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Abstract: In several publications, the dynamical system of HIV and HTLV mono-infections taking into
account diffusion, as well as latently infected cells in cellular transmission has been mathematically
analyzed. However, no work has been conducted on HTLV/HIV co-infection dynamics taking
both factors into consideration. In this paper, a partial differential equations (PDEs) model of
HTLV/HIV dual infection was developed and analyzed, considering the cells” and viruses’ spatial
mobility. CD4*T cells are the primary target of both HTLV and HIV. For HIV, there are three routes
of transmission: free-to-cell (FTC), latent infected-to-cell (ITC), and active ITC. In contrast, HTLV
transmits horizontally through ITC contact and vertically through the mitosis of active HTLV-infected
cells. In the beginning, the well-posedness of the model was investigated by proving the existence of
global solutions and the boundedness. Eight threshold parameters that determine the existence and
stability of the eight equilibria of the model were obtained. Lyapunov functions together with the
Lyapunov-LaSalle asymptotic stability theorem were used to investigate the global stability of all
equilibria. Finally, the theoretical results were verified utilizing numerical simulations.

Keywords: HTLV /HIV co-infection; virus infection; cell-to-cell infection; mitotic transmission; CTL
immune response; diffusion; global stability; latency

MSC: 35B35; 37N25; 92B05

1. Introduction

Mathematical models and their analysis are efficient and important means of com-
prehending the dynamics of within-host viral infections. This contributes to a deeper
understanding of viral disease structures caused by many viruses such as human immun-
odeficiency virus (HIV) and human T-lymphotropic virus (HTLV), as well as other viruses
such as dengue virus (DENV), hepatitis C virus (HCV), hepatitis B virus (HBV), and, most
recently, coronavirus (COVID-19). In fact, this may lead to an improvement in therapeutic
interferences and control infectious diseases. HTLV and HIV are transmitted in similar
ways from one infected person to another. Both viruses share in common the ability to
infect specific immune cells, which are the CD4™ T cells. HTLV does not cause acquired
immunodeficiency syndrome (AIDS) as in the case of HIV; however, it causes fatal diseases
such as HTLV-associated myelopathy/tropical spastic paraparesis (HAM/TSP) and adult
T-cell leukemia (ATL).

In a groundbreaking study, Nowak and Bangham developed a fundamental model of
HIV dynamics [1]. Since then, many works have been published that involved expanded
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models of this model. Lai and Zou [2] have proposed a mathematical model that describes
the dynamics of HIV-1 infection, where direct cell-to-cell transmission and virus-to-cell
transmission are considered, as two forms of viral infection. Mojaver and Kheiri [3]
developed a model of HIV infection that takes into account cell-to-cell transmission and
antiretroviral therapies (HAART) that can be used to treat and control HIV infection. They
reported that HAART uses the inhibitors of reverse transcriptase and protease to prevent
HIV infection from becoming a fatal disease (AIDS) [3]. A multi-pathway and multi-delay
HIV-1 infection model was studied by Adak and Bairagi [4]. It was found that the system
exhibited different switching phenomena even without delays. A mathematical model
of HIV dynamics was developed by Guo and Qiu [5] to analyze the effect of cytotoxic T
lymphocyte (CTL) immune response on the infection dynamics. In this study, the potent
therapy, latently infected cells, and cell-to-cell viral transmission were taken into account.
Liu and Zhang [6] investigated the dynamics of a two-times delay differential equation
model that investigates the dynamics of HIV infection with latency and considering a
nonlinear type of HIV infection rate. Chen et al. [7] presented a complete study on the
global dynamics of an HIV viral infection model with a saturated incidence rate of infection,
as well as a wild-type and a drug-resistant strain of influenza virus.

In the above-mentioned works, all the mathematical models were based on ordinary
or delay differential equations without considering the cells” and viruses’ spatial mobility.
In 2007, Wang and Wang [8] incorporated a spatial dependence into the model presented
in [1]. Several considerations have been incorporated into the model presented by [8],
and these include time delay, different forms of the incidence rate, and immune responses
(see [9-11]).

It is important to note that the model introduced by [8] has neglected two crucial aspects:

*  Viral latent reservoirs: A major impediment to eliminating HIV infection by antiretro-
viral therapy is the presence of latent HIV-infected cells. Cells that are latently infected
carry the virions, but do not generate them until they are activated. There are many
studies that have dealt with the development of HIV infection models with active and
latent infected cells without taking spatial dependence into account, e.g., [12-15].

*  Cellular transmission: Wang and Wang [8] considered only one mode of transmission
of the infection occurring when the HIV particles infect the healthy CD4 " T cells (FTC),
but several studies have indicated that infected-to-cell (ITC) is another method of
transmission, carried out through virological synapses between HIV-infected and
healthy CD4* T cells [16]. Wang et al. [17] extended the work of [8] by including ITC
transmission. Following that, Sun and Wang [18] incorporated time delay into the
model presented in [17] and considered the incidence rate f(U, H) in a general form.

Based on the work presented in [8], Xu et al. [19] included the ITC infection in their
model. In this study, ITC infection arises from the contact between active infected cells and
healthy cells. Recently, according to [20], latent and active HIV-infected cells are capable of
infecting healthy CD4" T cells through the HIV ITC mechanism. Elaiw and AlShamrani [21]
assumed nonlinear general forms of ITC and FTC transmissions in the HIV infection model.
It was assumed that virus particles can move according to Fickian diffusion, whereas cells
cannot in all of the above-mentioned models.

In several recent studies, the assumption was made that viruses, healthy cells, infected
cells, and immune cells were capable of diffusing [22-28]. Gao and Wang [22] investigated
a reaction—diffusion HIV-1 dynamics model with time delay and cell-to-cell dissemination.
It was assumed in [23] that viruses, uninfected cells, infected cells, and humoral immune
cells can diffuse. In [24], the authors examined the global asymptotic stability of a reaction—
diffusion virus infection model with homogeneous environments, nonlinear incidence in
heterogeneous environments, and humoral immunity. AlAgha and Elaiw [25] presented a
study of the global stability of an HIV-1 model with humoral immune response and het-
erogeneous diffusion. In [26], Elaiw and AlAgha analyzed the dynamics of a system with
discrete time delays and three types of infected cells: latently, short-lived productively, and
long-lived productively infected cells. The models in [25,26] contain some parameters that
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measure the efficiency of highly active antiretroviral therapies (HAARTs). Wang et al. [27]
proposed a diffusive viral infection model incorporating cell-to-cell infection mode, nonlin-
ear incidences, incubation period, and spatial heterogeneity. Ren et al. [28] discussed the
impact of cell-to-cell transmission and the mobility of viruses and cells on HIV-1 dynamics.
The following model that considers the mobility of HIV particles and cells was presented
by Wang et al. [27]:

WD) — g AU (s, t) + 0 — cU(s,t) — U(s, t)[wi H(s, t) + waL(s,t) + wsI(s, 1)),
aLz()i't) =dpAL(s,t) + U(s, t)[w1H(s, t) + wyL(s, t) + wsl(s,t)] — (B+1)L(s, t),
oI(s,t) — d[AI(S, t) +ﬁL(S, t) . DCI(S, t),

W) — dyAH(s, 1) + @I (s, t) — OH(s, 1),

In this model, at position s = (s1, sy, ..., sx) and time f, the densities of healthy CD4*+T
cells, latent infected cells, active infected cells, and free virus particles are represented
by U(s,t),L(s,t),I(s,t), and H(s,t), respectively. dy, dr, dj, and dp are the diffusion
coefficients of the corresponding compartments, and A is the Laplacian operator. Cells
that are healthy are created at a rate ¢. Healthy cells are infected by the viral particles
through FTC transmission at a rate wjUH. The terms woUL and wsU! represent the ITC
incidence rates that occur when healthy CD4™ T cells come into contact with latent or active
infected cells, respectively. Cells that have been latently infected become active at a rate
BL. Viruses are produced by active infected cells at a rate of @I. The rates of death for
healthy cells, latent infected cells, active infected cells, and viral particles are ¢U, #L, a1,
and ¢ H, respectively.

Additionally, in several studies, the dynamics of HTLV mono-infections have been
modeled and analyzed [29-36]. Vargas-De-Leon [29] provided a complete classification
of the global dynamics for an HTLV mono-infection model taking the latently infected
cells into consideration. Lim and Maini [30] formulated a model for HTLV-I dynamics
under the consideration of CTL immunity and mitotic division of active HTLV-infected
cells. Pan et al. [31] proposed a model to describe the dynamics of HTLV infection with
CTL immunity and time delays. Wang et al. [32] developed an HTLV-I infection model with
nonlinear lytic and nonlytic CTL immunity, nonlinear incidence rate, distributed delay, and
immune impairment. Wang et al. [33] studied a model of HTLV-I infection with two time
delays: an intracellular delay and a CTL immune response delay. Refs. [34,35] discussed
HTLV infection with the presence of CTL immunity, as well as the mitotic division of the
active infected cells. Except for Wang and Ma [36], all of these HTLV dynamics models
neglected the diffusion of viruses and cells. In [36], CTL immunity and the mitotic division
of active infected cells were included in a diffusive HTLV infection model.

In the past decade, there has been considerable reporting on HTLV and HIV co-
infections. Infection by both viruses concurrently affects pathogenic development and
associated chronic disease outcomes [37]. There has been documentation of HTLV /HIV
co-infection in certain areas where both retroviruses appear endemic [38] and in individuals
who are of a certain ethnicity as well. In highly endemic regions such as South America
and Sub-Saharan Africa, co-infections with HIV and HTLV are common. Further, the rate
of concurrent HTLV and HIV infections is high in areas where people swap needles and
participate in unprotected sexual relationships. According to statistics from some parts of
Brazil, 16% of HIV patients in some areas have co-infection [39].

According to a recent study, the results showed that HIV-infected individuals are more
likely to be co-infected with HTLV 100- to 500-times more often than people who are not
infected [40]. Additionally, several studies have shown that HTLV-infected individuals
have a higher likelihood of concomitant HIV infection, and vice versa, as compared to
the general population who is infection-free [38]. HTLV and HIV affect primarily CD4*T
cells and cause immune dysfunction, but their etiologies and clinical outcomes are also
in conflict [41]. According to many researchers, HIV-infected patients who possibly have
concurrent HTLV infection are at risk of developing AIDS. While the progression of HTLV
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in co-infected individuals is modified by HIV, resulting in diseases such as HAM\ TSP and
ATL [38,40].

Although many mathematical models and analyses have been developed for HTLV
and HIV mono-infections, very few works have considered the dynamics of co-infection
with HTLV and HIV. There are a few exceptions, namely the very recent papers in [42-45].

As a consequence of the above, co-infection of HTLV /HIV; involving both latent and
active infected cells sharing ITC infection, as well as the diffusion of viruses and cells; has
never been mathematically studied. Therefore, in light of the works of [44,45], this study
aims to develop and analyze an HTLV /HIV co-infection model taking into account the
following considerations:

(C1) The hosts of both HIV and HTLV are healthy CD4" T cells;

(C2) The presence of latently infected HIV and HTLV cells;

(C3) Both HTLV and HIV have a specific bilinear CTL immune response;

(C4) Several factors can lead to CD4" T cells becoming infected with HIV, including free
HIV particles, latent HIV-infected cells, and active HIV-infected cells;

(C5) HTLV has two routes of transmission: (i) horizontally through the straight ITC contact
over the virological synapse and (ii) vertically where the active HTLV-infected cells
can transmit HTLV via mitotic division;

(Ce6) All types of cells and viruses diffuse spatially.

The novelty and advantages of the developed model are generalization and improve-
ment of many mathematical models existing in the literature describing HTLV /HIV co-
infection by considering three routes of transmission and other biological factors.

The well-posedness of the model has been verified by proving the non-negativity and
the boundedness of the model’s solutions. Our analysis yielded a number of threshold
parameters that set the presence of the equilibria and their stability. We formulated Lya-
punov functions and used the Lyapunov-LaSalle asymptotic stability theorem (L-LAST) to
demonstrate the global stability of all equilibria. To assert our analytical results, we supply
numerical simulations of the model. Due to the possibility of an individual having two
or more infections at the same time, our model may be useful for studying co-infections
such as COVID-19 with influenza and HIV with HCV or HBV. Our proposed model and
its mathematical analysis will assist clinicians in estimating when to initiate treatment in
patients who have co-infections with more than one virus.

