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Abstract: Let k, m be positive integers and F2m be a finite field of order 2m of characteristic 2.
The primary goal of this paper is to study the structural properties of cyclic codes over the ring
Sk = F2m [v1,v2,...,vk ]

〈v2
i−αivi ,vivj−vjvi〉

, for i, j = 1, 2, 3, . . . , k, where αi is the non-zero element of F2m . As an applica-

tion, we obtain better quantum error correcting codes over the ring S1 (for k = 1). Moreover, we
acquire optimal linear codes with the help of the Gray image of cyclic codes. Finally, we present
methods for reversible DNA codes.
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1. Introduction

Quantum codes are used in both quantum computing and quantum communication
in order to protect the information from channel noise that may occur during transmission.
From that point, the development of classical cyclic codes into quantum error-correcting
codes and their generalizations began to accelerate. Shor [1] initially developed quantum-
error-correcting codes in 1995. Steane [2] developed the structural features of straightfor-
ward quantum-error-correcting codes a year later, in 1996. After two years, Calderbank
et al. [3] developed a revolutionary method for constructing quantum-error-correcting
codes from classical-error-correcting codes. Many effective quantum errors correcting codes
with dual or self-orthogonal contained properties have been constructed using classical
cyclic codes over the finite field Fq. Using cyclic codes of odd length, Qian [4] constructed
quantum error correcting codes for the first time on the finite non-chain ring F2 + uF2 with
u2 = 0. Later, a great deal of study was conducted on quantum codes that were constructed
from cyclic codes, constacyclic codes, and skew constacyclic codes over a non-chain ring
with odd characteristics (see for references [5–8]). In 2014, Cengellenmis et al. [9] pro-
vided the structure of codes over the ring F2[v1,v2,...,vk ]

〈v2
i =vi ,vivj=vjvi〉

by using a Gray map. After that

in 2018, Zheng et al. [10] gave the generator polynomial of constacyclic codes over the

ring
Fpm [u1,u2,...,uk ]

〈u2
i =ui ,uiuj=ujui〉

and also provided the structural properties of linear codes over this

ring. Additionally, several quantum codes with even characteristics were constructed over
the finite ring (see for references [11–13]). Over a finite non-chain ring F2m + uF2m with
u2 = u, Islam and Prakash [14] recently obtained some new quantum and LCD codes. This
inspires us to explore the properties of cyclic codes over a ring Sk = F2m [v1,v2,...,vk ]

〈v2
i −αivi ,vivj−vjvi〉

, for

i, j = 1, 2, 3, . . . , k, where αi is the non-zero elements of F2m . In [15], Adleman calculated
the NP-complete problem in the test tube in the 1990s. This experiment encouraged me to
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start heavily the studies that are the union of mathematics and DNA strings. DNA strings
had to have a proper distance (difference) between them to prevent wrong connections in
Aldeman’s experiment. Then researchers found a proper connection to solve this problem
by using error correction codes. The main idea for the solution is generating reversible
complement DNA codes with proper distance. Firstly, methods of generating reversible
DNA codes were given by [16–18]. Because the side of complement is easier than creating
the reversible DNA codes. In [19], double DNA bases are used, but they delete half of the
DNA double base of each element in the code. Thus, they do not use double DNA bases in
DNA codes. If the algebraic structure has four elements then reversible codes can map to
DNA codes directly. Because, the number of DNA bases is four which are (A) adenine, (G)
guanine, (T) thymine, and (C) cytosine. However, if an algebraic structure has more than
four elements, the reversibility problem arises. The first use of double DNA bases in DNA
codes was presented by [20]. Moreover, the reversibility problem was presented and solved
in [20]. The reversibility problem can be explained in algebraic structures that have more
than four elements. In the algebraic structure, each element corresponds to DNA multiple
bases. For example, Let us consider a ring R and |R| = 16. Each element corresponds to
DNA double bases (or 2 bases). Let (a, b, c) inR3 correspond to (AT, GT, CA) (ATGTCA).
Reverse of (a, b, c) is (a, b, c)r = (c, b, a). Furthermore, (c, b, a) corresponds (CA, GT, AT).
However, the reverse of (AT, GT, CA) cannot correspond to the (CA, GT, AT). Reverse of
(AT, GT, CA) is (AC, TG, TA). In short, the reversibility problem is that we can not obtain
the reverse of DNA correspondence by using the reverse of a vector.

In this work, we explore the structural properties of cyclic codes over the ring
Sk = F2m [v1,v2,...,vk ]

〈v2
i −αivi ,vivj−vjvi〉

and introduce methods to solve the reversibility problem over

St
k =

F42t [v1,v2,...,vk ]

〈v2
i −vi ,vivj−vjvi〉

. First, we create a technique to create the idempotents of St
k by using a

binary numeral system. Thus, we can arrange the idempotents to solve the reversibility
problem with DNA correspondence tables over F2t

4 . After that, we present the methods to
generate reversible and reversible DNA codes. The methods enable us to create DNA codes
that do not need to be cyclic codes or skew cyclic codes over St

k. This design satisfies to
generate more DNA codes by using one source polynomial. This is important for real DNA
strings to correspond to the codes. In [21], They found some codewords corresponding to a
real DNA string with an error over Z4. They used long computational processes to find
codewords that correspond to real DNA strings with an error. We can create codes and
codewords that correspond to real DNA strings by the presented methods in this paper
with proper computational processes.

The structure of this paper is as follows. In Section 2, we give some fundamental
definitions, define a Gray map over the ring Sk, and explore the structure of linear codes
and their dual over the ring Sk. In Section 3, we look into the cyclic codes decomposition,
their dual on the ring Sk, and their corresponding generators. We also provide the necessary
and sufficient conditions for cyclic codes to contain their duals. In Section 4, we provide
some examples of better quantum codes and with the help of the Gray image of cyclic code,
we also obtain optimal codes over S1(k = 1). Moreover, in Section 5, we present methods
to generate DNA codes with flexible designs as applications for DNA codes.

