,−1)T 4 87 309 103 (1.0000, 1.0000, 1.0000, 1.0000)T

8 POWELL SINGULAR (3,−1, 0, 1)T 4 37 126 42 (2.3008 × 10−4,−2.3007 × 10−5,
9.0539 × 10−4, 9.0545× 10−4)T

9 RASTRIGIN (0.2, 0.2)T 2 5 24 8 (−1.1890× 10−6,−2.6529× 10−7)T

10 GOLDSTEIN PRICE (0.5, 0.5)T 2 - - - -

11 THREE-HUMP
CAMEL (−2.5, 0)T 2 8 36 12 (−1.7475, 0.8738)T

12 COLVILLE (0, 0, 0, 0)T 4 26 102 34 (1.0000, 1.0000, 1.0000, 1.0000)T

13 BOOTH (2, 2)T 2 3 15 5 (1.0000, 3.0000)T

14 SINE VALLEY (3π/2,−1)T 2 37 132 44 (4.0788× 10−10, 4.262× 10−10)T

15 BRANIN (9.3, 3)T 2 6 24 8 (9.4248, 2.4750)T

16 SIX HUMP CAMEL (1, 1)T 2 13 54 18 (0.0898,−0.7126)T

17 HIMMELBLAU (1, 1)T 2 8 39 13 (3.0000, 2.0000)T

18 SHEKEL (0, 0, 0, 0)T 4 14 105 35 (4.0007, 4.0006, 3.9997, 3.9995)T

19 HARTMAN 3D (0, 0.5, 0.4)T 3 11 63 21 (0.1088, 0.5556, 0.8526)T

20 GRIEWANK (2,−1.2)T 2 8 27 9 (8.4001× 10−5, 3.1323× 10−4)T
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Table 9. Numerical results for BFGS algorithm.

S.N. Problems x0 DIM NI NF NG x∗

1 ROSENBROCK (−1.5,−1)T 2 49 213 71 (1.0000, 1.0000T

2 FROTH (0.5,−2)T 2 9 30 10 (11.4128,−0.8968)T

3 BADSCP (0, 1)T 2 - - - -

4 BADSCB (1, 1)T 2 - - - -

5 BEALE (3, 1)T 2 13 48 16 (3.0000, 0.5000)T

6 JENSAM (1, 0.4)T 2 17 66 22 (0.56095, 0.56095)T

7 WOOD (−3,−1,−3,−1)T 4 89 525 105 (1.0000, 1.0000, 1.0000, 1.0000)T

8 POWELL
SINGULAR (3,−1, 0, 1)T 4 41 230 46 (7.759× 10−4,−7.7607× 10−5,

−7.5812× 10−4,−7.581× 10−4)T

9 RASTRIGIN (0.2, 0.2)T 2 7 36 12 (−7.1429× 10−9,−7.3727× 10−7)T

10 GOLDSTEIN
PRICE (0.5, 0.5)T 2 17 75 25 (−9.9828× 10−9,−1.0000)T

11 THREE-HUMP
CAMEL (−2.5, 0)T 2 8 36 12 (−1.7475, 0.8738)T

12 COLVILLE (0, 0, 0, 0)T 4 31 190 38 (1.0000, 1.0000, 1.0000, 1.0000)T

13 BOOTH (2, 2)T 2 3 15 5 (1.0000, 3.0000)T

14 SINE VALLEY (3π/2,−1)T 2 37 141 47 (−5.9619× 10−6,−5.9674× 10−6)T

15 BRANIN (9.3, 3)T 2 6 24 8 (9.4248, 2.4750)T

16 SIX HUMP
CAMEL (1, 1)T 2 13 54 18 (0.0898,−0.7126)T

17 HIMMELBLAU (1, 1)T 2 8 39 13 (3.0000, 2.0000)T

18 SHEKEL (0, 0, 0, 0)T 4 12 160 32 (4.0007, 4.0006, 3.9997, 3.9995)T

19 HARTMAN 3D (0, 0.5, 0.4)T 3 14 80 20 (0.1146, 0.5556, 0.8525)T

20 GRIEWANK (2,−1.2)T 2 10 33 11 (6.872× 10−8,−7.2441× 10−4)T

Tables 5–9 show that the modified q-BFGS algorithm solves about 86% of the test
problems with the least number of iterations, 82% of the test problems with the least
number of function evaluations, and 52% of the test problems with the least number of
gradient evaluations. Therefore, with Figures 16–18 we conclude that the modified q-BFGS
performs better than other algorithms and improves the performance in fewer iterations,
function evaluations, and gradient evaluations.

In Figures 17 and 18 the graph of q-BFGS and BFGS method does not converge to 1 as
the methods fail to minimize two problems for each as given in Tables 8 and 9.

Figure 16. Performance Profile based on number of iterations.
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Figure 17. Performance Profile based on number of function evaluations.

Figure 18. Performance Profile based on number of gradient evaluations.

6. Conclusions and Future Directions

We have given a new q-quasi-Newton equation and proposed a modified q-BFGS
method for unconstrained minimization based on this new q-quasi-Newton equation.
The method converges globally with a q-gradient-based Armijo–Wolfe line search. The q-
gradient allows the search direction to be taken from a diverse set of directions and
takes large steps to converge. From the performance results and plotting points for the
multimodal functions, it could be seen that the q-descent direction and q-gradient-based
line search have a mechanism to escape from many local minima and move towards the
global minimum. The first order q-differentiability of the function is sufficient to prove
the global convergence of the proposed method. The convergence and numerical results
show that the algorithm given in this paper is very successful. However, many other
q-quasi-Newton methods still need to be studied using the q-derivative.
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