2. Model Formulation

We propose the following partial differential equations model based on the statements
(C1)-(C6) mentioned in Section 1:
WD — gy AU(s, £) + 0 — gU(s,t) — U(s, )[wi H(s, £) + waL(s, )
+w3l(s, t) + w4E(s, t)],
LS — 4y AL(s, t) + U(s, £)[wi H(s, t) + waL(s, ) + w3l (s, )]

en (B+1)L(s,t), 1
orls) _—iZIAAII(DS(/ t)t)_FfL(S,:l)(_ ?)II:E? ti)_Jr%lbi((S’tt))I(s(/Gt: b1)P(s,t)
aE?é,t) : dPAE S/ N j’ : S; Ve W
S/~ = dpAE(s,t) +60P(s,t) + (1 — €)bE(s, t) — boE(s, t)
— 0 ZE (s, t)E(s, ),

MY — gy AH(s,t) + @I(s,t) — 0H(s, 1),
2 — 4,1 AZ1(s,t) + 01 Z1 (s, )1(s, 1) — 1 Z1(s, 1),

BZTES’D =d, e AZE(s,t) + 12 ZF (s, t)E(s, t) — 2 ZE (s, 1),
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where t € [0,00) and s € ), with boundary conditions:

ou oL 9l 9P 0OE oH oz ozF
% o op op op op op op o C0 e

and initial conditions:

U(s,0) = Y1(s), L(s,0) =Ya(s), I(s,0)=Ys(s), P(s,0) =Yy(s), E(s,0)=Ys5(s),
H(s,0) = Ye(s), Z'(s,0)=Y7(s), ZE(5,0)=Yg(s), s€Q. 3)

The following is a description of Model (1) with Conditions (2) and (3): At position
s € O and time t > 0, the compartments P(s, t) and E(s, t) represent the density of latent
and active HTLV-infected cells. Z!(s,t) and Z%(s,t) are the CTLs specific for HIV and
for HTLV, respectively. Through ITC contact, healthy CD4"T cells become infected with
HTLV at a rate wy,UE. The ratio ¢ € (0,1) identifies the possibility that HTLV infections
will be latent. ebE, e € (0,1) denotes the rate at which active HTLV-infected cells are
passed to become latently infected and escape the immune system [35]. The mortality
rates of latent and active HTLV-infected cells are b1 P and by E, respectively. 6P is the rate
at which latent HTLV-infected cells are activated. HIV-infected cells and HTLV-infected
cells die, respectively, at rates s Z IT 36, ZEE, as a result of their specific immunity. CTLs
particular to HIV and HTLV expand at distinct rates v1 Z'I, v;ZFE, and they decay at rates
VAR YAS respectively. The diffusion coefficients of the compartments P, E, Z I 7E are dp,
dg,dy1,and d,e. As illustrated in Section 1, all remaining parameters have the same name
and explanation.

The boundary conditions (2) are the homogeneous Neumann boundary conditions,
which can provide a natural spreading limit and ensure that viruses and cells are unable to
escape through the isolated boundaries [46]. The open domain Q) C R, k > 1 is connected
and bounded with a smooth boundary d(), and the unit vector ¢ is the outward normal
vector on 0Q). The functions Y;(s), i =1,...,8, are non-negative and continuous.

We will assume that b < min{g, b1, b, } [30]. It follows that (1 — €)b < by and then

by, — (1—8)17 > 0.
Leta = by — (1 — &)b and w = eb. Therefore, Model (1) can be written as

aua(ts,t) =dyAU(s,t) +o0—cU(s, t) — U(s,t)[w1H(s, t) + waL(s,t)

+wsI(s,t) + wyE(s, 1)],

aLgi’t) =drAL(s, t) + U(s, t)[w1H(s, t) + wyL(s, t) + w3l (s, t)]
—(B+1n)L(s,t),

M) — 4y AI(s, t) + BL(s,t) — al(s, ) — 50 Z1 (s, £)(s, 1),

Y — dpAP(s, t) + pwsU(s, )E(s, t) + wE(s, £) @)
— (0 +b1)P(s, 1),

OE(s,t) _

5 dpAE(s,t) + 0P(s,t) — aE(s,t) — 3 ZF (s, t)E(s, t),
SHSY — 4y AH(s,t) + @I(s,t) — 0H(s, 1),
2L — 4,1 AZ1(s,t) + 01 Z1 (s, )1(s, t) — 1 Z1(s, 1),
w =d,eAZE(s,t) + 12 ZE (s, t)E(s, t) — 2 ZE (s, t).

3. Properties of Solutions

Proposition 1. Suppose that diy = d = df = dp = dp = dy = dy = dyi = d.
Then, there exists a unique solution Sol(s,t) = (U(s,t),L(s,t),I(s,t), P(s,t),E(s,t), H(s,t),
Z1(s,t), ZE (s, t)) for System (4) with the boundary and initial conditions (2)—(3). Moreover, this
solution remains non-negative and bounded on () x [0, +0).
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Proof. Define the norm ||A|y = sup|A(s)|, where the set Y = BUC(Q, R®) comprises
se()
all uniformly bounded and continuous functions from Q) to R®. Consider a positive cone
Y, =BUC (Q, Ri) C that leads to partial order on V. As a result, the space (Y, || - ||y) is
a Banach lattice [47,48].
Let ® = (&1, Dy, D3, Dy, D5, Py, 7, Ps)!" : Y+ — YV with any initial data Y =
(er Y5,Y3, Yy4,Y5, Y, Y7, Yg)tr € y.:,., given by

@1(Y)(s) = 0 — ¢Y1(s) — Y1(s)[w1Ye(s) + w2Ya(s) + w3Y5(s) + waYs5(s)],
D2 (Y)(s) = Yi(s)[w1Ye(s) + w2Y2(s) + wsY3(s)] — (B +1)Ya(s),
D3(Y)(s) = BYa(s) —aYa(s) — 21Y7(s)Y3(s),

Dy s

= pwyY1(s)Ys(s) + wYs(s) — (6 + b1)Ya(s),
Yu(s) —aYs(s) — »2Ys(s)Y5(s),
= @Y3(s) — 9Ye(s),
= v1Y7(s)Y3(s) — c1Y7(s),
02Yg(5)Ys5(s) — c2Yg(s).

|
<

Clearly, ® is locally Lipschitz on Y. It is possible to rewrite System (4) with the
boundary conditions (2) and initial conditions (3) as the following abstract functional
differential equation:

where G = (U, L,I,P,E,H,Z!,ZE)" and ©G = (dyAU,d AL d;Al dpAP,dgAE,dyAH,d 7 AZ,
d7:AZE)" In this case,

lim 1dist(\((O) +h®(Y), V) =0, forallY € ;.
h—0+ h

According to [47-49], System (4) with (2)—(3) has a unique non-negative mild solution
Sol(s,t) defined on Q) x [0, L) for any Y € )., where the maximum time interval during
which Sol(s, t) exists is [0, L£x). Additionally, Sol(s, t) is a classical solution.

In order to establish that solutions are bounded, let

G(s, ) = U(s,t) + L(s, ) + I(s,1) + é[P(s, )+ E(s,0)] + 3o Hls 0+ 22215 1) + %ZE(S, f).

Sincedy =dp =dy =dp =dg =dy =dy =dyu = d, then using System (4),
we obtain

oG (s, t)

0 dAG(s,1) = o~ cU(s, ) — yL(s, 1) — S1(s,1) - IZ;P(s,t)

- ”*wE(s,t)—;‘iH(s,t)—@z (s,t) -

¢ @ U1 4]

1%

“mZE(s ).
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We havea — w = b, — b > 0. Hence,

W) gaG(s,b) = g clU(s, ) — pL(s,1) — “1(s,6) — 2p(s, 1)
ot 2 ¢
B bz*b o €1 5] . 0 E
E(s,t) — 5= H(s,) o 715, 1) (pvzz (s, t)

<o—¢|U(s,t) +L(s,t) +1(s, ) + ;{P(S,t) +E(s,6)}

> g1 X2 gE —0—
+2cOH(S't>+ UlZ (s,t) + §002Z (s,t)| = 0—¢G(s,t),

where ¢ = min{g, 7, 5,b1,bp —b,9,c1,c2}. Therefore, G(s, t) satisfies the following system:

96(sh) —JAG(S,t) <o0—¢G(s, 1),
0) = Y1(s) + Ya(s) + Ya(s) + g[Ya(s) +Y5(5)] + 55 Ye(s) + 5 Y7(s) +

G( 72 Yg(s) >0,
JaG _
& = 0.

PU2

Assume G(t) is a solution of the ordinary differential equation system given below:

Accordingly, this gives G(t) < max{; maxG(s,0) } In accordance with the compari-
€
<

son principle (see [50]), we obtain G(s, t) < G(t). Thus,

G(s,t) < max{Q,ma_xG(s,O)},
Gb seQ)

and this implies that U(s, t), L(s,t), I(s,t), P(s,t), E(s,t), H(s,t), Z!(s,t), and ZE (s, ) are
bounded on Q) x [0, £;). Using the standard theory for semi-linear parabolic systems, we
concluded that £; = +o0 [51]. As a result, the solution Sol(s, t) is defined for all s € Q,
t > 0, unique, non-negative, and bounded. [

4. Equilibrium Analysis

This section is devoted to the study of computing the model’s threshold parameters
and equilibria. Model (4) satisfies the following equations:

0=0—¢U—wUH — wUL — w3UI — wyUE,
0 = wiUH + wyUL + wsUI — (B+ 1)L,
0=BL—al — 7',

0 = pwsUE + wE — (0 + by)P,
0=60P —aE — s, 7FE,

0=wl—9H,

0= (nl—-ea)Z,

0= (npE - cz)ZE.

The results of the calculations show that there are eight equilibrium points for Model (4):

1.  Infection-free equilibrium, So = (Up,0,0,0,0,0,0,0) and Uy = ¢/g. Both HIV and
HTLV are not present in this case.
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Persistent HIV mono-infection equilibrium accompanied by an inefficient immune
response, S = (Uy,L4,L,0,0,Hy,0,0), with components given by

Uy ag?
U, = —, L1 = Ri—1),
7R L™ abw, + B(@wq + dws) (R1-1)
0 @
I = cop (Ri—1), H cop (R —1).

adw, + B(wwy + dws) ~ wbw, + B(@wr + dw3)

The parameter R defines the basic HIV mono-infection reproductive number for
Model (4), which is given as

Ry = Uy [06190.)2 + ﬁ((i)wl + 19(4)3)} _ UpBowq Upwo UpBws
wd(p+1) wd(ptn)  pn alptn)
R1 is responsible for determining whether or not a persistent HIV mono-infection is
possible. In the meantime, the immune system is unable to respond effectively. In
addition, $; exists if Rq > 1.
Persistent HTLV mono-infection equilibrium accompanied by an inefficient immune

response, Sy = (U,0,0, P, E»,0,0,0), with components given by

U a
0 P (Ry—1), Er=-2(Ryp—1).

u = - = —
2 Rz 2 w49 Wy

The parameter R, specifies the basic HTLV mono-infection reproductive number for
Model (4) and is given as
(pw46 U()

Re = (a—w)0+aby’

Ry is responsible for determining whether or not a persistent HTLV mono-infection is
possible. In the meantime, the immune system is unable to work effectively. Further,
S, exists if Ry > 1.

Persistent HIV mono-infection equilibrium accompanied only by efficient HIV-specific
CTL, S5 = (U3, L3, I5,0,0, H3, Zé, 0), with components given by

oty 1 @ @c1 o
= A B TR L )
3 wciwy + ﬂ(C16LJ3 +¢u1 + UleLg,) 3 U1 3 ¢ 3 l9U1 3 Pl ( 3 )
and L
v
Rs = puils 2,
acy

represents the HIV-specific CTL immunity reproductive number for HIV mono-
infection. In the case of HIV mono-infection, R3 indicates whether or not HIV-specific
CTL immunity is efficient in the case of HIV mono-infection where the HTLV infection
is not present. The component L3 satisfies the quadratic equation:

AL+ BiL3 4+ C; =0, (5)
where

A1 = 19(,02U1 (ﬁ + 77),
Bi = c1(@wy + dw3) (B + 1) + Bvi[c(B + 1) — w2l
C = —C1Q((DOJ1 + 19(03). (6)
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Since A1 > 0 and C; < 0, then B% —4A1C; > 0, and the positive real root of
Equation (5) is calculated as follows:

—B1 + B% —4A.C
Ly = V .

2A4

S3 exists if Rz > 1.
Persistent HTLV mono-infection equilibrium accompanied only by efficient HTLV-
specific CTL, S4 = (Uy4,0,0, Py, E4, 0,0, ZE), with components given by

Y p, = C2[t(c2ws +cv2) + wigguy]
Cowy +¢up’ 02(0 + b1 ) (c2wy + gU2)
o r (a—w)0+ab
Ey=—=, Z;=—"— —1).
1T AT et e

The term R4 is introduced as the HTLV-specific CTL immunity reproductive number
for HTLV mono-infection and is defined as

_ 20wy
(cows + g2)[(a —w)0 + ab ]

In fact, R4 indicates whether or not HTLV-specific CTL immunity is efficient in the
case HTLV mono-infection where the HIV infection is not present. On the other hand,
Sv4 exists if Ry > 1.