2. Preliminaries

First, we consider that F2m is a Galois field of order 2m of a characteristic 2, and m is
a positive integer. For a positive integer k, let us consider that Sk = F2m [v1,v2,...,vk ]

〈v2
i −αivi ,vivj−vjvi〉

, for

i, j = 1, 2, 3, . . . , k, where αi is the non-zero element of F2m . We begin our discussion with
some basic definitions:

(i) The Hamming distance between two vectors x = x1 . . . xn and y = y1 . . . yn is the
number of places where they differ, and is denoted by d(x, y).

(ii) The Hamming weight of a vector x = x1x2 . . . xn is the number of nonzero xi and is
denoted by wt(x).
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(iii) Let x, y ∈ Fn
q , the Euclidean inner product of x and y is defined as x · y = x0y0 +

x1y1 + . . . + xn−1yn−1.
(iv) Each element of code C is referred to as a codeword and a code of length n over R is

said to be linear if it is an R-submodule of Rn.
(v) A code C is said to be self-dual if C = C⊥, self-orthogonal if C ⊆ C⊥ and dual

containing if C⊥ ⊆ C.
(vi) A linear code C is said to be linear complementary dual or in short LCD if C ∩ C⊥ =

{0}, where C⊥ is the dual code of C.
(vii) A linear code C of length n over R is said to be a cyclic code if every cyclic shift of a

codeword c in C is again a codeword in C, i.e., if c = (c0, c1, c2, . . . , cn−1) ∈ C, then its
cyclic shift δ(c) = (cn−1, c0, . . . , cn−2) ∈ C, where the operator δ is known as cyclic
shift.

(viii) A linear code C is said to be reversible if cr = (cn−1, cn−2, . . . , c0) ∈ C whenever
c = (c0, c1, c2, . . . , cn−1) ∈ C.

(ix) Let C be a linear code of length n over R. Then C is called complement if for any
z = (z0, z1, . . . , zn−1) ∈ C, zc = (z0, z1, . . . , zn−1) ∈ C, reversible-complement if for
any z ∈ C, zrc ∈ C.

(x) Let C be a code of length n over R. Then C (or the DNA correspondence of C) is
called a reversible (reversible complement) DNA code if the DNA correspondence of
C satisfies the properties of being reversible (reversible compliment).

(xi) It is important to note that the set of n-fold tensor product (Hq)⊗n = Hq ⊗Hq ⊗ . . .⊗
Hq (n- times) is the Hilbert space with dimension qn and thatHq is the Hilbert space
with dimension q, whereH is the complex field. A quantum code of length n over the
field Fq (q is a power of prime.) is denoted by [[n, k, d]]q, where k is the dimension and
d is the minimum distance. We know that each quantum code satisfies the singleton
bound, i.e., n− k + 2 ≥ 2d. A quantum code is said to be MDS (maximum distance
separable) if n − k + 2 = 2d. A quantum code [[n, k, d]]q is better than the other
quantum code [[n

′
, k
′
, d
′
]]q if any one or both the following conditions hold:

(a) k
n > k

′

n′
, where d = d

′
(larger code rate with same distance).

(b) d > d
′

where k
n = k

′

n′
(larger distance with the same code rate).

Lemma 1 (CSS Construction [22]). If C is an [n, k, d] linear code of length n with C⊥ ⊆ C over
Fq , then there exists a quantum error correcting code with parameters [[n, 2k− n, d]]q over Fq.

Lemma 2 ([3]). A cyclic code C of length n with generator polynomial g(x) over Fq that contains
its dual if and only if

xn − 1 ≡ 0(modg(x)g∗(x)),

where g∗(x) is the reciprocal polynomial of g(x).

Further, with the help of the Kronecker product, we define the Gray map over Sk.
Kronecker product has the following properties:

(i) (P⊗Q)−1 = P−1 ⊗Q−1 for matrices P = (pij)m×m and Q = (qi′ j′ )n×n.

(ii) (P⊗Q)⊗ C = P⊗ (Q⊗ C) for arbitrary matrices P, Q and C.
(iii) (P⊗Q)T = PT ⊗QT , where PT and QT represent the transpose of matrices P and Q,

respectively.

The Kronecker product of matrices P and Q is the pm× qn block matrix

P⊗Q =


p11Q p12Q . . . p1nQ
p21Q p22Q . . . p2nQ
. . . . . . . . . . . .

pm1Q pm2Q . . . pmnQ
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where P = (pij) is an m× n matrix and Q = (qi′ j′ ) is a p× q matrix. More specifically,

P⊗Q =



p11q11 p11q12 . . . p11q1q . . . . . . p1nq11 p1nq12 . . . p1nq1q
p11q21 p11q22 . . . p11q2q . . . . . . p1nq21 p1nq22 . . . p1nq2q

...
...

. . .
...

...
...

...
...

. . .
...

p11qp1 p11qp2 . . . p11qpq . . . . . . p1nqp1 p1nqp2 . . . p1nqpq
...

...
...

...
. . .

...
...

...
...

...
...

...
. . .

...
...

...
pm1q11 pm1q12 . . . pm1q1q . . . . . . pmnq11 pmnq12 . . . pmnq1q
pm1q21 pm1q22 . . . pm1q2q . . . . . . pmnq21 pmnq22 . . . pmnq2q

...
...

. . .
...

...
...

...
...

. . .
...

pm1qp1 pm1qp2 . . . pm1qpq . . . . . . pmnqp1 pmnqp2 . . . pmnqpq


for 1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ i

′ ≤ p, 1 ≤ j
′ ≤ q.

The ring Sk =
F2m [v1,v2,...,vk ]

〈v2
i −αivi ,vivj−vjvi〉

and the ring Sk can also be expressed as F2m + F2m v1 +

F2m v2 + F2m v1v2 + . . . + F2m v1v2 . . . vk such that v2
i = αivi, vivj = vjvi for i, j = 1, 2, 3, . . . , k.

Sk is a finite commutative ring. Next, let us consider that T be the power set of {1, 2, 3, .., k}.
Henceforth, every element s ∈ Sk can be uniquely expressed as s = ∑

T∈T
βTvT for some

βT ∈ Fq, T ∈ T , vT = ∏
i∈T

vi and vφ = 1. Let ek
i ∈ {vT ∈ T , vφ = 1} and also ek

i 6= ek
j , where

i 6= j and i, j = 1, 2, 3, . . . , 2k.
We take k = 1, then S1 = F2m /〈v2

1− α1v1〉. The ring S1 can be expressed as S1 = F2m +
v1F2m such that v2

1 = α1v1. Henceforth, the basis of S1 is the {1, v1}. Let e1
1 = 1, e1

2 = v1. For
the ring Sk, using Kronecker Product, the bases of Sk can be written as

(ek
1, ek

2, . . . , ek
2k ) = (1, vk)⊗ (ek−1

1 , ek−1
2 , . . . , ek−1

2k−1), (1)

where (e1
1, e1

2) = (1, v1). Further, we obtain the set of an orthogonal set of idempotents of

the ring Sk such that ζk
i =

k
∏
j=1

∆j, where ∆j ∈ {
vj
αj

,
αj−vj

αj
} and ζk

i 6= ζk
j for i, j = 1, 2, 3, . . . , 2k.

It is easily to see that

2k

∑
i=1

ζk
i = 1, (ζk

i )
2 = ζk

i , ζk
i ζk

j = 0 ( f or i 6= j),

where i, j = 1, 2, 3, . . . , 2k. Therefore, the set {ζk
i |i = 1, 2, . . . , 2k} is also a basis of the ring Sk.

Again, we take k = 1, then ζ1
1 = v1

α1
, ζ1

2 = α1−v1
α1

. Similarly as in (1), we have

(ζk
1, ζk

2, . . . , ζk
2k ) = (

vk
αk

,
αk − vk

αk
)⊗ (ζk−1

1 , ζk−1
2 , . . . , ζk−1

2k−1),

where (ζ1
1, ζ1

2) = ( v1
α1

, α1−v1
α1

).
With the help of Chinese Remainder Theorem, we write

Sk = Skζk
1 ⊕ Skζk

2 ⊕ . . .⊕ Skζk
2k = F2m ζk

1 ⊕ F2m ζk
2 ⊕ . . .⊕ F2m ζk

2k .

Every element s in Sk has the unique representation s =
2k

∑
i=1

βiek
i =

2k

∑
i=1

γk
i ζk

i , where βi, γk
i ∈

F2m and i = 1, 2, . . . , 2k. Now, we define a Gray map:

Θk : Sk −→ F2k

2m
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is defined by

Θk(s) = Θk(
2k

∑
i=1

βiek
i ) = (β1, β2, . . . , β2k )A2k . (2)

In above described Gray map, A2k ∈ GL2k (F2m) is a matrix and GL2k (F2m) is the linear
group of all 2k × 2k invertible matrices over the field F2m such that A2k AT

2k = εI2k×2k , where
AT

2k is the transpose of A2k , I2k×2k is an identity matrix of order 2k and ε ∈ F2m\{0}. In
order to make our representation easier, we write (β1, β2, . . . , β2k )(A2k ) = (γk

1, γk
2, . . . , γk

2k ).
Above described Gray map can easily be extended to Sn

k as

Θk : Sn
k −→ F2kn

2m

and is defined as
Θk(s0, s1, . . . , sn−1) = (γk

i,j)1≤i≤2k ,1≤j≤n−1.

We denote each sj =
2k

∑
i=1

βi,jek
i . Henceforth

Θk(sj) = (β1,j, β2,j, .., β2k ,j)(A2k ) = (γk
1,j, γk

2,j, . . . , γk
2k ,j),

where βi,j ∈ F2m , i = 1, 2, 3, . . . , 2k and j = 1, 2, . . . , n− 1.
When we take k = 1, we can define the Gray map in a similar way as (2)

Θ1(S1) −→ F2
2m

defined map Θ1(β1e1
1 + β2e1

2) = Θ1(β1 + β2v1) = (β1, β2)A2, A2 ∈ GL2(F2m) is a matrix
and GL2(F2m) is the linear group of all 2× 2 invertible matrices over the field F2m such that
A2 AT

2 = εI2×2, where AT
2 is the transpose of A2, I2×2 is an identity matrix of order 2 and

ε ∈ F2m\{0}.

The Lee weight of every element s =
2k

∑
i=1

βiek
i of the ring Sk is defined as wL(s) =

wH(Θk(s)) = wH(γ
k
1, γk

2, . . . , γk
2k ). Let C be a linear code of length n over Sk. It can be easily

seen that Θk(C) is a linear code of length 2kn over F2m . Any linear code C of length n over
Sk, we state

Cj = {xj ∈ Fn
2m |

2k

∑
i=1

ζk
i xi ∈ C, xi ∈ Fn

2m , i 6= j and 1 ≤ i ≤ 2k},

where j = 1, 2, . . . , 2k. Then Cj is a linear code of length n over F2m , for j = 1, 2, 3, . . . , 2k.
Next, let us consider that Bi is the linear code over F2m , where i = 1, 2, . . . , 2k. We denote
B1 ⊕ B2 ⊕ . . .⊕ B2k = {b1 + b2 + . . . + b2k |bi ∈ Bi, 1 ≤ i ≤ 2k} and similarly we define the
product as B1 ⊗ B2 ⊗ . . .⊗ B2k = {(b1, b2, . . . , b2k )|bi ∈ Bi, 1 ≤ i ≤ 2k}. Hence, a linear code
C of length n over Sk can be easily seen that C = ⊕2k

i=1ζk
i Ci = ζk

1C1 ⊕ ζk
2 ⊕ . . .⊕ ζk

2k C2k . A
matrix is called generator matrix of C if the rows of the matrix generates C. Let Gi be the
generator matrix for the code Ci, for i = 1, 2, 3, . . . , 2k. Then a generator matrix for the code
C is

G =



ζk
1G1

ζk
2G2
.
.
.