Persistent HTLV /HIV co-infection equilibrium accompanied only by efficient HIV-
specific CTL, Ss = (Us, Ls, Is, P5, E5, Hs, Zé, 0), with components given by

Us = (a —w)6 +aby _ U, Ls— c1(@wn + 19(4.}3)’
pw4f Buiwy(Rs — 1)
_a_ _@wa _

15 - U - I3r H5 - 19U1 - H3/
e a[crwibg(@wy + dws) (B + 1) + ¢Ovrwy{(a — w)0 + aby }(Rs5 — 1)] (R5 - 1)

> Bvywabws[(a — w)6 + aby] Rs—1)"
. C199wi(@w + 9ws) (B + 1) + gu1wp[(a — w)6 + aby](Rs — 1) (R5 - 1)

5 Bvywywy[(a — w)0 + aby ] Rs—1)"

swy[(a —w)b + aby ] (Rs — 1)
Here, R5 is the HTLV infection reproductive number when the HIV infection exists, and

0909V 1wy, (Rs — 1)

Rs = - ,
° c1¢bwy(@wy + 8w3) (B +17) + gOviw,[(a — w)6 + aby] (Rs — 1)

where
Re— _ wsgb(B+1)
wa[(a —w)0 + abqy]’

In fact, R5 determines whether or not HIV-infected individuals can further be dually
infected with HTLV.

Persistent HTLV /HIV co-infection equilibrium accompanied only by efficient HTLV-
specific CTL, Se = (Us, Le, Is, Ps, Eg, Hg, 0, Zg), with components given by

ad(B+1) ad(cowy + Go2)
u = = U , L - R - 1 7
6™ wdw, + B(@w; + dws) ! °7 v [adw; + f(@wy + dws)] (Re = 1)
B8 (caws + gua)

Iy =

vp[adwy + B(@wy + dws)] (Re = 1),
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cr[w{adwy + B(@w + dws) } + adwap(B + 1))

Py = ,
6 02(0 + by ) [adw; + B(@w; + Buws)]
o @B (crws + GUo)

Ec=—==E4, Hgz= Re—1),

6 Uy 4 6 U [adwy + B(@wq —|—19w3)]( 6—1)

—w)0 +ab

7E _ (aw)—l Ro/R1 —1).

6 %2(9+b1) ( 2/ 1 )

Re represents the HIV infection reproductive number when HTLV infection exists, and

_ oua[adw; 4 B(@w; + Jws)]

Re ad(B+1)(caws + 6v2)

The parameter R4 indicates whether or not an HTLV-infected individual can further
be dually infected with HIV.

8.  Persistent HTLV /HIV co-infection equilibrium accompanied by efficient HIV-specific
CTL and HTLV-specific CTL, S; = (U, Ly, Iz, P7, E7, Hy, ZL, ZEF), with components
given by

Yv1020
c102(@wy + Bws) 4 Bv1(cowy + Uy + wrvoLy)’
_ eBwaov1v¢ + cow(civa(@wy 4 dws) 4+ dv(cows 4 GUp + wrvpLy)]

U; =

P =
7 02(9 + bl)[Clvz((le + 19603) + 19171(62604 +cuy + w2v2L7)]
(o] (o) weCq
I;=—=L=1I1, Ez=—==E4=E H;=—=H3=H
7 01 3 5/ 7 0y 4 (% 7 191)1 3 5/
o (a—w)6 + ab;
Zh=—(R;-1), Zf=-——7"——"<1(Rg—1),
7 %l( 7 ) 7 %2(6+b1) ( 8 )
and
R7 — IBU1L7,
neq
Rg — Yw 40010290

((a — w)0 + aby)[c1va(@wq + dws3) + Bvq(cowy + gua + wovaLy)]

The parameters R7 and Rg represent, respectively, the competingHIV-specific CTL
and HTLV-specific CTL reproductive numbers in the case of HTLV /HIV co-infection.
Here, L7 satisfies the equation:

Aol + Byly 4+ Cp =0, 7)
where

Ay = Bwrviva(B+ 1),
By = cp0w4v1(B+ 1) + c1va(@wq + dw3) (B + 1) + gBvv2(B + 1) — dwaovivy,
Cy = —c1002 ((D(U] + 19603). (8)

Since A, > 0 and C; < 0, then B% —4A,C; > 0, and the positive real root of
Equation (7) is calculated as follows:

—By + /B3 —4A,C,

24,

Ly =

It is obvious that if Ry > 1 and Rg > 1, then Sy exists.
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5. Global Properties

This section is devoted to the implementation of a Lyapunov method to check the
global stability of the equilibria of Model (4). To do so, we constructed Lyapunov functions
as described in the works [52,53]. We further considered the following concepts:

- According to the arithmetic—geometric mean inequality:

1 m m
—ZFZ' > HFi’ FF>0,1i=1,2,...
mi3 i=1
we have
S ML s, ©)
U WLL LI
% HUL; % IH; >4 (10)
U HUL L LH
U; UEP; PE;
i L4 L >3, (11)

u U;E;P PE —

- Consider a function ¥;(U, L, I, P, E, H, Z', ZF) in which
‘ifj(t)z/ﬂ‘lfj(s,t) ds, j=012,...,7.

- Denote

~

I ~E leJ' .
[ = (u,L,1,P,E,H,Z",7Z ):WZO , 7=0,12,...,7,

and let 1"} represent the largest invariant subset of I';.
- Define a function f (x) = x —1—Inx. We have that / (x) > Oforallx > 0and F (x) =0

if and only if x = 1.
- Based on the condition (2) and the divergence theorem, we derive

o:/ VS~ﬁds:/ div(VS)ds:/ AS ds,
200 (@) Q

_ [ 1 P A § _ [ (AS VS|P
o_/msvs pds—/de(SVS)ds—/Q(S o) ds,

forS € {U,L,1,P,E,H,Z!,ZF}. Thus, we obtain

/AS ds =0,
(@]
AS |vS|]?
O?ds— M ds. (12)

In order to simplify the notation, we denote S(s, t) by S. Based on the above concepts,
the following subsections will deal with proving the global stability analysis of each
equilibrium point.

5.1. Stability of Equilibrium Sg
Theorem 1. The equilibrium Sy of Model (4) is globally asymptotically stable (GAS) when Ry < 1
and R, < 1.
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Proof. Define a Lyapunov function ¥ (s, t) as

1
Fo(s,0) = tpr (L) 414 Tol@wi+0w) 1, oy
Uo ot @ (Pe

wlLIOH " %1U0(cf0w1 + 19603) 71 n %2(9 + bl) 7E
9 advq @0vy

E

+

Clearly, ¥o(U,L,I,P,E,H,Z!,ZF) > 0forall U,L,I,P,E,H,Z',ZF > 0,and ¥y = 0
at Sg. Calculating a% along the solutions of Model (4) as follows:
¥y Uy
F =11- U (duAU +0—¢lU—w UH — wyUL — w3Ul — w4UE) +d AL+ wUH
Uy (@wq + dws)
at

1
+ g[dpAP + @wyUE + wE — (0 + by)P] +

+ wolUL + w3l — (B+ 1)L+ (dIAI+ﬂL—¢xI—zlzII)

0+ b

(dEAE 40P — aE — %2ZEE>

w1y mUp(wwr + 19(4)3)

+ advq

(dyAH + @I — 8H) +

(dZIAZI—l—leII—chI)

0+0b
+%2( +b)
@OV,

U
<1 _ O> (Q gU) + woUgL + wyUgE — (ﬁ + 77)L +

(d7eAZF + 022" E — 0pZF)

BUo (0w + dws3)
at

a(6+by) E_ ey (@wy + 19603)21 B 02 (0 + bl)ZE

90 atdvq )

d[Uo(CDLL)1 + 19(,&}3) AL+ dpAP " dE(e + bl)
xt Q @0

" wldHuOAH—I— %1dzluo(cow1 + 190.)3)AZ[ n zdeE(G + bl)AZE

0 advy ¢0vy

L

_~_QE_
P

AE

+du<1—LZ?>AU+dLAL+

Using Uy = ¢/¢, we obtain

oYy (U—Up)? (a —w)6 + aby

= =S TR 1)L+T

_ malh(@w +9ws) ;2260 +b1) ok +dy <

advq @0vy

djUp(@w; + dws) AL+ d—PAP—I— de(0+by)
at @ @0

wldHuOAH—I— %1dZIUO((Dw1 +19w3) Azl " %2dZE(6+bl)
9 vy @Ovy

(Ra —1)E

Uy
1—— A
7)o

AE

+d; AL +

AZE.

Therefore, we calculate 2 0 as follows:

%——g/ P ds 4 (B ) (Ra—1) /Lds—i-[( )9+”b1 /Eds

%101U0ww1+l9w3 /ZI ,M/ZEderd/ 1—@ AU ds
advy pOvy Ja u u

+dL/ AL ds + f1to(@wi + Bws) /Alds+d—P/ APds—i—M/ AE ds
atv o) ¢ Ja

+a)1dHU0/ AH ds +%1dz[U()((D(U1+l9(JJ3)/ A7 ds—i-%deE (6+01) /AZE ds. (13)
advy o) @Ovy
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By using Equality (12), Equation (13) is simplified as the following form:
dﬂ - / P st (pn)(Ri 1) /Lds+[( )9+”b1 [(Ra = /Eds
%161”0 L'O(U1+l9£d3 / 71 4 L) 9+b1 / 7E 4 —dyUp / HVUHZ
adv; o o@buy
¥,

Hence, =5 < 0 for any U, L, E,Z!,ZE > 0 and % = 0 when (U,L,E, Z!,ZF) =
(Uy,0,0,0, O) The solutions of Model (4) are limited to 1"6 It can be seen that the elements

of the set FO satisfy (U,L,E,Z!,ZF) = (Uy,0,0,0,0). Then, %If = AE = 0, and the fifth
equation of Model (4) becomes

oE
= — =0P.
0 ot
Thus, P = 0. The third and sixth equations of Model (4) yield

al

& =diAl —«l

£ ’ 14
{ %—If =dyAH + @I — 9H. (14)

We can define a Lyapunov function as follows

‘T’O:/Ids+i/Hds.
Q 20 Jo
ThendO

, —37> can be computed along the solutions of Model (14) as follows

d‘?o 4 4
il < 0.
o ~5 (I—i— H) ds <0

Clearly, % =0when!=H =0. Let

! ,d¥
IﬂO = {(U,L,I,P,E,H,ZI,ZE) € ro . TtO :0}
Thus

T, = {(U,L,I,P,E,H,ZI,ZE) eTy: (UL I,PEH,Z,7E) = (Uy,0,0,0,0,0,0,0) } = {So}.

As a result of applying L-LAST, we concluded that S is GAS [54-56]. [J

5.2. Stability of Equilibrium Sy

To prove the global stability of S1, we need the following lemma:

Lemmal. If R3 <1, then I} < I.

Proof. Let R3 < 1; hence porL 3 < 1, and therefore,

[ 7el]

Lot —By + /B —4A:C _ao
- /3111 2A1 - ‘Bl)l
2A B
B2 —4A,C; < 2Aac1 + puiBy
pu1

2A B
:>( 1ac1 + pu1By

2
5o, ) +4AC; — B3 > 0.
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Using Equation (6), we obtain

41)(6‘1196021)1(,5 + 77)2[061%02 + lB(Cle + 19603)]
‘32

(I — I) > 0.

Hence, < I3. O
Theorem 2. The equilibrium S of Model (4) is GAS when R1 > 1, Ry/ R1 < land Rz < 1.