ζk
2k G2k





Mathematics 2023, 11, 1430 6 of 16

and a generator matrix of Θk(C) is

Θk(G) =



Θk(ζ
k
1G1)

Θk(ζ
k
2G2)
.
.
.

Θk(ζ
k
2k G2k )


.

3. Main Results

In this section, we discuss some results on the Gray map, and structural properties
of cyclic codes over Sk and with the help of CSS-construction, we prove some results on
quantum error correcting codes.

3.1. Results on the Gray Map

In this section, we describe some results on the Gray map.

Proposition 1. The Gray map Θk is a linear, bijective and distance-preserving map from (Rn
k , dL)

to (F2kn
2m , dH), where dL = dH .

Proof. Suppose c1, c2 ∈ Sk. It can be easily seen that

Θk(c1 + c2) = Θk(c1) + Θk(c2).

Now, we take δ ∈ F2m , then
Θk(δc1) = δΘk(c1).

So, Θk is a map linear-preserving. Now, we will prove that Θk is a bijection.
Then, we have

Θk(c1) = Θk(c2)

Θk(
2k

∑
i=1

βiek
i ) = Θk(

2k

∑
i=1

δiek
i )

(β1, β2, . . . , β2k )A2k = (δ1, δ2, . . . , δ2k )A2k

where βi, δi ∈ F2m for 1 ≤ i ≤ 2k. This implies that

β1 = δ1, . . . , β2k = δ2k .

Then c1 = c2. Henceforth, Θk is one-one. Take any (β1, β2, . . . , β2k )A2k ∈ F2k

2m , then there
exists a corresponding element c1 ∈ Sk such that Θk(c1) = (β1, . . . , β2k ). Therefore, Θk is
onto. Hence, Θk is a bijective map.

Furthermore, we have

dL(c1, c2) = wL(c1 − c2)

= wH(Θk(c1 − c2))

= wH(Θk(c1)−Θk(c2))

= dH(Θk(c1), Θk(c2)).

Hence, Θk is a distance-preserving map.

Proposition 2. Let C be a linear code of length n over Sk. Then |Θk(C⊥)| = |Θk(C)⊥| and
Θk(C) is self-orthogonal if and only if C is self-orthogonal. Furthermore, Θk(C) is self-dual if and
only if C is self-dual.
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Proof. Suppose two elements s, t in Sk such that

s = (s0, s1, . . . , sn−1)

t = (t0, t1, . . . , tn−1),

where sj =
2k

∑
i=1

pi,jζ
k
i , tj =

2k

∑
i=1

ri,jζ
k
i for i = 1, 2, 3, . . . , 2k, j = 1, 2, . . . , n− 1 and pi,j, ri,j ∈ F2m .

Next, let us consider that s · t = 0. Then, we obtain

n−1

∑
i=1

sjtj = 0

=⇒
n−1

∑
j=0

(
2k

∑
i=0

pi,jζ
k
i )(

2k

∑
i=0

ri,jζ
k
i ) = 0.

Since (ζk
i )

2 = ζk
i , we have

n−1

∑
j=0

2k

∑
i=0

pi,jri,jζ
k
i =

2k

∑
i=0

n−1

∑
j=0

pi,jri,jζ
k
i = 0.

Therefore,

n−1

∑
j=0

pi,jri,j = 0,

where i = 1, 2, . . . , 2k. Furthermore,

Θk(s)Θk(t) =
n−1

∑
j=0

2k

∑
i=0

pi,jri,j

=
2k

∑
i=0

n−1

∑
j=0

pi,jri,j

= 0.

This implies that,

Θk(C⊥) ⊆ Θk(C)⊥.

Since Θk is a bijection, then |Θk(C⊥)| = |Θk(C)⊥|. Hence, Θk(C⊥) = Θk(C)⊥. Now, C is
self-orthogonal if and only if C ⊆ C⊥. Henceforth, Θk(C) ⊆ Θk(C⊥) = Θk(C)⊥ if and
only if Θk(C) is self-orthogonal. In the same way, C is self-dual if and only if Θk(C) is
self-dual.

Proposition 3. Let C = ⊕2k

i=1ζk
i Ci be a linear code of length n over Sk. Then,

(i) Θk(C) = C1 ⊗ C2 ⊗ . . .⊗ C2k as well as |C| = |C1||C2| . . . |C2k |.
(ii) C⊥ = ⊕2k

i=1ζk
i C⊥i , Moreover, each Ci is self-orthogonal if and only if C is self-orthogonal as

well as each Ci is self-dual if and only if C is self-dual.
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Proof.

(i) Let us suppose that w = (γk
1,0, γk

1,1, . . . , γk
1,n−1, γk

2,0, γk
2,1, . . . , γk

2,n−1, . . . , γk
2k ,0, γk

2k ,1, . . . ,

γk
2k ,n−1) ∈ Θk(C) and sj =

2k

∑
i=1

γk
i,jζ

k
i , where j = 0, 1, 2, . . . , n− 1. Hence, s = (s0, s1, . . .,

sn−1) ∈ C, but Θk is bijective map, (γk
i,0, γk

i,1, . . . , γk
i,n−1) ∈ Ci, where i = 1, 2, . . . , 2k.

With the help of definition of Ci, w ∈ C1 ⊗ C2 ⊗ . . .⊗ C2k . Hence, Θk(C) ⊆ C1 ⊗ C2 ⊗
. . .⊗ C2k .
On the other hand, let w = (γk

1,0, γk
1,1, . . . , γk

1,n−1, γk
2,0, γk

2,1, . . . , γk
2,n−1, . . . , γk

2k ,0, γk
2k ,1, . . .,

γk
2k ,n−1) ∈ C1 ⊗ C2 ⊗ . . .⊗ C2k , then (γk

i,0, γk
i,1, . . . , γk

i,n−1) ∈ Ci, where i = 1, 2, . . . , 2k.

We select sj =
2k

∑
i=1

γk
i,jζ

k
i , where j = 0, 1, . . . , n − 1. Then, s = (s0, s1, . . . , sn−1) ∈ C

and Θk(s) = w. Therefore, w ∈ Θk(C). Hence, C1 ⊗ C2 ⊗ . . . ⊗ C2k ⊆ Θk(C).
Furthermore, the map Θk is bijective, then |C| = |Θk(C)|. Consequently, |C| =
|C1 ⊗ C2 ⊗ . . .⊗ C2k | = |C1||C2| . . . |C2k |.

(ii) Let us consider Uj = {rj ∈ Fn
2m |

2k

∑
i=1

ζk
i ri ∈ C⊥, f or some ri ∈ Fn

2m , i 6= j&1 ≤ i, j ≤

2k}. Then C⊥ can be uniquely expressed as C⊥ = ζk
1U1 ⊕ ζk

2U2 ⊕ . . . ⊕ Ck
2k . Since,

U1 = {r1 ∈ Fn
2m |

2k

∑
i=1

ζk
i ri ∈ C⊥, f or some ri ∈ Fn

2m , i 6= 1&1 ≤ i ≤ 2k}. Evidently,

C1U1 = 0, hence U1 ⊆ C⊥1 . Next, let us consider that c1 ∈ C⊥1 , then c1x1 = 0 for
any c = ∑ ζk

i xi ∈ C. Therefore, ζk
1c1c = ζk

1c1x1 = 0 and this implies that ζk
1c1 ∈ C⊥.

We have c1 ∈ U1, with the help of unique representation of C⊥, so C⊥1 ⊆ U1. In this
similar way, we can show that C⊥j = U⊥j , where j = 2, 3, . . . , 2k. Thus, we arrive at

C⊥ = ⊕2k

i=1ζk
i C⊥i . Furthermore, C ⊆ C⊥ if and only if C is self-orthogonal. Then, we

have,

ζk
1C1 ⊕ . . .⊕ ζk

2k C2k ⊆ ζk
1C⊥1 ⊕ . . .⊕ ζk

2k C⊥2k ⇐⇒ Ci ⊆ C⊥i ,

where i = 1, 2, . . . , 2k. In a similar way, we can easily see that C is self-dual if and only
if each Ci is self-dual.

Proposition 4. Let C = ⊕2k

i=1ζk
i Ci be a linear code having the parameters [n, k, dL] over Sk. Then

Θk(C) is a linear code with parameters [2kn,
2k

∑
i=1

ki, dH ] over F2m , where i = 1, 2, 3, . . . , 2k and

dL = dH .

3.2. Cyclic Codes over Sk

We begin this section with some important results on cyclic codes over Sk.

Theorem 1. Let C = ⊕2k

i=1ζk
i Ci be a linear code of length n over Sk. Then C is a cyclic code of

length n over Sk if and only if each Ci is a cyclic code over F2m , where i = 1, 2, . . . , 2k.

Proof. Let C be a linear code of length n over Sk. Take any codeword c = (c0, c1, . . . , cn−1) ∈

C, here cj =
2k

∑
i=1

ζk
i ci,j, i = 1, 2, . . . , 2k and j = 1, 2, . . . , n − 1. Next, let us consider that

y1, y2, . . . , y2k are in C1, C2, . . . , C2k , respectively, where yi = (ci,0, ci,1, . . . , ci,n−1) ∈ Ci.
Since C is a cyclic code over Sk, we have δ(c) = (cn−1, c0, c1, . . . , cn−2) ∈ C, where δ(c) is the
cyclic shift of c. Henceforth, δ(c) is in C if and only if δ(yi) = (ci,n−1, ci,0, . . . , ci,n−2) ∈ Ci,
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where i = 1, 2, 3, . . . , 2k. Thus, C is a cyclic code of length n over Sk if and only if each Ci is
a cyclic code over F2m .

Theorem 2. Let C = ⊕2k

i=1ζk
i Ci be a cyclic code of length n over Sk and gi(x) be the monic

generator polynomial of Ci, where each gi(x) divides xn − 1. Then,

(i) C = 〈g1(x)ζk
1, g2(x)ζk

2, . . . , g2k (x)ζk
2k 〉 as well as |C| = 2m

2kn−
2k

∑
i=1

deg(gi(x))
.

(ii) C = 〈g(x)〉, where g(x) =
2k

∑
i=1

gi(x)ζk
i divides (xn − 1).

Proof.

(i) In view of Theorem 1, each Ci is a cyclic code of length n over F2m , where i = 1, 2, . . . , 2k.
However, C is a cyclic code over Sk and it is given that gi(x) is the monic generator poly-
nomial of Ci, i.e., Ci = 〈gi(x)〉 ⊆ F2m [x]

〈xn−1〉 . Hence, C = 〈g1(x)ζk
1, g2(x)ζk

2,. . ., g2k (x)ζk
2k 〉

and also the map Θ is bijective, then |Θ(C)| = |C|. By Proposition 3, we conclude that

|C| = |C1||C2| . . . |C2k |
= (2m)n−deg(g1(x)) . . . (2m)n−deg(g2k (x))

= (2m)
2kn−

2k

∑
i=1

deg(gi(x))
.

(ii) By part (i), C = 〈g1(x)ζk
1, g2(x)ζk

2, . . . , g2k (x)ζk
2k 〉. Next, we consider that D =

g1(x)ζk
1 + g2(x)ζk

2 + . . . + g2k (x)ζk
2k . It is clearly that D ⊆ C. However, (ζk

i )
2 = ζk

i
and ζk

i ζk
j = 0, where i, j = 1, 2, . . . , 2k and i 6= j. Hence gi(x)ζk

i = (g1(x)ζk
1 + . . . +

g2k (x)ζk
2k )ζ

k
i . This shows that C ⊆ D. Now, from the above discussion, we conclude

that C = D, where f (x) =
2k

∑
i=1

gi(x)ζk
i . It is given that monic generator polyno-

mial of Ci is gi(x), where i = 1, 2, . . . , 2k. Henceforth, gi(x) divides xn − 1 such that
xn − 1 = hi(x)gi(x) this implies that (xn − 1)ζk

i = hi(x)gi(x)ζk
i , where i = 1, 2, . . . , 2k.

xn − 1 = xn(
2k

∑
i=1

ζk
i )− (

2k

∑
i=1

ζk
i ) =

2k

∑
i=1

(xn − 1)ζk
i

=
2k

∑
i=1

hi(x)gi(x)ζk
i = (

2k

∑
i=1

hi(x)ζk
i )(

2k

∑
i=1

gi(x)ζk
i )

= (
2k

∑
i=1

hi(x)ζk
i )g(x).