Proof. Construct a Lyapunov function ¥ (s, t) as follows:

u L U (@ 9 I 1
T](S,t) = U1F<> +L1F<> + MWHF() + ;P

U1 Ll at 11
" 0+ blE n w1y HyF (H) n %1U1((DCLJ1 + 19(413) 71 " %2(9 + bl)ZE.
@0 ¢ Hq advy P8y
oY
Calculating —Las
ot
% = (1 — %) (dyAU + 0 — U — wUH — woUL — w3l — wyUE)

U (@owq + Bws)

L
+ (1—i)[dLAL+w1UH+wZUL+w3u1—(ﬁ+17)L}+ 3

L

x (1 - 171) (dIAH— BL — &l — %1211) + %[dpAP + gw4UE + wE — (6 + by)P]

9+b1 E w1y Hq
+ s (dEAE—H)P—aE—%zZ E)+ (1 ) (@naH + @1 - 0H)
Uy (@wy + dws3) (0 +by)

(dzlAzl + ozl - clzf) T (dZEAZE v, ZEE C2ZE)

advy @Ovy

u L
= <1 - ﬁ) (0 —cU) + wrllh L + wythE = (B+ 1)L — wﬂlH% —wplLy

BUy (0w + Ow3) - BUi (0w + Bws) Iy
L— L—
at at I
Uy (owq + ws) mUp(@wy + dws) ; w a(6+bq) @l Hy
I zZlp+ S-SV e
* 9 1t wd 1ty o0 with 55
rerth (0w + 8ws) ;20020 +b1) ¢ (1 LIRWNY,
advy L) u
v (1- B )AL+ dith (@wn +8ws) (1 Iy dpyp  dEO+D1) g
L wt I @ @0
dyw Uy H; %1dzl U, ((D(Ul + 19&)3) I %deE (9 + bl)
1-— AZ" +
9 H advy @Ovy

L
*wg,UIfl +(B+1)L +

+(U1U1H1 —

+ AZE.

>AH+

Applying the equilibrium conditions for S;:

0 = ¢Uy +w U1 Hy +wolh L1 + w3Ui I,
wiUyHy + woh Ly + wslh Iy = (B+ 1)Ly,
L,y ol
P=1

24

Hy ==L
1 g’

we have
U (0w + dws) I — BU; (0wq + Bws)

0 ! ad

w U1Hy + w3l ) = L.
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Further, we obtain

u
>(€U1 —cU) + (w1U1Hy 4+ woly Ly 4+ w3y h) (1 - 1)

u
UHL, u uiL,

— Wyl Ly — — w3l
U H,L 2y, — 9SS

M _ (W
ot u

+ wy U E — w U1 Hy + wiU1Hy

LI
+ w1 L1 + w3l ) — (CU1U1H1 + w3U111)H11 + w U1H1 + w3l

%1U1((D(4]1+l9603)z11 +QE_{II(6+b1)
at ! @ @0
_ %1C1u1((DCU1 + 19(4]3) 71 _ %2C2(9 + bl)ZE +dy (1 _ ul)AU
advq @0v,

+dL(1_LLl)AL+d1U1(ww1+19w3) (1—11>AI+LZJAP+dE(9+b1>AE

ot I @0
dHal;llll (1 B % %1dZIU1(ch1 +l9¢03)AZI n %deE (9+b1)

atdvq @0vy

(u—u,)? u; UHL, IH; LL
=—c— 7 UH (4—— - —— ——— -
g Tt U~ WHL LH LI

IH
E— wlLIlHlIliI‘_l[ + w U1 Hy

+ AZE

>AH+

u U, u U,LL Lq1
(a —w)6 + aby pwa0U; Uy (0w + Bws) c1\ o1
—1)E L——)Z
+ @0 (a —w)0 + aby + ad 7

(0 +b1) U Ly ity (@w; + Bws)
22V E L gn(1- 2 AU +d (1 22 )AL
900 Fau(l- g JAtrdL\ 1= )AL+ w0

« (1= 1) ar4 2 ap 4 GEO D) \p duenth (4 Hiy
I @ @0 ¢ H

%1dzzul((ow1 + dws) Azl 4+ rd s (04 by)
advy )

IL LI
+w2U1L1<2— ﬁ — U> +CU3U111<3— ﬂ _ & _ 1>

AZE. (15)

Therefore, Equation (15) becomes

o,

u-u
T

u UuUHL LH LI
s W ULy LL\ | (a—w)d+ab
u UlllL Lll 4)9

-zl = 2el0Fb) e g (1 - ul)AU
@0V u

+dp (1 - Ll)AL 4 Aith (@1 + bews) <1 _ 11>AI+ ”Z’AP L ACRLIVY:

xt I @0
dyw Uy <1 B IJ])AH—F %1dZIU1((Da)1 +l96¢)3)AZI n %deE(9+b1)AZE.

H advy )

(R2/Rq —1)E

(16)

A

Calculating at and using Equality (12) to obtain

dt
d¥, (u—uy)? U, UHL, IH; LL
L= L At V| H Y/ B P e O
dt (6 + ws 1)/0 u s +wlh 1/0 U WHL §LH L)%

_W Uil Lh [(“—w)9+ﬂbl](732/721—1)/
+w3u111/0<3 T L11> ds + . [ Eas

%1U1((DCU1+19(U3)(11713)/ I 7%2C2(9+b1) / E B / HVUHZ
+ o 'QZ ds 74)61)2 .QZ ds duul.gilﬂ ds
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—d L /Q ||VLL2||2 gs _ thh (a;f:;l + dws) /Q ||VI£||2 ds — delﬁulHl /Q ||VI$||2 ds.
Using Lemma 1, we obtain that I; < I3 whenever Rz < 1. Moreover, since Ro/ Ry <
1, then utilizing Inequalities (9)—(10), we obtain djt] <Oforany U,L,I,E, H, zl zE > 0.
Moreover, d;ﬁl = 0at (UL,I,HEZ',7ZF) = (U, Ly, L1, Hy,0,0,0). The trajectories of
Model (4) tend to I}, which consists of the element where E = 0. Hence, %—f = AE =0, and
the fifth equation of Model (4) reduces to

025291‘),

and gives P = 0. Hence, T} = {$1} and S; is GAS by using L-LAST. [

5.3. Stability of Equilibrium S,
Theorem 3. The equilibrium S, of Model (4) is GAS when Ry > 1, R1/ Ry < 1,and Ry < 1.

Proof. Assume ¥;(s,t) is defined as follows:

u U (@ 8 1 P 0+b E
Ya(s t) = Uaf (Uz) + L+ WH ¢P2F(132> + ;9 1E2F(Ez>
wilh

n Ha+ %1U2(LD(U1+19603)ZI+ %2(6+b1)ZE.
o advy @bv,

oY
We calculate —2 as

ot

% = (1 — li;)(duAU+Q—gU—w1UH—w2UL—W3UI—aJ4UE) +d AL+ wiUH + woUL
u, ((Da)l + 19(,03) i 1 P,
+ w3l (,3+77)L+T(d1AI+ﬁL ol — 347 1)+$ 1-2
 [dpAP + ey UE + wE — (6.4 by)P] +° ;Bbl (1 - %) (4eAE + 0P — aE — 02" E)
+w1u2(dHAH+CDI—19H)—|— s Up (0w + dw3) (dZIAZI+UlzII_ClZI)
0 advy

(0 +b1) E Ep_ . 7E
+ = i, (dZEAz + 0, 7FE czz)

U Uy (0w + B
=<1—J)(e—gu)+sz2L+w4qu—(ﬁ+:7)L+ﬁ 2( C:i; “’3)L+7;’E
—w4UE&—gE&+9+b1P2—a<9+b1)5_9+b1p§+a(9+b1)]52

P9 P ¢ 90 9 E o0

(60 + by) _ me1p (0w + dws)

E I_ %2C2(9+b1) E _&
+ 0 Z-Ep w00, Z 2005 Z5+dyl( 1 o AU
+dyar s (@ £ 0ws) o dp () PZ)AP+ de(0+b1) (1 E2)zp
at @ P @0 E
n delUZAH—i— %1(121112(09(4)1 + dws) AZl & %deE(9+b1)AZE
9 advq @OV, .

Using the equilibrium conditions for Sy:

9+b1P2: a(6+by)

; 2 (7)

w
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We obtain

oY u U,
aTZ = (1 - 2) (cUp — cU) + w4l Ey (1 - u) + wrlbL — (B+7)L

‘BUZ(C’D(Ul + 1.9603) UEP, w_ EP,
L— E — —E,—= E E
+ o wallp 2ULE,P 9 zEP+w4U2 2+(P 2
PE2 w PE2

(0 +by)

~%E Er+ Sp + 25170
PyE qosz—i—wz;Uz 2+(P2+ 96

%1C1U2((OW1+I9CU3)Z _ %2C2(9+b1)ZE+d (

U
1-— A drAL
atvg @0v, u U) U+d

4 Al (@wi +8ws) o dp () Po o deO@FD) (B2 g
ot Q P @0 E
dgwiUy s1d Uy (0w + dws) s0d e (0+1y)

I
+ g AH + e AZ' + 2007

(U — Uy)? U, UEP, PE,

= (T e (3 2 - P
U +“’4“( U~ WLEP P2E>

w EP, PE, Up{adw; + B(@wy + dws3)}
+or(- 5 ne) “”’”[ <0 (B + 1) ‘1]L

_ alh(@w £ 0ws) yy 220 tb) (p ey (1o Wy
wdv; @0 S u

a4 (@@L +0ws) o dp () Po o dEO D) () B g
at @ P @0 E
" de1U2AH+ %1dzlu2(c’0w1 + dws) A7l 4 %2dzE(9 +b)
9 vy @Ovy

 (U-W)* w(EP, - PE,)? U, UEP, PE,

T o PhE T wtkR(3T T e T hE

101 Up (0w +l9w3)zl n (0 4 b1) (gu2 + wacn)
atdvy @Owsv;

d o
x (Ry—1)ZF +dy (1 — LLIIZ)AU +d AL+ ’Uz(w‘;’l;JF ws3)

+ ‘if (1 - Pz)AP+ de(0+by) (1 EZ)AE 4 dnenlls

—wylhEy—= ZFE,

AZE

AZE

+(B+1)(R1/R2 = 1)L -

Al

P @0 E %
%1dZIu2((Dw1+l9w3)AZI+ }deE(e—i_bl)AZE. (18)
advy g

By calculating % along the positive solutions of Model (4) and applying Equality (12),

we find

ds

d‘Pz _ / LI Uz ZU/ EPZ — PE2
g " PPE

U UEP, PE

B %1C1U2(CDW1+19603)/ 71 ds + %2(9+b1)(gv2+w4c2 Rys—1 / 7E ds
(@)

advq POw4vy
s [ 17U o gty I9PI2 . deEs(0+b1) [ IVEIR
a P2 @0 o E?

Thus, if R1/ Ry < 1and R4 < 1, then from Inequality (11), we obtain % < 0 for any
U,L,1,P,E,H,Z!,ZF > 0. In addition, 22 = 0 at (U, P,E, L, 21, ZF) = (Us, P», E3,0,0,0).
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Similar to the proof of Theorem 1, one can demonstrate that 1"/2 = {sz}, and L-LAST
implies that S, is GAS. [

5.4. Stability of Equilibrium S
Theorem 4. The equilibrium S3 of Model (4) is GAS when Rz > 1and Rs < 1.

Proof. Define a function ¥3(s, t) as

u L Uz (@wq + Bws) I 1 0+ by
‘I’:UF(>+LF<>+IF —)+=P+ E
AR ANTA 3\ Ls 8(a+ 39 Z1) L) ¢ 0

w1 Us (H) 0 Uz (0w +19;U3)ZéF z! n 0 +b) 5
9 %, (a-f— %123) §06U2

+

H; Z!

Y
We calculate 873 as

ot

s _(;_Us
ot u

) (dyAU + 0—cU—wUH —wyUL — wsUI — (U4UE)

L
+ (1 — L3) [dLAL + wUH 4 wpUL + wsUI — (B + 1) L]

Uz (@wq + dws3) (1 B 173

diA] + BL — ol — 3¢ Z'1
l9(0c—|—%1Z§) I )( AL+ P oo )

1
+ ;[dpAP + @wyUE + wE — (6 + by) P
0+ by
@0
pal Ug(@wl + 19603) 1— éé
191)1 ((X + %1Z3I)) 71
+ %2(9 + bl)
@0vy

+

(dEAE 4+ 6P —aE — %2ZEE) 4l ( Hs

S 1- H)(dHAH+coI—19H)

> (dzzAZI N2 g C1Z1>
(dZEAzE + v, ZEE - czzE). (19)

Equation (19) can be simplified as

s _(;_Us
ot u

L
) (Q — QU) + wroUsL + w3Usl + waUsE — (‘B + 77)L — wﬂle
BUz (w1 + Bws) B als(@wq + 19(,03)
B(a+50Z)) 8(a+59Z))
B ﬁlb,((@a)l + dws) Llj als(@wy + dws) Uz (@wq + dws)
dw+mzl) T 8lat+mzl) O 8(a+aZl)
a(@+by),.  wls wils Hj sc1Us (@wq + Bws)
— E + ol — @l — 4+ wU3zHs —
o0 8 2 Y PP
Uz (C’le + 19603) I »x1c1U3 (C’le + 19603) I %262(9 + bl)

71 7L ZE
19(DC+%1Z§) it 19U1(DC+%1Z§) 3 )

Us L3 d[Ug,((DCUl + 19(03) ( I3> dp
dyll——=—|AU+d, (1— = |AL 1— = |AI+ —AP
* ”( u) * L( L) T T (atmzl) 1)

dE(Q + b1) dgwiUs ( H3) md i Us ((le + 19(03) Zé I
+ AE + 1——|AH+ — = |AZ
@0 14 H Bvy (a + 30 Z1) Al
%ZdzE (9 + bl)
4
@Ovy

L
—wylLz — agwf3 +(B+n)Ls +

7'+ YE
¢

ZI

AZE.
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Applying the equilibrium conditions for S:

0 = ¢Usz + w1UzH3 + woU3 L3 + w3Usl3,

wiUzH3 4+ woU3Ls + w3Uslz = (B +17)L3,
C1 [

BL3 = <“+%1Z§) I, Iz= o H; = 513,

we have
Uz (@wy + dws) I — BUz(@w1 + Bws)

wi1UzH3 + wsllz]3 = 9 3 e+ aZl)
143

L.

Moreover, we obtain

¥ u u.
871?3 = (1 — US> (¢Us — gU) + (w1UzH3 + wylz L + w3lzl3) (1 - 3)

u
HL IL
UHLs _ w2U3L3£ —wslzl3 UILs

UsE — wq UsH
@tk — ot T Us UsI5L

+ (U1U3H3

LI
+ wollzLs + wslsls — (wiUsHs + W3U313)L—3§ + w U3H;s + w3l I3

_(a—w)0+ab 200+ b) /e
@0 $Ovy

Us Ls d;Us ((DCU1 + 19(03)
dyll1——=—=)AU+d|1— = )AL
i ”( u) i L( L) T S+ mzl)

w (1-58\ars ®ap 4O +D) p dnenlls (1 Hs)
I Q @0 % H

% (0( + %1Z§) ZI POV,

IH
E— w1u3H313—§ + wU3Hy —

AZE

u-—us)?

u. u u. UIL LI
+w2U3L3(2_ = ) +(U3U3I3(3— o s R 3)

TRTA U UshL Lal
t s <U3 _ (a—w)o+ {Ilb1)E B 00 (0 + bl)zE
w4l @Ovy
Us; L3) diUs(ow 4 dws) ( Ig)
+dy(1—-=—=)AU+d1——= |AL+ 1——=|AI
u( U) L( L 8(a+ 2L I
+dlAP+dE(9+bl)AE+de1U3 1_& AH
Q @0 % H
zlezU3(cow1 + dws) _ ﬁ Azl 4 %deE(9+b1)AZE
Buy (a + 30 Z1) Z! @Ov,

_ (U - uz)?
= (et wls) = F@lb i (4= 7 — T T T T LH

<3 U; ULy Lk

_ 8 Zms 28 —U=)E —
U~ UshL L31>+“’4(u3 Us)

+du<1 _ LLZ;’)AUML (1 _ L3)AL+ dits (@awn + des) (1 _ b’)AI

L 8(a+ 2l I
4 A2 apy O D) \p duenlls () H3
Q @0 % H

%1dZIU3(COCU1 +119w3) _ Zfé AZ! 4 MAZE' (20)
Buy (a4 50 Z1) Z gov2
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Computing the time derivative of ¥3(t) and applying Equality (12), Equation (20) will
take the following form:

d¥s _ (U — Uy)? Us UHL3; Ll; IH;
I (Q+0J2L3)/07u ds+w1U3H3/ 4 U WL Ll LH

Us UlLj LI3 / 00 9+b1 / E
Uy [ (3— =2 - 228 d Us—Us) [ Eds ZEd
twsls 3/ ( U WLl L) tesls—Us TN s

2 2 2
ot [ I gy [ I ot o) /LI
19 rx+%1Z

de1U3H3/ ||VH||2 S_xldz,u3zs (@wq + dw3) / ||vzf||2
19U1(06+%1ZI

Obviously, if Rs < 1, then S 5 does not exist since P5 < 0 and E5 < 0. Accordingly, in
this case, we have

aa—l; = dpAP + ¢wsUE +wE — (0 4+b1)P <0,

oE

= = dpAE + 0P — aE — 35 ZFE < 0.

The next step is to find the value U with 0 < U(#) < U such that %I; < (0and %—If <0.
Let us consider

a —w)99+llb1E B %2(9+b1)ZEE ds

:/ dpap+ OH0VAE by
Q 0 0

:(pw4/ g (- w)0tab Eds—w/ ZEE ds < 0 for all ZE,E > 0.
0 wa b 0 0

This occurs when Uz < U = % = Us. Then, from Inequalities (9)—(10), we
have d; <OforanyU,L,I,E,H,Z!,ZF > 0. Inaddition, d}’; = Oat(u L,1,H Z,E ZF) =

(Us, L, I3, Hs, Z3, 0,0). The solutions of Model (4) are limited to F3, which has elements
satisfying E = 0. Hence, & 5¢ = AE =0, and the fifth equation of Model (4) becomes

oE
0—5—91’,

which yields P = 0 ,and hence, T; = {$3}. As a result of applying L-LAST, S5 is GAS. [

5.5. Stability of Equilibrium Sy
Theorem 5. The equilibrium S, of Model (4) is GAS when R4 > 1and Rg < 1.

Proof. Define ¥4(s, t) as follows:

u Uy (@ 1%/ p 0+0b E
>_|_L+4(w1+w3)1+¢p4p< )+ 0 4F( )

ta=Ur <u4 ad P 90 E,

wily sUy(@wr +B8ws) ;| (0 +b1) g [ ZF
H Z Z — |.
tg O w vy + pbv, Tt F ZE
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Calculating % as given below:

oY u
Tt4 = <1 - ﬁ) (dyAU 4 ¢ — ¢U — w1 UH — woUL — w3UI — wsUE) + dp AL + wiUH + wyUL
U4((Da)1 +l9(;J3)

+wsUl— (B+1)L+ o

(dIAHﬁL —al— %1211) + % (1 _ &>

P
6+b] E4 E
N (1_7 (dEAE—i—GP—aE—%zZ E)

E
Uy (@wy + dws)
advq

x [dpAP + @w UE 4+ wE — (0 + by)P] +
w1U4
0

N (0+b) (| Zy
0vy ZE

+ (dyAH + @I — OH) + (dZIAZI+01ZII—clzI)

) (dZEAZE + v, ZEE - czzE)
ﬁU4 (c‘owl + 19603)

at
+QE7w4UE&7gE&+9+b1P47 a(9+b1)E7 0+b1 By
¢ P9 P ¢ 0 ¢ E
a(6+bq) E,+ (0 + bl)ZEE4 B s Uy (@wq + l9uJ3)ZI B 05 (0 + bl)ZE
o @0 advq @Ou,

_m(0+bh) 200 +b1) Uy
0 T Zy +dyl1 U AU +dp AL

1 itlal@n +803) yp oy dp (4 i) ap de@ D) (1 Ea) g
at Q P @0 E

n de1U4AH+ %1dZIU4((,D(U1 +196LJ3)AZI n %deE(9+b1) 1_ ZfAf AZE.
9 advq vy ZE

)
- <1_ﬁ)(g—gU)+W2U4L+(U4U4E_(.B"_'])L_'_ L

+

ZEE+

Using the equilibrium conditions for Sy:

c

0 =cUy+wslyEy, E4= ?i,

0+ by a(9+b1)
Py =

® @0

%2(9 + b])
@0

w
waUyEq + 5E4 = E4+ ZEE4.

Then, we find

¥, o Uy Uy ,BU4(COLU1 —|—19cu3)
UEP4 w EP4 w PE4 w PE4
- E -z Es+ “E, — E,—2 _ Zp, 4 E
waly LEP ¢ 4E4P+W4U4 4+ P wqly ‘BE oTDE + wylyEy
4 O, aals(@or +ws) o (0 Us g g g BYs(@@ F 8ws)
advq u ot
+@(1—&>AP+M<1—Q>AE+MAH
) p @0 E 4
+ %1d21U4((DOJ1 +19CU3)AZI + %2dzE(9+b1) 1— ZfE AZE
advy @Ovy ZE
(U — Uy)? U, UEP, PE;\ w EP, PE4
=Y U (3 2 A o) T (oo ot
g Twathks U WEP PRE) o™ E.P P4E
U4{oa9w2+[3(c0w1 +l9aJ3)} :| %1C1U4((DUJ1 +l9(03) I
+(B+ —1|L- z
(B 17){ ad(B+1) advy
U4 d[U4((le +l9(4)3) dp P4
dyl1—-—= AU+ d; AL Al+—|(1— — |AP
+ u( u) +diAL + 4 Y 5
n dE(9+b1) 1_ E AE + de1u4AH+ %1dZIU4((le +I9CU3)AZI
@0 E 4 atdvq
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| 7z (0 +b) (1 ZE)AZE

@Ovy Z
__ (U-uy)®  w(EPs— PEy)? u, UEP, PE,
BT o PhE B3 T OEP T BE
+</s+rz>(7z6—1>L—”1C1”4<‘”“’1+19‘*’3>z1+du(1 U4)Au+dLAL

a vy u
+dlU4(@W1+ﬂw3)AI+dl 1_& AP+dE(9+b) 1_% AE
at @ p @0 E

I de1u4AH+ s1d 71Uy (@wq +l9a)3)AZI I spdze (04 by) 1- Zi AZE.

1 atvg @By ZE

A

ay

Calculating d—t4 along the positive solutions of System (4) and using Equality (12),
then we obtain

¥y (U —uy)* u4 (EPy — PEy)*

ar /Q ds / PRE

Uy UEP4 PE,4 /
E _ 4 — _

+ wyly 4/Q<3 U UsEaP P4E) ds+ (B+%)(R¢—1) | Lds

s e Uy (@ws + dws) / 71 ds — dyl / HVUHZ _dpPy [ |[VP|? ds
vy ¢ Ja P?

dEE4(9+b1 HVEHZ ds — %2dZEZE 9+b1 / ||VZEH2

@0 n E? @Ovy

Hence, if R¢ < 1, then from Inequality (11), we obtain dt4 <0, foranyU,L,I,P,E H,Z!,

ZE > 0. In addition, "ld—;* =0at (U,P,E ZE L, Z") = (Uy, Py, E4, ZE,0,0). The solutions of
Model (4) are limited to F . Therefore, in the same way that Theorem 1 was proven, one
can demonstrate that T, = {$,}. Applying L-LAST, we obtain that S; is GAS. [

5.6. Stability of Equilibrium Ss
Theorem 6. The equilibrium S5 of Model (4) is GAS when Rs > 1, Rs > 1, Rg < 1, and
R1/Ryr > 1.

Proof. Define ¥5(s, t) as follows:
u L U5(cow1 +l9LU3) ( I > 1 ( P)
Y5 =UsF | — | +LsF )+ oI5k | — )+ =Pk | —
T (U5) > (L5> 8 (a+s92L) >\ 9 > \Ps

6+ by (E) w1Us (H) s Us(@wy +ws3) ;[ Z! 0(0+b1) k
+ EsF|— )+ ——HsF|— )+ ZsF | = |+ —>—Z
'\ Es o '\ H; dvy (2 + 50 Z1) 5 zl + @By

b4
Calculating s as stated below:

ot

¥
atS (1—u5>(duAu+g—gu wiUH — wyUL — w3l — wyUE)

Lsg
T (1 _ L) [d AL + wiUH + woUL + w3UI — (B +17)L]
Us(@w; + ws)

_5 ol - 7!
FTrEwY (1 I)(dIAI—HSL al - 5a7'1)

+ - p (1 - P> [dpAP + ¢wsUE + wE — (0 + by)P]
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9+b1 E5 E
+ = (1—E) (dEAE—H?P—aE—%zZ E)
wUs Hs
1—— AH I —-9%H
+ 3 ( H)(dH + U9H)
mUs(@w; + dws) Z] I I I
1—-=2)(d A2 +v1Z'] — 1 Z
19121 (K+%1Zé) 71 ( 71 v 1 )
(0 4 b1) E Ep . E
+W(dZEAZ + 0y ZEE — ¢y7 ) 1)

Equation (21) can be simplified as

¥ U L
a—f = (1 - ﬁ) (0 —gU) + wrlUsL + w3UsI + wyUsE — (B + 1)L — ‘UIUHTS

L Us(wwq + 9 Us (0w + ¢
—W2UL5—w3UIf5+(ﬁ+11)L5+ﬁ 5(@wy + 8ws) . alls(@w; + Bws)

O(a+s92L) O(a+s92L)
ﬁU5((D(4J1 +0ws) . Is  als(@wy + dws) s Us (0w + Sws) g w
— —IL T 5+ i Z'Is+ —E
O (a+921L) I O (a+02L) O(a+02l) @