Hence, g(x) divides xn − 1. This completes the proof.

Corollary 1. Let C = ⊕2k

i=1ζk
i Ci be a cyclic code of length n over Sk. Then C⊥ = ⊕2k

i=1ζk
i C⊥i is

also a cyclic code of length n over Sk.

3.3. Quantum Codes

In quantum computing and communication, quantum codes are employed to shield
quantum information from noise into the channel during transmission. One of the note-
worthy developments in code construction is the construction of quantum error-correcting
codes from classical error-correcting codes. The construction of quantum error-correcting
codes from classical error-correcting codes was done by Calderbank et al. [3]. In this section,
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using the CSS(Calderbank-Shor-Steane) construction [22], we obtain quantum codes from
dual-containing cyclic codes. In comparison to already existing quantum codes, we are able
to construct superior quantum codes. Moreover, using a necessary and sufficient condition
over the finite fields in [3], we are able to determine the necessity for cyclic codes to contain
their duals over Sk. Our first result gives the necessary and sufficient conditions for cyclic
codes to contain their duals.

Theorem 3. Let C = ⊕2k

i=1ζk
i Ci be a cyclic code of length n over Sk, where gi(x) is the generator

polynomial of Ci and i = 1, 2, . . . , 2k. Then,

(i) C⊥ ⊆ C if and only if C⊥i ⊆ Ci, where i = 1, 2, . . . , 2k.
(ii) C⊥ ⊆ C if and only if xn− 1 ≡ 0(modgi(x)g∗i (x)), where g∗i (x) is the reciprocal polynomial

of gi(x).

Proof.

(i) First, let us consider that C⊥ ⊆ C. This implies that ⊕2k

i=1ζk
i C⊥i ⊆ ⊕2k

i=1ζk
i Ci. However,

Ci is a linear code such that ζk
i Ci ≡ C(modζk

i ), we get C⊥i ⊆ Ci, where i = 1, 2, . . . , 2k.
Conversely, let us consider that C⊥i ⊆ Ci, where i = 1, 2, . . . , 2k. This shows that
C⊥ = ⊕2k

i=1ζk
i C⊥i ⊆ ⊕2k

i=1ζk
i Ci = C.

(ii) Let C⊥ ⊆ C, by using part (i), C⊥i ⊆ Ci, where i = 1, 2, . . . , 2k. Now, by Lemma 2,
xn − 1 ≡ (modgi(x)g∗i (x)), where g∗i (x) denotes the reciprocal of gi(x). Conversely,
let us consider that xn − 1 ≡ (modgi(x)g∗i (x)), where g∗i (x) denotes the reciprocal of
gi(x) and i = 1, 2, . . . , 2k. Hence, by Lemma 2, we have C⊥i ⊆ Ci, where i = 1, 2, . . . , 2k.
Application of part (i) yields that C⊥ ⊆ C.

Theorem 4. Let C = ⊕2k

i=1ζk
i Ci be a cyclic code of length n over Sk and its Gray image having the

parameters [2kn,
2k

∑
i=1

ki, dH ], where i = 1, 2, . . . , 2k. Then,

(i) If C⊥ ⊆ C, then there exists a quantum code [[2kn,
2k

∑
i=1

ki − 2kn, dH ]]2m over F2m .

(ii) If xn − 1 ≡ 0(modgi(x)g∗i (x)), where g∗i (x) is the reciprocal polynomial of gi(x), and

i = 1, 2, 3, . . . , 2k, then there exists a quantum code [[2kn, 2
2k

∑
i=1

ki − 2kn, dH ]]2m over F2m .

Proof.

(i) First, let us consider that C⊥ ⊆ C. By Proposition 2, Θk(C⊥) = Θk(C)⊥, Θk(C)⊥ ⊆
Θk(C). Hence, Θk(C) is a dual containing linear code over F2m . By Lemma 1, there

exists a quantum code [[2kn, 2
2k

∑
i=1

ki − 2kn, dH ]]2m over F2m .

(ii) Let us consider that xn − 1 ≡ 0(modgi(x)g∗i (x) for i = 1, 2, 3, . . . , 2k, where g∗i denotes
the reciprocal polynomial of gi(x). By Theorem 3 part (ii), C⊥ ⊆ C, by using part (i),

there exists a quantum code [[2kn, 2
2k

∑
i=1

ki − 2kn, dH ]]2m over F2m .

4. Applications

In this section, we obtain a number of optimal linear codes from the Gray images of
cyclic codes over S1(for k = 1). Additionally, we obtain quantum codes over S1 that are
better than the ones found in some recent references [23,24] by using dual-containing cyclic
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codes. The Magma computation system is used to complete all of the computations in these
examples [25].

Example 1. Let n = 8, m = 1 and S1 = F2[u1]/〈u2
1 − u1〉. Then, we have,

x8 − 1 = (x + 1)8 ∈ F2[x].

Take

g1(x) = (x + 1)

g2(x) = (x + 1)5.

Hence, C is a cyclic code of length 8 over S1. By Proposition 4, the Gray image Θ1(C) has parameters
[16, 10, 4] over F2. This code is optimal according to the database [26].

Example 2. Let n = 28, m = 2, α1 = 1 and S1 = F22 [u1]/〈u2
1 − u1〉. Then, we have,

x28 − 1 = (x + 1)4(x3 + x + 1)4(x3 + x2 + 1)4 ∈ F4[x].

Take

g1(x) = (x + 1)(x3 + x + 1)3

g2(x) = (x + 1)2.