—w4UE&—EE§+9+b1P5—a(9+b1)E_6+b1pﬁ a(6 +by)

———F
P g P g 90 9 E g
m(0+b1) ¢ wl wl s c1Us(@0wy + %ws)
+ ———27"E5 + w Us— — w1UsHs— + wiUsHs5 —
0 5 15— 1UsHs o 1UsHs Bv1 (a + 5 ZL)
1 Us(@w; + dws) 71 »101Us (@wq + Bws) 71 s02(0 + by) 7E
- T 5 I 57
19(06 + %125) duq (DC + %125) pbvy
Us L5> djUs (0w + dws) ( I5>
+dyll—=—=|AU+d|1——= )AL+ 1——= |AI
ll( U) L( L ﬂ(tx—l-%lZé) I
dp Ps de(0+b1) Es dyw Us Hs
—(1——=)AP+ =———(1— — |AE 1-— |AH
+ ) ( P) * @0 E + 4 H
I mdy Us (0w —|—Il9(U3) _ é% Azl I ydye (6 + bl)A E
191)1 (Dé + %1Z5) Z QDGUZ

Using the equilibrium conditions for Ss:

0 = ¢Us + w1UsHs + wylsLs + w3lsIs + walsEs,
wiUsHs 4 woUsLs + w3UsIs = (B +17)Ls,
c @
BLs = (06 + %1Z§)15, Is = v%’ Hs = 515,
w 0+0b a(@+b
wylUsEs + —E5 = + 1P5 = 7( + 1) Es.
¢ @ ¢t

We obtain

Us (@ O U=(® o
wUsHs + w3lsls = 5(@wy + w3)15 _ BUs(@w; + 1w3)L5~
9 O(a+ 5020

Further, we have

8‘5[’5_(1_U5

3 u>(€U5—€U) + (w1UsHs 4 wolsLs + w3UsIs + w4 UsEs)

Us UHLs u UILs
1— 25 — o UsHs——% — ooUsLs— — wsllsls ——2
X( u> B A S T Al T A

LI
+ w1UsHs + wylUsLs + w3UsIs — (wq UsHs + W3u515)§51 4w UsHs



Mathematics 2023, 11, 1523 24 of 47

UEP5 w EP5 w

Usls — wiUsEs——— — —Es—— UsE —E
+ w3lUsls — wyls 5U5E5P P 5E5P+w4 5 5+4’ 5
PE5 w PE5

w I[H;s
R P UsEs + —Es — wq UsHs —>
P5E 9 5P5E + wyalsEs + 9 5 — wiUs 5[5H

+ wyUsHg + 22010 <E5 ~ CZ)ZE +dy (1 - LIS)ALI
@0 Uy u

Ls diUs (0w 4 dws) ( 15) dp < P5>
+di(1——= |AL+ 1—-—|AI+—(1—-—=
L( L> 8 (a+s92L) I ¢ P

@0 E 0 H

s01d1 Us (@wy + Bews) ( 4! ) Azl 4 22ze(0+by)

g} AZE
duq (DC + 1 Zé) @OV,

71

(U - Us)?
— ) He(4-— 22 _ 22255 255 205
g Tllhs U UsHsL ILsl IsH

IL LI
+ wylsLs 2_%_2 + w;UsIs 3_%_h_ o
T
U5 UEP5 PE5> w (2 EP5 PE5>

s
U WEP DE) ¢

+%2(9+bl)(£5—c2 ZE+du<1—u5 AU+dL<1—L5 AL
@0 Uy u L

4 ditls(@en + Buvy) (1 - 15>A1+ a (1 - P5>AP
8(a + 2]} I g\ P

4 de(0+by) (1 - E5)AE+ dricorUs <1 - H5>AH

@0 E % H

sadyiUs(@wy + Bws) (2L AZ 4 s0dye (04 by)
duq (DC + %1Zé) POV

— AZE. (22)

Then, Equation (22) will be simplified as follows:

Y5 (U—Us)*> w (EPs — PEs)?
Dl R L -z
ot (6 +wls) =7 ¢  PPE
g Us _UHLs L5 IHs
U UsHsL LsI I3H

Us UlLs Lis Us UEPs PEs
+ (3——=—- "2 22 4 E5(3—- 22— —2> =2
w3LI5 5<3 1L Lsl (U4U5 5 3

0 +b1) b pE _Us _Ls
+ 0 (Es — Ey)Z" +dy( 1 U AU+dp|1 I AL
1 il (@ + Bews) <1 - I5>AI L dr (1 - PS)AP
19(zx+%1Z5) I % p
dE(9+b1) Es dywiUs Hs
+ 0 1 £ AE + 3 1 T AH

+ %1dzlu5(CO(U] + 19(473) (1 _ Zé)Azl + MAZE

Buy (a + 30 Z1L) z! @Ov,
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~

ay
Now, along the solution trajectories of Model (4), we calculate d—ts and utilize

Equality (12) to obtain the following result:

d¥s (U—Us)” u5 (EPs — PEs)*
it (9“’2[“5)./ ds / PRE

Us LIHL5 LI5 IH5> d

UH/ g5 _ A S 06
Twrtsis | U  UsHsL ILsl IsH

Us UlLs LI
T 2 T T
+ w3Us 5/()(3 u UslsL Lsl ds

Us UEPs PEs
Usks [ (3— =5 — 255 d
+ @l 5/0( U~ UsEsP P5E> S

2
(pQ
||VL||2 d1U5I5 (@wy +19w3 ||V1||2
—@%/ ) /
19(04—}—%12
dPP5/ HVPHZ _ dpEs(0+by) / HVEHZ
@0

ds —

dHW1U5H5/ HVH||2 %1dZIU5Z5 (Da)1+l9CU3 / ||VZI||2

Buy (a + 30 Z1L)

Hence, if Rg < 1, then Sy does not exists since Z; = %(Rg —1) < 0. Since the
existence of the equilibria does not depend on the diffusion terms, therefore, in the absence
of diffusion, we can say ’%E = Uy (E — C—z)ZE < 0 for all ZE > 0. Thus, E5 < 5—2 = E;.
Hence, from Inequalities (9)—(11), we obtain dt5 <OforallU,L,I,P,E,H,Z!,ZE > 0. We

also have d;;s =0at(U,LIPEH, zL ZE) (Us, Ls, Is, Ps, Es, Hs, ZI,O). The trajectories

of Model (4) are limited to F5, and hence, F5 = {S5}. Applying L-LAST, we obtain S5
is GAS. 0O

5.7. Stability of Equilibrium Sg
To prove the global stability of S5, we need the following lemma:

Lemma 2. If R; <1, then I < I7.

L
Proof. Let Ry < 1; hence, & < 1, and therefore,

acy
Loome —By + (/B3 —44,C, _ ag
< — <
ﬁUl 2A2 ﬁvl
B2 — 4A,C, < 2A0c1 + Bu1By
2 — ;Bvl

2A By\?
(W) 4 4A,Cy — B2 > 0.
1

Using Equation (8), we obtain

dacyBwrv1v3(B + 17)? [wdws + B(@wq + Bws)]

7 (I, — Ig) > 0.

Hence, Iy < I;. [
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Theorem 7. The equilibrium §6 of Model (4) is GAS when Rg > 1, R7 < 1,and Ry/R1 > 1.

Proof. Define ¥(s, t) as follows:

u L Ug (w1 + Bws) 1 P 0+ by E
T6—U6F(u>+L(,F(L6>+ 20 IeF I +¢P6F P + 0 E¢F Eq

w1 Uy H 0 Ug (CD(U1 + 190.)3) I %2(9 + bl) E ZE
H, — Z Z — .
g ek ( ) + advy + @0v, r zE

+

Calculating % as follows:

¥
aat6 _ (1 _ LZ?) (duAU + 0 — cU — wUH — wrUL — wsUI — wyUE)

Lg
+ (1 - L) [d AL + wUH + woUL + wsUI — (B +1)L]
U
+

6(@“’1“9“’3)<1 - ) (481 + BL —al —2'T)

at
YA
(P 1_7 [dpAP + @wy UE + wE — (6 + by)P]
0 + by Eg E
g (1 E) (dEAE+9P aE — 07 E)
w1U6 H6
+ 2 (1 H)(dHAH+cOI 9H)
4 2ats(@wn + 8ws) (deAZI fo, 71— clzf)
atdvg
(0 +b) 3 E E E
— =1 deAZ Z"E —crZ 2
+ 2002 ZE <ZE + vy (o)) ) (23)

Simplifying Equation (23), we derive

¥ u L
871‘,6 = (1 — U6) (Q — gU) + wolgL + w3Ugl 4+ w4 UgE — (ﬁ +17)L — w1UHf6
—wQULé—CUC,UIL— +(B+1)Le + ‘BU6(606229+ 19603)L_ UG(CDCU19+ dws)
. ‘Bu6((i7w1 + l9W3)LI£ n Ué(wwl + 19603)16 I %1116((1)(01 + 19603)2116 I QE
ot I % at Q
—w4UE——gEP6 9+b1P6_ a(9+b1)E_ 9+b1p§+ {1(9+b1)E6
¢ P ¢ 0 ¢ E 0
42000 sep ot @ U B 4 oy H — Z11Ye(@1 F8w3) oy
@0 % OH atdvq
B 00 (0 + bl)ZE B (0 + bl)ZgE " 00 (0 + bl)ZéE g1 % AU
@Ovy @0 @Ovy u

+dL<1— LL6)AL+ s (@cwn + 8es) (1 116>A1 ‘2’(1 _ Z;S)AP

I

atd
" dE(9+b1) (1 E6>AE+ de1U6 (1 B IJé)AH—i— %1dzlu6((2)a)1 +I9W3)AZI
@0 E 0 H vy

02 7e(0 + b1) Zg E
e 1- 28 |azt.
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Using the equilibrium conditions for Sg:

0 = ¢Ue + wiUgHgp + wallgLg 4 w3lels + wallgEg,
wiUgHg + wolgLe + w3lgls = (B +17)Ls,

I
Eezg/ Hesz °, EL6:IGI
Uy 9 o
w 0+ b a(6 +by) (0+b) F
walUgEg+ —Eg = Py = E¢ + Z7Eg.
¢ ¢ 90 oo °

It follows that

U (@wy + dws) BUs (w1 + Bws)
Is =
4 ad

w1UgHg + w3Uglg = Lg.

As a result, we obtain

oY U, U,
87156 = (1 - 6) (¢Us — ¢U) + (w1UgHg + wylgLe + w3l ls + wallgEg) (1 - 6)

u u
UHLg u UlLg
— w1UgH, — wolgLg— — walgl
w1lUeg 6U6H6L wrlg 6u6 w3 66u616L

+ w1UgHg + walgLg + w3lUglg

LI UEP; w _ EP;
— H, Ig)— H I — E¢——— — —Eg—=——
(w1UgHg + w3Ug 6)L6I + w1UgHg + w3lgly — wyly 6U6E6P p 6E6P

PEs w _ PEg w
— — —Eg— UgEg + —E
PE ¢ 6P6E+w4 6 6+(P 6

s Us (0w + Bws) (16 _ C1>ZI

w
+ (/J4U6E6 + EE6 — CU4U6E6

IHg
— w1 UgHg—— UgH,
w1l 616H+w1 616 + ) o

+du<1 - Llll6>AU+dL(1 - L6>AL+ 4 Us (@1 + ) (1 - I6)AI

L at

erl 1,& AP+M 1,§ AE+M 1,% AH
@ P @0 E ¢

n %1deU6(cow1 + l9w3)AZI n %zdzg(f)-i-b]) (1 _ ZE) AZE

atdvq POV,

 (U—Ue)®
=g e\ T U HL T Ll LH
U U Us UILg Ll
UgLe(2— =6 — = Uglg(3— =6 - ===6 _~l6
+watls 6( u u6>+°"3 66( U~ UslL L61>
U6 UEP6 PE6 w EP6 PE6
CRe) L YR (2

U UgEsP PE "~ EsP  PE

4 Zals(@wn + bws) (16 - Zl)z’ tdy (1 - LZ?)AUML (1 - LL6>AL
1

ot
1 ditls(@w1 + Bws) (1 - Ié)AI + ‘Z’ (1 - P6>AP

at I P

de (0 + by) Es dpwUs Hg
FE (1 JaE e TR (1= JaH

| dpUs(@wr +9w3) oy | e (0+ 1) <1 . Zf)m @)

advy @Ov, ZE
Then, Equation (24) will be simplified to

2%,
ot

(U—Us)*> w (EPs — PEg)?
= — L -z
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U UgH¢L L¢l ItH

Us UILg Ll Us UEPs PEg
Uglg(3— =6 - =2=6 _Zl6 UgEg(3— —6 - —=16 %6
+wstle 6( U~ UglsL L6I> +witle 6( U~ UgEeP P6E>

1 Ug ((D(Ul + 19603)

(Is — I)Z" 4 dy <1 —

+dlu6(cow1+l9w3) 1_& Al—i—d—P 1_ &

I P
n dg(6 + b1) (1 B E6>AE+ dpwiUs (1_ He
@0 E

+ %1dzlu6(wwl + 19(‘03) AZI + M 1 — Z—g AZE
advq v,

A

ay
Now, along the solution trajectories of Model (4), we calculate —* and utilize

dt
Equality (12) to obtain the following result:

d¥e (U —Ug)~ u6 / (EPs — PEg)*
ar (g+w2L6)/ ds PP.E ds

U UHL6 LI6 IH6) 4

He [ (4— 26 =06 Zle D6
+awnlls 6/9 U~ UgHsL Lgl IH

Us UlLg Ll
i _de e Lo g
+wslls 6/Q<3 U Uglgl Lel) <

Uy UEP, PEg
E _Z6  HETe 6
wslls 6/ (3 U UEP BE)

+%1U6(69w1+l9w3 —I7) /ZI iy U/ ||VU||2

L / HVLH2 _ diUgls(@wy + Bws) / HVIHZd
at
dppe ||VP||2 _ dpEe(0+ 1) ||VE||2
a P2 @0 o E2
_ de1u6H6 IVHI? 4 22dzeZ6(0+b1) 1 [[VZF|?
0 a H? @Ov, Q (ZE)?

Hence, if R7 < 1, then using Lemma 2 to obtain I < I7, therefore, using Inequalities (9)—(11),
we conclude that d“};ﬁ < 0; furthermore, % = Owhen (U,L,I,P,E,H,ZE, Z") = (Ug, Le, Is, Ps,
E¢, Hg, ZGE,O). The solutvions of Model (4) tend to 1"/6, and hence, 1"/6 = {§6}. Applying
L-LAST, we obtain that 5S¢ is GAS. [

5.8. Stability of Equilibrium S,
Theorem 8. The equilibrium S7 of Model (4) is GAS when Ry > 1and Rg > 1.

Proof. Define ¥7(s, t) as follows:
u L\  Us(@w + dws) <1) 1 (P) 0+ by (E)
Yy = U/ + Lyf + T~ |+ =P | |+ E7F | —
7 7 (U7> 7 (L7) 8(a+ 0 ZL) "\ o 7'\ py o0 ' \E

w Uy H) Uy (0w +8ws) ;. [ 2! (0 +by) g [ ZF
+ HyF + ZiF | = |+ —=———Z;F | == |
g 7 (H7 duy (w4 2Ly 77\ Z2 pbvy 77\ ZE
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Calculating % as follows:
b4
aa; (1 - u7> (dyAU + 0 — U — wUH — wyUL — w3l — wyUE)
Ly
+ (1 - L) [d AL + wUH + woUL + wsUI — (B +1)L]

U7((O(,U1 +l9a13) < I7> I
4+ 1= = | (dIAI+BL—al — 0 Z']
9(a+ 2 20) 1) (disg pL—al = s2'1)

L1 (1 _ P7> [dpAP + guwsUE + wE — (0 + by)P]

Ty

48 ;Gbl (1 - E) (dEAE 1+ 0P —aE — %ZZEE)
H

+ wll9u7 (1 - H7) (duAH + @l — 9H)

Uz (@wr + dws) 7] I I I

oo (o 2] 1-7 (dZIAZ t 0zl -z )
ZE
+ %2(;94;1’1) (1 zE) (dZEAzE 1 v, ZEE - czzE) (25)
2

Simplifying Equation (25), we derive

ik ¢ u L
at7 — <1 — 7) (Q QU) + woUyL 4+ wzUyI 4+ waU7E — (‘B + U)L - wlLIH%

‘BU7((D(U1 + dws) L aly (@wy + dws)
— I
8(a +5027) 8(a+3027)
IBU7(CUCU1 + 19603) I7 CKU7((D(U1 + 19(03) P2 U7((D(U1 + 19(03) I
_ L= I; Z'1I;
19(a+%1ZI) I 8 (o +302L) 8o+ 302L)
w_ P, 04D a(6+b1)E_6+b1P&

- wzllL7 - wglllf + (,3 + 77)L7 +

+ E 6U4UEf—fEf+ p; —
¢ ¢ P ¢ ¢0 ¢ E
a(6+by) (0+b1) F wl wl
E Z"E —_ — H;,— H
+ e 7+ e 7+ wiUy 3 w1Uy 719H+(U1U7 7
_ e U7((Da)1 + 19603) I U7((Da)1 + l9a)3) I7 101 U7((Da)1 + l9w?,) I
Buy (a + 30 Z1) 8(a+502ZL) 7 Buy (a + 30 Z1) 7
. %262(9 + bl)ZE . %2(9 + bl)Z7EE + %2C2(9 + bl)Z; —|—d 1— g AU
L ¥8 @Oy u
Ly d]U7(CU(/J1 +190J3) ( 17) dp ( P7>
di{1— = |AL 1— = Al 1——= |AP
* L( L) bt az)) )My P
dE(9+b1) E7 de1U7 H7
— (11— AE+ ——-(1— AH
R )T H
%1dzl U7((Dw1 + 19603) Z7 A7l n %2dZE (9 + bl) 1 ZE AZE.
191)1 (Dé + %1Z§) Al (;291)2 ZE

The equilibrium conditions for S7 give

0 = ¢Uy +wiUyHy + woly Ly + w3lyI7 + wall7 E7,

wiUyH7 4+ wylyLy 4+ w3lyI; = (B4 1)Ly,

1 o)) wl;
Ly = ( + ZI)I , In=—, E,=-—=, Hy=—=
ﬁ 7 4 147 )17 7 1 7 s 7 9
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wlyEy+ 2 E, = 0+ by Py — a(f +by) E, ot 260+ by) ZEE,.
¢ ¢ @0 90
This implies that
iUy Hy + sy Iy — Uy (0w + dw3) I = BU7 (@wq + dws) L.

4 B(a+502Z1)

In addition, we obtain

ik ¢ u u
a—: = (1 - U7> (cU7 — gU) + (w1 U7 H7 + woU7L7 + ws3UyI7 + walzE7) (1 - U7>

UHL
—wiUzHy 7

U~ H- U-L U>I
U, HoL +w1 7H7 + wall7L7 + w3llyly

—ws3lyly

— woUrLr—
C2HTML Uy I L
UEP, _w, EPy
U;E;P ¢ "E;P
PE7 w PE7 IH7
Er——= U-E E; — wUyH
P.E go7PE+w477+go7 w177I7H

u, Ly diU; (0w + dws) ( 17)
UyHy +dy(1— == |AU+d(1— = |AL 1——= |AI
+wiUz7H7 + u( Ll) + L( L) + 19(06+%1Z[) i

dp P7 dE(G + b1) E7 dH(U1U7 H7
+ 4’(1 P)AP—i— 0 1 E AE + 3 1 T AH

s1d 71Uz (@w, +I19W3) 1_ Zﬁ AZ! 4 s2dze (0 + b1) 1- ii AZE
Buy (a + 50 Z1) Z @OV, Z

LI
— (wUyHy7 + w3Uyl;) —

] + w1UyH7 4+ w3Uy7I; — waU7E7

+ waUyE7 + — P E7 — wyU7E7—=

L (U-Uy)*  w(EP;— PEy)?

g Y _UHL, L IH,
U WH,L IL;0 ©LH

U, UiL, LI U, UEP, PE,
Usly (3 — =2 - =227 UrEs(3— —2 — =7
twsty 7( U WhL L71> twsty 7( U UsE,P P7E>

dy <1 - U)Au+dL <1 - L7>AL 4 A1ty (@an + des) (1 - I7>AI

u L 19(zx + %1Z§) I
dp P dE(9 —+ bl) E; de1U7 H,
1— = |)AP+ ———(1- AE+ —2(1—- =% |AH
(p < P> * @0 E * 4 H
zL ZE
Bvy (a + 50 Z1) z POvy Z
. d¥y . . .
Calculating d— and using Equality (12), we find
a¥; (u—-uy)* u7 (EP; — PE7)*
- (g—i—szy)/O ds 7/ g ds

U UHL7 Ll IHy
UHy [ (a— 7 - SHE7 B 2070
+anll 7/0( U~ WHL Ll 17H> s

u, uil; LI U, UEP; PE;

2 2 2
[ WU oy, [ WL o, Ao s bus) VIR
l9(06+%1zl

de1U7H7 / I VHH2

ds — ds

dpp7/ ||VPH2 _ dgEz7(64by) | VE|?
@0 o E?
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_ %1dle7ZI (@wq + Bws) / ||VZIH2 _ %2dzEZE 0+ bp) / ||VZE||2
Buy (a + 30 Z1) Pbvy

Inequalities (9)—(11) 1mply that :}27 < 0 where d;}? = 0 occurs at Sy. The solutions of
Model (4) are limited to I, = = {S7}. Applying L-LAST, we obtain that S7 is GAS. [

Let X = (U,L,I,P,E,H,7Z!,ZF) € R® with the norm || X|| = |U| + |L| + |I| + |P] +
|E| + |H| + |Z"| + |ZE|. By a simple computation, we have ¥;(X) — oo as ||X| — co.
Hence, the Lyapunov functions ¥;,i=0, 1, ..., 7 considered in the proofs of Theorems 1-8
are unbounded. In addition, Table 1 summarizes the results obtained in these theorems.

Table 1. Global stability conditions for the equilibria of Model (4).

Equilibrium Global Stability Conditions

So Ri<landR, <1

§1 R1i>1,Ry/Ri<land R3<1

S, Ry >1,Ri/Ro<land R4 <1

§3 Rz >land R5 <1

§4 Ry>1land Rg <1

Ss Rs,Rs>1,Rg <land R1/Ry > 1
§6 Re>1,R;<land Rp/Rq1 >1

§7 Ry >1land Rg > 1

6. Numerical Simulations

This part illustrates the global stability of equilibria using numerical simulations based
on the parameters listed in Table 2; some values of these parameters for HIV were obtained
from [57]. To numerically solve the system of PDEs, we used the solver PDEPE in MATLAB
(see the code given in the link given in [58]: https://www.mdpi.com/article/10.3390/math1
0224390/s1 (accessed on 15 January 2023)). Additionally, a comparison study between
mono-infection and co-infection dynamics will be demonstrated. We selected a step size of
0.1 for time t > 0 and a domain Q) as Q) = [0, 2] with a step size of 0.02. In addition, we
considered Model (1) under the initial conditions:

U(s,0) = 500 [1 +02 cosZ(ns)], L(s,0) = 10 [1 +05 cosz(ns)],

I(5,0) = 2[1+05c08*(1s)],  P(5,0) = 20[1+05c08(75)],

E(s,0) = 0.2 [1 +05 cosZ(ns)}, H(s,0) = 4 [1 +05 cos2(ns)},

Z(s,0) = 4[1 + 0.5cos2(ns)}, ZE(s,0) = 1.5 [1 + 0.5cos2(ns)], se0,2, (26)
and the homogeneous Neumann boundary conditions:

ouU 9oL oI 9P OE oH o9z! ozE
aiﬁ—a*ﬁ—%—afﬁ—afﬁ—aiﬁ—aiﬁ—aiﬁ—(), t>0, s=0,2. (27)

Table 2. List of parameters of Model (1).

Parameter Value Parameter Value Parameter Value Parameter Value
0 10 e 0.9 4 2 dp 0.1
¢ 0.01 b 0.008 n 0.02 dp 0.01
w1 Varied by 0.2 U1 Varied dp 0.01
wo Varied @ 5 Uy Varied dg 0.2
w3 Varied c1 0.1 B 0.2 dy 0.01
wy Varied [ 0.1 by 0.01 d,i 0.2
o 0.5 » 0.2 0 0.003 dye 0.2

¢ 02 0 02 dy 0.1
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6.1. Stability of the Equilibria

Under the above initial and boundary conditions, we chose various values of the

parameters wi, wy, w3, wa, V1, and vy, which yielded the following cases:

)

@)

®)

4)

®)

(6)

@)

®)

We picked wy = 0.00006, wp = 0.00005, w3 = 0.00007, ws = 0.001, v; = 0.3, and
vy = 0.5. For this set of parameters, we have R; = 0.63 < 1 and R, = 0.23 <
1. As shown in Figure 1, the solution of Model (1) reaches the equilibrium Sy =
(1000, 0,0,0,0,0,0,0). This shows that §0 is GAS in accordance with Theorem 1. Both
HTLV and HIV will be removed in this case.