Hence, C is a cyclic code of length 28 over S1. Then, by the Proposition 4, the Gray image Θ1(C)
has parameters [56, 44, 4] over F4. However, x28 − 1 ≡ 0(modgi(x)g∗i (x)), where i = 1, 2. With
the help of Theorem 3, C⊥ ⊆ C. Hence, by Theorem 4, there exists a quantum code with parameters
[[56, 32, 4]]4. The code has the same minimum distance but a larger code rate than the previous
known quantum code [[56, 16, 4]]4 existing in [23].

In Tables 1 and 2, we write the coefficients of generator polynomials in decreasing
order, for example, we write 1021 to represent the polynomial x3 + 2x + 1. In Table 1, we
obtain optimal linear codes with the help of the Gray image of cyclic codes and also in
Table 2, we obtain quantum codes. In Table 2, it is noted that our obtained codes [[n, k, d]]2m

are better than the existing quantum codes [[n
′
, k
′
, d
′
]]2m collected from different references

mentioned there.

Table 1. Gray images of cyclic codes of length n over S1.

m n g1(x) g2(x) Θ1(C) Remarks

1 4 11 11 [8, 6, 2]2 optimal

1 2 11 11 [4, 2, 2]2 optimal

1 8 101 110011 [16, 9, 4]2 optimal

1 12 11 101101 [24, 18, 4]2 optimal

1 14 101 111001 [28, 21, 4]2 optimal

1 15 111 1100111001 [30, 19, 6]2 optimal

2 8 11 110011 [16, 10, 4]4 . . .

2 9 11 110ww [18, 13, 3]4 . . .
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Table 2. Quantum codes from cyclic codes over S1.

m n g1(x) g2(x) Θ1(C) [[n, k, d]]2m [[n
′
, k

′
, d

′
]]2m

2 7 1011 1101 [14, 8, 3] [[14, 2, 3]]22 . . .

2 11 1 1w211w1 [22, 17, 5] [[22, 12, 5]]22 . . .

2 28 11100101001 101 [56, 44, 4] [[56, 32, 4]]22
[[56, 16, 4]]22

[23]

3 12 11 11 [24, 22, 2] [[24, 20, 2]]23
[[21, 15, 2]]23

[24]

4 14 11 11110011 [28, 20, 4] [[28, 12, 4]]24 [[28, 4, 3]]24 [24]

4 19 1w50w5w5w10w100w101 1w50w5w5w10w100w101 [38, 20, 7] [[38, 2, 7]]24 . . .

4 22 11 11w10w101111w9w911 [44, 33, 6] [[44, 22, 6]]24 [[35, 5, 3]]24 [24]

4 29 1w7w6w3w12w9w131 1w7w6w3w12w9w131 [58, 44, 6] [[58, 30, 6]]24 . . .

4 41 1w10w2w8w101 1w10w2w8w101 [82, 72, 4] [[82, 62, 4]]24 . . .

5. DNA Codes Over St
k

In this section, St
k =

F42t [v1,v2,...,vk ]

〈v2
i −vi ,vivj−vjvi〉

that a special case of Sk is considered. We use

St
k to obtain reversible DNA codes because the number of DNA bases is 4. Here, we

present methods to generate reversible DNA codes and reversible complement DNA codes.
In [27–30], there are more computational or limited operations to generate the DNA codes.
Furthermore, ref. [27] applies a method that is more similar to the generator method of
the coterm polynomials as in [31]. Here, the presented methods satisfy the more flexibility
and variety to obtain the DNA codes rather than the method of [27–30]. In this section, we
present a method that is more efficient than [29] for obtaining the idempotents. We define
the structure of idempotents as follows.

We define κ to determine idempotent structure according to indices of related idempo-
tents. κ gives the set of places of non-zero digits in a binary number that is a correspondence
to an integer.

κ(r) = κ(r = (bn . . . b2b1)2) = {i|bi 6= 0},

where r ∈ Z+ ∪ {0}. For example, κ(19) = κ(19 = (10011)2) = {1, 2, 5}.

Definition 1. The idempotent form of St
k:

Ij =

{
vi + 1, if i ∈ κ(j)
vi, if i /∈ κ(j)

Example 3. Let us create the set of idempotents over St
3. According to Definition 1, idempotents

are:

I0 = v1v2v3,

I1 = (v1 + 1)v2v3,

I2 = v1(v2 + 1)v3,

I3 = (v1 + 1)(v2 + 1)v3,

I4 = v1v2(v3 + 1),

I5 = (v1 + 1)v2(v3 + 1),

I6 = v1(v2 + 1)(v3 + 1),

I7 = (v1 + 1)(v2 + 1)(v3 + 1).
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Each elements r ∈ St
k is expressed by r = a0 I0 + a1 I1 + . . . + a2k−1 I2k−1 where

a1, . . . , a2k−1 ∈ F42k . Because of St
k = I0F42t ⊕ I1F42t ⊕ . . .⊕ I2k−1F42t . By using the structure

St
k = I0F42t ⊕ I1F42t ⊕ . . .⊕ I2k−1F42t for element of St

k, we use the Gray map as follows:

ϕ : St
k −→ F2k

42t

α −→ (α0, α1, . . . , α2k−1).

This Gray map is a one-to-one and onto map. It can be extended to n-tuples coordinate-wise.
We use the following automorphism to satisfy the DNA reversibility over St

k.

θ :St
k −→ St

k

a −→ a4t ∀a ∈ F42t ,

vi −→ vi + 1 ∀i ∈ {1, . . . , k}.

We use DNA correspondences for each element of F42t that are given in [20,32].

Lemma 3. θ(Ij) = I2k−1−j ∀ j ∈ {0, 1, . . . , 2k − 1} where Ij are idempotents of St
k, (j ∈

{0, 1, . . . , 2k − 1}).

Theorem 5. DNA reverse of ϕ(β) is ϕ(θ(β)) where β ∈ St
k.

Proof of Lemma 3 and Theorem 5 is similar to Lemma 1 and Theorem 3 in [29].
The following example shows that θ reverses an element’s DNA correspondence.