We selected w; = 0.0001, wp, = 0.0002, w3 = 0.0003, ws = 0.0005, v; = 0.003,
and v, = 0.2. With such a choice, we obtained R, = 0.12 < 1 < 191 = Ry,
Rz = 0.39 < 1, and hence, Ry/R; = 0.06 < 1. Theorem 2 implies that S =
(523.81,21.65,8.66,0,0,21.65,0,0) is GAS, which is displayed in Figure 2. As a result,
HIV mono-infection will persist, but with an inefficient CTL immune response.

We set wy = 0.0001, wy = 0.00005, ws = 0.00007, w,s = 0.006, v; = 0.001, and v = 0.05.
Then, we calculated R = 0.81 <1 <14 =Ry, Ry = 0.64 < 1,and then, R1/ R, =
0.58 < 1. The numerical results showed that S, = (713.33,0,0,44.47,0.67,0,0,0) exists.
Figure 3 illustrates that Sy is GAS. It is evident from this that the numerical outcomes
and the theoretical finding of Theorem 3 are consistent. Therefore, a persistent HTLV
mono-infection with an inefficient CTL immunity is present.

We took wq = 0.001, wp = 0.0001, wz = 0.0003, wy = 0.001, v; = 0.05, and v, =
0.005 to yield R3 = 3.91 > 1 and Rs = 0.22 < 1. Figure 4 shows that S5 =
(569.59,19.56,2,0,0,5,7.28,0) is GAS based on Theorem 4. Therefore, a persistent
HIV mono-infection with an efficient HIV-specific CTL immune response is reached.
We set wy = wp = 0.0001, w3 = 0.0002, wy = 0.035, v1 = 0.05, and v, = 0.4. Then,
we calculated R4 = 4.35 > 1 and R¢ = 0.68 < 1. According to these data, Sy exists
and is given by §4 = (533.33,0,0,71.93,0.25,0,0,3.32). In Figure 5, we show that 54 is
GAS, which is consistent with Theorem 5. There is a persistent HTLV mono-infection
in this case, with efficient HTLV-specific CTL immunity.

We chose wq = 0.001, wy, = 0.0001, w3 = 0.0002, wy = 0.011, v; = 0.1, and v, = 0.01.
Hence, we have R5 = 564 > 1, Rs = 193 > 1, Rg = 021 < 1,and R1/R, =
2.09 > 1. The numerical outcomes displayed in Figure 6 confirmed the existence and
global stability of S5 = (389.09,5.80,1,74.98,1.13,2.5,3.30,0). Theorem 6 is, therefore,
affirmed by this result. In this case, there is a persistent co-infection with HTLV and
HIV together with an efficient HIV-specific CTL immunity, whereas the HTLV-specific
CTL immunity is an inefficient.

We picked w; = 0.0006, wp = 0.0001, w3 = 0.0002, wy = 0.04, v; = 0.001,and v, = 0.7.
This gives Rg = 2.26 > 1, Ry = 0.17 < 1, and Ry/Rq = 2.63 > 1. As can be seen
from Figure 7, the equilibrium Sg = (282.05,25.31,10.12,24.87,0.143,25.31,0, 1.62) is
GAS, and this is a confirmation of Theorem 7. In such a case, a persistent co-infection
with HTLV and HIV occurs together with the effective HTLV-specific CTL immunity;
however, the HIV-specific CTL immunity is not working.

We chose w; = 0.0006, w, = 0.0001, wz = 0.0002, wgy = 0.03, v; = 0.04, and
vy = 0.5. These data give R; = 1.83 > 1 and Rg = 3.27 > 1. Figure 8 illustrates
that S; = (467.37,11.46,2.5,43.25,0.2,6.25,2.09,2.25) is GAS. Theorem 8 is, therefore,
confirmed. Consequently, a persistent co-infection with HTLV and HIV occurs where
the immune system is functioning well.

6.2. Comparison Study

We compare mono- and co-infection dynamics in this part, through studying the effect

of one of the infections (HIV infection or HTLV infection) on the dynamical behavior of the
other mono-infection as in the following points:

(i)

The impact of HTLV infection on the dynamical behavior of HIV mono-infection:
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(ii)

The following HIV mono-infection model was compared with Model (1) in order to
determine the impact of HTLV infections on HIV mono-infection dynamics:

MY — g AU(s, t) + 0 — cU(s, t) — wy U(s, ) H(s, )
o —wol(s, t)L(s, t) —w3U(s, t)I(s, 1),
{0 — 4y AL(s, t) + wyU(s, ) H(s, £) + wpU (s, )L(s, 1)
+wsl(s, )I(s,t) = (B+1)L(st), (28)
M) — d1AI(s,b) + BL(s,t) — al(s,t) — .21 (s, 1)(s, 1),
st — g, AH(s,t) + @I(s, t) — OH(s, ),

?(t H_ I
=dAZ (s, t) +v1Z1(s,t)I(s,t) — 1 Z1 (s, t).

=

The comparison was made through the following considerations:

*  The parameters w; = 0.0006, wy; = 0.0002, w3 = 0.0004, v; = 0.05, and vy = 0.5
are fixed.

*  Both the initial conditions (26) and boundary conditions (27) were taken into
consideration.

*  We chose wy = 0.07 (in the case of HTLV /HIV co-infection dynamics).

As shown in Figure 9, patients with only HIV who are co-infected with HTLV have
lower levels of CD4 T cells (both latent and healthy), as well as HIV-specific CTLs. On
the other hand, the concentration of free HIV particles reaches the same level in both
HIV mono-infection and HTLV /HIV co-infection. Actually, this finding is compatible
with the results of a recently published paper [59], where the study indicated that there
are no discernible contrasts between HIV mono-infected and HTLV /HIV co-infected in
terms of the number of HIV particles.

The impact of HIV infection on the dynamical behavior of HTLV mono-infection:

In order to know how HIV infection influences the HTLV mono-infection dynamics,
we compared Model (1) with an HTLV mono-infection model as given below:

Y — gy AU (s, t) + 0 — U(s, ) — waU(s, 1)E(s, £),
31’(5 D — dpAP(s, t) + gwall(s, t)E(s, t) + ebE(s, t)
JE(s,t) (9+b1) ( t),
57— = dpAE(s, t) +6P(s,t) + (1 — &)bE(s, t)
—byE(s, t) — 2 ZE (s, t)E(s, t),

@ =dyAZE(s,t) + 02 ZE (s, t)E(s, 1) — caZE (s, 1).

Q)

(29)

To make the comparison, we took into account the following factors:

*  The parameters wy = 0.01, v1 = 0.05, and v, = 0.5 are fixed.

®  The initial conditions (26) and boundary conditions (27) were considered.

*  We picked wi = 0.0005, wp = 0.0002, and w3 = 0.0003 (in the case of HTLV/HIV
co-infection dynamics).

The solutions of Models (1) and (29) are shown by Figure 10. We noticed that, in
the case of co-infection, the densities of CD4 " T cells (both latent and healthy) and
HTLV-specific CTLs are less than those in the case of HTLV mono-infection. However,
both HTLV mono-infection and HTLV /HIV co-infection have the same level of density
of active HTLV-infected cells.
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Figure 1. The solution behavior of Model (1) with the initial conditions (26) and boundary conditions (27).
Taking wy = 0.00006, w, = 0.00005, w3 = 0.00007, wy = 0.001,v; = 0.3,v, = 0.5, wehave Ry = 0.63 < 1,
R, = 0.23 < 1, and the equilibrium Sy = (1000,0,0,0,0,0,0,0) is asymptotically stable.
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Figure 2. The solution behavior of Model (1) with the initial conditions (26) and boundary con-
ditions (27). Taking w; = 0.0001,w; = 0.0002,ws = 0.0003,w; = 0.0005,v; = 0.003,v, = 0.2,
we have Ry = 191 > 1,R,/R; = 0.063 < 1,R3 = 039 < 1, and the equilibrium $§; =
(523.81,21.65,8.66,0,0,21.65,0,0) is asymptotically stable.
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Figure 3. The solution behavior of Model (1) with the initial conditions (26) and boundary condi-
tions (27). Taking w; = 0.0001,wp = 0.00005,w3 = 0.00007, ws = 0.006,v; = 0.001,v, = 0.05,
we have R, = 14 > 1,R1/Ry = 058 < 1,R4 = 0.64 < 1, and the equilibrium Sy =
(713.33,0,0,44.47,0.67,0,0,0) is asymptotically stable.
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Figure 4. The solution behavior of Model (1) with the initial conditions (26) and boundary conditions (27).
Taking w; = 0.001, wy = 0.0001, w3 = 0.0003, w4 = 0.001, v; = 0.05, v, = 0.005, we have R3 =3.91 > 1,
R5 = 0.22 < 1, and the equilibrium Sy = (569.59,19.56,2,0,0,5,7.28,0) is asymptotically stable.
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Figure 5. The solution behavior of Model (1) with the initial conditions (26) and boundary
conditions (27). Taking w; = wy = 0.0001,ws3 = 0.0002,ws = 0.035,v7 = 0.05,v, = 0.4, we
have Ry = 4.35 > 1, R = 0.68 < 1, and the equilibrium §4 = (533.33,0,0,71.93,0.25,0,0,3.32) is
asymptotically stable.
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Figure 6. The solution behavior of Model (1) with the initial conditions (26) and boundary
conditions (27). Taking w; = 0.001,wp = 0.0001, w3 = 0.0002,ws = 0.011,v; = 0.1,v, = 0.01,
wehave Rs =564 > 1,R5 =193 > 1,Rg = 021 < 1,R1/R, = 2.09 > 1, and the equilibrium
§5 = (389.09,5.80,1,74.98,1.13,2.5,3.30, 0) is asymptotically stable.
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Figure 7. The solution behavior of Model (1) with the initial conditions (26) and boundary con-
ditions (27). Taking wy = 0.0006,w,; = 0.0001,ws = 0.0002,ws = 0.04,v; = 0.001,v, = 0.7,
we have Ry = 226 > 1,Ry; = 017 < 1,Rp/Rq = 2.63 > 1, and the equilibrium S¢ =
(282.05,25.31,10.12,24.87,0.143,25.31, 0, 1.62) is asymptotically stable.
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Figure 8. The solution behavior of Model (1) with the initial conditions (26) and boundary conditions

(27). Taking w; = 0.0006, w;
R; =183 >1,Rg =327 >1,and

is asymptotically stable.

0.0001, w3 = 0.0002, wy = 0.03,v; = 0.04,v, = 0.5, we have
the equilibrium S; = (467.37,11.46,2.5,43.25,0.2,6.25,2.09,2.25)
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(i) HIV-specific CTLs for Model (28)

(j) HIV-specific CTLs for Model (1)

Figure 9. Comparison between the solutions of two models: HIV mono-infection Model (28) and

HTLV /HIV co-infection Model (1), under

the initial conditions (26) and boundary conditions (27),

taking wy = 0.0006, wp = 0.0002, w3 = 0.0004, wy = 0.07,v1 = 0.05,v, = 0.5.
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Figure 10. Comparison between the solutions of two models: HTLV mono-infection Model (29) and
HTLV /HIV co-infection Model (1), under the initial conditions (26) and boundary conditions (27),
taking wy = 0.0005, w, = 0.0002, w3 = 0.0003, wy = 0.01, vy = 0.05,v, = 0.5.

7. Conclusions

In this work, we developed and analyzed the spatiotemporal dynamics of a mathemat-
ical PDE model for HTLV /HIV co-infection in the presence of three routes of transmission,
which are FTC, latent ITC, and active ITC. The developed PDE model also incorporated
latent infected cells, which represent reservoirs for both HTLV and HIV, as well as the
cellular immunity mediated by CTL cells in order to control the HTLV /HIV co-infection.
We first studied the properties of the solutions including the existence, uniqueness, non-
negativity, and boundedness to guarantee that our developed model is biologically and
mathematically well-posed. Furthermore, we proved that the dynamics of the model is
fully determined by eight threshold parameters: R;, i =1, 2,..., 8. More precisely, the
infection-free equilibrium is globally asymptotically stable when R; < 1 and R, < 1,
which biologically means that both HIV and HTLV are cleared and the co-infection dies
out. However, when R > 1 or R, > 1, one or both viruses persist in the host and seven
steady states appear; their global stability conditions are summarized in Table 1.

The reaction in the present model was modeled by the classical temporal derivative,
and the diffusion was described by the Laplacian operator. Further, the model considered
only one arm of adaptive immunity. Therefore, the study of the impact of immunological
memory on the dynamics of the PDEs model by means of the new generalized Hattaf
fractional (GHF) derivative introduced in [60,61] and the modeling the role of the second
arm of adaptive immunity exercised antibodies as in [62] will be the main aims of our
future works.
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