Example 4. DNA 2-bases correspondence for elements of F16 is given by Table-1 in [20]. An
algorithm to generate the general form of Table-1 is given by [32]. A special property of Table-1 is
the fourth power of each element in F16 maps to the DNA 2-bases that are reverses of each other.
The general form of this property satisfies by 4tth power of elements in F42t .

Let us consider the ring S1
2. Let α be a primitive element of F16 and β = α3 I0 + α7 I1 +

αI2 + α6 I3 ∈ S1
2. Then, ϕ(β) = (α3, α7, α, α6). Let τ maps each element of the field to DNA

correspondence and it can be extended n-tuple structures. By using Table-1 ([20]), the corresponding
DNA 2-bases is

τ(α3, α7, α, α6) = (τ(α3), τ(α7), τ(α), τ(α6))

= (AG, GT, AT, AC).

Also,

θ(β) = α9 I0 + α4 I1 + α13 I2 + α12 I3

⇒ ϕ(θ(β)) = (α9, α4, α13, α12)

⇒ τ(θ(β)) = (α9, α4, α13, α12) = (CA, TA, TG, GA).

Thus, ϕ(β) and ϕ(θ(β)) are DNA reverses of each other.

We can consider the ϕ for n-coordinates, also. For c = (c0, . . . , cn−2, cn−1) ∈ St
k

we have DNA correspondence of c as ϕ(c) = (ϕ(c0), . . . , ϕ(cn−2), ϕ(cn−1)). Then, the
DNA reverse of ϕ(c) is ϕ(θ(c)r) = (ϕ(θ(cn−1)), ϕ(θ(cn−2)), . . . , ϕ(θ(c0))) where θ(c) =
(θ(c0), . . . , θ(cn−2), θ(cn−1)). We will define a θ-lifted and ρ-lifted which are special forms
of General lifted [33] polynomials that are generated by using a polynomial over a base
field of the rings. These polynomials will be used to generate reversible DNA codes.

Let h(x) = b0 + b1x + . . . + bsxs be a polynomial over St
k. h(x) is called as palindromic

polynomial if bi = bs−i ∀ i ∈ {0, 1, . . . , s}.
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Definition 2. Let g(x) = b0 + b1x + . . . + bsxs be a palindromic polynomial over F (finite field)
and g(x)|(xn − 1) over F. A θ-lifted polynomial of g(x) is denoted by gθ(x) ∈ R and the ring R
that is an extended from F.

gθ(x) =
b s

2 c

∑
i=0

{
βixi + θ(βi)xs−i, β ∈ U(R) , bi 6= 0
βixi + θ(βi)xs−i, β ∈ Z(R) , bi = 0

(3)

and a ρ-lifted polynomial of g(x) is denoted by gρ(x) ∈ R

gρ(x) =
b s

2 c

∑
i=0

{
βixi + βixs−i, β ∈ U(R) , bi 6= 0
βixi + βixs−i, β ∈ Z(R) , bi = 0

(4)

where Z(R) is a set of zero and zero divisors, and U(R) is a set of units of R.

We define the following definition of the generator set to generate the reversible DNA
codes.

Definition 3. Let h(x) = b0 + b1x + . . . + bsxs be a polynomial over St
k. θ-generator set for h(x)

for a code length of n is

Sθ(h(x)) =

{
t(x)|

{
t(x) = xih(x) , i mod 2 = 0
t(x) = xiθ(h(x)) , i mod 2 = 1

}
where i ∈ {0, 1, . . . , n− 1− s}

and θ(h(x)) = θ(b0) + θ(b1)x + . . . + θ(bs)xs.

In short, Sθ(h(x)) = {h(x), xθ(h(x)), x2h(x), x3θ(h(x)), x4h(x), . . .}.

Theorem 6. Let g(x) be a palindromic polynomials dividing xn − 1 (n is even) over F42t with
degree s.

(i) If s is even, C is generated by Sθ(gρ(x))
(ii) If s is odd, C is generated by Sθ(gθ(x))

and ϕ(C) is a reversible DNA code and C is a linear free code over St
k.

Proof. Order of θ is 2 then θ2(β) = β or θ2(g(x)) = g(x). ϕ(β ∑i xiθi(g′(x))) determines
the DNA correspondence of the codewords that are called DNA codewords. Reverses of
DNA codewords are denoted as follows

ϕ(β ∑
i

xiθi(g′(x)))r = ϕ(θ(β)∑
i

xn−s−1−iθn−s−1−i(g′(x))),

where i ∈ {0, 1, . . . , n− s− 1} and g′(x) = gθ(x)(or g′(x) = gρ(x)). This show that each
DNA codewords have its reverse in the code C. Then ϕ(C) is a reversible DNA code. Each
lifting operator protects the being the unit element of St

k. Thus, C is a linear free code, and
each generator set is linearly independent.

Corollary 2. Let C be a linear free code and ϕ(C) be a DNA code. If C has the codeword (I, I, . . . , I)
where I = I0 + I1 + . . . + I2k−1 then ϕ(C) is a reversible complement DNA code.

Corollary 3. Let g(x) be a palindromic polynomials dividing xn− 1 (n is even) over F42t and C =<
Sθ(g(x)) >. If I = I + Ix + . . . + Ixn is added to the generator set as C′ =< Sθ(g(x)) ∪ I >
then ϕ(C′) is a reversible complement DNA code.

6. Conclusions

In this study, we generated the optimal linear codes over S1 utilizing the algebraic
structural properties of cyclic codes over S1. In addition, we have provided a number of
quantum codes [[n, k, d]]q are better than the existing quantum codes [[n

′
, k
′
, d
′
]]q collected
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from difference references mentioned there. Skew cyclic codes can be used to extend this
work. We also find the quantum codes over S2, S3 and so on with the same method on
taking k = 2, 3, . . . . Moreover, the method of generating the reversible and the reversible
complement DNA codes is presented as applications of DNA codes. It satisfies an advan-
tage which is the variety of DNA codes. Then, the determination of the distance between
codes and DNA correspondence is an open problem.
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